UWB-Based Self-Localization Strategies: A Novel ICP-Based Method and a Comparative Assessment for Noisy-Ranges-Prone Environments
<p>Example of point-to-circumference correspondences (2D case of point-to-sphere Iterative Closest Point (ICP)). The tag moves from point <span class="html-italic">A</span> to point <span class="html-italic">B</span>, while the anchors <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>a</mi> <mn>3</mn> </msub> </semantics></math> are static. <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> </semantics></math> are the points over the three circumferences which are closer to the corresponding anchor in the current iteration <span class="html-italic">j</span>. <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>final</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>final</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mn>3</mn> <mo>,</mo> <mi>final</mi> </mrow> </msub> </semantics></math> are the final correspondences after ICP convergence.</p> "> Figure 2
<p>Block diagram of the full version of the ICP-based position estimation algorithm: <math display="inline"><semantics> <mi mathvariant="script">L</mi> </semantics></math> is the set of anchor locations, <math display="inline"><semantics> <mi mathvariant="script">R</mi> </semantics></math> is the set of ranges, <math display="inline"><semantics> <msup> <mi mathvariant="script">R</mi> <mo>+</mo> </msup> </semantics></math> is the set of filtered ranges, <math display="inline"><semantics> <msup> <mrow> <mo>(</mo> <mi mathvariant="script">L</mi> <mo>,</mo> <msup> <mi mathvariant="script">R</mi> <mo>+</mo> </msup> <mo>)</mo> </mrow> <mo>*</mo> </msup> </semantics></math> denotes the best set of anchors/ranges, <span class="html-italic">t</span> is the tag position, and <math display="inline"><semantics> <msup> <mi>t</mi> <mo>+</mo> </msup> </semantics></math> is the filtered tag position. The dashed boxes used for the pre- and post-filtering stages denote that they can be removed. The gray box refers to the section that would be replaced by any of the methods overviewed in <a href="#sec5-sensors-20-05613" class="html-sec">Section 5</a>. (<b>a</b>–<b>d</b>) as defined in <a href="#sec3-sensors-20-05613" class="html-sec">Section 3</a>.</p> "> Figure 3
<p>Trilateration example for the 2D case. The intersection of the three circumferences with radius <math display="inline"><semantics> <msub> <mi>r</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>r</mi> <mn>3</mn> </msub> </semantics></math>, respectively centred at the anchors <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </semantics></math>, is used to compute the position of the tag situated at point <span class="html-italic">A</span>.</p> "> Figure 4
<p>Three different cases for the intersection of three spheres.</p> "> Figure 5
<p>Position estimations provided by the different methods for the rectangular trajectory using the standalone configuration, results for the T_RSS method are shown separately to facilitate the comparison: (<b>a</b>) perspective and (<b>b</b>) top views for T_MIN, T_LS, POZYX and ICP, (<b>c</b>) perspective and (<b>d</b>) top views for T_RSS.</p> "> Figure 6
<p>Position estimations provided by the different methods for the figure-eight-like trajectory using the standalone configuration, results for the T_RSS method are shown separately to facilitate the comparison: (<b>a</b>) perspective and (<b>b</b>) top views for T_MIN, T_LS, POZYX and ICP, (<b>c</b>) perspective and (<b>d</b>) top views for T_RSS.</p> "> Figure 7
<p>Position estimations provided by the different methods for the rectangular trajectory with changes in height using the standalone configuration, results for the T_RSS method are shown separately to facilitate the comparison: (<b>a</b>) perspective and (<b>b</b>) top views for T_MIN, T_LS, POZYX and ICP, (<b>c</b>) perspective and (<b>d</b>) top views for T_RSS.</p> "> Figure 8
<p>Position estimations provided by the different methods for the three trajectories performed inside the laboratory, results obtained using the pre-filtering stage: (<b>a</b>) perspective and (<b>b</b>) top views for the rectangular trajectory; (<b>c</b>) perspective and (<b>d</b>) top views for the figure-eight-like trajectory; (<b>e</b>) perspective and (<b>f</b>) top views for the rectangular trajectory with changes in height.</p> "> Figure 9
<p>Position estimations provided by the different methods for the three trajectories performed inside the laboratory, results obtained using both the pre- and post-filtering stages: (<b>a</b>) perspective and (<b>b</b>) top views for the rectangular trajectory; (<b>c</b>) perspective and (<b>d</b>) top views for the figure-eight-like trajectory; (<b>e</b>) perspective and (<b>f</b>) top views for the rectangular trajectory with changes in height.</p> "> Figure 10
<p>Position estimations provided by the different methods for the two trajectories performed inside the vessel hold, results obtained using both the pre- and post-filtering stages: (<b>a</b>) perspective and (<b>b</b>) top views for the rectangular trajectory; (<b>c</b>) perspective and (<b>d</b>) top views for the figure-eight-like trajectory.</p> ">
Abstract
:1. Introduction
2. UWB-Based Position Estimation
- Time of Arrival (TOA). Algorithms in this category estimate the position of the tag computing the intersection between the circumferences (or spheres in 3D) centred at each anchor, whose radius is the estimated distance from the tag to the corresponding anchor. A survey reviewing several TOA methods can be found in [5]. In [6], the authors evaluate different TOA-based algorithms in a realistic indoor environment. As a real application example, a UWB system based on TOA is used in [7] for personnel localization inside a coal mine.
