Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery
<p>Flowchart of watermark generation and embedding process based on “block-wise detection” (The size of a block is <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>).</p> "> Figure 2
<p>Flowchart of tamper detection and image recovery process based on “block-wise detection” (The size of a block is <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>).</p> "> Figure 3
<p>Flowchart of the watermark generation and embedding process based on “pixel-wise detection”.</p> "> Figure 4
<p>The authentication data <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math> generation.</p> "> Figure 5
<p>Flowchart of tamper detection and image recovery process based on “pixel-wise detection”.</p> "> Figure 6
<p>Six <math display="inline"><semantics> <mrow> <mn>512</mn> <mo>×</mo> <mn>512</mn> </mrow> </semantics></math> test images. (<b>a</b>) Lena, (<b>b</b>) Baboon, (<b>c</b>) Peppers, (<b>d</b>) Airplane, (<b>e</b>) Tiffany, (<b>f</b>) Lake.</p> "> Figure 7
<p>Watermarked Lena and tamper detection results using <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> pixel-wise detection (<b>a</b>) Watermarked image (<math display="inline"><semantics> <mrow> <msup> <mrow> <mi>PSNR</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi mathvariant="normal">w</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <mn>41</mn> <mrow> <mtext> </mtext> <mi>dB</mi> </mrow> </mrow> </semantics></math> ), (<b>b</b>) tampered image (Tamper rate = 30 %), (<b>c</b>) tamper detection result (<math display="inline"><semantics> <mrow> <mi>FPR</mi> <mo>=</mo> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math>), (<b>d</b>) recovery image (<math display="inline"><semantics> <mrow> <msup> <mrow> <mi>PSNR</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi mathvariant="normal">r</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <mn>40.68</mn> <mrow> <mtext> </mtext> <mi>dB</mi> </mrow> </mrow> </semantics></math> ).</p> "> Figure 8
<p>Watermarked Lena and tamper detection results for different block sizes using “block-size detection” (<b>a</b>–<b>c</b>) Tampered images (tamper rate = 4.4%), (<b>d</b>–<b>f</b>) tamper detection result, (<b>g</b>–<b>i</b>) recovery images.</p> "> Figure 9
<p>Tamper detection results using “pixel-wise detection” (The test images are Lena, Baboon, Airplane and Lake) (<b>a</b>–<b>d</b>) Tampered images (tamper rate = 3.7%), (<b>e</b>–<b>h</b>) recovery images.</p> "> Figure 10
<p>Peak signal to noise ratio (PSNR<sup>(r)</sup>) comparison of the recovered image between the proposed methods and methods in [<a href="#B20-sensors-19-02267" class="html-bibr">20</a>,<a href="#B21-sensors-19-02267" class="html-bibr">21</a>,<a href="#B22-sensors-19-02267" class="html-bibr">22</a>,<a href="#B31-sensors-19-02267" class="html-bibr">31</a>].</p> ">
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Description of Symbol Definitions
- : the weight of the original image
- : the height of the original image
- : the original image
- : the watermarked image
- : the tampered image
- : the recovered image
- : the size of a block
- : the total number of the blocks in the image
- : each block of the image
- : the pixel value of each block
- : the secret key
- : the pseudo- random number that is generated by
- : the mapping block
- : the mean value of each block
- : the recovery data of each block
- : the authentication data of each block
- : the recovery data that is generated from
- : the authentication data that is generated from
- : the size of the authentication data
- : the number of bits that will be embedded into each pixel
- : the table that is marked whether it has been tampered with
- : the mapping table of
- : the enlarged image
3.2. Block-Wise Detection
3.3. Pixel-Wise Detection
4. Experimental Results and Comparison
4.1. Digital Image Tamper Detection
