Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties
<p>Electronic tongue sensor signals acquired in the 120 s of signal acquisition of one selected <span class="html-italic">Celestial</span> melon sample.</p> "> Figure 2
<p>Results of the sensory profile test: (<b>a</b>,<b>b</b>) Results of the variety data set <span class="html-italic">n</span> = 11, (<b>c</b>,<b>d</b>) results of the storage data set <span class="html-italic">n</span> = 10.</p> "> Figure 3
<p>LDA classification results of the electronic tongue for differentiation of the five varieties after drift correction and outlier detection (<span class="html-italic">n</span> = 100) ●training ✖ validation.</p> "> Figure 4
<p>LDA classification results of the electronic tongue for differentiation of the five storage groups after drift correction and outlier detection (<span class="html-italic">n</span> = 77) ●training ✖ validation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Analytical Methods
2.2. Sensory Tests
2.3. Electronic Tongue Measurements
2.4. Near-Infrared Spectroscopy (NIRS) Measurements
2.5. Statistical Evaluation
3. Results
3.1. Results of the Standard Analytical Measurment
3.1.1. Results of the Variety Data Set
3.1.2. Results of Storage Data Set
3.2. Results of the Classical Sensory Test
3.3. Results of Classification Models for Electronic Tongue and NIRS Measurements
3.3.1. Results of the Variety Test Set
3.3.2. Results of Storage Test Set
3.4. Results of Partial Least Square Regression Models for Sensory and Chemical Parameters Predicted from PLSR Results of the Electronic Tongue and NIRS
4. Discussion
4.1. Color Classification
4.2. Melon Classification Based on Varieties
4.3. Melon Classification Based on Storage and Growth Conditions (Grafted or Self-Rooted)
4.4. PLSR Prediction of Melon Qualities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org (accessed on 16 November 2019).
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. (Amst.) 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Rouphael, Y.; Rea, E.; Cardarelli, M.; Bitterlich, M.; Schwarz, D.; Colla, G. Can Adverse Effects of Acidity and Aluminum Toxicity Be Alleviated by Appropriate Rootstock Selection in Cucumber? Front. Plant Sci. 2016, 7, 1283. [Google Scholar] [CrossRef] [PubMed]
- Oda, J.L.M.; Lee, M. Grafting of herbaceous vegetable and ornamental crops. Hortic. Rev. 2003, 28, 61–124. [Google Scholar]
- Escribano, S.; Sánchez, F.J.; Lázaro, A. Establishment of a sensory characterization protocol for melon (Cucumis melo L.) and its correlation with physical–chemical attributes: Indications for future genetic improvements. Eur. Food Res. Technol. 2010, 231, 611–621. [Google Scholar] [CrossRef]
- Imatsu, T. On the symbiotic affinity caused by the grafting among Cucurbitaceae species. J. Jpn. Soc. Hortic. Sci. 1949, 18, 36–42. [Google Scholar] [CrossRef]
- Miguel, A.; De la Torre, F.; Baixauli, C.; Maroto, J.V.; Jordá, M.C.; López, M.M.; García-Jímenez, J. Injerto de Hortalizas; Serie Divulgaci´on T´ecnica. Conseller´ıa de Agricultura; Generalitat Valenciana: Valencia, Spain, 1997; pp. 50–52. ISBN 9788448216016. [Google Scholar]
