SAR Target Recognition via Meta-Learning and Amortized Variational Inference
<p>The graphical model for the meta-learning framework. Open circles represent one or a group of random variables. The arrows indicate probabilistic dependencies between random variables.</p> "> Figure 2
<p>The overall structure of our model. The model samples a task from the synthetic aperture radar (SAR) dataset and divides it into a support set and a query set. The feature extractor uses a four-layer convolutional neural network (CNN) to extract image features. The classifier identifies the category of image features, and its weight is generated by the weight predictor.</p> "> Figure 3
<p>The network configuration of our model.</p> "> Figure 4
<p>Illustration of set-to-set transformation. MAX denotes the max-pooling operation, CAT denotes vector concatenation, and ADD denotes vector addition.</p> "> Figure 5
<p>The recognition rates obtained from different amounts of training data.</p> "> Figure 6
<p>Comparison of different methods under the standard operation conditions (SOCs) test.</p> "> Figure 7
<p>Illustration of target images at different depression angles. All targets have an azimuth angle of 45°.</p> "> Figure 8
<p>The recognition rates of different methods at a depression angle of 30°.</p> "> Figure 9
<p>The recognition rates of different methods at a depression angle of 45°.</p> "> Figure 10
<p>Comparison of different methods under the depression angle test. KRLDP, MCNN, and A-ConvNet only provide recognition results for a depression angle of 30°.</p> "> Figure 11
<p>Illustration of target images in different configurations (titled by their serial numbers). All targets have an azimuth angle of 90° and a depression angle of 17°.</p> "> Figure 12
<p>Comparison of different methods under the configuration test.</p> "> Figure 13
<p>Reliability diagrams of (<b>a</b>) our model with 100% data, (<b>b</b>) our model with 50% data, (<b>c</b>) our model with 10% data, (<b>d</b>) PPA with 100% data. (<b>e</b>) PPA with 50% data, (<b>f</b>) PPA with 10% data.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Model Framework
2.2. Model Structure
2.3. Weight Predictor
3. Results and Discussion
3.1. Training Details
3.2. Datasets
3.3. Reference Methods
3.4. Results under Standard Operation Conditions
3.5. Results under Depression Angle Variations
3.6. Results under Configuration Variations
3.7. Evaluation of Model Calibration
3.8. Models with Different Network Structures
3.9. Recognition Results under Different Amounts of Simulated Data
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eldarymli, K.; Gill, E.W.; Mcguire, P.; Power, D.; Moloney, C. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review. IEEE Access 2016, 4, 6014–6058. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Zhou, G.; Yang, J.; Yamaguchi, Y. On the iterative censoring for target detection in SAR image. IEEE Geosci. Remote Sens. Lett. 2011, 8, 641–645. [Google Scholar] [CrossRef]
- Novak, L.M.; Owirka, G.J.; Brower, W.S.; Weaver, A.L. The automatic target-recognition system in SAIP. Lincoln Lab. J. 1997, 10, 187–201. [Google Scholar]
- Muller, K.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans. Neutral Netw. 2002, 12, 181–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Chen, S.; Wu, J.; Yang, T. Configuration recognition via class-dependent structure preserving projections with application to targets in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2134–2146. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, S.; Dong, G.; Zhao, L.; Kuang, G. Target recognition in SAR image based on robust locality discriminant projection. IET Radar Sonar Navig. 2018, 12, 1285–1293. [Google Scholar] [CrossRef]
- Sun, Y.; Du, L.; Wang, Y.; Hu, J. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1777–1781. [Google Scholar] [CrossRef]
- Dong, G.; Wang, N.; Kuang, G. Sparse representation of monogenic signal: With application to target recognition in SAR images. IEEE Signal Proc. Lett. 2014, 21, 952–956. [Google Scholar]
- Dong, G.; Kuang, G. SAR target recognition via sparse representation of monogenic signal on grassmann manifolds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1308–1319. [Google Scholar] [CrossRef]
- Dong, G.; Kuang, G.; Wang, N.; Zhao, L.; Lu, J. SAR target recognition via joint sparse representation of monogenic signal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3316–3328. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, Z.; Cheng, X.; Fu, Q. Automatic target recognition of SAR images based on global scattering center model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3713–3729. [Google Scholar]
- Diemunsch, J.R.; Wissinger, J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR. Proc. SPIE 1998, 3370, 481–491. [Google Scholar]
