Seismic Model Parameter Optimization for Building Structures
<p>Three segment inverted pendulum on a cart with mass-spring-damper joints.</p> "> Figure 2
<p>Shake Table II components.</p> "> Figure 3
<p>Shake Table II in action.</p> "> Figure 4
<p>Ground Motion 1.</p> "> Figure 5
<p>Ground Motion 2.</p> "> Figure 6
<p>Controller’s block diagram.</p> "> Figure 7
<p>N segment inverted pendulum on a cart with mass-spring-damper joints.</p> "> Figure 8
<p>Three-dimensional graph of the Ackley function.</p> "> Figure 9
<p>PSO swarm behavior on Ackley’s function.</p> "> Figure 10
<p>Objective value evolution for PSO.</p> "> Figure 11
<p>Objective value evolution for DE.</p> "> Figure 12
<p>Prediction for Ground Motion 1.</p> "> Figure 13
<p>Prediction for Ground Motion 1, zoomed in.</p> "> Figure 14
<p>Best fit for Ground Motion 1.</p> "> Figure 15
<p>Best fit for Ground Motion 1, zoomed in.</p> "> Figure 16
<p>Best fit for Ground Motion 2.</p> "> Figure 17
<p>Best fit for Ground Motion 2, zoomed in.</p> ">
Abstract
:1. Introduction
- System identification and parameter estimation
- Kinetic modeling
- Kalman filter
- Optimization
1.1. Context
1.2. System Identification and Parameter Estimation
1.3. Kinematic and Kinetic Modeling
1.4. Kalman Filter
1.5. Optimization
1.5.1. Particle Swarm Optimization
1.5.2. Differential Evolution
2. Materials and Methods
2.1. Quanser Shake Table II
2.2. Initial Data
- Sampling time
- Top accelerations
- Actual table’s acceleration
- Table’s acceleration reference
- Table’s velocity reference
- Table’s position reference
2.3. Shake Table Controller
2.3.1. Table Model
2.3.2. Table Controller
2.3.3. Filters
2.3.4. Discretization
2.4. Forward Kinematics
2.5. Forward Kinematic Model
Inverse Kinematics Model and the Jacobian
2.6. Dynamic Modeling
2.6.1. Continuous Model
2.6.2. Discrete Model
2.7. Objective Function
Algorithm 1: Objective function. |
|
2.8. Prediction
Extended Kalman Filter
Algorithm 2: Extended Kalman filter. |
|
2.9. Optimization Stopping Criterion
2.10. Optimization Constraint Handling
Algorithm 3: Constraint handling. |
|
2.11. Particle Swarm Optimization
Algorithm 4: Particle swarm optimization. |
|
2.12. Differential Evolution
Algorithm 5: Differential evolution. |
|
3. Results
3.1. Optimization Algorithms
3.1.1. Particle Swarm Optimization
3.1.2. Differential Evolution
3.2. Proposed Model Fitness for Prediction
3.3. Proposed Model Fitness for Simulation
4. Discussion
4.1. Optimization Algorithms
4.2. Proposed Model
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PSO | Particle Swarm Optimization |
APSO | Adaptive Particle Swarm Optimization |
QPSO | Quantum Particle Swarm Optimization |
Q-PSO | Quantum behaved Particle Swarm Optimization |
PSO-QI | Quantum Infused Particle Swarm Optimization |
DE | Differential Evolution |
EDE | Elitist Differential Evolution |
P | Proportional |
PD | Proportional derivative |
FF | Feed forward |
GA | Genetic algorithm |
NMSE | Normalized mean squared error |
References
- Foutch, D.A.; Yun, S.Y. Modeling of steel moment frames for seismic loads. J. Constr. Steel Res. 2002, 58, 529–564. [Google Scholar] [CrossRef]
- Dyke, S.J.; Spencer, B.F.; Sain, M.K.; Carlson, J.D. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 1996, 5, 565–575. [Google Scholar] [CrossRef]
- Pratihar, D.K. Soft Computing: Fundamentals and Applications; Alpha Science International Ltd.: Oxford, UK, 2014; ISBN-13: 978-1783322053. [Google Scholar]
- Sharma, D.; Chandra, P. A comparative analysis of soft computing techniques in software fault prediction model development. Int. J. Inf. Technol. 2019, 11, 37–46. [Google Scholar] [CrossRef]
- Falcone, R.; Lima, C.; Martinelli, E. Soft computing techniques in structural and earthquake engineering: A literature review. Eng. Struct. 2020, 207, 110–269. [Google Scholar] [CrossRef]