- Chuanqiang, X.; Tianlai, L.; Hongyan, Q. Effects of Grafting on Development, Carbohydrate Content and Sucrose-metabolizing Enzymes Activities of Muskmelon Fruit. Acta Hortic. Sin. 2006, 33, 773. [Google Scholar]
- Burger, Y.; Sa’ar, U.; Paris, H.S.; Lewinsohn, E.; Katzir, N.; Tadmor, Y.; Schaffer, A.A. Genetic variability for valuable fruit quality traits in Cucumis melo. Isr. J. Plant Sci. 2006, 54, 233–242. [Google Scholar] [CrossRef]
- Bíró, G.; Lindner, K. Tápanyagtáblázat; Medicina Könyvkiadó: Budapest, Hungary, 1988. [Google Scholar]
- Condurso, C.; Verzera, A.; Dima, G.; Tripodi, G.; Crinò, P.; Paratore, A.; Romano, D. Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Sci. Hortic. (Amst.) 2012, 148, 9–16. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.; Chen, S.; Chen, Y.; Zhang, W.; Sun, X.; Zhao, Y. Using Cucurbita rootstocks to reduce fusarium wilt incidence and increase fruit yield and carotenoid content in oriental melons. HortScience 2014, 49, 1365–1369. [Google Scholar] [CrossRef]
- Verzera, A.; Dima, G.; Tripodi, G.; Condurso, C.; Crinò, P.; Romano, D.; Mazzaglia, A.; Lanza, C.M.; Restuccia, C.; Paratore, A. Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Sci. Hortic. (Amst.) 2014, 169, 118–124. [Google Scholar] [CrossRef]
- Horváth, V. A Sárgadinnye Különböző Tárolástechnológiai Módszereinek Feltátása az Eltarthatósági idő Növelésére; Budapesti Corvinus Egyetem: Budapest, Hungary, 2016. [Google Scholar]
- Özdemir, A.E.; Çandır, E.; Yetişir, H.; Aras, V.; Arslan, Ö.; Baltaer, Ö.; Üstün, D.; Ünlü, M. Effects of rootstocks on storage and shelf life of grafted watermelons. J. Appl. Bot. Food Qual. 2016, 89, 191–201. [Google Scholar] [CrossRef]
- Vallone, S.; Sivertsen, H.; Anthon, G.E.; Barrett, D.M.; Mitcham, E.J.; Ebeler, S.E.; Zakharov, F. An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group ) during ripening. Food Chem. 2013, 139, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Luo, Y.; Marine, S.C.; Everts, K.L.; Micallef, S.A.; Bolten, S.; Stommel, J. Postharvest Biology and Technology Consumer preference and physicochemical evaluation of organically grown melons. Postharvest Biol. Technol. 2018, 141, 77–85. [Google Scholar] [CrossRef]
- Kantor, D.B.; Hitka, G.; Fekete, A.; Balla, C. Electronic tongue for sensing taste changes with apricots during storage. Sens. Actuators B Chem. 2008, 131, 43–47. [Google Scholar] [CrossRef]
- Escuder-Gilabert, L.; Peris, M. Review: Highlights in recent applications of electronic tongues in food analysis. Anal. Chim. Acta 2010, 665, 15–25. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Zhang, X. Discrimination of preserved licorice apricot using electronic tongue. Math. Comput. Model. 2013, 58, 743–751. [Google Scholar] [CrossRef]
- Fekete, D.; Balázs, G.; Bőhm, V.; Várvölgyi, E.; Kappel, N. Sensory evaluation and electronic tongue for sensing grafted and non-grafted watermelon taste attributes. Acta Aliment. 2018, 47, 487–494. [Google Scholar] [CrossRef]
