A Flight Direction Design Method for Airborne Spectral Imaging Considering the Anisotropy Reflectance of the Target in Rugged Terrain
<p>The geometric model for illumination and observation [<a href="#B24-sensors-19-02715" class="html-bibr">24</a>].</p> "> Figure 2
<p>The radiative transfer process [<a href="#B24-sensors-19-02715" class="html-bibr">24</a>].</p> "> Figure 3
<p>The BRF of sand* [<a href="#B31-sensors-19-02715" class="html-bibr">31</a>]. *The azimuth angle changing on circumferential direction align with the blue circle; the zenith angle changing on the radius direction; the blue arrow denotes the flight direction; for specific flight direction, the view directions of two stripes on the same target are the red circles.</p> "> Figure 4
<p>Radiance gradient in the image under different flight direction and solar azimuth: (<b>a</b>)–(<b>f</b>) the radiance gradient when aspect is 0° and slopes are 0° to 50° respectively, (<b>g</b>)–(<b>l</b>) the radiance gradient when aspect is 180°and slopes are 0° to 50° respectively.</p> "> Figure 4 Cont.
<p>Radiance gradient in the image under different flight direction and solar azimuth: (<b>a</b>)–(<b>f</b>) the radiance gradient when aspect is 0° and slopes are 0° to 50° respectively, (<b>g</b>)–(<b>l</b>) the radiance gradient when aspect is 180°and slopes are 0° to 50° respectively.</p> "> Figure 5
<p>Radiance gradient for different illumination directions and flight directions: (<b>a</b>)–(<b>f</b>) the radiance gradient when aspect is 0° and slopes are 0° to 50° respectively, (<b>g</b>)–(<b>l</b>) the radiance gradient when aspect is 180°and slopes are 0° to 50° respectively.</p> "> Figure 5 Cont.
<p>Radiance gradient for different illumination directions and flight directions: (<b>a</b>)–(<b>f</b>) the radiance gradient when aspect is 0° and slopes are 0° to 50° respectively, (<b>g</b>)–(<b>l</b>) the radiance gradient when aspect is 180°and slopes are 0° to 50° respectively.</p> "> Figure 5 Cont.
<p>Radiance gradient for different illumination directions and flight directions: (<b>a</b>)–(<b>f</b>) the radiance gradient when aspect is 0° and slopes are 0° to 50° respectively, (<b>g</b>)–(<b>l</b>) the radiance gradient when aspect is 180°and slopes are 0° to 50° respectively.</p> "> Figure 6
<p>The BRF of samples collected with illumination zenith 45° and view zenith 0°.</p> "> Figure 7
<p>The simulated radiance of the overlap area, (<b>a</b>) the image acquired from 60° flight direction and −30° zenith; (<b>b</b>) the image acquired on 60° flight direction and +30° zenith.</p> "> Figure 8
<p>The PDFs of slope and aspect in zone A and B: (<b>a</b>) the PDFs of slope, (<b>b</b>) the PDFs of aspect.</p> "> Figure 9
<p>Radiance difference in the overlap area between adjacent stripes: (<b>a</b>) the radiance difference in zone A (<b>b</b>) the radiance difference in zone B.</p> "> Figure 10
<p>Flowchart of physical simulation experiment.</p> "> Figure 11
<p>Photo of the physically simulated scene.</p> "> Figure 12
<p>BRF of smashed rock samples of different diameters.</p> "> Figure 13
<p>The reflected radiance of scene, (<b>a</b>) on flight direction 90° and view zenith −30°; (<b>b</b>) on flight direction 90° and view zenith −30°.</p> "> Figure 14
<p>PDFs of slope and aspect in zone A and B: (<b>a</b>) the PDFs of slope, (<b>b</b>) the PDFs of aspect.</p> "> Figure 15
<p>Radiance difference in the overlap area between adjacent stripes: (<b>a</b>) the radiance difference in zone A (<b>b</b>) the radiance difference in zone B.</p> "> Figure 16
<p>The workflow of the optimized flight direction design method.</p> ">
Abstract
:1. Introduction
2. Methods
3. The Solo Slope Digital Simulation Experiment
4. The Composite Slope Digital Simulation Experiment
5. The Composite Slope Physical Simulation Experiment
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Foster, J.; Townsend, P. Mapping Forest Composition in the Central Appalachians Using AVIRIS: Effects of Topography and Phenology. Available online: https://www.researchgate.net/profile/Jane_Foster/publication/228386320_Mapping_forest_composition_in_the_central_appalachians_using_AVIRIS_Effects_of_topography_and_phenology/links/0912f50a2cf058d877000000.pdf (accessed on 14 June 2019).
