Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution
<p>A schematic diagram of the principles of Single-Molecule Speckle (SiMS) microscopy.When the expression level of EGFP-actin is sufficiently low, signals from EGFP-actin assembled with F-actin add up in a small spot on the CCD with long exposure time. In contrast, signals from a freely diffusing EGFP-actin in the monomeric form are blurred on the image.</p> "> Figure 2
<p>(<b>A</b>) Live Electroporation-Based SiMS Microscopy (eSiMS) image of DL550-actin in lamellipodia of XTC cells loaded with DL550-actin by electroporation (left) and actin structures visualized by Lifeact-EGFP (enhanced green fluorescent protein) (right). Bar = 10 μm; (<b>B</b>) Nanometer-scale displacement analysis in cells with DL549-actin. DL549-actin speckles are acquired with a 100 ms exposure time and a full 100 W mercury excitation (left), and then localization of the SiMS centroid is determined by using the Gaussian fit model of Speckle TrackerJ (middle). The graph (right) is displacement plot of the central position of a DL549-actin SiMS in lamellipodia in the series of images acquired as the right image. Bar = 5 μm. Modified from Yamashiro et al., 2014 [<a href="#B33-sensors-17-01585" class="html-bibr">33</a>].</p> ">
Abstract
:1. Introduction
2. Principles of Single-Molecule Speckle (SiMS) Microscopy
3. Application of SiMS Microscopy in Cell Biology, Biophysics and Pharmacology
4. Semi-Automatic Imaging Analysis Tool, Speckle TrackerJ
5. Easy, Efficient and Electroporation-Based SiMS Microscopy (eSiMS)
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Watanabe, N. Inside view of cell locomotion through single-molecule: Fast F-/G-actin cycle and G-actin regulation of polymer restoration. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Higashida, C.; Miyoshi, T.; Fujita, A.; Oceguera-Yanez, F.; Monypenny, J.; Andou, Y.; Narumiya, S.; Watanabe, N. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 2004, 303, 2007–2010. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Tsuji, T.; Higashida, C.; Hertzog, M.; Fujita, A.; Narumiya, S.; Scita, G.; Watanabe, N. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: Evidence of frequent filament severing. J. Cell Biol. 2006, 175, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Douglass, A.D.; Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 2005, 121, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Kasai, R.S.; Kusumi, A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr. Opin. Cell Biol. 2014, 27, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Ananthanarayanan, V.; Schattat, M.; Vogel, S.K.; Krull, A.; Pavin, N.; Tolic-Norrelykke, I.M. Dynein motion switches from diffusive to directed upon cortical anchoring. Cell 2013, 153, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; McEwen, D.P.; Martens, J.R.; Meyhofer, E.; Verhey, K.J. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 2009, 7. [Google Scholar] [CrossRef] [PubMed]
- Okabe, S.; Hirokawa, N. Incorporation and turnover of biotin-labeled actin microinjected into fibroblastic cells: An immunoelectron microscopic study. J. Cell Biol. 1989, 109, 1581–1595. [Google Scholar] [CrossRef] [PubMed]
- Symons, M.H.; Mitchison, T.J. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 1991, 114, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L. Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling. J. Cell Biol. 1985, 101, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Theriot, J.A.; Mitchison, T.J. Actin microfilament dynamics in locomoting cells. Nature 1991, 352, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Small, J.V.; Herzog, M.; Anderson, K. Actin filament organization in the fish keratocyte lamellipodium. J. Cell Biol. 1995, 129, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Borisy, G.G.; Svitkina, T.M. Actin machinery: Pushing the envelope. Curr. Opin. Cell Biol. 2000, 12, 104–112. [Google Scholar] [CrossRef]
- Lai, F.P.; Szczodrak, M.; Block, J.; Faix, J.; Breitsprecher, D.; Mannherz, H.G.; Stradal, T.E.; Dunn, G.A.; Small, J.V.; Rottner, K. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 2008, 27, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Zicha, D.; Dobble, I.M.; Holt, M.R.; Monypenny, J.; Soong, D.Y.; Gray, C.; Dunn, G.A. Rapid actin tansport during cell protrusion. Science 2003, 300, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Fritzsche, M.; Lewalle, A.; Duke, T.; Kruse, K.; Charras, G. Analysis of turnover dynamics of the submembranous actin cortex. Mol. Biol. Cell 2013, 24, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Yamashiro, S.; Vavylonis, D.; Kiuchi, T. Molecular viewing of actin polymerizing actions and beyond: Combination analysis of single-molecule speckle microscopy with modeling, FRAP and s-FDAP (sequential fluorescence decay after photoactivation). Dev. Growth Differ. 2013, 55, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Waterman-Storer, C.M.; Desai, A.; Bulinski, J.C.; Salmon, E.D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 1998, 8, 1227–1230. [Google Scholar] [CrossRef]
- Watanabe, N.; Mitchison, T.J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 2002, 295, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Danuser, G.; Waterman-Storer, C.M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 361–387. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N. Fluorescence single-molecule imaging of actin turnover and regulatory mechanisms. Methods Enzymol. 2012, 505, 219–232. [Google Scholar] [PubMed]
- Yamashiro, S.; Mizuno, H.; Watanabe, N. An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments. Methods Cell Biol. 2015, 125, 43–59. [Google Scholar] [PubMed]
- McGrath, J.L.; Tardy, Y.; Deway, C.F.J.; Meister, J.J.; Hartwig, J.H. Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys. J. 1998, 75, 2070–2078. [Google Scholar] [CrossRef]