- Guo, T.; Yin, T.; Ma, Z.; Wang, Z.; Sun, X.; Yuan, W. Characterization of different processes lemon slice using electronic tongue. IFAC-PapersOnLine 2018, 51, 683–688. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, L.; Yu, Z.; Zhai, Z.; Zhang, R. Optimization of soluble solids content prediction models in ‘Hami’ melons by means of Vis-NIR spectroscopy and chemometric tools. Infrared Phys. Technol. 2019, 102, 102999. [Google Scholar] [CrossRef]
- Sánchez, M.T.; Torres, I.; De la Haba, M.J.; Pérez-Marín, D. First steps to predicting pulp colour in whole melons using near-infrared reflectance spectroscopy. Biosyst. Eng. 2014, 123, 12–18. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, D.; Liu, L.; Wang, Z. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method. Food Chem. 2017, 218, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Daood, H.G.; Palotas, G.; Palotas, G.; Somogyi, G.; Pek, Z.; Helyes, L. Carotenoid and antioxidant content of ground paprika from indoor-cultivated traditional varieties and new hybrids of spice red peppers. Food Res. Int. 2014, 65, 231–237. [Google Scholar] [CrossRef]
- ISO. ISO International Standard ISO 13299: Sensory analysis—Methodology—General Guidance for Establishing a Sensory Profile; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- ISO. ISO International Standard ISO 8589: Sensory Analysis: General Guidance for the Design of Test Rooms; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Alpha MOS. αAstree Electronic Tongue User Manual; Alpha MOS: Toulouse, France, 2003. [Google Scholar]
- Kovacs, Z.; Pollner, B. Aquaphotomics-Software R-Package „aquap2“. In Proceedings of the Understanding Water in Biology 2nd International Symposium, Kobe, Japan, 26–29 November 2016; Volume 1, pp. 18–20. [Google Scholar]
- Escribano, S.; Lázaro, A. Sensorial characteristics of Spanish traditional melon genotypes: Has the flavor of melon changed in the last century? Eur. Food Res. Technol. 2012, 234, 581–592. [Google Scholar] [CrossRef]
- Seregély, Z.; Deák, T.; Bisztray, G.D. Distinguishing melon genotypes using NIR spectroscopy. Chemom. Intell. Lab. Syst. 2004, 72, 195–203. [Google Scholar] [CrossRef]
- Amaro, A.L.; Spadafora, N.D.; Pereira, M.J.; Dhorajiwala, R.; Herbert, R.J.; Müller, C.T.; Rogers, H.J.; Pintado, M. Multitrait analysis of fresh-cut cantaloupe melon enables discrimination between storage times and temperatures and identifies potential markers for quality assessments. Food Chem. 2018, 241, 222–231. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Chemometric compositional analysis of phenolic compounds in fermenting samples and wines using different infrared spectroscopy techniques. Talanta 2018, 176, 526–536. [Google Scholar] [CrossRef]
- Ramírez-Morales, I.; Rivero, D.; Fernández-blanco, E.; Pazos, A. Optimization of NIR calibration models for Multipurpose processes in the food industry. Chemom. Intell. Lab. Syst. 2016, 159, 45–57. [Google Scholar] [CrossRef]
- Sans, S.; Ferré, J.; Boqué, R.; Sabaté, J.; Casals, J.; Simó, J. Determination of chemical properties in ‘calçot’ (Allium cepa L.) by near infrared spectroscopy and multivariate calibration. Food Chem. 2018, 262, 178–183. [Google Scholar] [CrossRef]
