Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process
<p>Blade: (<b>a</b>) main blade parts: airfoil and dovetail; (<b>b</b>) illustration of the problem with variability of the airfoil position in relation to dovetail.</p> "> Figure 2
<p>Schematic representation of the robotic grinding process.</p> "> Figure 3
<p>Device for contact airfoil measurement: (<b>a</b>) CAD model; (<b>b</b>) device projection.</p> "> Figure 4
<p>Connection of the contact sensor to the robot controller.</p> "> Figure 5
<p>Arrangement of the contact sensors.</p> "> Figure 6
<p>Block diagram of the measurement process.</p> "> Figure 7
<p>Testing accuracy and repeatability of the measuring device: (<b>a</b>) dimensions of the reference element; (<b>b</b>) device during measurement.</p> "> Figure 8
<p>Airfoil geometry measurement: (<b>a</b>) width measurement; (<b>b</b>) thickness measurement at three points.</p> "> Figure 9
<p>Geometric airfoil parameters: (<b>a</b>) parameters determined in the process of measurement; (<b>b</b>) corrected dimension due to the blade surface curvature.</p> ">
Abstract
:1. Introduction
2. Measuring Device
2.1. Assumptions for the Measuring Device
- Have an accuracy of at least 0.01 mm;
- Exhibit repeatability of not less than 10% of the airfoil’s make tolerance;
- Provide feedback on the blade condition during the grinding process.
2.2. Description of the Measuring Device
2.3. Blade Measurement Algorithm
3. Accuracy and Repeatability of the Measuring Device
4. Airfoil Geometry Measurement
- Errors in the orientation of the last part of the robot’s arm not exceeding 0.0001 rad because the robot’s controller has a software add-on that improves positioning accuracy;
- Gripper’s blade clamping error with a gripper that is no more than 0.005 rad in the system under analysis;
- Allowable blade orientation error, relative to the dovetail, not exceeding 0.003 rad.
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Mattingly, J.D.; Heiser, W.H.; Pratt, D.T. Aircraft Engine Design, 2nd ed.; American Institute of Aeronautics and Astronautics (AIAA): Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- Jaw, L.C.; Mattingly, J.D. Aircraft Engine Controls; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, J.; Jia, Z.; Cheng, W.; Wang, J. Research on laser additive and milling subtractive composite remanufacturing process of compressor blade. J. Manuf. Mater. Process. 2018, 2, 73. [Google Scholar] [CrossRef] [Green Version]
- Eggers, T.; Kim, H.R.; Bittner, S.; Friedrichs, J.; Seume, J.R. Aerodynamic and aeroelastic effects of design-based geometry variations on a low-pressure compressor. Int. J. Turbomachinery Propuls. Power 2020, 5, 26. [Google Scholar] [CrossRef]
- Budzik, G. Imaging of Blade Curvilinear Surface of the Hot Part of Aircraft Engines in the Rapid Prototyping Process, 1st ed.; Publishing House of the Rzeszow University of Technology: Rzeszów, Poland, 2009; pp. 20–34. [Google Scholar]
- Budzik, G. The selection criteria of scanning method in process of reproducing an aircraft engine blade geometry. Arch. Mech. Technol. Mater. 2007, 27, 63–70. [Google Scholar]
- Jaskólski, J.; Budzik, G.; Grzelka, M.; Oleksy, M. Three dimensional scanning of geometry of blade aircraft engine with non-contact measuring methods. Combust. Engines 2009, SC1, 416–421. [Google Scholar]
- Kolmakova, D.; Baturin, O.; Popov, G. Effect of manufacturing tolerances on the turbine blades. In Proceedings of the ASME 2014 Gas Turbine India Conference, New Delhi, India, 15–17 December 2014; Volume 8253, pp. 1–10. [Google Scholar]
- Goel, H.; Pandey, P.M. Performance evaluation of different variants of jet electrochemical micro-drilling process. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 2018, 232, 451–464. [Google Scholar] [CrossRef]
- Dong, Y.W.; Li, X.L.; Zhao, Q.; Yang, J.; Dao, M. Modeling of shrinkage during investment casting of thin-walled hollow turbine blades. J. Mater. Process. Technol. 2017, 244, 190–203. [Google Scholar] [CrossRef]
- Huang, P.H.; Shih, L.K.L.; Lin, H.M.; Chu, C.I.; Chou, C.S. Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines. Int. J. Adv. Manuf. Technol. 2019, 104, 2911–2923. [Google Scholar] [CrossRef]
- Xiaohu, X.U.; Dahu, Z.H.U.; Zhang, H.; Sijie, Y.A.N.; Han, D.I.N.G. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades. Chin. J. Aeronaut. 2019, 32, 2368–2382. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Zhu, D.; Yan, S.; Ding, H. Hybrid active/passive force control strategy for grinding marks suppression and profile accuracy enhancement in robotic belt grinding of turbine blade. Robot. Comput. Manuf. 2020, 67, 102047. [Google Scholar] [CrossRef]
