A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation †
<p>Application-specific integrated circuit (ASIC) concept for IR imagers in space instrumentation.</p> "> Figure 2
<p>Differential-signal discrete-time (DT) model of the 1-bit 4th-order feedforward single-loop ΔΣM architecture. The <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mo>-</mo> <mn>4</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mn>4</mn> </mrow> </msub> </mrow> </semantics> </math> values are alike the ones used in [<a href="#B28-sensors-17-01273" class="html-bibr">28</a>].</p> "> Figure 3
<p>Behavioral simulation results for the ΔΣM of <a href="#sensors-17-01273-f002" class="html-fig">Figure 2</a> considering quantization errors and input-sampler thermal noise: output spectra for −3.35-dB<sub>IFS</sub> (IFS: internal full scale) 13.28-kHz eight-cycle input with SNDR = 110 dB (<b>a</b>) and dynamic range at the same frequency (<b>b</b>).</p> "> Figure 4
<p>Simulated SNDR losses in the ΔΣM architecture of <a href="#sensors-17-01273-f002" class="html-fig">Figure 2</a> due to coefficient technology mismatch; worst case interpolation lines are given for input full scale (solid) and half full scale (dashed) (<b>a</b>); SNDR losses due to settling error at integrator outputs (<b>b</b>).</p> "> Figure 5
<p>SC topology proposed for the ΔΣM architecture of <a href="#sensors-17-01273-f002" class="html-fig">Figure 2</a> with the switched-variable-mirror amplifier (SVMA) and five-phase switching scheme. The phase subindex indicates the special state (1 = closed, 0 = open) during ADC initialization (<math display="inline"> <semantics> <mrow> <msub> <mi>d</mi> <mi>en</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>).</p> "> Figure 6
<p>Clock phase splitter and initializer for the SC ΔΣM of <a href="#sensors-17-01273-f005" class="html-fig">Figure 5</a> (<b>a</b>) and five-phase switching chronogram for the NMOS driving case (<b>b</b>).</p> "> Figure 7
<p>Simplified topology of the Type-II Class-AB single-stage VMA (<b>a</b>); equivalent right-half circuit of the NMOS boxed path in the DC operating point <math display="inline"> <semantics> <mrow> <msub> <mi>I</mi> <mi>inp</mi> </msub> <mo>≡</mo> <msub> <mi>I</mi> <mi>inn</mi> </msub> <mo>≡</mo> <msub> <mi>I</mi> <mi>tail</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> (<b>b</b>) and for the maximum Class-AB positive output when <math display="inline"> <semantics> <mrow> <msub> <mi>I</mi> <mi>inp</mi> </msub> <mo>≃</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>tail</mi> </msub> </semantics> </math><math display="inline"> <semantics> <mrow> <msub> <mi>I</mi> <mi>inn</mi> </msub> <mo>≃</mo> <mn>0</mn> </mrow> </semantics> </math> (<b>c</b>); the dotted line in (<b>b</b>) indicates a virtual short circuit.</p> "> Figure 8
<p>Simulated Class-AB current transfer curve for the VMA topology of <a href="#sensors-17-01273-f007" class="html-fig">Figure 7</a> at several <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>/</mo> <mi>C</mi> </mrow> </semantics> </math> ratios using <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>≡</mo> <mi>B</mi> <mo>+</mo> <mi>C</mi> <mo>≐</mo> <mn>8</mn> </mrow> </semantics> </math> (<b>a</b>); and under technology and temperature combined corners for the <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>/</mo> <mi>C</mi> <mo>≡</mo> <mn>3</mn> </mrow> </semantics> </math> case (<b>b</b>).</p> "> Figure 9