Galia Type | Cantaloupe Type | ||||
---|---|---|---|---|---|
Aikido | London | Celestial | Centro | Donatello | |
Phytoene | - | - | 3.545 ± 0.76a | 2.919 ± 0.828a | 2.367 ± 0.222a |
Phyto floene | - | - | 3.214 ± 0.731a | 2.922 ± 0.758a | 1.95 ± 0.314a |
Cis β-carotene | 0.011 ± 0a | 0.085 ± 0.021a | 0.539 ± 0.17b | 0.76 ± 0.225b | 0.441 ± 0.037b |
β-carotene | 0.601 ± 0.056a | 3.606 ± 0.385a | 48.074 ± 11.033b | 66.056 ± 8.28c | 31.895 ± 3.063b |
ζ-carotene | 0.018 ± 0.004a | 0.085 ± 0.021a | 3.079 ± 0.747c | 2.674 ± 0.521b,c | 1.791 ± 0.313b |
Mutatoxantin | - | - | 0.085 ± 0.021a | 0.245 ± 0.139a | 0.085 ± 0.021a |
Lutein | 0.822 ± 0.076b | 0.871 ± 0.203b | 0.417 ± 0.042a | 0.502 ± 0.076a | 0.282 ± 0.021a |
Violaxantin | 0.809 ± 0.037d | 0.615 ± 0.053c | 0.3 ± 0.028a,b | 0.373 ± 0.092b | 0.187 ± 0.031a |
Total carotene | 5.275 ± 1.658a | 7.973 ± 1.888a | 53.361 ± 11.408b | 72.68 ± 8.28c | 35.944 ± 4.598b |
Chlorophyll A | 2.122 ± 0.309a | 1.705 ± 0.085a | - | - | - |
Chlorophyll B | 0.809 ± 0.133b | 0.232 ± 0.021a | - | - | - |
Vitamin C | - | 0.15 ± 0.26a | 34.917 ± 2.15c | 26.317 ± 5.212b | 30.74 ± 0.52b,c |
Brix° | 8.978 ± 1.357a | 8.367 ± 0.633a | 7.744 ± 0.707a | 8.367 ± 3.221a | 7.622 ± 0.662a |
Grafted Fresh | Grafted 2 °C | Self-Rooted Fresh | Self-Rooted 2 °C | Self-Rooted 17 °C | |
---|---|---|---|---|---|
Phytoene | 1.68 ± 0.62a | 1.13 ± 0.33a | 2.98 ± 0.63b | 1.66 ± 0.33a | 1.79 ± 0.4a,b |
Phytofluene | 2.09 ± 0.87a,b | 0.95 ± 0.18a | 3.56 ± 0.85b | 1.46 ± 0.49a | 1.73 ± 0.23a |
Cis β-Carotene | 3.8 ± 2.22a | 1.07 ± 0.64a | 10.43 ± 2.76b | 1.05 ± 0.35a | 1.25 ± 0.41a |
β-Carotene | 71.39 ± 18.77b | 30.91 ± 3.68a | 116.41 ± 16.74c | 48.21 ± 13.98a,b | 54.49 ± 9.6a,b |
ζ-Carotene | 3.32 ± 0.54a | 1.5 ± 0.17a | 7.48 ± 2.22b | 2.63 ± 0.81a | 3.41 ± 0.63a |
Mutatoxanthin | 0.28 ± 0.09b | 0.13 ± 0.08a,b | 0.23 ± 0.08a,b | 0.06 ± 0.01a | 0.13 ± 0.02a,b |
Lutein | 0.5 ± 0.09b | 0.24 ± 0.02a | 0.54 ± 0.11b | 0.38 ± 0.13a,b | 0.24 ± 0.04a |
Violaxanthin | 0.07 ± 0.04a | 0.17 ± 0.02a,b | 0.28 ± 0.15a,b | 0.32 ± 0.08b | 0.27 ± 0.06a,b |
Total carotene | 81.14 ± 20.06b | 35.64 ± 2.89a | 129.72 ± 12.7c | 54.14 ± 13.19a,b | 61.27 ± 8.28a,b |
Brix° | 5.67 ± 0.32b | 4.41 ± 0.32a | 8.57 ± 1d | 7.56 ± 1.16c,d | 7.21 ± 0.63c |
Vitamin C | - | 132.29 ± 27.78c | - | 5.49 ± 2.16b | 1.93 ± 0.84a |
Electronic Tongue | NIRS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Color | Total Accuracy | Varieties | Celestial | Centro | Donatello | Aikido | London | Total Accuracy | Varieties | Celestial | Centro | Donatello | Aikido | London |
Yellow | Recognition 85.51% | Celestial | 72.49 | 0 | 24.98 | 0 | 0 | Recognition 100% | Celestial | 100 | 0 | 0 | 0 | 0 |
Yellow | Centro | 0 | 100 | 0 | 0 | 0 | Centro | 0 | 100 | 0 | 0 | 0 | ||
Yellow | Donatello | 27.51 | 0 | 75.02 | 0 | 0 | Donatello | 0 | 0 | 100 | 0 | 0 | ||
Green | Aikido | 0 | 0 | 0 | 90.02 | 9.98 | Aikido | 0 | 0 | 0 | 100 | 0 | ||
Green | London | 0 | 0 | 0 | 9.98 | 90.02 | London | 0 | 0 | 0 | 0 | 100 | ||