- Shabariram, C.P.; Kannammal, K.E. Earthquake prediction using map reduce framework. In Proceedings of the International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 5–7 January 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, B.; Hu, H.; Chen, X. State of the Earthquake Field Disaster Investigation Information Service System. In Proceedings of the 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Harbin, China, 11–14 January 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Yong, S.; Fenh, Y. A Feature Engineering Framework for Short-term Earthquake Prediction Based on AETA Data. In Proceedings of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 563–566. [Google Scholar] [CrossRef]
- Pohsie, G.H.; Chisari, C.; Rinaldin, G.; Amadio, C.; Fragiacomo, M. Optimal design of tuned mass dampers for a multi-storey cross laminated timber building against seismic loads. Earthq. Eng. Struct. Dyn. 2016, 45, 1977–1995. [Google Scholar] [CrossRef]
- Kattamanchi, S.; Tiwari, R.K.; Ramesh, D.S. Non-stationary ETAS to model earthquake occurrences affected by episodic aseismic transients. Earth Planets Space 2017, 69, 157. [Google Scholar] [CrossRef] [Green Version]
- Alcalde, J.; Bond, C.E.; Johnson, G.; Butler, R.W.H.; Cooper, M.A.; Ellis, J.F. The importance of structural model availability on seismic interpretation. J. Struct. Geol. 2017, 97, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Jin, Q. Multivariable System Identification Method Based on Continuous Action Reinforcement Learning Automata. Processes 2019, 7, 546. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, M.; Oku, H.; Ushida, S. Closed-loop identification for a continuous-time model of a multivariable dual-rate system with input fast sampling. IFAC Pap. 2018, 51, 415–420. [Google Scholar] [CrossRef]
- Gumussoy, S.; Ozdemir, A.A.; McKelvey, T.; Ljung, L.; Gibanica, M.; Singh, R. Improving linear state-space models with additional n iterations. IFAC Pap. 2018, 51, 341–346. [Google Scholar] [CrossRef]
- Pilario, K.E.S.; Cao, Y.; Shafiee, M. Mixed kernel canonical variate dissimilarity analysis for incipient fault monitoring in nonlinear dynamic processes. Comput. Chem. Eng. 2019, 123, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Soderstorm, T.; Stoica, P. System Identification; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar] [CrossRef]
- Panda, G.; Mohanty, D.; Majhi, B.; Sahoo, G. Identification of nonlinear systems using particle swarm optimization technique. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 3253–3257. [Google Scholar] [CrossRef]
- Worden, K.; Barthorpe, R.J.; Cross, E.J.; Dervilis, N.; Holmes, G.R.; Manson, G.; Rogers, R.J. On evolutionary system identification with applications to nonlinear benchmarks, Mechanical Systems and Signal Processing. Mech. Syst. Signal Process. 2018, 112, 194–232. [Google Scholar] [CrossRef]
- Schoukens, J.; Ljung, L. Nonlinear System Identification A User-Oriented Roadmap. IEEE Control. Syst. Mag. 2019, 39, 28–99. [Google Scholar]
- Liu, J.; Xu, W.; Sun, J. Nonlinear System Identification of Hammerstien and Wiener Model Using Swarm Intelligence. In Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai, China, 20–23 August 2006; pp. 1219–1223. [Google Scholar] [CrossRef]
- Hou, Z.-X. Wiener model identification based on adaptive particle swarm optimization. In Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; pp. 1041–1045. [Google Scholar] [CrossRef]
- Luitel, B.; Venayagamoorthy, G.K. Particle swarm optimization with quantum infusion for system identification. Eng. Appl. Artif. Intell. 2010, 23, 635–649. [Google Scholar] [CrossRef]
- Cheng, S.-L.; Hwang, C. Optimal approximation of linear systems by a differential evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 2001, 31, 698–707. [Google Scholar] [CrossRef]
- Zhao, C.; An, A.; Xu, Q. A hybrid differential evolution algorithm for nonlinear parameter estimation of kinetic systems. In Proceedings of the 2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 23–25 May 2012; pp. 1696–1700. [Google Scholar] [CrossRef]
- Lazea, G.h.; Lupu, E.; Dobra, P. Control Systems and Integrated Manufacturing; Editura Mediamira: Cluj, Romania, 1998; ISBN 973-9358-22-5. [Google Scholar]
- Natsakis, T. Robotic Systems Control. Available online: https://natsakis.com/course/robotic-systems-control/ (accessed on 22 December 2019).