4.2. Comparison with Other Methods
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Feng, J.; Potkonjak, M. Real-time watermarking techniques for sensor networks. Proc. SPIE 2003. [Google Scholar] [CrossRef]
- Wong, J.L.; Feng, J.; Kirovski, D.; Potkonjak, M. Security in sensor networks: Watermarking techniques. In Wireless Sensor Networks; Raghavendra, C.S., Sivalingam, K.M., Znati, T., Eds.; Springer: Boston, MA, USA, 2004. [Google Scholar]
- Shi, X.; Xiao, D. A reversible watermarking authentication scheme for wireless sensor networks. Inf. Sci. 2013, 240, 173–183. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, B.; Dave, M.; Mohan, A. Robust and imperceptible dual watermarking for telemedicine applications. Wirel. Pers. Commun. 2015, 80, 1415–1433. [Google Scholar] [CrossRef]
- Lou, D.-C.; Liu, J.-L. Fault resilient and compression tolerant digital signature for image authentication. IEEE Trans. Consum. Electron. 2000, 46, 31–39. [Google Scholar]
- Tsai, P.; Hu, Y.; Chang, C. Novel image authentication scheme based on quadtree segmentation. Imaging Sci. J. 2005, 53, 149–162. [Google Scholar] [CrossRef]
- Ababneh, S.; Ansari, R.; Khokhar, A. Iterative compensation schemes for multimedia content authentication. J. Vis. Commun. Image Represent. 2009, 20, 303–311. [Google Scholar] [CrossRef]
- Umamageswari, A.; Suresh, G.R. Secure medical image communication using ROI based lossless watermarking and novel digital signature. J. Eng. Res. 2014, 2, 87–108. [Google Scholar] [CrossRef]
- Das, C.; Panigrahi, S.; Sharma, V.K.; Mahapatra, K.K. A novel blind robust image watermarking in DCT domain using inter-block coefficient correlation. AEU Int. J. Electron. Commun. 2014, 68, 244–253. [Google Scholar] [CrossRef]
- Mishra, A.; Agarwal, C.; Sharma, A.; Bedi, P. Optimized gray-scale image watermarking using DWT-SVD and firefly algorithm. Expert Syst. Appl. 2014, 41, 7858–7867. [Google Scholar] [CrossRef]
- Parah, S.A.; Sheikh, J.A.; Loan, N.A.; Bhat, G.M. Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing. Digit. Signal Process. 2016, 53, 11–24. [Google Scholar] [CrossRef]
- Di, Y.-F.; Lee, C.-F.; Wang, Z.-H.; Chang, C.-C.; Li, J. A robust and removable watermarking scheme using singular value decomposition. KSII Trans. Internet Inf. Syst. 2016, 12, 5268–5285. [Google Scholar]
- Singh, A.K. Improved hybrid algorithm for robust and imperceptible multiple watermarking using digital images. Multimed. Tools Appl. 2017, 76, 8881–8900. [Google Scholar] [CrossRef]
- Huynh-The, T.; Hua, C.-H.; Anh Tu, N.; Hur, T.; Bang, J.; Kim, D.; Bilal Amin, M.; Kang, B.H.; Seung, H.; Lee, S. Selective bit embedding scheme for robust blind color image watermarking. Inf. Sci. 2018, 426, 1–18. [Google Scholar] [CrossRef]
- Zear, A.; Singh, A.K.; Kumar, P. A proposed secure multiple watermarking technique based on dwt, DCT and SVD for application in medicine. Multimed. Tools Appl. 2018, 77, 4863–4882. [Google Scholar] [CrossRef]
- Lee, C.-F.; Chen, H.-L.; Yang, T.-C. Semi-blind watermarking scheme exploiting self-reference image. J. Internet Technol. 2011, 12, 313–326. [Google Scholar]
- Preda, R.O. Semi-fragile watermarking for image authentication with sensitive tamper localization in the wavelet domain. Measurement. 2013, 46, 367–373. [Google Scholar] [CrossRef]
- Al-Otum, H.M. Semi-fragile watermarking for grayscale image authentication and tamper detection based on an adjusted expanded-bit multiscale quantization-based technique. J. Vis. Commun. Image Represent. 2014, 25, 1064–1081. [Google Scholar] [CrossRef]
- Qi, X.J.; Xin, X. A singular-value-based semi-fragile watermarking scheme for image content authentication with tamper localization. J. Vis. Commun Image Represent. 2015, 30, 312–327. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lin, S.D. Dual watermark for image tamper detection and recovery. Pattern Recogn. 2008, 41, 3497–3506. [Google Scholar] [CrossRef]