- Time Difference of Arrival (TDOA).This category comprises algorithms which estimate the position of the tag considering the difference between the reception times in each anchor given a signal sent by the tag. These methods require some synchronization mechanism between the different devices, as well as significant bandwidth in comparison with other methods. In [8], the authors propose a TDOA method to operate in complex environments, specially under non-line-of-sight (NLOS) conditions. This method makes use of an Extended Kalman Filter (EKF) as a post-processing stage. Another practical example is [9], which describes a real-time positioning system intended for disaster aid missions.
- Angle of Arrival (AOA).Methods in this category estimate the position of the tag using the direction of propagation of the signals sent by multiple sources (i.e., the anchors). The location is found from the intersection of the angle line for each signal source. The algorithms based on AOA have a higher complexity and their accuracy may decrease when the distance increases. Among the large number of AOA-based approaches that can be found in the literature, we can mention [10], which makes use of a KF and relies on a linear quadratic frequency domain invariant beamforming strategy, and [11], which presents a cooperative positioning method that makes use of all the sensor nodes instead of using only the anchors.
- Received Signal Strength (RSS).These methods employ the signal strength as an estimator of the distance. Among the many RSS-based algorithms, we can differentiate two main strategies. On the one hand, approaches based on trilateration, where the distance estimates are used to guess the position of the tag using the same methods employed by TOA methods (see for example [12,13]). On the other hand, a strategy based on RSS fingerprinting, where a dataset needs to be generated during a previous learning stage for collecting RSS data throughout the environment. This dataset is later used to compare with the RSS online measurements to estimate the location (see for example [14]).
- Hybrid algorithms.Hybrid techniques aim is to increase the precision of the position estimates by means of the combination of two or more of the aforementioned strategies. These methods are typically more complex and of higher and more intensive computational cost. By way of example, [15] reports on an EKF based on a TDOA/RSS algorithm to localize a UWB tag inside underground mines under NLOS conditions, while [16] evaluates several TDOA algorithms and concludes that a combination of them improves the accuracy of position estimates.
3. General Overview and Methodology
- (a)
- Estimation of the position of the tag given a set of ranges to the anchors;
- (b)
- Selection of the best subset of anchors to obtain the most accurate position estimation for the estimation method;
- (c)
- Pre-filter (denoise) the available ranges; and
- (d)
- Post-process (filter) the estimated positions.
4. Point-to-Sphere ICP for UWB-Based Position Estimation
Algorithm 1 Point-to-sphere ICP algorithm to estimate the position of the UWB tag |
|
5. Alternative Strategies
5.1. RSS-Based Method
- (1)
- the three spheres intersect in a single point (ideal case),
- (2)
- the circumference resulting from the intersection between the two first spheres does not intersect with the third sphere, and
- (3)
- the circumference resulting from the intersection between the two first spheres intersects with the third sphere at two points.
- (case 2 above), that is, there is no intersection between the spheres, and
- (case 3 above). In this case, we compute the Euclidean distance from the tag to the fourth anchor considering the positive and negative solutions for , and we select the solution which leads to the shortest distance.
5.2. Minimum Discrepancy-Based Method
5.3. Least Squares-Based Method
6. Comparative Evaluation
6.1. Laboratory Experiments
- Trajectory 1—a rectangular trajectory of 5 × 2 m, performed at a constant height;
- Trajectory 2—a figure-eight-like trajectory of 5 × 2 m, performed at a constant height; and
- Trajectory 3—a rectangular trajectory of 5 × 2 m changing the height of the tag, where the height was 2.5 m for the two longer transects and 1.5 m for the two shorter transects.