<p>The switched-VMA circuit with cascode output and common mode feedback (CMFB) used in all of the ΔΣM SC integrators of <a href="#sensors-17-01273-f005" class="html-fig">Figure 5</a>.</p> "> Figure 10
<p>Simulated CMRR and PSRR deviations due to technology mismatch for each SVMA block of the SC ΔΣM of <a href="#sensors-17-01273-f005" class="html-fig">Figure 5</a>.</p> "> Figure 11
<p>Microscope photography of the ΔΣM circuit in 0.18-μm CMOS technology (<b>a</b>); the core area is 1.8 mm<sup>2</sup>. Test PCB (<b>b</b>).</p> "> Figure 12
<p>Measured and simulated ΔΣM output spectra for a −2-dB<sub>FS</sub> and 13.28-kHz input. Equivalent SNDR values are 96.6 dB and 103 dB, respectively (<b>a</b>). Experimental ΔΣM dynamic range measured at 13.28 kHz (<b>b</b>).</p> "> Figure 13
<p>Measured SNDR deviation under temperature variations.</p> ">
Abstract
:1. Introduction
2. ΔΣ ADC for Space Instrumentation
3. ΔΣ Architecture Selection
4. ΔΣ Modulator SC Topology
5. Class-AB Switched-VMA Circuit
6. Simulation Results
7. Experimental Results
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beletic, J.; Blank, R.; Gulbransen, D.; Lee, D.; Loose, M.; Piquette, E.; Sprafke, T.; Tennant, W.; Zandian, M.; Zino, J. Teledyne Imaging Sensors: Infrared imaging technologies for Astronomy & Civil Space. In Proceedings of the SPIE High Energy, Optical, and Infrared Detectors for Astronomy III, Marseille, France, 23 June 2008. [Google Scholar]
- Bai, Y.; Bajaj, J.; Beletic, J.W.; Farris, M.C.; Joshi, A.; Lauxtermann, S.; Petersen, A.; Williams, G. Teledyne Imaging Sensors: Silicon CMOS imaging technologies for X-ray, UV, visible and near infrared. In Proceedings of the SPIE High Energy, Optical, and Infrared Detectors for Astronomy III, Marseille, France, 23 June 2008. [Google Scholar]
- Loose, M.; Beletic, J.; Blackwell, J.; Garnett, J.; Wong, S.; Hall, D.; Jacobson, S.; Rieke, M.; Winters, G. The SIDECAR ASIC—Focal plane electronics on a single chip. In Proceedings of the SPIE Cryogenic Optical Systems and Instruments XI, San Diego, CA, USA, 31 July 2005. [Google Scholar]
- Finger, G.; Baker, I.; Downing, M.; Alvarez, D.; Ives, D.; Mehrgan, L.; Meyer, M.; Stegmeier, J.; Weller, H.J. Development of HgCdTe large format MBE arrays and noise-free high speed MOVPE EAPD arrays for ground based NIR astronomy. In Proceedings of the International Conference on Space Optics, Tenerife, Spain, 7–10 October 2014. [Google Scholar]
- De Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P. SWIR HgCdTe avalanche photodiode focal plane array performance evaluation. In Proceedings of the International Conference on Space Optics, Tenerife, Spain, 7–10 October 2014. [Google Scholar]
- Knowles, P.; Hipwood, L.; Baker, I.; Weller, H. Advances in Selex ES infrared detectors for space and astronomy. In Proceedings of the International Conference on Space Optics, Tenerife, Spain, 7–10 October 2014. [Google Scholar]
- Jorden, P.; Jerram, P.; Jordan, D.; Pratlong, J.; Robbins, M.K. e2v CCD and CMOS sensors and systems designed for astronomical applications. Proc. SPIE 2016, 9915. [Google Scholar] [CrossRef]
- Guellec, F.; Boulade, O.; Cervera, C.; Moreau, V.; Gravrand, O.; Rothman, J.; Zanatta, J.-P. ROIC development at CEA for SWIR detectors: Pixel circuit architecture and trade-offs. In Proceedings of the International Conference on Space Optics, Tenerife, Spain, 7–10 October 2014. [Google Scholar]