- Ong, C.; Cudahy, T. Deriving Quantitative Monitoring Data Related to Acid Drainage Using Multi-Temporal Hyperspectral Data. Available online: https://www.researchgate.net/profile/Cindy_Ong/publication/265264343_DERIVING_QUANTITATIVE_MONITORING_DATA_RELATED_TO_ACID_DRAINAGE_USING_MULTI-_TEMPORAL_HYPERSPECTRAL_DATA/links/548f6d230cf214269f263bad.pdf (accessed on 14 June 2019).
- Ben-Dor, E.; Levin, N.; Singer, A.; Karnieli, A.; Braun, O.; Kidron, G. Quantitative mapping of the soil rubification process on sand dunes using an airborne CASI hyperspectral sensor. Geoderma 2006, 131, 1–21. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Vreys, K.; Iordache, M.D.; Bomans, B.; Meuleman, K. Data acquisition with the APEX hyperspectral sensor. Misc. Geogr. 2016, 20, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.D.; Wilson, J.A.; Feher, S.H.; Ward, G.D. Airborne flight planning and information system. Canadian Vet. J. Rev. Vétérinaire Can. 1987, 47, 999–1002. [Google Scholar] [CrossRef]
- Leica XPro Data Processing at the Speed of Flight. Available online: https://leica-geosystems.com/products/airborne-systems/software/leica-xpro (accessed on 10 January 2019).
- Ip, A.W.; Mostafaa, M.M.; Huttona, J.; Barriere, J.P. An optimally integrated Direct georeferencing and flight management system for increased productivity of airborne mapping and remote sensing. Remote Sens. Spat. Inf. Sci. Int. Arch. Photogramm. 2008, XXXVII, 579–584. [Google Scholar]
- Pepe, M.; Fregonese, L.; Scaioni, M. Planning airborne photogrammetry and remote sensing missions with modern platforms and sensors. Eur. J. Remote Sens. 2018, 51, 412–436. [Google Scholar] [CrossRef]
- Möllney, M.; Kremer, J. Contour Flying for Airborne Data Acquisition. Photogramm. Week 2013, 13, 117–129. [Google Scholar]
- Collings, S.; Caccetta, P.; Campbell, N.; Wu, X. Techniques for BRDF Correction of Hyperspectral Mosaics. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3733–3746. [Google Scholar] [CrossRef]
- Feingersh, T.; Ben-Dor, E.; Filin, S. Correction of reflectance anisotropy: A multi-sensor approach. Int. J. Remote Sens. 2010, 31, 49–74. [Google Scholar] [CrossRef]
- Myers, J.S.; Miller, R.L. Optical airborne remote sensing. In Remote Sensing of Coastal Aquatic Environments; Remote Sensing and Digital Image Processing; Miller, R.L., Del Castillo, C.E., Mckee, B.A., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 7, pp. 51–67. [Google Scholar] [CrossRef]
- Montes, M.J.; Gao, B.-C.; Davis, C.O.; Moline, M. Analysis of AVIRIS Data From LEO-15 Using Tafkaa Atmospheric Correction. In Proceedings of the 12th AVIRIS/HYPERION Earth Science Workshop, Pasadena, CA, USA, 1 January 2003. [Google Scholar]
- Downey, M.; Uebbing, R.; Gehrke, S.; Beisl, U. Radiometric processing of ads imagery: Using atmospheric and BRDF corrections in production. In Proceedings of the ASPRS 2010 Annual Conference, San Diego, CA, USA, 26–30 April 2010. [Google Scholar]
- Beisl, U.; Adiguezel, M. Validation of the reflectance calibration of the ADS40 airborne sensor using ground reflectance measurements. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2010, 38, 80–85. [Google Scholar]
- Schiefer, S.; Hostert, P.; Damm, A. Correcting brightness gradients in hyperspectral data from urban areas. Remote Sens. Environ. 2006, 101, 25–37. [Google Scholar] [CrossRef]
- Langhans, M.; Van der Linden, S.; Damm, A.; Hostert, P. The influence of bidirectional reflectance in airborne hyperspectral data on spectral angle mapping and linear spectral mixture analysis. In Proceedings of the 5th EARSeL Workshop on Imaging Spectroscopy, Bruges, Belgium, 23–25 April 2007. [Google Scholar]