- The trilateration methods are denoted as T_RSS, T_MIN and T_LS, for, respectively, the RSS-based method, the minimum discrepancy-based method and the least squares-based method;
- The point-to-sphere ICP-based method is referred to as ICP;
- The position estimates provided by the Pozyx kit itself are denoted as POZYX; and
- The ground truth data supplied by the motion tracking system is labelled as GT.
6.1.1. Results Using the Standalone Configuration
6.1.2. Results after Adding the Pre-Filtering Stage
6.1.3. Results after Adding the Pre- and Post-Filtering Stages
6.2. Experiments in a Noise-Prone Environment
7. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, Y.; Lo, A.; Niemegeers, I. A Survey of Indoor Positioning Systems for Wireless Personal Networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Al-Ammar, M.A.; Alhadhrami, S.; Al-Salman, A.; Alarifi, A.; Al-Khalifa, H.S.; Alnafessah, A.; Alsaleh, M. Comparative Survey of Indoor Positioning Technologies, Techniques, and Algorithms. In Proceedings of the International Conference on Cyberworlds, Santander, Spain, 6–8 October 2014; pp. 245–252. [Google Scholar]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- Guvenc, I.; Chong, C. A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [Google Scholar] [CrossRef]
- Chóliz, J.; Eguizabal, M.; Hernandez-Solana, A.; Valdovinos, A. Comparison of Algorithms for UWB Indoor Location and Tracking Systems. In Proceedings of the Vehicular Technology Conference, Yokohama, Japan, 15–18 May 2011. [Google Scholar]
- Cheng, G. Accurate TOA-Based UWB Localization System in Coal Mine Based on WSN. Phys. Procedia 2012, 24, 534–540. [Google Scholar] [CrossRef] [Green Version]
- García, E.; Poudereux, P.; Hernández, A.; Ureña, J.; Gualda, D. A Robust UWB Indoor Positioning System for Highly Complex Environments. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015; pp. 3386–3391. [Google Scholar]
- Liu, J.; Wang, Q.; Xiong, J.; Huang, W.; Peng, H. Indoor and Outdoor Coperative Real-Time Positioning System. J. Theor. Appl. Inf. Technol. 2013, 48, 1066–1073. [Google Scholar]
- Subramanian, A. UWB Linear Quadratic Frequency Domain Frequency Invariant Beamforming and Angle of Arrival Estimation. In Proceedings of the Vehicular Technology Conference, Dublin, Ireland, 22–25 April 2007; pp. 614–618. [Google Scholar]
- Xu, J.; Ma, M.; Law, C.L. AOA Cooperative Position Localization. In Proceedings of the IEEE Global Telecommunications Conference, New Orleans, LA, USA, 30 November–4 December 2008. [Google Scholar]
- Gigl, T.; Janssen, G.; Dizdarevic, V.; Witrisal, K.; Irahhauten, Z. Analysis of a UWB Indoor Positioning System Based on Received Signal Strength. In Proceedings of the Workshop on Positioning, Navigation and Communication, Hannover, Germany, 22–22 March 2007; pp. 97–101. [Google Scholar]
- Leitinger, E.; Fröhle, M.; Meissner, P.; Witrisal, K. Multipath-Assisted Maximum-Likelihood Indoor Positioning using UWB Signals. In Proceedings of the IEEE International Conference on Communications Workshops, Sydney, Australia, 10–14 June 2014; pp. 170–175. [Google Scholar]
- Kodippili, N.; Dias, D. Integration of Fingerprinting and Trilateration Techniques for Improved Indoor Localization. In Proceedings of the Wireless And Optical Communications Networks, Colombo, Sri Lanka, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Zhu, D.; Yi, K. EKF Localization based on TDOA/RSS in Underground Mines using UWB Ranging. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 14–16 September 2011; pp. 1–4. [Google Scholar]
- Zwirello, L.; Schipper, T.; Harter, M.; Zwick, T. UWB Localization System for Indoor Applications: Concept, Realization and Analysis. J. Electr. Comput. Eng. 2012, 2012, 849638. [Google Scholar] [CrossRef]
- Shi, G.; Ming, Y. Survey of Indoor Positioning Systems Based on Ultra-Wideband (UWB) Technology. In Wireless Communications, Networking and Applications; Zeng, Q.A., Ed.; Springer: New Delhi, India, 2016; pp. 1269–1278. [Google Scholar]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Saraiva Campos, R.; Lovisolo, L. RF Positioning: Fundamentals, Applications, and Tools; Artech House Publishers: Norwood, MA, USA, 2015. [Google Scholar]
- Antoniou, A. Digital Signal Processing: Signals, Systems, and Filters; McGraw-Hill Education: New York City, NY, USA, 2006. [Google Scholar]
- O’Haver, T. A Pragmatic Introduction to Signal Processing with Applications in Scientific Measurement; Department of Chemistry and Biochemistry, The University of Maryland at College Park: College Park, MD, USA, 2020; Available online: https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2020.pdf (accessed on 30 September 2020).