- Gaidhani, A.; Moon, K.S.; Ozturk, Y.; Lee, S.Q.; Youm, W. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion. Sensors 2017, 17, 2932. [Google Scholar] [CrossRef] [Green Version]
- Chiang, M.-H.; Lin, H.T. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System. Sensors 2011, 11, 11476–11494. [Google Scholar] [CrossRef] [Green Version]
- Egeland, O.; Gravdah, J.T. Modeling and Simulation for Automatic Control; Norwegian University of Science and Technology: Trondheim, Norway, 2013; ISBN 82-92356-01-0. [Google Scholar]
- Cheng, C.; Huang, H. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems. IEEE Trans. Cybern. 2016, 46, 3247–3258. [Google Scholar] [CrossRef]
- Aggarwal, D.; Kumar, V.; Girdhar, A. Lagrangian relaxation for the vehicle routing problem with time windows. In Proceedings of the International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 6–7 July 2017; pp. 1601–1606. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Res. Inst. Adv. Stud. Baltim. Md 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter. 2006. Available online: https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf (accessed on 12 July 2019).
- Vanicek, P.; Omerbashich, M. Does a navigation algorithm have to use a Kalman filter? Can. Aeronaut. Space J. 1999, 45, 292–296. [Google Scholar]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB, 3rd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Agarwal, V.; Arya, H.; Bhaktavatsala, S. Design and development of a real-time DSP and FPGA-based integrated GPS-INS system for compact and low power applications. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 443–454. [Google Scholar] [CrossRef]
- Noureldin, A.; Karamat, T.B.; Eberts, M.D.; El-Shafie, A. Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications. IEEE Trans. Veh. Technol. 2009, 58, 1077–1096. [Google Scholar] [CrossRef]
- Noureldin, A.; Irvine-halliday, D.; Mintchev, M.P. Accuracy limitations of FOG-based continuous measurement-while-drilling surveying instruments for horizontal wells. IEEE Trans. Instrum. Meas. 2001, 51, 1177–1191. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Zhang, T.; Li, Y.; Tong, J. A Kalman Filter for SINS Self-Alignment Based on Vector Observation. Sensors 2017, 17, 264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, F.; Zhang, Y.; Liu, H.; Min, H. Central difference particle filter applied to transfer alignment for SINS on missiles. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 375–387. [Google Scholar] [CrossRef]
- Juan, L.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, Portland, OR, USA, 19–23 June 2004; pp. 325–331. [Google Scholar] [CrossRef]
- Petritoli, E.; Giagnacovo, T.; Leccese, F. Lightweight GNSS/IRS Integrated Navigation System for UAV Vehicles. In Proceedings of the 2014 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 29–30 May 2014; pp. 56–61. [Google Scholar] [CrossRef]
- Hinüber, V.; Edgar, L.; Reimer, C.; Schneider, T.; Stock, M. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying. Sensors 2017, 17, 941. [Google Scholar] [CrossRef] [Green Version]
- Valade, A.; Acco, P.; Grabolosa, P.; Fourniols, J.-Y. A Study about Kalman Filters Applied to Embedded Sensors. Sensors 2017, 17, 2810. [Google Scholar] [CrossRef] [Green Version]
- Eom, K.H.; Lee, S.J.; Kyung, Y.S.; Lee, C.W.; Kim, M.C.; Jung, K.K. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems. Sensors 2011, 11, 10266–10282. [Google Scholar] [CrossRef]
- Swagatam, D.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 2016, 27, 1–30. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2001; pp. 81–86. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, S.; Zhu, Q.; Tang, C.; Song, R.; Chen, J.; Coello, A.A.C.; Wong, K.C.; Zhang, J. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 22, 32–46. [Google Scholar] [CrossRef]
- Deng, X.; Sun, X.; Liu, R.; Liu, S. Consensus control of second-order multiagent systems with particle swarm optimization algorithm. J. Control. Sci. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xu, J.; Lee, L.H.; Chew, E.P.; Wong, W.P.; Chen, C. Optimal computing budget allocation for particle swarm optimization in stochastic optimization. IEEE Trans. Evol. Comput. 2017, 21, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, X.; Zhang, H.; Wu, L.; Liu, K. An enhanced approach for parameter estimation: Using immune dynamic learning swarm optimization based on multicore architecture. IEEE Syst. Man Cybern. Mag. 2016, 2, 26–33. [Google Scholar] [CrossRef]