- Kötz, B.; Schaepman, M.; Morsdorf, F.; Bowyer, P.; Itten, K.; Allgöwer, B. Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties. Remote Sens. Environ. 2004, 92, 332–344. [Google Scholar] [CrossRef]
- Zou, X.; Hernández-Clemente, R.; Tammeorg, P.; Lizarazo Torres, C.; Stoddard, F.L.; Mäkelä, P.; Pellikka, P.; Mõttus, M. Retrieval of leaf chlorophyll content in field crops using narrow-band indices: Effects of leaf area index and leaf mean tilt angle. Int. J. Remote Sens. 2015, 36, 6031–6055. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef]
- Product Description Leica MissionPro. Available online: https://leica-geosystems.com/products/airborne-systems/software/leica-missionpro (accessed on 1 March 2019).
- Schott, J.R. Remote Sensing: The Image Chain Approach, 2nd ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Bachmann, C.M.; Eon, R.S.; Ambeau, B.; Harms, J.; Badura, G.; Griffo, C. Modeling and intercomparison of field and laboratory hyperspectral goniometer measurements with G-LiHT imagery of the Algodones Dunes. J. Appl. Remote Sens. 2017, 12, 012005. [Google Scholar] [CrossRef]
- Lunagaria, M.M.; Patel, H.R. Evaluation of PROSAIL inversion for retrieval of chlorophyll, leaf dry matter, leaf angle, and leaf area index of wheat using spectrodirectional measurements. Int. J. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Koukal, T.; Atzberger, C.; Schneider, W. Evaluation of semi-empirical BRDF models inverted against multi-angle data from a digital airborne frame camera for enhancing forest type classification. Remote Sens. Environ. 2014, 151, 27–43. [Google Scholar] [CrossRef]
- Eon, R.; Bachmann, C.M.; Gerace, A. Retrieval of Sediment Fill Factor by Inversion of a Modified Hapke Model Applied to Sampled HCRF from Airborne and Satellite Imagery. Remote Sens. 2018, 10, 1758. [Google Scholar] [CrossRef]
- Botev, Z.I.; Grotowski, J.F.; Kroese, D.P. Kernel density estimation via diffusion. Ann. Stat. 2010, 38, 2916–2957. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Chetwynd, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Adler-Golden, S.M. MODTRAN4 User’s Manual. Air Force Research Laboratory; Space Vehicles Directorate, Air Force Materiel Command: Hanscom AFB, MA, USA, 2000. [Google Scholar]
- Hatchell, D.C. Analytical Spectral Device Technical Guide; Analytical Spectral Devices, Inc.: Boulder, CO, USA, 1999. [Google Scholar]
- Zhao, J.; Wang, W.; Cheng, Q.; Agterberg, F. Mapping of Fe mineral potential by spatially weighted principal component analysis in the eastern Tianshan mineral district, China. J. Geochem. Explor. 2016, 164, 107–121. [Google Scholar] [CrossRef]
- Deng, Y.F.; Song, X.Y.; Hollings, P.; Chen, L.M.; Zhou, T.; Yuan, F.; Xie, W.; Zhang, D.; Zhao, B. Lithological and geochemical constraints on the magma conduit systems of the Huangshan Ni-Cu sulfide deposit, NW China. Miner. Depos. 2017, 52, 845–862. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, B.; Jia, G.; Li, X.; Zhang, C.; Zhang, X. A “Skylight” Simulator for HWIL Simulation of Hyperspectral Remote Sensing. Sensors 2017, 17, 2829. [Google Scholar] [CrossRef]
- Xia, M.; Jiang, C.Y.; Qian, Z.Z.; Xia, Z.D.; Wang, B.Y.; Sun, T. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang. Acta Petrol. Sin. 2010, 26, 2413–2430. [Google Scholar] [CrossRef]
- Matusiak, B. The Graphical Tool for Sky Component, Solar Glare and Overheating Risk Prediction. Available online: https://www.researchgate.net/profile/Barbara_Matusiak/publication/268979885_THE_GRAPHICAL_TOOL_FOR_SKY_COMPONENT_SOLAR_GLARE_AND_OVERHEATING_RISK_PREDICTION/links/547c7eba0cf2cfe203bfc832/THE-GRAPHICAL-TOOL-FOR-SKY-COMPONENT-SOLAR-GLARE-AND-OVERHEATING-RISK-PREDICTION.pdf (accessed on 14 June 2019).