- Dardari, D.; Closas, P.; Djuric, P.M. Indoor Tracking: Theory, Methods, and Technologies. IEEE Trans. Veh. Technol. 2015, 64, 1263–1278. [Google Scholar] [CrossRef] [Green Version]
- Censi, A. An ICP Variant using a Point-to-Line Metric. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Potortì, F.; Park, S.; Jiménez-Ruiz, A.; Barsocchi, P.; Girolami, M.; Crivello, A.; Lee, S.; Lim, J.; Torres-Sospedra, J.; Seco, F.; et al. Comparing the Performance of Indoor Localization Systems through the EvAAL Framework. Sensors 2017, 17, 2327. [Google Scholar] [CrossRef] [PubMed]
Anchor | Trajectory 1 | Trajectory 2 | Trajectory 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Max. | Mean | Std. Dev. | Max. | Mean | Std. Dev. | Max. | |
0 | 0.135 | 0.508 | 4.795 | 0.072 | 0.061 | 0.364 | 0.135 | 0.391 | 4.166 |
1 | 0.176 | 0.559 | 6.502 | 0.089 | 0.090 | 0.396 | 0.147 | 0.415 | 3.994 |
2 | 0.064 | 0.045 | 0.218 | 0.075 | 0.054 | 0.225 | 0.118 | 0.536 | 6.681 |
3 | 0.076 | 0.067 | 0.450 | 0.106 | 0.076 | 0.457 | 0.115 | 0.256 | 3.173 |
4 | 0.043 | 0.025 | 0.111 | 0.054 | 0.044 | 0.231 | 0.118 | 0.452 | 5.636 |
5 | 0.060 | 0.032 | 0.138 | 0.092 | 0.117 | 0.685 | 0.050 | 0.034 | 0.162 |
6 | 0.095 | 0.059 | 0.294 | 0.093 | 0.073 | 0.377 | 0.152 | 0.663 | 6.628 |
7 | 0.088 | 0.304 | 3.483 | 0.140 | 0.462 | 3.693 | 0.091 | 0.086 | 0.376 |
Method | Configuration | Mean | Std. Dev. | RMSE | Median | 90th per. | 95th per. | 98th per. |
---|---|---|---|---|---|---|---|---|
POZYX | — | 0.113 | 0.053 | 0.125 | 0.105 | 0.203 | 0.213 | 0.221 |
standalone | 0.231 | 0.120 | 0.260 | 0.234 | 0.372 | 0.479 | 0.553 | |
T_RSS | pre-filter | 0.191 | 0.112 | 0.221 | 0.191 | 0.283 | 0.356 | 0.425 |
pre- & post-filter | 0.182 | 0.087 | 0.202 | 0.187 | 0.288 | 0.326 | 0.371 | |
standalone | 0.117 | 0.056 | 0.129 | 0.116 | 0.179 | 0.207 | 0.249 | |
T_MIN | pre-filter | 0.118 | 0.052 | 0.129 | 0.119 | 0.190 | 0.206 | 0.229 |
pre- & post-filter | 0.119 | 0.048 | 0.128 | 0.120 | 0.183 | 0.203 | 0.231 | |
standalone | 0.126 | 0.069 | 0.144 | 0.117 | 0.228 | 0.262 | 0.305 | |
T_LS | pre-filter | 0.124 | 0.048 | 0.133 | 0.118 | 0.193 | 0.235 | 0.243 |
pre- & post-filter | 0.132 | 0.049 | 0.141 | 0.131 | 0.199 | 0.246 | 0.249 | |
standalone | 0.121 | 0.045 | 0.129 | 0.125 | 0.180 | 0.189 | 0.195 | |
ICP | pre-filter | 0.121 | 0.034 | 0.125 | 0.121 | 0.162 | 0.165 | 0.170 |
pre- & post-filter | 0.123 | 0.039 | 0.129 | 0.124 | 0.172 | 0.176 | 0.180 |
Method | Configuration | Mean | Std. Dev. | RMSE | Median | 90th per. | 95th per. | 98th per. |
---|---|---|---|---|---|---|---|---|
POZYX | — | 0.110 | 0.044 | 0.119 | 0.114 | 0.166 | 0.181 | 0.191 |
standalone | 0.501 | 0.830 | 0.969 | 0.281 | 0.827 | 1.239 | 4.012 | |
