Demonstration of a Low-Cost and Portable Optical Cavity-Based Sensor through Refractive Index Measurements
<p>(<b>a</b>) Schematic diagram of the optical cavity-based sensor using 830 nm and 880 nm laser diodes. (<b>b</b>) Cross-sectional view of the optical cavity structure.</p> "> Figure 2
<p>(<b>a</b>) Simulation results showing efficiencies of 830 nm (blue dashed line) and 880 nm (red dotted line) and differential value (green solid line) versus the refractive index inside the optical cavity in the range between 1.328 and 1.338. (<b>b</b>) Simulation results as shown in <a href="#sensors-19-02193-f002" class="html-fig">Figure 2</a>a with the range of refractive index between 1.3329 and 1.3338.</p> "> Figure 3
<p>(<b>a</b>) Fabricated optical cavity sample including 6 fluidic channels. 3D printed adapters are attached to inlets and outlets. (<b>b</b>) Prototype of portable optical cavity-based sensor. (<b>c</b>) Optical components mounted on the middle level plate of the portable system. (<b>d</b>) Schematic of servo motors (blue parts) with blocking plates (yellow parts) to block laser diodes alternately.</p> "> Figure 4
<p>The frequency response of the digital low-pass filter (LPF).</p> "> Figure 5
<p>Measurement results showing the average pixel intensities for 830 nm (blue dashed line) and 880 nm (red dotted line) and differential value (green solid line) versus the refractive indices in the same range (1.3329–1.3338) as shown in <a href="#sensors-19-02193-f002" class="html-fig">Figure 2</a>b.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulations
2.2. Portable Systemix
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev. 2018, 47, 4697–4709. [Google Scholar] [CrossRef]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef] [PubMed]
- Kozel, T.R.; Burnham-Marusich, A.R. Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. J. Clin. Microbiol. 2017, 55, 2313–2320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, B.; Murphy, C.; Crawley, A.; O’Kennedy, R. Developments in Point-of-Care Diagnostic Technology for Cancer Detection. Diagnostics 2018, 8, 39. [Google Scholar] [CrossRef]
- Hsieh, H.; Jeffrey, D.; Bernhard, W. Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics 2017, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- De Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Challenges of the nano-bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol. 2017, 35, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zaman, M.H. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ. 2012, 90, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zapatero-Rodríguez, J.; Estrela, P.; O’Kennedy, R. Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics. Biosensors 2015, 5, 577–601. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Brake, J.H.; Joy, C.; Kim, S. Refractive index measurement using an optical cavity based biosensor with a differential detection. Proc. SPIE 2015. [Google Scholar] [CrossRef]
- Rho, D.; Cho, S.; Joy, C.; Kim, S. Demonstration of an optical cavity sensor with a differential detection method by refractive index measurements. In Proceedings of the 2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 23–24 April 2015. [Google Scholar]
- Cowles, P.; Joy, C.; Bujana, A.; Rho, D.; Kim, S. Preliminary measurement results of biotinylated BSA detection of a low cost optical cavity based biosensor using differential detection. Proc. SPIE 2016. [Google Scholar] [CrossRef]
- Joy, C.; Kim, S. Benefits of a scaled differential calculation method for use in a Fabry-Perot based optical cavity biosensor. In Proceedings of the 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 30–31 March 2017. [Google Scholar]
- Rho, D.; Kim, S. Large dynamic range optical cavity based sensor using a low cost three-laser system. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017. [Google Scholar]
- Rho, D.; Kim, S. Low-cost optical cavity based sensor with a large dynamic range. Opt. Express 2017, 25, 11244–11253. [Google Scholar] [CrossRef] [PubMed]
- Rho, D.; Kim, S. Label-free real-time detection of biotinylated bovine serum albumin using a low-cost optical cavity-based biosensor. Opt. Express 2018, 26, 18982–18989. [Google Scholar] [CrossRef]
- Zhu, S.; Pang, F.; Huang, S.; Zou, F.; Dong, Y.; Wang, T. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Opt. Express 2015, 23, 13880–13888. [Google Scholar] [CrossRef] [PubMed]
- Cetin, A.E.; Coskun, A.F.; Galarreta, B.C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl. 2014, 3, e122. [Google Scholar] [CrossRef]
- Surdo, S.; Carpignano, F.; Strambini, L.M.; Merlo, S.; Barillaro, G. Capillarity driven (self-powered) one dimensional photonic crystals for refractometry and (bio)sensing applications. RSC Adv. 2014, 4, 51935–51941. [Google Scholar] [CrossRef]
- Xu, Z.; Han, K.; Khan, I.; Wang, X.; Liu, G.L. Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor. Opt. Lett. 2014, 39, 6082–6085. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, F.; Duarte, D.; Bilro, L.; Rudnitskaya, A.; Pesavento, M.; Zeni, L.; Cennamo, N. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications. Sensors 2016, 16, 2119. [Google Scholar] [CrossRef] [PubMed]
- Purr, F.; Bassu, M.; Lowe, R.D.; Thürmann, B.; Dietzel, A.; Burg, T.P. Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing. Lab Chip 2017, 17, 4265–4272. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Guan, C.; Tian, P.; Yuan, T.; Zhu, Z.; Li, P.; Shi, J.; Yang, J.; Yuan, L. In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber. Opt. Lett. 2017, 42, 4470–4473. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, B.; Zhang, J.; Yin, Y.; Niu, Y.; Ding, M. A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing. Sensors 2019, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; D’Aurelio, R.; Piekarska, M.; Temblay, J.; Pleasants, M.; Trinh, L.; Tothill, I. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors 2018, 8, 32. [Google Scholar] [CrossRef] [PubMed]
Methods | STD |
---|---|
Raw data | 8.49 × 10−3 |
Apply Equation (2) | 3.35 × 10−3 |
Apply Equation (2) and LPF | 2.29 × 10−3 |
LOD (RIU) | R2 | RSD (%) | |
---|---|---|---|
830 nm | 3.12 × 10−5 | 0.9796 | 0.48 |
880 nm | 2.73 × 10−5 | 0.8803 | 0.39 |
Differential | 1.73 × 10−5 | 0.9802 | 1.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rho, D.; Breaux, C.; Kim, S. Demonstration of a Low-Cost and Portable Optical Cavity-Based Sensor through Refractive Index Measurements. Sensors 2019, 19, 2193. https://doi.org/10.3390/s19092193
Rho D, Breaux C, Kim S. Demonstration of a Low-Cost and Portable Optical Cavity-Based Sensor through Refractive Index Measurements. Sensors. 2019; 19(9):2193. https://doi.org/10.3390/s19092193
Chicago/Turabian StyleRho, Donggee, Caitlyn Breaux, and Seunghyun Kim. 2019. "Demonstration of a Low-Cost and Portable Optical Cavity-Based Sensor through Refractive Index Measurements" Sensors 19, no. 9: 2193. https://doi.org/10.3390/s19092193
APA StyleRho, D., Breaux, C., & Kim, S. (2019). Demonstration of a Low-Cost and Portable Optical Cavity-Based Sensor through Refractive Index Measurements. Sensors, 19(9), 2193. https://doi.org/10.3390/s19092193