Yellow | Cross validated 59.03% | Celestial | 25.04 | 0 | 74.96 | 0 | 0 | Cross Validated 54.75% | Celestial | 80.16 | 0 | 0 | 6.6 | 6.61 |
Yellow | Centro | 0 | 95.05 | 0 | 0 | 0 | Centro | 0 | 46.69 | 0 | 20 | 6.61 | ||
Yellow | Donatello | 74.96 | 4.95 | 25.04 | 0 | 0 | Donatello | 6.61 | 20.04 | 73.4 | 40 | 6.61 | ||
Green | Aikido | 0 | 0 | 0 | 80.03 | 29.99 | Aikido | 6.61 | 6.61 | 26.6 | 20 | 26.65 | ||
Green | London | 0 | 0 | 0 | 19.97 | 70.01 | London | 6.61 | 26.65 | 0 | 13.4 | 53.51 |
Electronic Tongue | NIRS | ||||||
---|---|---|---|---|---|---|---|
Total Accuracy | Varieties | Aikido | London | Total Accuracy | Varieties | Aikido | London |
Recognition 89.99% | Aikido | 92.5 | 12.52 | Recognition 100% | Aikido | 100 | 0 |
London | 7.5 | 87.48 | London | 0 | 100 | ||
Cross Validated 87.49% | Aikido | 89.96 | 14.99 | Cross Validated 90% | Aikido | 100 | 20 |
London | 10.04 | 85.01 | London | 0 | 80 |
Electronic Tongue | NIRS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total Accuracy | Varieties | Celestial | Centro | Donatello | Total Accuracy | Varieties | Celestial | Centro | Donatello |
Recognition 82.33% | Celestial | 77.75 | 0 | 30.77 | Recognition 100% | Celestial | 100 | 0 | 0 |
Centro | 0 | 100 | 0 | Centro | 0 | 100 | 0 | ||
Donatello | 22.25 | 0 | 69.23 | Donatello | 0 | 0 | 100 | ||
Cross Validated 51.19% | Celestial | 25 | 0 | 71.43 | Cross Validated 64.47% | Celestial | 93.4 | 0 | 26.6 |
Centro | 0 | 100 | 0 | Centro | 6.6 | 66.6 | 40 | ||
Donatello | 75 | 0 | 28.57 | Donatello | 0 | 33.4 | 33.4 |
Electronic Tongue | NIR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Storage Type | Grafted Fresh | Grafted 2 °C | Self Root Fresh | Self Root 2 °C | Self Root 17 °C | Accuracy | Storage type | Grafted Fresh | Grafted 2 °C | Self Root fresh | Self Root 2 °C | Self Root 17 °C |
Training 92.10% | Grafted fresh | 86.7 | 20 | 0 | 0 | 2.91 | Training 100% | Grafted fresh | 100 | 0 | 0 | 0 | 0 |
Grafted 2 °C | 13.3 | 76.7 | 0 | 0 | 0 | Grafted 2 °C | 0 | 100 | 0 | 0 | 0 | ||
Self root fresh | 0 | 0 | 100 | 0 | 0 | Self root fresh | 0 | 0 | 100 | 0 | 0 | ||
Self root 2 °C | 0 | 0 | 0 | 100 | 0 | Self root 2 °C | 0 | 0 | 0 | 100 | 0 | ||
Self root 17 °C | 0 | 3.3 | 0 | 0 | 97.09 | Self root 17 °C | 0 | 0 | 0 | 0 | 100 | ||
Validation 87.03% | Grafted fresh | 80 | 13.4 | 0 | 0 | 5.83 | Validation 84.46% | Grafted fresh | 77.83 | 5.51 | 0 | 0 | 0 |
Grafted 2 °C | 20 | 80 | 6.6 | 0 | 5.83 | Grafted 2 °C | 11.17 | 88.98 | 5.5 | 0 | 0 | ||
Self root fresh | 0 | 0 | 93.4 | 6.6 | 0 | Self root fresh | 5.5 | 5.51 | 77.83 | 11.17 | 0 | ||
Self root 2 °C | 0 | 0 | 0 | 93.4 | 0 | Self root 2 °C | 0 | 0 | 5.5 | 88.83 | 11.17 | ||
Self root 17 °C | 0 | 6.6 | 0 | 0 | 88.34 | Self root 17 °C | 5.5 | 0 | 11.17 | 0 | 88.83 |
Electronic Tongue | NIRS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Latent variables | Data Points | R2C | RMSEC | R2CV | RMSECV | Latent Variables | Data Points | R2C | RMSEC | R2CV | RMSECV | |
Standard analytical properties | Brix° | 5 | 56 | 0.4238 | 0.9949 | 0.2633 | 1.1241 | 20 | 45 | 0.9981 | 0.0625 | 0.9585* | 0.2914 |