- Higashida, C.; Kiuchi, T.; Akiba, Y.; Mizuno, H.; Maruoka, M.; Narumiya, S.; Mizuno, K.; Watanabe, N. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat. Cell Biol. 2013, 15, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Higashida, C.; Suetsugu, S.; Tsuji, T.; Monypenny, J.; Narumiya, S.; Watanabe, N. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers. J. Cell Sci. 2008, 121, 3403–3412. [Google Scholar] [CrossRef] [PubMed]
- Millius, A.; Watanabe, N.; Weiner, O.D. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. J. Cell Sci. 2012, 125, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Miyoshi, T.; Higashida, C.; Narumiya, S.; Watanabe, N. An order of magnitude faster AIP1-associated actin disruption than nucleation by the Arp2/3 complex in lamellipodia. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Fritzsche, M.; Erlenkämper, C.; Moeendarbary, E.; Charras, G.; Kruse, K. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Watanabe, N.; Fukushima, N.; Mita, S.; Hirata, T. Actin-independent behavior and membrane deformation exhibited by the four-transmembrane protein M6a. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Pollard, T.D.; Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003, 112, 453–465. [Google Scholar] [CrossRef]
- Small, J.V.; Isenberg, G.; Celis, J.E. Polarity of actin at the leading edge of cultured cells. Nature 1978, 272, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Forscher, P.; Smith, S.J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 1988, 107, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, S.; Mizuno, H.; Smith, M.B.; Ryan, G.L.; Kiuchi, T.; Vavylonis, D.; Watanabe, N. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Mol. Biol. Cell 2014, 25, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Watanabe, N. Can filament treadmilling alone account for the F-actin turnover in lamellipodia? Cytoskeleton 2013, 70, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Zwolak, A.; Schafer, D.A.; Sept, D.; Dominguez, R.; Cooper, J.A. Capping protein regulators fine-tune actin assembly dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.E.; Heiss, S.G.; Mermall, V.; Cooper, J.A. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 1989, 28, 8506–8514. [Google Scholar] [CrossRef] [PubMed]
- Casella, J.F.; Torres, M.A. Interaction of Cap Z with actin. The NH2-terminal domains of the alpha 1 and beta subunits are not required for actin capping, and alpha 1 beta and alpha 2 beta heterodimers bind differentially to actin. J. Biol. Chem. 1994, 269, 6992–6998. [Google Scholar] [PubMed]
- Schafer, D.A.; Jennings, P.B.; Cooper, J.A. Dynamics of capping protein and actin assembly in vitro: Uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 1996, 135, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.L.; Petroccia, H.M.; Watanabe, N.; Vavylonis, D. Excitable actin dynamics in lamellipodial protrusion and retraction. Biophys. J. 2012, 102, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.T.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; O’Dwyer, P.J.; Lee, R.J.; Grippo, J.F.; Nolop, K.; et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 2010, 363, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Cichowski, K.; Janne, P.A. Drug discovery: Inhibitors that activate. Nature 2010, 464, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Fujita, A.; Shishido, T.; Yuan, Y.; Inamoto, E.; Narumiya, S.; Watanabe, N. Imatinib mesylate (STI571)-induced cell edge translocation of kinase-active and kinase-defective Abelson kinase: Requirements of myristoylation and src homology 3 domain. Mol. Pharmacol. 2009, 75, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; Karatekin, E.; Gohlke, A.; Mizuno, H.; Watanabe, N.; Vavylonis, D. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: Application to actin polymerization and membrane fusion. Biophys. J. 2011, 101, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- ImageJ Plugin. Available online: http://athena.physics.lehigh.edu/speckletrackerj/ (accessed on 4 July 2017).
- Smith, M.B.; Kiuchi, T.; Watanabe, N.; Vavylonis, D. Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys. J. 2013, 104, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Ponti, A.; Machacek, M.; Gupton, S.L.; Waterman-Storer, C.M.; Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 2004, 305, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
- Vallotton, P.; Small, J.V. Shifting views on the leading role of the lamellipodium in cell migration: Speckle tracking revisited. J. Cell Sci. 2009, 122, 1955–1958. [Google Scholar] [CrossRef] [PubMed]
- Danuser, G. Testing the lamella hypothesis: The next steps on the agenda. J. Cell Sci. 2009, 122, 1959–1962. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, S.; Watanabe, N. A new link between the retrograde actin flow and focal adhesions. J. Biochem. 2014, 156, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634. [Google Scholar] [CrossRef] [PubMed]
Original SiMS | eSiMS Method | |
---|---|---|
Actin probe | EGFP-actin | Organic fluorescent dye-labeled G-actin |
Delivery to cells | Transfection | Electroporation |
Ease of finding cells for SiMS imaging | Slightly difficult: It demands experience to find cells expressing EGFP-actin at an optimal level. | Easy: Electroporation enables the incorporation of probes into almost 100% of cells at an optimal level. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashiro, S.; Watanabe, N. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution. Sensors 2017, 17, 1585. https://doi.org/10.3390/s17071585
Yamashiro S, Watanabe N. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution. Sensors. 2017; 17(7):1585. https://doi.org/10.3390/s17071585
Chicago/Turabian StyleYamashiro, Sawako, and Naoki Watanabe. 2017. "Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution" Sensors 17, no. 7: 1585. https://doi.org/10.3390/s17071585
APA StyleYamashiro, S., & Watanabe, N. (2017). Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution. Sensors, 17(7), 1585. https://doi.org/10.3390/s17071585