Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region
<p>The study area based on the Sentinel-2 multispectral image (Red, Green, Blue). The location of training samples and testing samples is shown in the image.</p> "> Figure 2
<p>Six land cover features of Sentinel-1 backscatter coefficients of a time series: (<b>a</b>) (vertical-vertical) VV, (<b>b</b>) (vertical-horizontal) VH and (<b>c</b>) Cross Ratio (CR).</p> "> Figure 2 Cont.
<p>Six land cover features of Sentinel-1 backscatter coefficients of a time series: (<b>a</b>) (vertical-vertical) VV, (<b>b</b>) (vertical-horizontal) VH and (<b>c</b>) Cross Ratio (CR).</p> "> Figure 3
<p>The NDVI band plot shows that all the three crops had obviously differentiated in the growth season.</p> "> Figure 4
<p>Time-series changes at in red-edge bands of Sentinel-2 data.</p> "> Figure 4 Cont.
<p>Time-series changes at in red-edge bands of Sentinel-2 data.</p> "> Figure 5
<p>Indices of maize, rape, and wheat in time series for Sentinel-2 data.</p> "> Figure 6
<p>Performance of the three classifiers for nine classification scenarios.</p> "> Figure 7
<p>Performance of the three classifiers from <a href="#sensors-19-02401-f006" class="html-fig">Figure 6</a> for the four classification scenarios.</p> "> Figure 8
<p>Accuracy results with different variable numbers.</p> "> Figure 9
<p>Importance of variables in the RF classification process.</p> "> Figure 10
<p>OA and Kappa coefficient for the combined S1, S2, and L data in the time series.</p> "> Figure 11
<p>The best classification results of single and multi-resource data in January, March, and May 2018.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Satellite Dataset
2.2.2. Field Sample Data
2.3. Crop Classification Method
2.3.1. Features Described for Crop Classification
Spectral Information
Indices Features
Textural Features
2.3.2. Statistical Analysis and Classification Modeling
2.3.3. Classification and Assessment Accuracy
3. Results
3.1. Deriving Features to Identify Crops in Time Series
3.1.1. Effectiveness of VH, VV, and CR Features Using Sentinel-1 Data
3.1.2. The NDVI Characterized Crops in Time Series of Sentinel-2 and Landsat-8 Data
3.1.3. Indices Features in Sentinel-2
3.2. Assessment Accuracy
3.2.1. Comparison of Features Extracted with the Different Sensors
3.2.2. Accuracy Assessment of Combined SAR and Optical Data
3.3. Crop Mapping Using the Optimal Combination
3.3.1. Optimal Classification Combination for Crop Mapping
3.3.2. Mapping Crop Types and Land Cover
4. Discussion
5. Conclusions
- (1)
- The use of Sentinel-1 data affected the land-cover classification. However, their ability to identify crop type was weaker than that of optical data. The red-edge band of Sentinel-2 was more sensitive than the normal band of L to vegetation information. The single use of the Sentinel-2 showed higher accuracy than the use of Sentinel-1 or Landsat-08 data.
- (2)
- The Random Forest classifier generally produced highest performance in terms of overall accuracy (OA), Kappa coefficient, and F1 values for mapping crop types for any classification scenario.
