Validity of Smartphone Heart Rate Variability Pre- and Post-Resistance Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Baseline Session
2.4. Resistance Exercise Session
2.5. Statistical Analysis
3. Results
3.1. Validity of Photoplethysmography
3.2. Reliability of Photoplethysmography
3.3. Resting Heart Rate and Blood Pressure
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thompson, W.R. Worldwide survey of fitness trends for 2020. ACSM Health Fit. J. 2019, 23, 10–18. [Google Scholar] [CrossRef]
- Malik, M. Heart Rate Variability: Standards of measurement, physiological interpretation, and clinical use: Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Le Meur, Y.; Hausswirth, C.; Kilding, A.E.; Buchheit, M. Monitoring Training with Heart-Rate Variability: How Much Compliance Is Needed for Valid Assessment? Int. J. Sports Physiol. Perform. 2014, 9, 783–790. [Google Scholar] [CrossRef] [PubMed]
- E Aubert, A.; Seps, B.; Beckers, F. Heart Rate Variability in Athletes. Sports Med. 2003, 33, 889–919. [Google Scholar] [CrossRef] [PubMed]
- Ebuchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, W.C.; Fedewa, M.V.; Macdonald, H.V.; Holmes, C.J.; Cicone, Z.S.; Plews, D.J.; Esco, M.R. The Accuracy of Acquiring Heart Rate Variability from Portable Devices: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 417–435. [Google Scholar] [CrossRef]
- Heathers, J.A. Smartphone-enabled pulse rate variability: An alternative methodology for the collection of heart rate variability in psychophysiological research. Int. J. Psychophysiol. 2013, 89, 297–304. [Google Scholar] [CrossRef]
- Tanaka, G.; Sawada, Y. Examination of normalized pulse volume-blood volume relationship: Toward a more valid estimation of the finger sympathetic tone. Int. J. Psychophysiol. 2003, 48, 293–306. [Google Scholar] [CrossRef]
- Schafer, A.; Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef]
- Flatt, A.A.; Esco, M.R. Validity of the ithlete Smart Phone Application for Determining Ultra-Short-Term Heart Rate Variability. J. Hum. Kinet. 2013, 39, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrotta, A.S.; Jeklin, A.T.; Hives, B.A.; Meanwell, L.E.; Warburton, D.E. Validity of the Elite HRV Smartphone Application for Examining Heart Rate Variability in a Field-Based Setting. J. Strength Cond. Res. 2017, 31, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart-Rate-Variability Recording with Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A. Ultra-Short-Term Heart Rate Variability Indexes at Rest and Post-Exercise in Athletes: Evaluating the Agreement with Accepted Recommendations. J. Sports Sci. Med. 2014, 13, 535–541. [Google Scholar] [PubMed]
- Esco, M.R.; Flatt, A.A.; Nakamura, F.Y. Agreement Between a Smartphone Pulse Sensor Application and Electrocardiography for Determining lnRMSSD. J. Strength Cond. Res. 2017, 31, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Esco, M.R. Heart rate variability stabilization in athletes: Towards more convenient data acquisition. Clin. Physiol. Funct. Imaging 2015, 36, 331–336. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Evaluating Training Adaptation with Heart-Rate Measures: A Methodological Comparison. Int. J. Sports Physiol. Perform. 2013, 8, 688–691. [Google Scholar] [CrossRef]
- Brozek, J.; Grande, F.; Anderson, J.T.; Keys, A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann. N. Y. Acad. Sci. 1963, 110, 113–140. [Google Scholar] [CrossRef]
- Peng, R.C.; Zhou, X.L.; Lin, W.H.; Zhang, Y.T. Extraction of Heart Rate Variability from Smartphone Photoplethysmograms. Comput. Math. Methods Med. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [Google Scholar] [CrossRef]