- ISO 9283. Manipulating Industrial Robots—Performance Criteria and Related Test Methods; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Burghardt, A.; Kurc, K.; Szybicki, D. Robotic automation of the turbo-propeller engine blade grinding process. Appl. Mech. Mater. 2016, 817, 206–213. [Google Scholar] [CrossRef]
- Gierlak, P. Position/force control of manipulator in contact with flexible environment. Acta Mech. Autom. 2019, 13, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Gierlak, P.; Szuster, M. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot. Auton. Syst. 2017, 95, 80–101. [Google Scholar] [CrossRef]
- Antosz, K. R&R method implementation for assessment of the chosen measurement systems. Technol. Autom. Montażu 2012, 3, 57–61. [Google Scholar]
- Chrysler, C. Ford General Motors. Measurement System Analysis, 2nd ed.; Automotive Industry Action Group: Southfield, MI, USA, 1998. [Google Scholar]
- ISO/IEC GUIDE. 98-3: 2008(E). Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995); International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
Measurement Number | Width b [mm] | Thickness t1 [mm] | Thickness t2 [mm] | Thickness t3 [mm] |
---|---|---|---|---|
1 | 49.053 | 18.323 | 18.246 | 18.148 |
2 | 49.051 | 18.325 | 18.242 | 18.153 |
3 | 49.056 | 18.322 | 18.244 | 18.152 |
4 | 49.055 | 18.324 | 18.246 | 18.149 |
5 | 49.053 | 18.327 | 18.245 | 18.151 |
6 | 49.056 | 18.325 | 18.242 | 18.149 |
7 | 49.056 | 18.328 | 18.245 | 18.153 |
8 | 49.050 | 18.324 | 18.245 | 18.150 |
9 | 49.052 | 18.323 | 18.244 | 18.149 |
10 | 49048 | 18.327 | 18.242 | 18.148 |
11 | 49.055 | 18.323 | 18.246 | 18.151 |
12 | 49.053 | 18.324 | 18.244 | 18.149 |
13 | 49.055 | 18.323 | 18.245 | 18.152 |
14 | 49.048 | 18.325 | 18.244 | 18.149 |
15 | 49.051 | 18.322 | 18.245 | 18.153 |
16 | 49.050 | 18.326 | 18.243 | 18.148 |
17 | 49.056 | 18.324 | 18.246 | 18.151 |
18 | 49.054 | 18.325 | 18.245 | 18.149 |
19 | 49.049 | 18.322 | 18.244 | 18.148 |
20 | 49051 | 18.324 | 18.242 | 18.152 |
21 | 49.055 | 18.327 | 18.243 | 18.150 |
22 | 49.053 | 18.322 | 18.243 | 18.154 |
23 | 49.050 | 18.326 | 18.243 | 18.152 |
24 | 49.055 | 18.325 | 18.245 | 18.149 |
25 | 49057 | 18.327 | 18.245 | 18.151 |
26 | 49.055 | 18.322 | 18.244 | 18.152 |
27 | 49.056 | 18.328 | 18.245 | 18.150 |
28 | 49.053 | 18.325 | 18.243 | 18.148 |
29 | 49.049 | 18.323 | 18.244 | 18.152 |
30 | 49.055 | 18.326 | 18.246 | 18.153 |
dimensions of the reference element | 49.060 | 18.330 | 18.251 | 18.157 |
Width b | Thickness t1 | Thickness t2 | Thickness t3 | |
---|---|---|---|---|
mean | 49.053 mm | 18.325 mm | 18.244 mm | 18.151 mm |
range r | 0.009 mm | 0.006 mm | 0.004 mm | 0.006 mm |
accuracy A | 0.007 mm | 0.005 mm | 0.007 mm | 0.006 mm |
repeatability EV | 0.015 mm | 0.010 mm | 0.007 mm | 0.010 mm |
relative repeatability %EV | 7.53% | 5.02% | 3.35% | 5.02% |
type A standard uncertainty | 0.00049 mm | 0.00034 mm | 0.00023 mm | 0.00034 mm |
Cross-Section Number | Width b [mm] | Thickness t1 [mm] | Thickness t2 [mm] | Thickness t3 [mm] |
---|---|---|---|---|
1 | 33.643 | 1.146 | 1.607 | 0.587 |
2 | 33.277 | 1.189 | 1.729 | 0.524 |
3 | 32.993 | 1.330 | 1.984 | 0.664 |
Cross-Section Number | |||
---|---|---|---|
1 | 0.180 | 0.017 | 0.223 |
2 | 0.174 | 0.009 | 0.201 |
3 | 0.169 | 0 | 0.174 |
Cross-Section Number | Width b [mm] | Thickness g1 [mm] | Thickness g2 [mm] | Thickness g3 [mm] |
---|---|---|---|---|
1 | 33.643 | 1.127 | 1.607 | 0.572 |
2 | 33.277 | 1.171 | 1.729 | 0.513 |
3 | 32.993 | 1.311 | 1.984 | 0.654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szybicki, D.; Burghardt, A.; Kurc, K.; Gierlak, P. Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors 2020, 20, 7053. https://doi.org/10.3390/s20247053
Szybicki D, Burghardt A, Kurc K, Gierlak P. Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors. 2020; 20(24):7053. https://doi.org/10.3390/s20247053
Chicago/Turabian StyleSzybicki, Dariusz, Andrzej Burghardt, Krzysztof Kurc, and Piotr Gierlak. 2020. "Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process" Sensors 20, no. 24: 7053. https://doi.org/10.3390/s20247053
APA StyleSzybicki, D., Burghardt, A., Kurc, K., & Gierlak, P. (2020). Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors, 20(24), 7053. https://doi.org/10.3390/s20247053