- Ross, T.D.; Bradley, J.J.; Hudson, L.J.; Connor, M.P.O. SAR ATR: So what’s the problem? An MSTAR perspective. In Algorithms for Synthetic Aperture Radar Imagery VI; SPIE: Bellingham, WA, USA, 1999; pp. 662–672. [Google Scholar]
- Ding, B.; Wen, G. A region matching approach based on 3-D scattering center model with application to SAR target recognition. IEEE Sens. J. 2018, 18, 4623–4632. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; NIPS: Lake Tahoe, CA, USA, 2012; pp. 1097–1105. [Google Scholar]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Wagner, S.A. SAR ATR by a combination of convolutional neural network and support vector machines. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2861–2872. [Google Scholar] [CrossRef]
- Min, R.; Lan, H.; Cao, Z.G.; Cui, Z. A gradually distilled CNN for SAR target recognition. IEEE Access 2019, 7, 42190–42200. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, C.G. Multiple feature aggregation using convolutional neural networks for SAR image-based automatic target recognition. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1882–1886. [Google Scholar] [CrossRef]
- Kwak, Y.; Song, W.J.; Kim, S.E. Speckle-noise-invariant convolutional neural network for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2019, 16, 549–553. [Google Scholar] [CrossRef]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Jiang, T.; Cui, Z.; Zhou, Z.; Cao, Z. Data augmentation with Gabor filter in deep convolutional neural networks for SAR target recognition. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 689–692. [Google Scholar]
- Pei, J.; Huang, Y.; Huo, W.; Yang, J.; Yeo, T.S. SAR automatic target recognition based on multiview deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2196–2210. [Google Scholar] [CrossRef]
- Kang, C.; He, C. SAR image classification based on the multi-layer network and transfer learning of mid-level representations. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 1146–1149. [Google Scholar]
- Hansen, D.M.; Kusk, A.; Dall, J.; Nielsen, A.A.; Engholm, R. Improving SAR automatic target recognition models with transfer learning from simulated data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1484–1488. [Google Scholar] [CrossRef] [Green Version]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning. In Advances in Neural Information Processing Systems; NIPS: Barcelona, Spain, 2016; pp. 3630–3638. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv 2017, arXiv:1703.03400. [Google Scholar]
- Tang, J.; Zhang, F.; Zhou, Y.; Yin, Q.; Hu, W. A fast inference networks for SAR target few-shot learning based on improved siamese networks. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1212–1215. [Google Scholar]
- Wang, K.; Zhang, G.; Leung, H. SAR target recognition based on cross-domain and cross-task transfer learning. IEEE Access 2019, 7, 153391–153399. [Google Scholar] [CrossRef]
- Kusk, A.; Abulaitijiang, A.; Dall, J. Synthetic SAR image generation using sensor, terrain and target models. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 405–408. [Google Scholar]
- Ravi, S.; Beatson, A. Amortized Bayesian meta-learning. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 28 September 2018. [Google Scholar]
- Wang, K.; Zhang, G.; Xu, Y.; Leung, H. SAR target recognition based on probabilistic meta-learning. IEEE Geosci. Remote Sens. Lett. 2020, 13, 1–5. [Google Scholar] [CrossRef]
- Qiao, S.; Liu, C.; Shen, W.; Yuille, A.L. Few-shot image recognition by predicting parameters from activations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018; pp. 7229–7238. [Google Scholar]
- Ye, H.; Hu, H.; Zhan, D.; Sha, F. Few-shot learning via embedding adaptation with set-to-set functions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 8808–8817. [Google Scholar]
- Zhang, C.; Butepage, J.; Kjellstrom, H.; Mandt, S. Advances in variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 2008–2026. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2014, arXiv:1312.6114. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Ross, T.; Worrell, S.; Velten, V.; Mossing, J.; Bryant, M. Standard SAR ATR evaluation experiments using the MSTAR public release data set. In Algorithms for Synthetic Aperture Radar Imagery V; SPIE: Orlando, FL, USA, 1998; Volume 3370, pp. 566–573. [Google Scholar]
- Ying, Z.; Xuan, C.; Zhai, Y.; Sun, B.; Li, J.; Deng, W.; Mai, C.; Wang, F.; Labati, R.D.; Piuri, V.; et al. TAI-SARNET: Deep transferred atrous-inception CNN for small samples SAR-ATR. Sensors 2020, 20, 1724. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Available online: https://arxiv.org/abs/1704.04861 (accessed on 16 April 2017).
- Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On calibration of modern neural networks. arXiv 2017, arXiv:1706.04599. [Google Scholar]
Class | Depression | Number | Depression | Number |
---|---|---|---|---|
T72 | 17° | 232 | 15° | 196 |
BMP2 | 17° | 233 | 15° | 196 |
BTR60 | 17° | 256 | 15° | 195 |
BTR70 | 17° | 233 | 15° | 196 |
2S1 | 17° | 299 | 15° | 274 |
BRDM2 | 17° | 298 | 15° | 274 |
T62 | 17° | 299 | 15° | 273 |
D7 | 17° | 299 | 15° | 274 |
ZSU234 | 17° | 299 | 15° | 274 |
ZIL131 | 17° | 299 | 15° | 274 |
Parameters | Values |
---|---|
Center Frequency | 9.6 G Hz |
Resolution | 0.3 m |
Pixel Size | 0.2 m |
Bandwidth | 0.5 G Hz |
SAR Focusing | Spotlight |
Weighting | Taylor, −35 db |
Class | CAD Model | Number |
---|---|---|
Bulldozer#1 | 8020 | 504 |
Bulldozer#2 | 13,013 | 504 |
Bus#1 | 30,726 | 504 |
Bus#2 | 55,473 | 504 |
Car#1 | Toyota | 504 |
Car#2 | Peugeot | 504 |
Hummer#1 | 3663 | 504 |
Hummer#2 | 9657 | 504 |
Motorbike#1 | 3651 | 504 |
Motorbike#2 | 3972 | 504 |
Tank#1 | 65,047 | 504 |
Tank#2 | 86,347 | 504 |
Truck#1 | 2096 | 504 |
Truck#2 | 2107 | 504 |
Abbreviation | Full Name | Ref. |
---|---|---|
CNN | convolutional neural network | [15] |
TFL | transfer learning | [25] |
PPA | predicting parameters from activations | [33] |
PML | probabilistic meta-learning | [32] |
KSR | kernel sparse representation | [9] |
TJSR | tri-task joint sparse representation | [10] |
CDSPP | class-dependent structure preserving projection | [5] |
KRLDP | kernel robust locality discriminant projection | [6] |
MCNN | micro convolutional neural network | [18] |
MFCNN | multiple feature-based convolutional neural network | [19] |
A-ConvNet | all-convolutional network | [16] |
TAI-SARNET | deep transferred atrous-inception synthetic aperture radar network | [39] |
MobileNet | efficient convolutional neural networks for mobile vision applications | [40] |
Methods | Recognition Rate Using Different Proportions of Training Data | |||||
---|---|---|---|---|---|---|
1/32 | 1/16 | 1/8 | 1/4 | 1/3 | 1/2 | |
Our model | 70.1% | 82.2% | 89.6% | 94.3% | 95.7% | 97.0% |
TAI-SARNET | 44.5% | 67.0% | 76.3% | 88.7% | 89.4% | 93.2% |
TAI-SARNET-TF1 | 56.7% | 75.9% | 84.9% | 91.0% | 92.8% | 94.3% |
TAI-SARNET-TF2 | 63.5% | 80.1% | 88.4% | 94.1% | 95.8% | 96.1% |
TAI-SARNET-TF3 | 60.0% | 76.8% | 82.2% | 92.3% | 93.3% | 93.6% |
MobileNet | 29.6% | 34.7% | 45.6% | 74.9% | 86.2% | 91.5% |
Class | |||
---|---|---|---|
2S1 | 299 | 298 | 299 |
BRDM2 | 288 | 287 | 288 |
ZSU234 | 303 | 303 | 303 |