- Nakamura, F.Y.; Pereira, L.A.; Esco, M.R.; Flatt, A.A.; Moraes, J.E.; Abad, C.C.C.; LoTurco, I. Intraday and Interday Reliability of Ultra-Short-Term Heart Rate Variability in Rugby Union Players. J. Strength Cond. Res. 2016, 31, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, N.; Jaryal, A.; Santhosh, J.; Deepak, K.K.; Ari, S. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. J. Med Eng. Technol. 2008, 32, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Drinnan, M.J.; Allen, J.; Murray, A. Relation between heart rate and pulse transit time during paced respiration. Physiol. Meas. 2001, 22, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Denison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. ACC/ AHA/ AAPA/ ABC/ ACPM/AGS/ APhA/ ASH/ ASPC/ NMA/ PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J. Am. Coll. Cardiol. 2017, 71, e127. [Google Scholar] [CrossRef] [PubMed]
- Fortes, L.S.; da Costa, B.D.; Paes, P.P.; Júnior, J.R.D.N.; Fiorese, L.; Ferreira, M.E. Influence of Competitive-Anxiety on Heart Rate Variability in Swimmers. J. Sports Sci. Med. 2017, 16, 498. [Google Scholar] [PubMed]
- Friedman, K. Essentials of Strength Training and Conditioning, 4th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2016; Volume 48, p. 2073. [Google Scholar]
- Figueiredo, T.; Rhea, M.R.; Peterson, M.D.; Miranda, H.; Bentes, C.M.; Reis, V.M.; Simão, R. Influence of Number of Sets on Blood Pressure and Heart Rate Variability After a Strength Training Session. J. Strength Cond. Res. 2015, 29, 1556–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, T.; Willardson, J.M.; Miranda, H.; Bentes, C.M.; Reis, V.M.; Simão, R. Influence of Load Intensity on Postexercise Hypotension and Heart Rate Variability after a Strength Training Session. J. Strength Cond. Res. 2015, 29, 2941–2948. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur. J. Appl. Physiol. 2012, 112, 3729–3741. [Google Scholar] [CrossRef]
- Williams, S.; Booton, T.; Watson, M.; Rowland, D.; Altini, M. Heart Rate Variability is a Moderating Factor in the Workload-Injury Relationship of Competitive CrossFit™ Athletes. J. Sports Sci. Med. 2017, 16, 443–449. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Bagha, S.; Shaw, L. A real time analysis of ppg signal for measurement of spo2 and pulse rate. Int. J. Comput. Appl. 2011, 36, 45–50. [Google Scholar]
- Rauh, R.; Limley, R.; Bauer, R.-D.; Radespiel-Tröger, M.; Mueck-Weymann, M. Comparison of Heart Rate Variability and Pulse Rate Variability Detected with Photoplethysmography. In Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2004. [Google Scholar]
- Lu, G.; Yang, F.; Taylor, J.A.; Stein, J.F. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J. Med. Eng. Tech. 2009, 33, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Plews, D.J.; Laursen, P.B.; Buchheit, M. Day-to-Day Heart-Rate Variability Recordings in World-Champion Rowers: Appreciating Unique Athlete Characteristics. Int. J. Sports Physiol. Perform. 2017, 12, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Charlot, K.; Cornolo, J.; Brugniaux, J.V.; Richalet, J.P.; Pichon, A. Interchangeability between heart rate and photoplethysmography variabilities during sympathetic stimulations. Physiol. Meas. 2009, 30, 1357–1369. [Google Scholar] [CrossRef]
