Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model †
<p>The proposed model aims at abstracting the mission from communication in order to evaluate information distribution.</p> "> Figure 2
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>batt</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <mi>batt</mi> </msub> </semantics></math> functions plotted for an instance of the given mission. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 3
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>pos</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <mi>pos</mi> </msub> </semantics></math> functions plotted for a mission example. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 4
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>status</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <mi>status</mi> </msub> </semantics></math> functions plotted for a mission example. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 5
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <msup> <mi>status</mi> <mo>′</mo> </msup> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <msup> <mi>status</mi> <mo>′</mo> </msup> </msub> </semantics></math> functions plotted for a mission example. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 6
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>objective</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <mi>objective</mi> </msub> </semantics></math> functions plotted for a mission example. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 7
<p>Plot of the agent position and the received map data in 1D. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 8
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>loc</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <mi>loc</mi> </msub> </semantics></math> functions plotted for a mission example. © 2019 IEEE. Reprinted, with permission, from [<a href="#B1-sensors-20-00710" class="html-bibr">1</a>].</p> "> Figure 9
<p>Total utility achieved by evaluating message exchanges which resulted in different constant frame rates using the introduced model.</p> "> Figure 10
<p><math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>vid</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">U</mi> <mi>vid</mi> </msub> </semantics></math> functions plotted for a video streaming mission example.</p> "> Figure 11
<p>Total utility aggregated during the simulation of the exemplary mission (100 s) for connections with different delays.</p> "> Figure 12
<p>Total utility aggregated during the simulation of the exemplary mission (100 s) for a lossy connection. The experiments with Connext data distribution service (DDS) with loss rate higher than 21% were unfeasible, because the discovery phase was consuming most of the mission time, therefore the communication between robots was often not established at all.</p> "> Figure 13
<p>Results of the simulation of an exemplary mission.</p> ">
Abstract
:1. Introduction
1.1. Concept
- A message generated by a sender is meant to provide some information to the receiver, which benefits from this transmission. Hence, our model evaluates the communication from the receiver’s perspective.
- The usefulness of a message changes (increases or decreases) over time. For example, a map patch received at the beginning of a mission may be useful until the end, depending on whether and when the receiving UAV flies over the map region (useful) or moves elsewhere (not useful). Therefore, a message could add value throughout the whole mission and not only at the time of reception. This usefulness is, however, not known at the time of reception, it depends on the mission progress.
- The information types can differ significantly and therefore are useful in a different way. For example, knowing the mission objective allows the UAV to plan its next task, whereas getting a new map fragment can help with path planning or localization. Thus, to express the characteristics of each information type it needs to be considered separately.
1.2. Novelty
2. Related Work
2.1. Information Distribution
2.2. Quality of Service (QoS)
2.3. Utility-Based Approaches
2.4. Information Theory
3. Model
3.1. Setup
3.2. Overview
3.3. Definitions
4. Mission Examples
4.1. Agents’ Properties
4.1.1. Battery Level
4.1.2. Position
4.2. Mission Status Commands
4.3. Mission Objectives
4.4. Localization Using a Map
4.5. Image Streaming
5. Theoretical Analysis of the Model
5.1. External Message Utility Value
5.2. Message Filtering
6. Model Application
6.1. Experiment Setup
6.2. Results
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1D, 2D, 3D | 1, 2, 3 Dimensions |
CPU | Central Processing Unit |
FPS | Frames Per Second |
GPS | Global Positioning System |
KPK | Karl Popper Kolleg |
LTE | Long-Term Evolution |
UAV | Unmanned Aerial Vehicle |
NAV | Networked Autonomous Aerial Vehicle |
QoE | Quality of Experience |
QoS | Quality of Service |
ROS | Robot Operating System |
Appendix A. Proofs of Theorems from Section 5
- (1)
- is a power set of X,
- (2)
- should preserve the order on its domain.