β-carotene | 6 | 56 | 0.89 | 7.3223 | 0.8516 | 8.4964 | 17 | 45 | 0.9462 | 5.9835 | 0.4645 | 18.87 | |
Cis-β-carotene | 6 | 56 | 0.8987 | 0.0915 | 0.8672 | 0.1046 | 10 | 45 | 0.8279 | 0.1244 | 0.3683 | 0.2384 | |
Chlorophyll A | 2 | 24 | 0.7432 | 0.1543 | 0.6330 | 0.1840 | 3 | 18 | 0.3738 | 0.2204 | 0.0831 | 0.2666 | |
Chlorophyll B | 2 | 24 | 0.6978 | 0.1829 | 0.5639 | 0.2194 | 4 | 18 | 0.6263 | 0.1826 | 0.1345 | 0.278 | |
Luthein | 4 | 56 | 0.6651 | 0.1503 | 0.5821 | 0.1677 | 10 | 45 | 0.7611 | 0.12 | 0.2719 | 0.2095 | |
Total carotene | 6 | 56 | 0.8914 | 7.5094 | 0.8528 | 8.7341 | 17 | 45 | 0.9468 | 6.1248 | 0.461 | 19.487 | |
Violaxanthin | 5 | 56 | 0.8108 | 0.1068 | 0.7632 | 0.1194 | 12 | 45 | 0.8868 | 0.0771 | 0.5461 | 0.1545 | |
Vitamin C | 6 | 55 | 0.8967 | 5.2308 | 0.8653 | 5.9682 | 20 | 27 | 0.9993 | 0.1154 | 0.4456 | 3.284 | |
ζ-carotene | 5 | 56 | 0.7935 | 0.5842 | 0.7402 | 0.6547 | 11 | 45 | 0.8503 | 0.5123 | 0.4768 | 0.9578 | |
Sensory properties | Aftertaste | 1 | 100 | 0.0354 | 5.4113 | 0.0112 | 5.4783 | 5 | 65 | 0.29 | 4.7568 | 0.0564 | 5.4839 |
Flesh color | 5 | 100 | 0.6976 | 13.939 | 0.6494 | 15.0047 | 3 | 64 | 0.2617 | 21.941 | 0.1917 | 22.959 | |
Fermented taste | 4 | 100 | 0.3362 | 13.4063 | 0.2486 | 14.2658 | 5 | 63 | 0.4427 | 12.277 | 0.2648 | 14.101 | |
Fermented aroma | 5 | 100 | 0.2732 | 10.3195 | 0.1739 | 10.9991 | 5 | 67 | 0.2828 | 10.208 | 0.0486 | 11.757 | |
Melon aroma | 4 | 100 | 0.7324 | 6.5185 | 0.7007 | 6.8916 | 5 | 63 | 0.5666 | 8.2204 | 0.349 | 10.074 | |
Sweet aroma | 4 | 100 | 0.8186 | 4.9681 | 0.7962 | 5.2654 | 5 | 61 | 0.6613 | 6.7504 | 0.572 | 7.5884 | |
Sweet taste | 5 | 100 | 0.3231 | 6.9736 | 0.2277 | 7.4468 | 5 | 67 | 0.4238 | 6.6587 | 0.2651 | 7.5201 | |
Taste persistency | 5 | 100 | 0.803 | 2.4503 | 0.7761 | 2.612 | 5 | 59 | 0.7694 | 2.634 | 0.6815 | 3.0959 | |
Texture | 5 | 100 | 0.2017 | 6.5978 | 0.0995 | 7.0073 | 4 | 60 | 0.0631 | 7.0443 | 0.0043 | 7.2623 | |
Juiciness | 5 | 100 | 0.9206 | 8.4033 | 0.9087 | 9.0062 | 4 | 60 | 0.6787 | 16.415 | 0.6164 | 17.936 |
Electronic Tongue | NIRS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Latent Variables | Data Points | R2C | RMSEC | R2CV | RMSECV | Latent Variables | Data Points | R2C | RMSEC | R2CV | RMSECV | |
Standard analytical properties | Brix° | 1 | 50 | 0.816 | 0.6806 | 0.8002 | 0.7088 | 12 | 26 | 0.9992 | 0.0459 | 0.8144 | 0.6827 |
β-carotene | 4 | 44 | 0.4975 | 22.1737 | 0.3256 | 25.6006 | 15 | 31 | 0.9424 | 8.5495 | −0.012 | 35.83 | |
Cis-β-carotene | 4 | 44 | 0.6083 | 2.4284 | 0.4579 | 2.8537 | 15 | 32 | 0.9009 | 1.3535 | −0.7949 | 5.7594 | |
Lutein | 2 | 44 | 0.4167 | 0.1119 | 0.2942 | 0.123 | 6 | 34 | 0.6707 | 0.0789 | 0.3939 | 0.1071 | |
Mutatoxanthin | 4 | 44 | 0.5812 | 0.0611 | 0.3668 | 0.075 | 15 | 35 | 0.9488 | 0.0197 | −0.7132 | 0.1138 | |
Phytoene | 3 | 44 | 0.5141 | 0.509 | 0.3423 | 0.5912 | 15 | 32 | 0.9233 | 0.2114 | −1.0245 | 1.0861 | |
Phytofluene | 3 | 44 | 0.4029 | 0.7909 | 0.2069 | 0.9103 | 15 | 31 | 0.8681 | 0.3804 | −2.5857 | 1.9833 | |