- Devan, A.E.; Anton, M.M.; Cook, J.N.; Neidre, D.B.; Cortez-Cooper, M.Y.; Tanaka, H. Acute effects of resistance exercise on arterial compliance. J. Appl. Physiol. 2005, 98, 2287–2291. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, K.S.; Rossow, L.; Jae, S.Y.; Shokunbi, H.G.; Gibson, E.M.; Fernhall, B. Effect of single-leg resistance exercise on regional arterial stiffness. Eur. J. Appl. Physiol. 2006, 98, 185–190. [Google Scholar] [CrossRef]
- Mulvany, M.J.; Aalkjaer, C. Structure and function of small arteries. Physiol. Rev. 1990, 70, 921–961. [Google Scholar] [CrossRef]
N | M ± SD | p | Effect Size | r | SEE | Ratio | CE ± 1.96SD | Upper | Lower | Trend (r) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BasePre1 | ECG | 31 | 4.05 ± 0.65 | ||||||||||
PPG | 31 | 4.38 ± 0.61 | 0.003 | 0.42 | Small | 0.59 | 0.54 | 0.13 | 0.34 ± 1.12 | 1.46 | −0.79 | −0.09 | |
BasePre2 | ECG | 31 | 4.06 ± 0.63 | ||||||||||
PPG | 31 | 4.29 ± 0.59 | 0.019 | 0.30 | Small | 0.63 | 0.50 | 0.12 | 0.23 ± 1.03 | 1.26 | −0.79 | −0.08 | |
REPre1 | ECG | 31 | 4.05 ± 0.59 | ||||||||||
PPG | 31 | 4.25 ± 0.53 | 0.041 | 0.26 | Small | 0.63 | 0.47 | 0.11 | 0.19 ± 0.95 | 1.15 | −0.76 | −0.13 | |
REPre2 | ECG | 29 | 3.88 ± 0.62 | ||||||||||
PPG | 29 | 4.15 ± 0.58 | 0.001 | 0.36 | Small | 0.76 | 0.42 | 0.10 | 0.28 ± 0.83 | 1.07 | −0.55 | −0.10 | |
REPost | ECG | 31 | 2.44 ± 1.00 | ||||||||||
PPG | 31 | 3.50 ± 0.72 | <0.001 | 1.14 | Mod | 0.41 | 0.92 | 0.16 | 0.98 ± 0.96 | 2.94 | −0.82 | −0.33 |
N | MD | ES | p | r | p | BAR | ||
---|---|---|---|---|---|---|---|---|
Optimal | BasePre1 | 19 | 0.32 | Small | 0.058 | 0.48 | 0.037 | 0.08 |
BasePre2 | 20 | 0.16 | Trivial | 0.280 | 0.57 | 0.009 | 0.05 | |
REPre1 | 22 | 0.10 | Trivial | 0.322 | 0.56 | 0.006 | 0.05 | |
REPre2 | 22 | 0.09 | Trivial | 0.051 | 0.94 | <0.001 | 0.07 | |
REPost | 19 | 0.66 | Moderate | <0.001 | 0.78 | <0.001 | 0.36 | |
Good | BasePre1 | 7 | 0.34 | Small | 0.009 | 0.92 | 0.003 | 0.07 |
BasePre2 | 9 | 0.32 | Small | 0.001 | 0.94 | <0.001 | 0.05 | |
REPre1 | 7 | 0.36 | Small | 0.058 | 0.92 | 0.003 | 0.04 | |
REPre2 | 4 | 0.80 | Moderate | 0.039 | 0.92 | 0.083 | 0.08 | |
REPost | 6 | 1.52 | Large | <0.001 | −0.90 | 0.015 | 0.37 | |
Failed | BasePre1 | 5 | 0.46 | Small | 0.066 | 0.26 | 0.670 | 0.07 |
BasePre2 | 2 | 0.55 | Small | 0.272 | 1.00 | <0.001 | 0.05 | |
REPre1 | 2 | 0.75 | Moderate | 0.403 | −1.00 | <0.001 | 0.04 | |
REPre2 | 3 | 0.93 | Moderate | 0.088 | −0.80 | 0.401 | 0.06 | |
REPost | 6 | 1.73 | Large | 0.036 | −0.28 | 0.596 | 0.30 |
M ± SD | α | χ2 | p | ICC | 95% CI | p | |||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
LnRMSSD | Intraday | 4.34 ± 0.20 | 0.91 | 2.08 | 0.149 | 0.91 | 0.812 | 0.956 | <0.001 |
Interday | 4.28 ± 0.29 | 0.87 | 5.02 | 0.171 | 0.88 | 0.795 | 0.940 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmes, C.J.; Fedewa, M.V.; Winchester, L.J.; MacDonald, H.V.; Wind, S.A.; Esco, M.R. Validity of Smartphone Heart Rate Variability Pre- and Post-Resistance Exercise. Sensors 2020, 20, 5738. https://doi.org/10.3390/s20205738
Holmes CJ, Fedewa MV, Winchester LJ, MacDonald HV, Wind SA, Esco MR. Validity of Smartphone Heart Rate Variability Pre- and Post-Resistance Exercise. Sensors. 2020; 20(20):5738. https://doi.org/10.3390/s20205738
Chicago/Turabian StyleHolmes, Clifton J., Michael V. Fedewa, Lee J. Winchester, Hayley V. MacDonald, Stefanie A. Wind, and Michael R. Esco. 2020. "Validity of Smartphone Heart Rate Variability Pre- and Post-Resistance Exercise" Sensors 20, no. 20: 5738. https://doi.org/10.3390/s20205738
APA StyleHolmes, C. J., Fedewa, M. V., Winchester, L. J., MacDonald, H. V., Wind, S. A., & Esco, M. R. (2020). Validity of Smartphone Heart Rate Variability Pre- and Post-Resistance Exercise. Sensors, 20(20), 5738. https://doi.org/10.3390/s20205738