- (3)
- The use of the combination of Sentinel-1, Sentinel-2, and Landsat-08 in the time series provided an optimal crop and land cover classification result. The assessment of the importance of the RF variables also showed that in May, index features dominated the classification results.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Navarro, A.; Rolim, J.; Miguel, I.; Catalao, J.; Silva, J.; Painho, M.; Vekerdy, Z. Crop monitoring based on SPOT-5 Take-5 and sentinel-1A data for the estimation of crop water requirements. Remote Sens. 2016, 8, 525. [Google Scholar] [CrossRef]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rudiger, C.; Strauss, P. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef]
- Durgun, Y.O.; Gobin, A.; Van De Kerchove, R.; Tychon, B. Crop area mapping using 100-m Proba-V time series. Remote Sens. 2016, 8, 585. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens. 2015, 7, 16091–16107. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Kussul, N.; Skakun, S.; Shelestov, A.; Lavreniuk, M.; Yailymov, B.; Kussul, O. Regional scale crop mapping using multi-temporal satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 45–52. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef]
- Ban, Y. Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops. Can. J. Remote Sens. 2003, 29, 518–526. [Google Scholar] [CrossRef]
- Jia, K.; Li, Q.; Tian, Y.; Wu, B.; Zhang, F.; Meng, J. Crop classification using multi-configuration SAR data in the North China plain. Int. J. Remote Sens. 2012, 33, 170–183. [Google Scholar] [CrossRef]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- Waldner, F.; Lambert, M.J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.; Defourny, P. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series. Remote Sens. 2015, 7, 10400–10424. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Trans. Geosci. Remote Sens. 2017, 14, 778–783. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Hill, M.J.; Ticehurst, C.J.; Lee, J. Sen; Grunes, M.R.; Donald, G.E.; Henry, D. Integration of optical and radar classifications for mapping pasture type in Western Australia. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1665–1680. [Google Scholar] [CrossRef]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency Assessment of Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3712–3719. [Google Scholar] [CrossRef]
- Erasmi, S.; Twele, A. Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—A case study from Central Sulawesi, Indonesia. Int. J. Remote Sens. 2009, 30, 2465–2478. [Google Scholar] [CrossRef]
- Zhou, T.; Pan, J.; Zhang, P.; Wei, S.; Han, T. Mapping winter wheat with multi-temporal SAR and optical images in an urban agricultural region. Sensors (Switzerland) 2017, 17, 1210. [Google Scholar] [CrossRef]
- Villa, P.; Stroppiana, D.; Fontanelli, G.; Azar, R.; Brivio, P.A. In-season mapping of crop type with optical and X-band SAR data: A classification tree approach using synoptic seasonal features. Remote Sens. 2015, 7, 12859–12886. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Nicola, C.; Calderon, C.; Posada, J. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A casestudy in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest type identification with random forest using Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef]
- Gray, J.; Song, C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. Remote Sens. Environ. 2012, 119, 173–183. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z.; Pan, J. Multi-feature classification of multi-sensor satellite imagery based on dual-polarimetric sentinel-1A, landsat-8 OLI, and hyperion images for urban land-cover classification. Sensors 2018, 18, 373. [Google Scholar] [CrossRef]
- Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of moderate resolution earth observations for operational crop Type mapping. Remote Sens. 2018, 10, 1058. [Google Scholar] [CrossRef]
- Noi, P.T.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar]
- Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C. Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [Google Scholar] [CrossRef]
- Pradhan, C.; Wuehr, M.; Akrami, F.; Neuhaeusser, M.; Huth, S.; Brandt, T.; Jahn, K.; Schniepp, R. Automated classification of neurological disorders of gait using spatio-temporal gait parameters. J. Electromyogr. Kinesiol. 2015, 25, 413–422. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR ) data at catchment scale. Remote Sens. Environ. 2014, 152, 150–165. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L. Estimating forest aboveground biomass by combining optical and SAR data: A case study in genhe, inner Mongolia, China. Sensors 2016, 16, 834. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wu, J.; Qi, J.; Salas, W.A. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int. J. Remote Sens. 2009, 30, 6301–6315. [Google Scholar] [CrossRef]
- Anderson, C.; Graves, S.; Colgan, M.; Asner, G.; Kalantari, L.; Bohlman, S.; Martin, R. Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data. Remote Sens. 2016, 8, 161. [Google Scholar]
- Petropoulos, G.; Charalabos, K.; Keramitsoglou, I. Burnt Area Delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 70–80. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Schlerf, M.; Heitkonig, I.M.A.; Mathieu, R.; Cho, M.A. Savanna grass nitrogen to phosphorous ratio estimation using field spectroscopy and the potential for estimation with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 334–343. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Mueller-Wilm, U.; Devignot, O.; Pessiot, L. Sen2Core Configuration Manual; UCL-Geomatics: London, UK, 2016. [Google Scholar]
- Lu, L.; Tao, Y.; Di, L. Object-Based Plastic-Mulched Landcover Extraction Using Integrated Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1820. [Google Scholar] [CrossRef]
- Trimble Germany GmbH. eCognition Developer 9.0.1 Reference Book; Trimble Germany GmbH: Munich, Germany, 2014. [Google Scholar]
- Matikainen, L.; Karila, K.; Hyyppa, J.; Litkey, P.; Puttonen, E.; Ahokas, E. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS J. Photogramm. Remote Sens. 2017, 128, 298–313. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 266, 257–266. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bon, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands Author’s personal copy. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscapes. Remote Sens. 2018, 11, 37. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Chang, C.; Lin, C.; Tieleman, T. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2008, 307, 1–39. [Google Scholar] [CrossRef]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Beluco, A.; Engel, P.M.; Beluco, A. Classification of textures in satellite image with Gabor filters and a multi layer perceptron with back propagation algorithm obtaining high accuracy. Int. J. Energy Environ. 2015, 6, 437–460. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Fabian, P.; Michel, V.; Grisel Olivie, R.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; Report of Institute of Environmental Sustainability; Joint Research Centre, European Commission: Ispra, Italy, 2006. [Google Scholar]