References
- Barciś, M.; Hellwagner, H. An Evaluation Model for Information Distribution in Multi-Robot Systems. In Proceedings of the IEEE INFOCOM WKSHPS: MiSARN: Mission-Oriented Wireless Sensor, UAV and Robot Networking, Paris, France, 29 April–2 May 2019. [Google Scholar]
- Gadd, M.; Newman, P. Checkout My Map: Version Control for Fleetwide Visual Localisation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016. [Google Scholar]
- Cieslewski, T.; Choudhary, S.; Scaramuzza, D. Data-Efficient Decentralized Visual SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, 21–25 May 2018. [Google Scholar]
- Mahdoui, N.; Fremont, V.; Natalizio, E. Cooperative Exploration Strategy for Micro-Aerial Vehicles Fleet. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Daegu, Korea, 16–18 November 2017. [Google Scholar]
- Marcotte, R.J.; Wang, X.; Mehta, D.; Olson, E. Optimizing Multi-Robot Communication under Bandwidth Constraints. Auton. Robot. 2019, 1–13. [Google Scholar] [CrossRef]
- Best, G.; Forrai, M.; Mettu, R.; Fitch, R. Planning-Aware Communication for Decentralised Multi-Robot Coordination. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, 21–25 May 2018. [Google Scholar]
- Krinkin, K.; Filatov, A.; Filatov, A.; Kurishev, O.; Lyanguzov, A. Data Distribution Services Performance Evaluation Framework. In Proceedings of the Conference of Open Innovations Association FRUCT, Jyvaskyla, Finland, 15–18 May 2018. [Google Scholar]
- Tardioli, D.; Parasuraman, R.; Ögren, P. Pound: A Multi-Master ROS Node for Reducing Delay and Jitter in Wireless Multi-Robot Networks. Robot. Auton. Syst. 2019, 111, 73–87. [Google Scholar] [CrossRef]
- Martín, F.; Soriano, E.; Cañas, J.M. Quantitative Analysis of Security in Distributed Robotic Frameworks. Robot. Auton. Syst. 2018, 100, 95–107. [Google Scholar] [CrossRef]
- Maruyama, Y.; Kato, S.; Azumi, T. Exploring the Performance of ROS2. In Proceedings of the International Conference on Embedded Software, Pittsburgh, PA, USA, 1–7 October 2016. [Google Scholar]
- Oh, S.; Kim, J.H.; Fox, G. Real-Time Performance Analysis for Publish/Subscribe Systems. Future Gener. Comput. Syst. 2010, 26, 318–323. [Google Scholar] [CrossRef]
- Tornell, S.; Hernandez-Orallo, E.; Calafate, C.; Cano, J.C.; Manzoni, P.; Hernández, E. An Analytical Evaluation of a Map-Based Sensor-Data Delivery Protocol for VANETs. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Madrid, Spain, 4–7 June 2013. [Google Scholar]
- OPTICOM GmbH. PEVQ Advanced Perceptual Evaluation of Video Quality; Technical Report; OPTICOM GmbH: Erlangen, Germany, 2005. [Google Scholar]
- D’Aronco, S.; Frossard, P. Online Resource Inference in Network Utility Maximization Problems. IEEE Trans. Netw. Sci. Eng. 2018, 6, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Matsuura, T.; Sasabe, M.; Matsuda, T.; Takine, T. Location-Aware Utility-Based Routing for Store-Carry-Forward Message Delivery. In Proceedings of the International Conference on Information Networking, Siem Reap, Cambodia, 12–14 January 2015. [Google Scholar]
- Raut, S.; Gupta, J.N.D.; Swami, S. Single Machine Scheduling with Time Deteriorating Job Values. J. Oper. Res. Soc. 2008, 59, 105–118. [Google Scholar] [CrossRef]
- Li, P.; Wu, H.; Ravindran, B.; Jensen, E.D. A Utility Accrual Scheduling Algorithm for Real-Time Activities with Mutual Exclusion Resource Constraints. IEEE Trans. Comput. 2006, 55, 454–469. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Wang, Y.; Yu, Y.; Niu, B. An Emergency Vehicle Scheduling Problem with Time Utility Based on Particle Swarm Optimization. In Intelligent Computing Theories and Technology; Lecture Notes in Computer Science; Huang, D.S., Jo, K.H., Zhou, Y.Q., Han, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mu, M.; Mauthe, A.; Garcia, F. A Utility-Based QoS Model for Emerging Multimedia Applications. In Proceedings of the International Conference on Next Generation Mobile Applications, Services, and Technologies, Cardiff, UK, 16–19 September 2008. [Google Scholar]
- Xia, Y.; So, H.S.W.; La, R.H.J.; Anantharam, V.; McCanne, S.; Tse, D.; Walrand, J.; Varaiya, P. The Framework of User-Centric Optimization in Web-Based Applications; Technical Report; Department of Electrical Engineering and Computer Science University of California: Berkeley, CA, USA, 2000. [Google Scholar]
- Yeung, R.W. Information Theory and Network Coding; Springer: New York, NY, USA, 2008. [Google Scholar]
- Williamson, S.A.; Gerding, E.; Jennings, N.R. A Principled Information Valuation for Communications during Multi-Agent Coordination. In Proceedings of the AAMAS Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains, Estoril, Portugal, 12–16 May 2008. [Google Scholar]
- Williamson, S.A.; Gerding, E.H.; Jennings, N.R. Reward Shaping for Valuing Communications during Multi-Agent Coordination. In Proceedings of the Autonomous Agents and Multiagent Systems, Budapest, Hungary, 10–15 May 2009. [Google Scholar]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Andre, T.; Hummel, K.A.; Schoellig, A.P.; Yanmaz, E.; Asadpour, M.; Bettstetter, C.; Grippa, P.; Hellwagner, H.; Sand, S.; Zhang, S. Application-Driven Design of Aerial Communication Networks. IEEE Commun. Mag. 2014, 52, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Fechner, G.T. Elements of Psychophysics; Holt, Rinehart and Winston: New York, NY, USA, 1966. [Google Scholar]
- Barciś, A.; Barciś, M.; Bettstetter, C. Robots That Sync and Swarm: A Proof of Concept in ROS 2. In Proceedings of the IEEE International Symposium on Multi-Robot and Multi-Agent Systems, New Brunswick, NJ, USA, 22–23 August 2019. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barciś, M.; Barciś, A.; Hellwagner, H. Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model. Sensors 2020, 20, 710. https://doi.org/10.3390/s20030710
Barciś M, Barciś A, Hellwagner H. Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model. Sensors. 2020; 20(3):710. https://doi.org/10.3390/s20030710
Chicago/Turabian StyleBarciś, Michał, Agata Barciś, and Hermann Hellwagner. 2020. "Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model" Sensors 20, no. 3: 710. https://doi.org/10.3390/s20030710
APA StyleBarciś, M., Barciś, A., & Hellwagner, H. (2020). Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model. Sensors, 20(3), 710. https://doi.org/10.3390/s20030710