- Leboucher, C.; Shin, H.S.; Chelouah, R.; Le Menec, S.; Siarry, P.; Formoso, M.; Tsourdos, A.; Kotenkoff, A. An enhanced particle swarm optimisation method integrated with evolutionary game theory. IEEE Trans. Games 2018, 10, 221–230. [Google Scholar] [CrossRef]
- Bonyadi, M.R.; Michalewicz, Z. Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. Evol. Comput. 2016, 20, 814–819. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Zhang, W.; Xu, N.; Guo, Z.; Wu, G. Improved PSO-based method for leak detection and localization in liquid pipelines. IEEE Trans. Ind. Inform. 2018, 14, 3143–3154. [Google Scholar] [CrossRef]
- Ovidiu, S.; Miclea, L.; Sarb, A. Elderly Fall Forecast Based on Adapted Particle Swarm Optimization Algorithm. Int. J. Model. Optim. 2018, 7, 251–255. [Google Scholar]
- Clerc, M.; Kennedy, J. The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Garro, B.A.; Vazquez, R.A. Designing artificial neural networks using particle swarm optimization algorithms. Comput. Intell Neurosci. 2015, 2015, 369298. [Google Scholar] [CrossRef]
- Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system. In Proceedings of the AIP Conference Proceedings, Paris, France, 23 February 2017; p. 020006. [Google Scholar] [CrossRef]
- Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Nguyen-Ngoc, L.; Wahab, M.A. Model Updating for Nam O Bridge Using Particle Swarm Optimization Algorithm and Genetic Algorithm. Sensors 2018, 18, 4131. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.; Zhang, J.; Li, Y.; Chung, H.S. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2009, 39, 1362–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, M.; Thangaraj, R.; Abraham, A. A new quantum behaved particle swarm optimization. In Proceedings of the GECCO08: Genetic and Evolutionary Computation Conference, Atlanta, GA, USA, 12–16 July 2008; pp. 87–94. [Google Scholar] [CrossRef]
- Stroessner, C. Particle Swarm Optimization & Parameter Selection. Available online: http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Ferienakademie14/slides_papers/paper_Christoph_Stroessner.pdf (accessed on 14 June 2019).
- Pedersen, M.E.H. Good Parameters for Particle Swarm Optimization. no. HL1001, 2010. Available online: http://shorturl.at/ANY19 (accessed on 15 January 2020).
- Shi, Y.H.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conferenceon Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Zhang, L.; Tang, Y.; Hua, C.; Guan, X. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Appl. Soft Comput. 2015, 5, 138–149. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Sharma, V.P.; Choudhary, H.R.; Kumar, S.; Choudhary, V. A modified DE: Population or generation based levy flight differential evolution (PGLFDE). In Proceedings of the 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), Noida, India, 25–27 February 2015; pp. 704–710. [Google Scholar]
- Jain, S.; Kumar, S.; Sharma, V.K.; Sharma, H. Improved differential evolution algorithm. In Proceedings of the 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), Dubai, UAE, 18–20 December 2017; pp. 627–632. [Google Scholar]
- Tuhta, S.; Günday, F.; Abrar, O. Experimental study on effect of seismic damper to reduce the dynamic response of bench-scale steel structure model. Int. J. Adv. Res. Innov. Ideas Educ. 2020, 5, 421–435. [Google Scholar] [CrossRef]
- Tuhta, S.; Günday, F.; Alihassan, A. System Identification of Model Steel Chimney with Fuzzy Logic. Int. J. Res. Innov. Appl. Sci. 2020, 5, 11–15. [Google Scholar]
- Harmanci, Y.E.; Gulan, U.; Holzner, M.; Chatzi, E. A Novel Approach for 3D-Structural Identification through Video Recording: Magnified Tracking. Sensors 2019, 19, 1229. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Jiang, H.; Wu, T. Comparative studies of vibration control effects between structures with particle dampers and tuned liquid dampers using substructure shake table testing methods. Soil Dyn. Earthq. Eng. 2019, 121, 421–435. [Google Scholar] [CrossRef]
- Li, S.; Sun, L.; Kong, F. Vibration Control Performance Analysis and Shake-Table Test of a Pounding Tuned Rotary Mass Damper under the Earthquake. Shock Vib. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Inc., Q. Shake Table II—Laboratory Guide. User Manual, Markham, Ontario, 2014. Available online: https://www.quanser.com/ (accessed on 12 June 2019).