- Gasparovic, M.; Jogun, T. The effect of fusing Sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Tayyebi, A.; Helbich, M. Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ Monit Assess. 2017, 189–300. [Google Scholar] [CrossRef]
- Gasparovica, M.; Zrinjski, M.; Gudelj, M. Automatic cost-effective method for land cover classification (ALCC). Comput. Environ. Urban Syst. 2019, 76, 1–10. [Google Scholar] [CrossRef]
- Stasolla, M.; Neyt, X. An Operational Tool for the Automatic Detection and Removal of Border Noise in Sentinel-1 GRD Products. Sensors 2018, 18, 3454. [Google Scholar] [CrossRef] [PubMed]
- Satalino, G.; Balenzano, A.; Mattia, F.; Member, S.; Davidson, M.W.J. C-Band SAR Data for Mapping Crops Dominated by Surface or Volume Scattering. IEEE Geosci. Remote Sens. Lett. 2014, 11, 384–388. [Google Scholar] [CrossRef]
- Wiseman, G.; Mcnairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- Bannari, A.; Khurshid, K.S.; Staenz, K.; Schwarz, J.W. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3063–3074. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Foerster, M. Grassland habitat mapping by intra-annual time series analysis-comparison of rapideye and terraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinfor. 2015, 34, 25–34. [Google Scholar] [CrossRef]
Phenology | Sowing | Seedling | Tillering | Over-Wintering | Greening up | Jointing | Booting | Heading | Flowering | Maturing | |
---|---|---|---|---|---|---|---|---|---|---|---|
Data | Wheat | 11.15 | 12.05 | 12.20 | 1.30 | 2.26 | 3.10 | 4.05 | 5.01 | 5.06 | 6.08 |
Rape | 10.25 | 11.15 | ─ | ─ | ─ | ─ | 2.25 | ─ | 4.15 | 5.20 | |
Maize | 3.05 | 3.25 | ─ | ─ | ─ | ─ | 4.10 | 5.10 | 5.25 | 6.10 |
Dataset | Date | Resolution | Source |
---|---|---|---|
14 Sentinel-1 | 12/12/17, 12/24/17, 01/17/18, 01/29/18, 02/10/18, 02/22/18, 03/06/18, 03/18/18, 03/30/18, 04/11/18, 04/23/18, 05/05/18, 05/17/18, 05/29/18 | 5 × 20 m | (EAS, 2017) |
10 Sentinel-2 | 12/05/17, 12/25/17, 01/09/18, 02/08/18, 02/13/18, 02/23/18, 03/10/18, 04/09/18, 04/19/18, 05/04/18 | 10/20/60 m | (EAS, 2017) |
5 Landsat-8 | 12/05/17, 12/21/17, 02/23/18, 03/27/18, 04/28/18 | 15/30/60 m | (EAS, 2017) |
Class | Training Pixels | Testing Pixels |
---|---|---|
Forest | 620 | 729 |
Maize | 568 | 489 |
Rape | 518 | 475 |
Urban | 539 | 510 |
Water | 730 | 658 |
Wheat | 492 | 585 |
Feature | Factor | S1 | S2 | L | Describe |
---|---|---|---|---|---|
Mean | / | 10 | 7 | Mean of each band (S2: 2–8, 8a, 11–12; L: 1–7) | |
Spectral | Standard Deviation | / | 10 | 7 | Standard deviation of each band (S2: 2–8,8a,11–12; L: 1–7) |
Variance | / | 10 | 7 | Variance of each band (S2: 2–8, 8a,11–12; L: 1–7) | |
Backscatter coefficient | 3 | / | / | The S1 Band: VH, VV, CR; | |
Vegetation Indices | Enhanced Vegetation Index (EVI) | / | 2.5*((NIR-R)/(NIR + 6*R − 7.5*B + 1)) [41] | ||
Normalized Difference Vegetation Index (NDVI)-B8a | / | / | (NIR2-R)/(NIR2 + R) [23] | ||
(NDVI)-B76 | / | / | (RE3-RE2)/(RE3 + RE2) [23] | ||
(NDVI)-B8a5 | / | / | (NIR2-RE1)/(NIR2 + RE1) [23] | ||
(NDVI)-B65 | / | / | (RE2-RE1)/(RE2 + RE1) [23] | ||
(NDVI)-B75 | / | / | (RE3-RE1)/(RE3 + RE1) [23] | ||
(NDVI)-B8a6 | / | / | (NIR2-RE2)/(NIR2 + RE2) [23] | ||
NDVI | / | (NIR-R)/(NIR + R) [23] | |||
Triangular Vegetation Index (TVI) | / | 0.5(120(NIR-G)-200(R-G)) [42] | |||
Normalized Difference Water Index (NDWI) | / | (NIR-SWIR1)/(NIR + SWIR1) [43] | |||
Normalized Difference Tillage Index (NDTI) | / | (SWIR1-SWIR2)/(SWIR1 + SWIR2) [44] | |||