- Sun Earth Tools-Sun Position. Available online: http://www.sunearthtools.com (accessed on 5 March 2019).
Symbols | Explanations |
---|---|
Normal vector of terrain in horizontal coordinate system | |
Illumination vector (from sun to target) in horizontal coordinate system | |
Observation vector (from observer to target) in horizontal coordinate system | |
The slope in horizontal coordinate system | |
The aspect in horizontal coordinate system | |
The solar zenith angle in horizontal coordinate system | |
The solar azimuth angle in horizontal coordinate system | |
The observation zenith angle in horizontal coordinate system | |
The observation azimuth angle in horizontal coordinate system | |
The incident zenith angle in local slope coordinate system | |
The incident azimuth angle in local slope coordinate system | |
The exit zenith angle in local slope coordinate system | |
The exit azimuth angle in local slope coordinate system |
Attribute | Value |
---|---|
Solar Zenith Angle () | 20° |
Solar Azimuth Angle () | 94°–266° |
Observation Zenith Angle () | −30°/0°/+30° |
Flight direction () | 90°–270° (5° interval) |
Slope | 0°–50° (10° interval) |
Aspect | 0°/180° |
Spectral Range | 400 nm–2500 nm |
Spectral Resolution | 10 nm |
Atmosphere Model | Mid-Latitude Summer |
Aerosol Model | Rural |
Visibility | 40 km |
Attribute | Value |
---|---|
Location | 40.0°N, 93.9°E |
Solar Direction | Zenith: 17.4°~46.9°, Azimuth: 94.3°~265.8° |
Spectral Range | 400 nm~2500 nm |
Spectral Resolution | 10 nm |
Atmosphere Model | Mid-Latitude Summer |
Aerosol Model | Rural |
Visibility | 40 km |
View Zenith | −30.0°/0°/+30.0° |
Flight direction | 90.0°~−90.0° (30.0° interval) |
Slope | 0°~36° (mean: 23°) |
Aspect | −180°~180° (mean: 1.4°) |
Attribute | Value |
---|---|
Location | 40.0°N, 93.9°E |
Solar Direction | Zenith: 48°, Azimuth: 90°~270° (30.0° interval) |
Atmosphere Model | Mid-Latitude Summer |
Aerosol Model | Rural |
Visibility | 40 km |
View Zenith | −30.0°/0°/+30.0° |
Flight direction | −90.0°~+90.0° |
Slope | 0°~50.2° (mean: 8.6°) |
Aspect | −180°~180° (mean: 7.5°) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Cui, B.; Jia, G. A Flight Direction Design Method for Airborne Spectral Imaging Considering the Anisotropy Reflectance of the Target in Rugged Terrain. Sensors 2019, 19, 2715. https://doi.org/10.3390/s19122715
Zhao H, Cui B, Jia G. A Flight Direction Design Method for Airborne Spectral Imaging Considering the Anisotropy Reflectance of the Target in Rugged Terrain. Sensors. 2019; 19(12):2715. https://doi.org/10.3390/s19122715
Chicago/Turabian StyleZhao, Huijie, Bolun Cui, and Guorui Jia. 2019. "A Flight Direction Design Method for Airborne Spectral Imaging Considering the Anisotropy Reflectance of the Target in Rugged Terrain" Sensors 19, no. 12: 2715. https://doi.org/10.3390/s19122715