Total carotene | 4 | 44 | 0.5446 | 22.9254 | 0.3812 | 26.6193 | 15 | 31 | 0.9717 | 6.3529 | 0.3484 | 30.486 | |
Violaxanthin | 2 | 44 | 0.3022 | 0.092 | 0.1165 | 0.1034 | 15 | 30 | 0.9653 | 0.0209 | 0.0226 | 0.111 | |
Vitamin C | 2 | 26 | 0.6897 | 34.9167 | 0.6054 | 39.3004 | 15 | 25 | 0.9684 | 9.3388 | −1.5506 | 83.949 | |
ζ-carotene | 4 | 44 | 0.7914 | 1.0283 | 0.6613 | 1.3087 | 15 | 32 | 0.8962 | 0.675 | −5.037 | 5.1466 | |
Sensory properties | Aftertaste | 1 | 60 | 0.7987 | 13.8018 | 0.7849 | 14.2621 | 10 | 57 | 0.9465 | 7.0339 | 0.8525 | 11.68 |
Flesh color | 2 | 60 | 0.4079 | 9.2906 | 0.3198 | 9.9535 | 10 | 56 | 0.8184 | 5.2774 | −0.0275 | 12.552 | |
Fermented taste | 1 | 60 | 0.7665 | 2.2761 | 0.7496 | 2.3565 | 10 | 61 | 0.906 | 1.4383 | 0.7737 | 2.2312 | |
Fermented aroma | 1 | 60 | 0.4747 | 3.9534 | 0.4355 | 4.0971 | 10 | 56 | 0.8635 | 1.9815 | 0.6549 | 3.1509 | |
Melon aroma | 2 | 60 | 0.7297 | 5.0735 | 0.6945 | 5.3917 | 10 | 54 | 0.9605 | 1.9787 | 0.8641 | 3.672 | |
Sweet aroma | 3 | 60 | 0.7556 | 6.0293 | 0.7136 | 6.5138 | 10 | 61 | 0.8868 | 4.0793 | 0.7286 | 6.3175 | |
Sweet taste | 1 | 60 | 0.8038 | 9.1659 | 0.7901 | 9.4765 | 10 | 59 | 0.9458 | 4.7997 | 0.8503 | 7.975 | |
Taste persistency | 2 | 60 | 0.772 | 9.4545 | 0.7433 | 10.028 | 10 | 54 | 0.9438 | 4.6644 | 0.8334 | 8.0325 | |
Texture | 1 | 60 | 0.7651 | 10.1466 | 0.748 | 10.5051 | 10 | 61 | 0.9056 | 6.4052 | 0.7737 | 9.9156 | |
Juiciness | 1 | 60 | 0.7738 | 15.3924 | 0.7574 | 15.9337 | 10 | 61 | 0.9036 | 10.009 | 0.745 | 16.279 |
Attribute/Function | E-Tongue | NIRS |
---|---|---|
Quick | Yes | Yes |
Non-destructive | No | Yes |
No waste (use of reagents) | Yes | Yes |
Less labor | Yes | Yes |
Relatively low cost and safe application | Yes | Yes |
Sophisticated | No | Yes |
Drift | Yes | No |
High selectivity and sensitivity | Yes | Yes |
Small sample size required | No | Yes |
Quantification and classification | Yes | Yes |
Temperature sensitive | Yes | Yes |
Advanced (complex) data analysis | Yes | Yes |
Small and portable instrument size | No* | Yes |
High precision | Yes | Yes |
Calibration is dependent on food constituent | Yes | Yes |
Easy to install (maintenance) | Yes | Yes |
Flexibility (simultaneous analysis) | Yes | Yes |
Dependence on reference information | Yes | Yes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németh, D.; Balázs, G.; Daood, H.G.; Kovács, Z.; Bodor, Z.; Zinia Zaukuu, J.-L.; Szentpéteri, V.; Kókai, Z.; Kappel, N. Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties. Sensors 2019, 19, 5010. https://doi.org/10.3390/s19225010
Németh D, Balázs G, Daood HG, Kovács Z, Bodor Z, Zinia Zaukuu J-L, Szentpéteri V, Kókai Z, Kappel N. Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties. Sensors. 2019; 19(22):5010. https://doi.org/10.3390/s19225010
Chicago/Turabian StyleNémeth, Dzsenifer, Gábor Balázs, Hussein G. Daood, Zoltán Kovács, Zsanett Bodor, John-Lewis Zinia Zaukuu, Viktor Szentpéteri, Zoltán Kókai, and Noémi Kappel. 2019. "Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties" Sensors 19, no. 22: 5010. https://doi.org/10.3390/s19225010