Mean (ME) | 3 | Gray-Level Co-occurrence Matrix (GLCM) homogeneity of all directions | |||
Variance (VA) | 3 | ||||
Homogeneity (HO) | 3 | ||||
Texture | Contrast (CON) | 3 | |||
Dissimilarity (DI) | 3 | ||||
Entropy (EN) | 3 | ||||
Second moment (SM) | 3 | ||||
Correlation (COR) | 3 |
Sensor | Variables | Description |
---|---|---|
S1 | S1(T) | Textural features of the time series of Sentinel-1 data |
S1(S) | Spectral features of the time series Sentinel-1 data | |
S1(TS) | Combined textural and spectral features of the time series of Sentinel-1 data | |
S2 | S2(T) | Textural features of the time series of Sentinel-2 data |
S2(TS) | Combined textural and spectral features of the time series of Sentinel-2 data | |
S2(TSI) | Combined textural, spectral, and indices features of the time series of Sentinel-2 data | |
L | L(T) | Textural features of the time series of Landsat-8 data |
L(TS) | Combined textural and spectral features of the time series of Landsat-8 data | |
L(TSI) | Combined textural, spectral and indices features of the time series of Landsat-8 data | |
S1+L | S1(TS)+L(TSI) | Combine textural and spectral features of Sentinel-1 data and textural, spectral and indices features of Landsat-8 data |
S2+L | S2(TSI)+L(TSI) | Combined textural, spectral, and indices features of Sentinel-2 and Landsat-8 data |
S1+S2 | S1(TS)+S2(TSI) | Combined textural and spectral features of time series of Sentinel-1 data and Sentinel-2 texture, spectral, and indices features |
S1+S2+L | S1(TS)+S2(TSI)+L(TSI) | Combination of all three features of each sensor |
OA | KP | Forest | Maize | Rape | Urban | Water | Wheat | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | FoM | F1 | FoM | F1 | FoM | F1 | FoM | F1 | FoM | F1 | FoM | |||||
S1 | T | RF | 0.75 | 0.70 | 0.67 | 0.41 | 0.66 | 0.41 | 0.71 | 0.53 | 0.62 | 0.39 | 0.87 | 0.76 | 0.92 | 0.85 |
SVM | 0.70 | 0.64 | 0.66 | 0.43 | 0.64 | 0.38 | 0.66 | 0.51 | 0.58 | 0.39 | 0.76 | 0.68 | 0.90 | 0.80 | ||
ANN | 0.68 | 0.61 | 0.50 | 0.39 | 0.55 | 0.42 | 0.61 | 0.51 | 0.53 | 0.38 | 0.88 | 0.78 | 0.87 | 0.78 | ||
S | RF | 0.71 | 0.65 | 0.51 | 0.35 | 0.58 | 0.41 | 0.70 | 0.54 | 0.53 | 0.37 | 0.87 | 0.76 | 0.88 | 0.78 | |
SVM | 0.67 | 0.61 | 0.51 | 0.34 | 0.53 | 0.36 | 0.66 | 0.50 | 0.45 | 0.29 | 0.86 | 0.76 | 0.87 | 0.76 | ||
ANN | 0.68 | 0.62 | 0.48 | 0.32 | 0.57 | 0.40 | 0.67 | 0.51 | 0.47 | 0.31 | 0.87 | 0.77 | 0.88 | 0.79 | ||
TS | RF | 0.77 | 0.72 | 0.68 | 0.51 | 0.68 | 0.51 | 0.72 | 0.57 | 0.64 | 0.47 | 0.87 | 0.77 | 0.91 | 0.84 | |
SVM | 0.73 | 0.67 | 0.61 | 0.44 | 0.61 | 0.43 | 0.68 | 0.53 | 0.57 | 0.40 | 0.90 | 0.82 | 0.90 | 0.82 | ||
ANN | 0.69 | 0.61 | 0.54 | 0.37 | 0.54 | 0.37 | 0.65 | 0.48 | 0.51 | 0.34 | 0.90 | 0.82 | 0.87 | 0.77 | ||
S2 | RF | 0.86 | 0.83 | 0.84 | 0.73 | 0.86 | 0.76 | 0.84 | 0.73 | 0.81 | 0.67 | 0.95 | 0.91 | 0.88 | 0.78 | |
T | SVM | 0.85 | 0.82 | 0.72 | 0.57 | 0.76 | 0.68 | 0.85 | 0.74 | 0.82 | 0.70 | 0.95 | 0.91 | 0.93 | 0.87 | |
ANN | 0.82 | 0.77 | 0.61 | 0.44 | 0.82 | 0.70 | 0.81 | 0.68 | 0.83 | 0.71 | 0.96 | 0.93 | 0.79 | 0.66 | ||
RF | 0.88 | 0.85 | 0.84 | 0.73 | 0.87 | 0.77 | 0.85 | 0.74 | 0.85 | 0.74 | 0.95 | 0.91 | 0.91 | 0.84 | ||
TS | SVM | 0.83 | 0.80 | 0.75 | 0.60 | 0.80 | 0.66 | 0.78 | 0.67 | 0.80 | 0.66 | 0.90 | 0.82 | 0.96 | 0.93 | |
ANN | 0.80 | 0.74 | 0.70 | 0.54 | 0.84 | 0.73 | 0.76 | 0.62 | 0.82 | 0.70 | 0.90 | 0.82 | 0.89 | 0.81 | ||
RF | 0.91 | 0.89 | 0.82 | 0.69 | 0.89 | 0.81 | 0.87 | 0.77 | 0.86 | 0.76 | 1.00 | 0.99 | 0.96 | 0.93 | ||
TSI | SVM | 0.84 | 0.80 | 0.78 | 0.67 | 0.85 | 0.74 | 0.76 | 0.62 | 0.81 | 0.68 | 0.96 | 0.93 | 0.89 | 0.81 | |