T_RSS | pre-filter | 0.236 | 0.100 | 0.256 | 0.234 | 0.371 | 0.389 | 0.464 |
pre- & post-filter | 0.239 | 0.112 | 0.264 | 0.240 | 0.395 | 0.418 | 0.442 | |
standalone | 0.118 | 0.068 | 0.136 | 0.112 | 0.213 | 0.251 | 0.287 | |
T_MIN | pre-filter | 0.111 | 0.044 | 0.119 | 0.109 | 0.173 | 0.183 | 0.193 |
pre- & post-filter | 0.112 | 0.050 | 0.122 | 0.111 | 0.180 | 0.197 | 0.211 | |
standalone | 0.125 | 0.076 | 0.147 | 0.111 | 0.235 | 0.255 | 0.315 | |
T_LS | pre-filter | 0.122 | 0.066 | 0.138 | 0.100 | 0.226 | 0.237 | 0.243 |
pre- & post-filter | 0.119 | 0.070 | 0.139 | 0.102 | 0.217 | 0.259 | 0.279 | |
standalone | 0.081 | 0.043 | 0.092 | 0.075 | 0.139 | 0.162 | 0.189 | |
ICP | pre-filter | 0.078 | 0.046 | 0.090 | 0.066 | 0.142 | 0.176 | 0.181 |
pre- & post-filter | 0.090 | 0.050 | 0.103 | 0.091 | 0.165 | 0.194 | 0.200 |
Method | Configuration | Mean | Std. Dev. | RMSE | Median | 90th per. | 95th per. | 98th per. |
---|---|---|---|---|---|---|---|---|
POZYX | — | 0.103 | 0.060 | 0.119 | 0.100 | 0.180 | 0.211 | 0.250 |
standalone | 0.641 | 0.990 | 1.179 | 0.265 | 1.880 | 2.511 | 3.642 | |
T_RSS | pre-filter | 0.238 | 0.241 | 0.339 | 0.187 | 0.389 | 0.499 | 1.288 |
pre- & post-filter | 0.196 | 0.126 | 0.233 | 0.176 | 0.334 | 0.401 | 0.548 | |
standalone | 0.120 | 0.080 | 0.145 | 0.102 | 0.212 | 0.269 | 0.344 | |
T_MIN | pre-filter | 0.116 | 0.081 | 0.142 | 0.102 | 0.216 | 0.258 | 0.354 |
pre- & post-filter | 0.129 | 0.083 | 0.153 | 0.112 | 0.247 | 0.300 | 0.327 | |
standalone | 0.125 | 0.081 | 0.149 | 0.114 | 0.227 | 0.290 | 0.355 | |
T_LS | pre-filter | 0.116 | 0.079 | 0.141 | 0.105 | 0.208 | 0.251 | 0.352 |
pre- & post-filter | 0.133 | 0.084 | 0.157 | 0.118 | 0.259 | 0.299 | 0.342 | |
standalone | 0.117 | 0.064 | 0.134 | 0.110 | 0.185 | 0.211 | 0.266 | |
ICP | pre-filter | 0.109 | 0.055 | 0.122 | 0.107 | 0.188 | 0.198 | 0.208 |
pre- & post-filter | 0.126 | 0.064 | 0.142 | 0.116 | 0.213 | 0.229 | 0.255 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnin-Pascual, F.; Ortiz, A. UWB-Based Self-Localization Strategies: A Novel ICP-Based Method and a Comparative Assessment for Noisy-Ranges-Prone Environments. Sensors 2020, 20, 5613. https://doi.org/10.3390/s20195613
Bonnin-Pascual F, Ortiz A. UWB-Based Self-Localization Strategies: A Novel ICP-Based Method and a Comparative Assessment for Noisy-Ranges-Prone Environments. Sensors. 2020; 20(19):5613. https://doi.org/10.3390/s20195613
Chicago/Turabian StyleBonnin-Pascual, Francisco, and Alberto Ortiz. 2020. "UWB-Based Self-Localization Strategies: A Novel ICP-Based Method and a Comparative Assessment for Noisy-Ranges-Prone Environments" Sensors 20, no. 19: 5613. https://doi.org/10.3390/s20195613