- Yang, C.-W.; Shen, J.-J. Recover the tampered image based on VQ indexing. Signal. Process. 2010, 90, 331–343. [Google Scholar] [CrossRef]
- Yang, S.; Qin, C.; Qian, Z.; Xu, B. Tampering detection and content recovery for digital images using halftone mechanism. In Proceedings of the 2014 Tenth Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2014), Kitakyushu, Japan, 27–29 August 2014; pp. 130–133. [Google Scholar]
- Hsu, C.-S.; Tu, S.-F. Image tamper detection and recovery using adaptive embedding rules. Measurement 2016, 88, 287–296. [Google Scholar] [CrossRef]
- Qian, Z.; Feng, G.; Zhang, X.; Wang, S. Image self-embedding with high-quality restoration capability. Digit. Signal Process. 2011, 21, 278–286. [Google Scholar] [CrossRef]
- Tong, X.J.; Liu, Y.; Zhang, M.; Chen, Y. A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Process. Image Commun. 2013, 28, 301–308. [Google Scholar] [CrossRef]
- Chen, F.; He, H.J.; Tai, H.M.; Wang, H.X. Chaos-based self-embedding fragile watermarking with flexible watermark payload. Multimed. Tools Appl. 2014, 72, 41–56. [Google Scholar] [CrossRef]
- Lo, C.-C.; Hu, Y.-C. A novel reversible image authentication scheme for digital images. Signal Process. 2014, 98, 174–185. [Google Scholar] [CrossRef]
- Ansari, I.A.; Pant, M.; Ahn, C.W. SVD based fragile watermarking scheme for tamper localization and self-recovery. Int. J. Mach. Learn. Cybern. 2016, 7, 1225–1239. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K. Effective self-embedding watermarking scheme for image tampered detection and localization with recovery capability. J. Vis. Commun Image Represent. 2016, 38, 775–789. [Google Scholar] [CrossRef]
- Yin, Z.; Niu, X.; Zhou, Z.; Tang, J.; Luo, B. Improved reversible image authentication scheme. Cogn. Comput. 2016, 8, 890–899. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, P.; Ji, X.; Dong, J.; Wang, J. Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Process. 2017, 138, 280–293. [Google Scholar] [CrossRef]
- Kim, C.; Shin, D.; Yang, C.-N. Self-embedding fragile watermarking scheme to restoration of a tampered image using AMBTC. Pers. Ubiquit. Comput. 2018, 22, 11–22. [Google Scholar] [CrossRef]
- Tai, W.-L.; Liao, Z.-J. Image self-recovery with watermark self-embedding. Signal Process. 2018, 65, 11–25. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Zhou, X. A Self-recovery fragile image watermarking with variable watermark capacity. Appl. Sci. 2018, 8, 548. [Google Scholar] [CrossRef]
- Katzenbeisser, S.; Petitcolas, F.A.P. Information Hiding Techniques for Steganography and Digital Watermarking (Artech House Computer Security Series); Artech House: Norwood, MA, USA, 2000. [Google Scholar]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
i | 1 | 2 | 3 | 4 | … | |
---|---|---|---|---|---|---|
generation | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
4 | 1 | 2 | 3 | |||
… | ||||||
Associated blocks | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
FPR (%) | PSNR(w) (dB) | PSNR(r) (dB) | ||||
---|---|---|---|---|---|---|
2 | 4 | 3 | 16 | 0.17335 | 41.28 | 44.48 |
3 | 3 | 3 | 16 | 0.13257 | 41.77 | 44.51 |
4 | 4 | 2 | 24 | 0.17335 | 47.32 | 44.68 |
Image | PSNR(w) (dB) | Tamper Rate | 10% | 20% | 30% | 40% | 50% |
---|---|---|---|---|---|---|---|
Lena | 47.20 | PSNR(r) (dB) | 49.47 | 44.39 | 41.23 | 38.58 | 36.61 |
FNR (%) | 0 | 0 | 0 | 0 | 0 | ||
FPR (%) | 0.173 | 0.391 | 0.669 | 0.787 | 0 | ||
Baboon | 47.29 | PSNR(r) (dB) | 38.69 | 35.55 | 33.95 | 32.93 | 32.13 |
FNR (%) | 0 | 0 | 0 | 0 | 0 | ||
FPR (%) | 0.173 | 0.391 | 0.669 | 0.787 | 0 | ||
Peppers | 47.23 | PSNR(r) (dB) | 42.84 | 40.54 | 38.32 | 36.76 | 35.17 |
FNR (%) | 0 | 0 | 0 | 0 | 0 | ||
FPR (%) | 0.173 | 0.391 | 0.669 | 0.787 | 0 | ||
Airplane | 47.33 | PSNR(r) (dB) | 46.59 | 44.54 | 42.83 | 40.32 | 36.79 |
FNR (%) | 0 | 0 | 0 | 0 | 0 | ||