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. J. Glob. Optim. 1995, 23. [Google Scholar]
- Gamperle, R.; Muller, S.D.; Koumoutsakos, P. A Parameter Study for Differential Evolution. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 2002, 10, 293–298. [Google Scholar]
- Ronkonnen, J. Continuous Multimodal Global Optimization with Differential Evolution-Based Methods. Ph.D. Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2009. [Google Scholar]
No. | Symbol | Description |
---|---|---|
1 | the distance between axes and measured on the axis | |
2 | the angle between axes and measured around | |
3 | the distance between axes and measured on the axis | |
4 | the angle between axes and measured around the axis |
ID Number | Component | ID Number | Component |
---|---|---|---|
1 | Stage | 9 | Sensor circuit board |
2 | Base plate | 10 | Right limit sensor |
3 | DC motor | 11 | Home position sensor |
4 | Lead screw | 12 | Left limit sensor |
5 | Ball nut | 13 | Motor leads connector |
6 | Manual adjustment knob | 14 | Motor encoder and Hall sensors’ connector |
7 | Linear guide | 15 | Accelerometer |
8 | Linear bearing block | 16 | Accelerometer connectors |
d | r | |||
---|---|---|---|---|
- | 0 | |||
0 | 0 | - | ||
0 | 0 | - | ||
0 | 0 | - |
Clerc and Kennedy | 0.729 | 1.494 | 1.494 |
Trelea | 0.6 | 1.7 | 1.7 |
Carlisle and Dozier | 0.729 | 2.041 | 0.948 |
Jiang, Luo, and Yang | 0.715 | 1.7 | 1.7 |
Mean Iterations | Standard Deviation | Success Rate | |
---|---|---|---|
Clerc and Kennedy | 116.32 | 42.24 | 100% |
Trelea | 90.13 | 43.0137 | 100% |
Carlisle and Dozier | 110.49 | 43.394 | 100% |
Jiang, Luo, and Yang | 150.2323 | 63.0657 | 99% |
Mean Iterations | Standard Deviation | Success Rate | |
---|---|---|---|
Clerc and Kennedy | 184.5 | 87.33 | 100% |
Trelea | 163.9596 | 88.5733 | 99% |
Carlisle and Dozier | 206.1837 | 98.2121 | 98% |
Jiang, Luo, and Yang | 230.8936 | 91.3517 | 94% |
F | CR | Mean Iterations | Standard Deviation | Success Rate |
---|---|---|---|---|
0.4 | 0.9 | 51.1194 | 7.6228 | 100% |
0.6 | 0.9 | 95.2239 | 12.8261 | 100% |
0.8 | 0.9 | 224.4478 | 27.1624 | 100% |
0.9 | 0.9 | 353.1940 | 42.0434 | 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Károly, L.; Stan, O.; Miclea, L. Seismic Model Parameter Optimization for Building Structures. Sensors 2020, 20, 1980. https://doi.org/10.3390/s20071980
Károly L, Stan O, Miclea L. Seismic Model Parameter Optimization for Building Structures. Sensors. 2020; 20(7):1980. https://doi.org/10.3390/s20071980
Chicago/Turabian StyleKároly, Lengyel, Ovidiu Stan, and Liviu Miclea. 2020. "Seismic Model Parameter Optimization for Building Structures" Sensors 20, no. 7: 1980. https://doi.org/10.3390/s20071980
APA StyleKároly, L., Stan, O., & Miclea, L. (2020). Seismic Model Parameter Optimization for Building Structures. Sensors, 20(7), 1980. https://doi.org/10.3390/s20071980