Class | ||||
---|---|---|---|---|
Serial Number | Number | Serial Number | Number | |
T72 | 132 | 232 | S7, 812 | 386 |
T62 | A51 | 299 | A51 | 273 |
BMP2 | 9563 | 233 | C21, 9566 | 392 |
BTR60 | k10yt7532 | 256 | k10yt7532 | 195 |
Error Scores | 10% | 50% | 100% |
---|---|---|---|
ECE of Our model | 0.0573 | 0.0117 | 0.0082 |
ECE of PPA | 0.0812 | 0.0267 | 0.0185 |
MCE of Our model | 0.1506 | 0.0589 | 0.0435 |
MCE of PPA | 0.2285 | 0.1375 | 0.1298 |
A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|
Conv, 8 × 5 × 5 | Conv, 16 × 5 × 5 | Conv, 16 × 5 × 5 | Conv, 32 × 5 × 5 | ||||
BN, ReLU, Dropout, Max-pooling | |||||||
Conv, 16 × 5 × 5 | Conv, 32 × 5 × 5 | Conv, 32 × 5 × 5 | Conv, 64 × 5 × 5 | ||||
BN, ReLU, Dropout, Max-pooling | |||||||
Conv, 32 × 3 × 3 | Conv, 64 × 3 × 3 | Conv, 64 × 3 × 3 | Conv, 128 × 3 × 3 | ||||
BN, ReLU, Dropout, Max-pooling | |||||||
Conv, 64 × 3 × 3 | Conv, 64 × 3 × 3 | Conv, 128 × 3 × 3 | Conv, 256 × 3 × 3 | ||||
BN, ReLU, Dropout, Max-pooling | |||||||
-- | AVG | -- | AVG | -- | AVG | -- | AVG |
Flattening | |||||||
FC, 1024 | FC, 64 | FC, 1024 | FC, 64 | FC, 2048 | FC, 128 | FC, 4096 | FC, 256 |
FC, 1024 | FC, 64 | FC, 1024 | FC, 64 | FC, 2048 | FC, 128 | FC, 4096 | FC, 256 |
FC, 2048 | FC, 128 | FC, 2048 | FC, 128 | FC, 4096 | FC, 256 | FC, 8192 | FC, 512 |
FC, 1024 | FC, 64 | FC, 1024 | FC, 64 | FC, 2048 | FC, 128 | FC, 4096 | FC, 256 |
Networks | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
Recognition results | 97.3% | 90.5% | 97.9% | 92.3% | 97.5% | 93.7% | 97.0% | 95.9% |
Test Depression Angles | Recognition Results | ||||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | 100% | |
15° | 96.0% | 96.8% | 97.2% | 97.6% | 97.9% |
30° | 94.4% | 95.3% | 95.9% | 96.2% | 96.5% |
45° | 76.8% | 78.1% | 79.5% | 81.7% | 82.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zhang, G. SAR Target Recognition via Meta-Learning and Amortized Variational Inference. Sensors 2020, 20, 5966. https://doi.org/10.3390/s20205966
Wang K, Zhang G. SAR Target Recognition via Meta-Learning and Amortized Variational Inference. Sensors. 2020; 20(20):5966. https://doi.org/10.3390/s20205966
Chicago/Turabian StyleWang, Ke, and Gong Zhang. 2020. "SAR Target Recognition via Meta-Learning and Amortized Variational Inference" Sensors 20, no. 20: 5966. https://doi.org/10.3390/s20205966
APA StyleWang, K., & Zhang, G. (2020). SAR Target Recognition via Meta-Learning and Amortized Variational Inference. Sensors, 20(20), 5966. https://doi.org/10.3390/s20205966