Inland Lakes Mapping for Monitoring Water Quality Using a Detail/Smoothing-Balanced Conditional Random Field Based on Landsat-8/Levels Data
<p>Study areas: (<b>a</b>) the Wuhan study area; (<b>b</b>) the Huangshi study area.</p> "> Figure 2
<p>Percentage of lakes in each water quality level: (<b>a</b>) Wuhan; (<b>b</b>) Huangshi.</p> "> Figure 3
<p>The datasets of the two study areas. (<b>a</b>) False-color composite and water vector data for the Wuhan study area. (<b>b</b>) ground-truth map in the Wuhan study area. (<b>c</b>) False-color composite and water vector data for the Huangshi study area. (<b>d</b>) ground-truth map in the Huangshi study area.</p> "> Figure 3 Cont.
<p>The datasets of the two study areas. (<b>a</b>) False-color composite and water vector data for the Wuhan study area. (<b>b</b>) ground-truth map in the Wuhan study area. (<b>c</b>) False-color composite and water vector data for the Huangshi study area. (<b>d</b>) ground-truth map in the Huangshi study area.</p> "> Figure 4
<p>The classification result of the water quality levels of the lakes for the Wuhan dataset: (<b>a1</b>–<b>a5</b>) DT; (<b>b1</b>–<b>b5</b>) DNN; (<b>c1</b>–<b>c5</b>) RF; (<b>d1</b>–<b>d5</b>) RF-CRF; (1) Class II Niushan Lake; (2) Class III East Lake; (3) Class IV Wu Lake; (4) Class V Tangxun Lake; (5) Class VI South Lake and Yezhi Lake.</p> "> Figure 5
<p>The classification result of the RF-CRF model for the Wuhan dataset.</p> "> Figure 6
<p>The classification result maps of the water quality levels for the Huangshi dataset: (<b>a1</b>–<b>a4</b>) DT; (<b>b1</b>–<b>b4</b>) DNN; (<b>c1</b>–<b>c4</b>) RF; (<b>d1</b>–<b>d4</b>) RF-CRF; (1) Class III Taibai Lake; (2) Class IV Daye Lake; (3) Class V Baoan Lake; (4) Class VI Haikou Lake.</p> "> Figure 7
<p>The classification result of the RF-CRF model for the Huangshi dataset.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Satellite Data and Vector Data
2.3. Surface Water Environment Quality Levels
2.4. Methods
2.4.1. The Improved Conditional Random Field (CRF) Model and Other Models
2.4.2. Evaluation Indicators
3. Experiments and Analysis
3.1. Data Description
3.2. Experiment 1: The Wuhan Dataset
3.3. Experiment 2: The Huangshi Dataset
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNESCO. Water for a sustainable world. In The United Nations World Water Development Report; UNESCO: Paris, France, 2015; ISBN 978-92-3-100071-3. [Google Scholar]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Vorosmarty, C.J. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Reddy, V.R.; Behera, B. Impact of water pollution on rural communities: An economic analysis. Ecol. Econ. 2006, 58, 520–537. [Google Scholar] [CrossRef]
- GB3838-2002, Surface Water Environmental Quality Standards; The State Environmental Protection Administration, The State Administration of Quality Supervision Inspection and Quarantine: Beijing, China, 2002; pp. 1–4. (In Chinese)
- Zou, Z.; Yun, Y.; Sun, J. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Razmkhah, H.; Abrishamchi, A.; Torkian, A. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). J. Environ. Manag. 2010, 91, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Tan, X.; Li, S.; Zhang, Q. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts., China. Ecotoxicol. Environ. Saf. 2010, 73, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Andrzej Urbanski, J.; Wochna, A.; Bubak, I.; Grzybowski, W.; Lukawska-Matuszewska, K.; Łącka, M.; Śliwińska, S.; Wojtasiewicz, B.; Zajączkowski, M. Application of Landsat 8 imagery to regional-scale assessment of lake water quality. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 28–36. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Huang, C.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland Waters Suspended Solids Concentration Retrieval Based on PSO-LSSVM for UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sens. 2019, 11, 1455. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Clay, S.; Peña, A.; DeTracey, B.; Devred, E. Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans. Remote Sens. 2019, 11, 2609. [Google Scholar] [CrossRef] [Green Version]
- Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional Models for High-Resolution Retrieval of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Pan, J.; Devlin, A. Characteristics of Absorption Spectra of Chromophoric Dissolved Organic Matter in the Pearl River Estuary in Spring. Remote Sens. 2019, 11, 1533. [Google Scholar] [CrossRef] [Green Version]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.-A.; Zhang, W.; Zhang, Z.; Liu, Y.; Deng, C.; Nie, N. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China. PLoS ONE 2015, 10, e0119130. [Google Scholar]
- Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water Pollution Characteristics and Assessment of Lower Reaches in Haihe River Basin. Procedia Environ. Sci. 2010, 2, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.; Kim, H.; Nam, J. Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers. Sensors 2015, 15, 13763–13777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroff, F.; Criminisi, A.; Zisserman, A. Object Class Segmentation using Random Forests. In Proceedings of the British Machine Vision Conference 2008, Leeds, UK, 1–4 September 2008; British Machine Vision Association: Leeds, UK, 2008; pp. 1–10. [Google Scholar]
- Ouyang, Z.-T.; Zhang, M.-Q.; Xie, X.; Shen, Q.; Guo, H.-Q.; Zhao, B. A comparison of pixel-based and object-oriented approaches to VHR imagery for mapping saltmarsh plants. Ecol. Inform. 2011, 6, 136–146. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S.; Wang, Q.; Emery, W.J. Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote Sens. 2017, 132, 48–60. [Google Scholar] [CrossRef]
- Guangyun Zhang; Xiuping Jia Simplified Conditional Random Fields With Class Boundary Constraint for Spectral-Spatial Based Remote Sensing Image Classification. IEEE Geosci. Remote Sens. Lett. 2012, 9, 856–860. [CrossRef]
- Zhao, J.; Zhong, Y.; Shu, H.; Zhang, L. High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields. IEEE Trans. Image Process. 2016, 25, 4033–4045. [Google Scholar] [CrossRef]
- Ping, Z.; Wang, R. Learning Conditional Random Fields for Classification of Hyperspectral Images. IEEE Trans. Image Process. 2010, 19, 1890–1907. [Google Scholar] [CrossRef]
- Swain, A. Handbook of Water Resources in India: Development, Management, and Strategies. Eur. Rev. Agric. Econ. 2008, 35, 589–591. [Google Scholar] [CrossRef]
- Pimentel, D.; Berger, B.; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.; Nandagopal, S. Water Resources: Agricultural and Environmental Issues. Bioscience 2004, 54, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Du, N.; Ottens, H.; Sliuzas, R. Spatial impact of urban expansion on surface water bodies—A case study of Wuhan, China. Landsc. Urban. Plan. 2010, 94, 175–185. [Google Scholar] [CrossRef]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.M. Analysis of Water Resources Utilization in the Changjiang River Basin in Recent Two Decades. J. Yangtze River Sci. Res. Inst. 2018, 35, 1–4. [Google Scholar]
- Fang, C.; Mao, Q.; Ni, P.F. Discussion on the scientific selection and development of China’s urban agglomerations. Acta Geogr. Sin. 2015, 70, 515–527. [Google Scholar]
- Alavipanah Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sens. 2019, 11, 1966. [CrossRef] [Green Version]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef] [Green Version]
- Lafferty, J.; McCallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proc. ICML 2001, 3, 282–289. [Google Scholar]
- Muñoz, D.F.; Cissell, J.R.; Moftakhari, H. Adjusting Emergent Herbaceous Wetland Elevation with Object-Based Image Analysis, Random Forest and the 2016 NLCD. Remote Sens. 2019, 11, 2346. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, Z.; Abdi, O.; Buchroithner, M. A Synergetic Analysis of Sentinel-1 and -2 for Mapping Historical Landslides Using Object-Oriented Random Forest in the Hyrcanian Forests. Remote Sens. 2019, 11, 2300. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Sun, W.; Yang, G.; Ren, G.; Liu, Y. A Hierarchical Classification Framework of Satellite Multispectral/Hyperspectral Images for Mapping Coastal Wetlands. Remote Sens. 2019, 11, 2238. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Zhang, Q.; Chen, X. Large Scale Agricultural Plastic Mulch Detecting and Monitoring with Multi-Source Remote Sensing Data: A Case Study in Xinjiang, China. Remote Sens. 2019, 11, 2088. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, Y.; Ghamisi, P.; Jia, X.; Benediktsson, J.A. Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification. Remote Sens. 2019, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef] [Green Version]