FPR (%) | 0.173 | 0.391 | 0.669 | 0.787 | 0 | ||
Tiffany | 47.54 | PSNR(r) (dB) | 45.81 | 41.87 | 40.08 | 38.36 | 36.79 |
FNR (%) | 0 | 0 | 0 | 0 | 0 | ||
FPR (%) | 0.173 | 0.391 | 0.669 | 0.787 | 0 |
Methods | PSNR(w) (dB) | PSNR(r) (dB) | Condition of Restoration |
---|---|---|---|
Yang and Shen [21] | 40.7 | 32 | <50% |
Yang et al. [22] | 51.3 | 36 | <50% |
Qian et al. [24] | 37.9 | 35 | <35% |
Qin et al. [31] | 46 | 41 | <45% |
Kim et al. [32] | 43.7 | 33.6 | <50% |
Proposed method ( block-wise detection) | 43.73 | 36.62 | <50% |
Proposed method ( pixel-wise detection) | 41 | 37.26 | <50% |
Block-Wise | Block-Wise | Block-Wise | Pixel-Wise | |
---|---|---|---|---|
512_lena | 0.92739 | 0.93511 | 0.958791 | 0.94159 |
512_baboon | 0.97581 | 0.97843 | 0.986461 | 0.97489 |
512_peppers | 0.93037 | 0.93739 | 0.961136 | 0.93938 |
512_airplane | 0.92725 | 0.93173 | 0.95682 | 0.94193 |
512_tiffany | 0.91812 | 0.92558 | 0.955061 | 0.94091 |
512_lake | 0.94736 | 0.95261 | 0.970439 | 0.96453 |
Methods | FPR(%) | FNR(%) |
---|---|---|
Tong et al. [25] | 0.22 | 0 |
Chen et al. [26] | 0.25 | 0 |
Ansari et al. [28] | 0.5 | 0.01 |
Wang et al. [34] | 0.30 | 0 |
Proposed method ( block-wise detection) | 0.173 | 0 |
Proposed method ( pixel-wise detection) | 0 | 0 |
Block-Wise | Block-Wise | Block-Wise | Pixel-Wise | |
---|---|---|---|---|
Tamper Rate (%) | 14.35 | 14.35 | 14.35 | 14.35 |
Recovered PSNR(r) (dB) | 38.749796 | 38.855165 | 38.192091 | 39.2149 |
FNR(%) | 0 | 0 | 0 | 0 |
FPR(%) | 0.029 | 0.025 | 0.038 | 0 |
Block size | 2 × 4 | 3 × 3 | 4 × 4 | |
---|---|---|---|---|
Tamper Rate (%) | 14.35 | 14.35 | 14.35 | |
Recovered PSNR(r) | average | 41.55 | 41.54 | 40.61 |
highest | 47.55 | 48.09 | 48.18 | |
lowest | 37.45 | 37.41 | 36.77 | |
FNR(%) | average | 0.000082 | 0.000274 | 0.000562 |
highest | 0.000824 | 0.003803 | 0.006887 | |
lowest | 0.000000 | 0.000000 | 0.000000 | |
FPR(%) | average | 0.02850 | 0.02531 | 0.03764 |
highest | 0.02855 | 0.02548 | 0.03803 | |
lowest | 0.02801 | 0.02324 | 0.03526 |
Hsu and Tu [23] | Lo and Hu [27] | Singh & Singh [29] | Yin et al. [30] | Qin et al. [31] | Tai and Liao [33] | Proposed Block-Wise | Proposed Pixel-Wise | |
---|---|---|---|---|---|---|---|---|
Block Size | ||||||||
Block division | 5120 | 4096 | 16,384 | 4096 | 64,516 | 4096 | 4096 | 4096 |
Predictive coding and it inverse | 0 | 65,536 | 0 | 0 | 0 | 0 | 0 | 0 |
Arnold’s permutation | 0 | 0 | 0 | 0 | 0 | 4096 | 0 | 0 |
DWT | 4096 | 0 | 0 | 16,384 | 0 | 4096 | 0 | 0 |
DWT embedding | 0 | 0 | 0 | 0 | 0 | 4096 | 0 | 0 |
DCT | 0 | 0 | 16,384 | 0 | 0 | 0 | 0 | 0 |
Mean calculation | 4096 | 0 | 16,384 | 0 | 0 | 0 | 4096 | 4096 |
Watermark hashing | 1024 | 0 | 16,384 | 0 | 64,516 | 4096 | 4096 | 65,536 |
Hilbert curve transformation | 1024 | 0 | 0 | 4096 | 64,516 | 0 | 0 | 0 |
XOR | 20,480 | 0 | 0 | 4096 | 0 | 4096 | 4096 | 65,536 |
LSB embedding | 1024 | 0 | 16,384 | 0 | 0 | 0 | 4096 | 65,536 |
Histogram shifting and modification | 1024 | 65,536 | 16,384 | 4096 | 64,516 | 0 | 0 | 0 |
Total operation count | 37,888 | 139,264 | 81,920 | 32,768 | 258,064 | 62,464 | 20,480 | 204,800 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-F.; Shen, J.-J.; Chen, Z.-R.; Agrawal, S. Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery. Sensors 2019, 19, 2267. https://doi.org/10.3390/s19102267
Lee C-F, Shen J-J, Chen Z-R, Agrawal S. Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery. Sensors. 2019; 19(10):2267. https://doi.org/10.3390/s19102267
Chicago/Turabian StyleLee, Chin-Feng, Jau-Ji Shen, Zhao-Ru Chen, and Somya Agrawal. 2019. "Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery" Sensors 19, no. 10: 2267. https://doi.org/10.3390/s19102267
APA StyleLee, C. -F., Shen, J. -J., Chen, Z. -R., & Agrawal, S. (2019). Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery. Sensors, 19(10), 2267. https://doi.org/10.3390/s19102267