ANN | 0.85 | 0.82 | 0.77 | 0.63 | 0.82 | 0.70 | 0.80 | 0.66 | 0.78 | 0.67 | 0.98 | 0.96 | 0.92 | 0.85 | ||
L | RF | 0.79 | 0.74 | 0.75 | 0.60 | 0.76 | 0.68 | 0.74 | 0.59 | 0.77 | 0.63 | 0.90 | 0.82 | 0.83 | 0.71 | |
T | SVM | 0.74 | 0.67 | 0.64 | 0.38 | 0.67 | 0.51 | 0.67 | 0.51 | 0.72 | 0.57 | 0.90 | 0.82 | 0.83 | 0.71 | |
ANN | 0.75 | 0.69 | 0.66 | 0.41 | 0.67 | 0.51 | 0.69 | 0.53 | 0.77 | 0.63 | 0.88 | 0.79 | 0.82 | 0.70 | ||
RF | 0.84 | 0.81 | 0.85 | 0.74 | 0.82 | 0.70 | 0.79 | 0.66 | 0.79 | 0.66 | 0.95 | 0.91 | 0.88 | 0.79 | ||
TS | SVM | 0.80 | 0.75 | 0.72 | 0.57 | 0.75 | 0.60 | 0.73 | 0.57 | 0.81 | 0.68 | 0.89 | 0.83 | 0.89 | 0.83 | |
ANN | 0.79 | 0.75 | 0.72 | 0.57 | 0.70 | 0.54 | 0.73 | 0.57 | 0.79 | 0.66 | 0.92 | 0.85 | 0.89 | 0.83 | ||
RF | 0.86 | 0.83 | 0.80 | 0.66 | 0.84 | 0.73 | 0.79 | 0.66 | 0.87 | 0.76 | 0.95 | 0.91 | 0.91 | 0.84 | ||
TSI | SVM | 0.81 | 0.77 | 0.73 | 0.59 | 0.77 | 0.63 | 0.75 | 0.60 | 0.80 | 0.66 | 0.93 | 0.87 | 0.89 | 0.83 | |
ANN | 0.83 | 0.79 | 0.79 | 0.66 | 0.77 | 0.63 | 0.74 | 0.59 | 0.85 | 0.74 | 0.94 | 0.89 | 0.88 | 0.79 |
ID | OA | KP | Forest | Maize | Rape | Urban | Water | Wheat | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | FoM | F1 | FoM | F1 | FoM | F1 | FoM | F1 | FoM | F1 | FoM | ||||
S1+L | RF | 0.87 | 0.84 | 0.79 | 0.66 | 0.82 | 0.70 | 0.81 | 0.68 | 0.83 | 0.71 | 0.97 | 0.94 | 0.91 | 0.84 |
SVM | 0.80 | 0.78 | 0.68 | 0.52 | 0.75 | 0.60 | 0.79 | 0.66 | 0.77 | 0.63 | 0.92 | 0.85 | 0.87 | 0.76 | |
ANN | 0.81 | 0.79 | 0.72 | 0.57 | 0.69 | 0.52 | 0.80 | 0.66 | 0.82 | 0.69 | 0.94 | 0.89 | 0.92 | 0.85 | |
S1+S2 | RF | 0.92 | 0.90 | 0.87 | 0.77 | 0.91 | 0.80 | 0.86 | 0.76 | 0.89 | 0.83 | 0.99 | 0.98 | 0.96 | 0.93 |
SVM | 0.84 | 0.80 | 0.77 | 0.63 | 0.77 | 0.63 | 0.78 | 0.65 | 0.75 | 0.61 | 0.93 | 0.87 | 0.95 | 0.91 | |
ANN | 0.85 | 0.81 | 0.79 | 0.66 | 0.77 | 0.63 | 0.79 | 0.66 | 0.80 | 0.66 | 0.97 | 0.94 | 0.95 | 0.91 | |
S2+L | RF | 0.91 | 0.88 | 0.85 | 0.74 | 0.93 | 0.87 | 0.88 | 0.79 | 0.86 | 0.76 | 0.98 | 0.96 | 0.94 | 0.89 |
SVM | 0.85 | 0.81 | 0.75 | 0.60 | 0.87 | 0.76 | 0.83 | 0.71 | 0.76 | 0.62 | 0.95 | 0.91 | 0.92 | 0.85 | |
ANN | 0.85 | 0.81 | 0.74 | 0.59 | 0.85 | 0.74 | 0.89 | 0.83 | 0.71 | 0.53 | 0.96 | 0.93 | 0.94 | 0.89 | |
S1+S2+L | RF | 0.93 | 0.91 | 0.87 | 0.77 | 0.94 | 0.89 | 0.91 | 0.80 | 0.89 | 0.83 | 0.99 | 0.98 | 0.96 | 0.93 |
SVM | 0.85 | 0.82 | 0.75 | 0.60 | 0.75 | 0.60 | 0.84 | 0.73 | 0.78 | 0.64 | 0.97 | 0.94 | 0.96 | 0.93 | |
ANN | 0.86 | 0.83 | 0.84 | 0.73 | 0.86 | 0.76 | 0.84 | 0.73 | 0.81 | 0.67 | 0.95 | 0.91 | 0.88 | 0.79 |
Forest | Maize | Rape | Urban | Water | Wheat | U | F1 | FoM | |
---|---|---|---|---|---|---|---|---|---|
Forest | 461 | 1 | 31 | 0 | 0 | 2 | 0.93 | 0.87 | 0.77 |
Maize | 0 | 709 | 11 | 4 | 7 | 0 | 0.97 | 0.94 | 0.89 |
Rape | 62 | 24 | 1036 | 62 | 7 | 2 | 0.87 | 0.89 | 0.80 |
Urban | 0 | 38 | 38 | 690 | 0 | 0 | 0.9 | 0.91 | 0.83 |
Water | 0 | 0 | 4 | 0 | 912 | 0 | 1.00 | 0.99 | 0.98 |
Wheat | 42 | 0 | 26 | 0 | 0 | 946 | 0.96 | 0.98 | 0.93 |
P | 0.82 | 0.92 | 0.90 | 0.91 | 0.98 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Bian, Y.; Zhou, T.; Pan, J. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sensors 2019, 19, 2401. https://doi.org/10.3390/s19102401
Sun C, Bian Y, Zhou T, Pan J. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sensors. 2019; 19(10):2401. https://doi.org/10.3390/s19102401
Chicago/Turabian StyleSun, Chuanliang, Yan Bian, Tao Zhou, and Jianjun Pan. 2019. "Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region" Sensors 19, no. 10: 2401. https://doi.org/10.3390/s19102401