Lakes | Water Quality | Assessment (Superstandard Multiple) | ||||
---|---|---|---|---|---|---|
TP | COD | BOD | CODMn | NH3−N | ||
Lu Lake | III | 0.72 | 0.15 | — | — | — |
Houguan Lake | IV | — | 0.30 | 0.15 | — | — |
Tangxun Lake | V | 2.42 | 0.16 | 0.02 | — | 0.84 |
South Lake | VI | 0.87 | — | — | — | 0.41 |
Lakes | Water Quality | Assessment (Superstandard Multiple) | ||||
---|---|---|---|---|---|---|
TP | COD | BOD | CODMn | NH3−N | ||
Wushan Lake | IV | 0.6 | — | 0.1 | — | — |
Baoan Lake | V | 1.2 | — | — | — | — |
Qinggang Lake | VI | 6.5 | 0.6 | 1.0 | 0.4 | — |
Parameters | Water Quality Class (mg/L) | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
TP (Lake) ≤ | 0.01 | 0.025 | 0.05 | 0.1 | 0.2 |
COD ≤ | 15 | 15 | 20 | 30 | 40 |
BOD ≤ | 3 | 3 | 4 | 6 | 10 |
CODMn ≤ | 2 | 4 | 6 | 10 | 15 |
NH3−N ≤ | 0.15 | 0.5 | 1.0 | 1.5 | 2.0 |
Study Area | Class | Sample | |||
---|---|---|---|---|---|
No. | Color | Water Quality Level | Numbers | ||
Wuhan | 1 | | Class II | 52,781 | |
2 | | Class III | 142,509 | ||
3 | | Class IV | 370,184 | ||
4 | | Class V | 146,031 | ||
5 | | Class VI | 25,115 | ||
Total | 736,619 | ||||
Huangshi | 1 | | Class III | 73,386 | |
2 | | Class IV | 137,606 | ||
3 | | Class V | 85,689 | ||
4 | | Class VI | 105,462 | ||
Total | 402,143 |
Optimizers | Characteristic |
---|---|
SGD | Parameter update speed is fast, but the vibration range is large |
Momentum | Restrain vibrate, but poor adaptability |
RMSProp | Solve the problem of sharp drop in learning rate and reduce manual adjustment of learning rate |
Adam | Calculate the adaptive learning rate of each parameter with good adaptability |
Level | DT | DNN | RF | RF-CRF |
---|---|---|---|---|
Class II | 80.30 | 81.89 | 77.74 | 75.93 |
Class III | 70.46 | 75.38 | 74.02 | 73.31 |
Class IV | 85.33 | 88.27 | 93.22 | 95.21 |
Class V | 77.36 | 78.50 | 83.55 | 94.70 |
Class VI | 59.81 | 55.75 | 67.76 | 95.34 |
OA (%) | 79.64 | 82.27 | 85.61 | 89.50 |
Kappa | 0.693 | 0.731 | 0.778 | 0.841 |
No. | Water Quality Levels | Lakes (Number) | OA | Prediction | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
1 | Class II | 1 | 100% | 1 | 0 | 0 | 0 | 0 |
2 | Class III | 11 | 81.8% | 0 | 9 | 0 | 1 | 1 |
3 | Class IV | 22 | 95.5% | 0 | 0 | 21 | 1 | 0 |
4 | Class V | 18 | 100% | 0 | 0 | 0 | 18 | 0 |
5 | Class VI | 12 | 100% | 0 | 0 | 0 | 0 | 12 |
Levels | DT | DNN | RF | RF-CRF |
---|---|---|---|---|
Class III | 78.30 | 78.66 | 82.38 | 79.13 |
Class IV | 82.03 | 84.96 | 88.22 | 90.00 |
Class V | 80.62 | 75.97 | 84.37 | 89.79 |
Class VI | 83.50 | 87.90 | 90.19 | 99.06 |
OA (%) | 81.44 | 82.66 | 86.85 | 90.35 |
Kappa | 0.747 | 0.763 | 0.821 | 0.868 |
No. | Water Quality Levels | Lakes (Number) | OA | Prediction | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1 | Class III | 8 | 100% | 8 | 0 | 0 | 0 |
2 | Class IV | 11 | 63.6% | 0 | 7 | 0 | 4 |
3 | Class V | 11 | 63.6% | 0 | 0 | 7 | 4 |
4 | Class VI | 19 | 100% | 0 | 0 | 0 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Zhang, Y.; Huang, C.; Wang, Z.; Huang, Q.; Yin, F.; Guo, Y.; Cao, L. Inland Lakes Mapping for Monitoring Water Quality Using a Detail/Smoothing-Balanced Conditional Random Field Based on Landsat-8/Levels Data. Sensors 2020, 20, 1345. https://doi.org/10.3390/s20051345
Wei L, Zhang Y, Huang C, Wang Z, Huang Q, Yin F, Guo Y, Cao L. Inland Lakes Mapping for Monitoring Water Quality Using a Detail/Smoothing-Balanced Conditional Random Field Based on Landsat-8/Levels Data. Sensors. 2020; 20(5):1345. https://doi.org/10.3390/s20051345
Chicago/Turabian StyleWei, Lifei, Yu Zhang, Can Huang, Zhengxiang Wang, Qingbin Huang, Feng Yin, Yue Guo, and Liqin Cao. 2020. "Inland Lakes Mapping for Monitoring Water Quality Using a Detail/Smoothing-Balanced Conditional Random Field Based on Landsat-8/Levels Data" Sensors 20, no. 5: 1345. https://doi.org/10.3390/s20051345
APA StyleWei, L., Zhang, Y., Huang, C., Wang, Z., Huang, Q., Yin, F., Guo, Y., & Cao, L. (2020). Inland Lakes Mapping for Monitoring Water Quality Using a Detail/Smoothing-Balanced Conditional Random Field Based on Landsat-8/Levels Data. Sensors, 20(5), 1345. https://doi.org/10.3390/s20051345