- Gao, P.; Dupont, B.; Dierickx, B.; Müller, E.; Verbruggen, G.; Gielis, S.; Valvekens, R. Cryogenix and radiation-hard ASIC for interfacing large format NIR/SWIR detector arrays. In Proceedings of the International Conference on Space Optics, Tenerife, Spain, 7–10 October 2014. [Google Scholar]
- Påhlsson, P.; Steenari, D.; Øya, P.; Berge, H.K.O.; Meier, D.; Olsen, A.; Hasanbegovic, A.; Altan, M.A.; Najafiuchevler, B.; Talebi, J.; et al. NIRCA ASIC for the readout of focal plane arrays. In Proceedings of the SPIE Infrared Technology and Applications XLII, Baltimore, MD, USA, 17 April 2016. [Google Scholar]
- Sutula, S.; Dei, M.; Terés, L.; Serra-Graells, F. Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single-Stage OTAs for Low-Power SC Circuits. IEEE Trans. Circuits Syst. I 2016, 63, 1101–1110. [Google Scholar] [CrossRef]
- Sutula, S.; Dei, M.; Terés, L.; Serra-Graells, F. A calibration-free 96.6-dB-SNDR non-bootstrapped 1.8-V 7.9-mW delta-sigma modulator with class-AB single-stage switched VMAs. In Proceedings of the IEEE International Symposium on Circuits and Systems, Montreal, QC, Canada, 22–25 May 2016; pp. 61–64. [Google Scholar]
- Nguyen, K.; Adams, B.; Sweetland, K.; Chen, H.; McLaughlin, K. A 106 dB SNR hybrid oversampling ADC for digital audio. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; pp. 176–591. [Google Scholar]
- Park, H.; Nam, K.; Su, D.K.; Vleugels, K.; Wooley, B.A. A 0.7-V 870-μW Digital-Audio CMOS Sigma-Delta Modulator. IEEE J. Solid-State Circuits 2009, 44, 1078–1088. [Google Scholar] [CrossRef]
- Wang, T.C.; Lin, Y.H.; Liu, C.C. A 0.022mm2 98.5 dB SNDR hybrid audio delta-sigma modulator with digital ELD compensation in 28nm CMOS. In Proceedings of the IEEE Asian Solid-State Circuits Conference, KaoHsiung, Taiwan, 10–12 November 2014; pp. 317–320. [Google Scholar]
- Yang, Y.; Chokhawala, A.; Alexander, M.; Melanson, J.; Hester, D. A 114-dB 68-mW chopper-stabilized stereo multi-bit audio A/D converter. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 13 February 2003; pp. 56–477. [Google Scholar]
- Brewer, R.; Gorbold, J.; Hurrell, P.; Lyden, C.; Maurino, R.; Vickery, M. A 100 dB SNR 2.5 MS/s Output Data Rate ΔΣ ADC. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; pp. 172–173. [Google Scholar]
- Morrow, P.; Chamarro, M.; Lyden, C.; Ventura, P.; Abo, A.; Matamura, A.; Keane, M.; O’Brien, R.; Minogue, P.; Mansson, J.; et al. A 0.18 μm 102 dB-SNR Mixed CT SC Audio-Band ΔΣ ADC. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; pp. 178–592. [Google Scholar]
- Silva, P.; Breems, L.; Makinwa, K.; Roovers, R.; Huijsing, J. An 118 dB DR CT IF-to-Baseband ΔΣ Modulator for AM/FM/IBOC Radio Receivers. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 5–9 February 2006; pp. 151–160. [Google Scholar]
- Chae, Y.; Souri, K.; Makinwa, K. A 6.3 μW 20 b Incremental Zoom-ADC with 6ppm INL and 1 μV Offset. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2013; pp. 276–277. [Google Scholar]
- Bandyopadhyay, A.; Adams, R.; Khiem, N.; Baginski, P.; Lamb, D.; Tansley, T. A 97.3 dB SNR, 600 kHz BW, 31mW Multibit Continuous Time ΔΣ ADC. Proceedings of 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 10–13 June 2014; pp. 1–2. [Google Scholar]
- Xu, L.; Gönen, B.; Fan, Q.; Huijsing, J.; Makinwa, K.A.A. A 110 dB SNR ADC with ±30V Input Common-Mode Range and 8 μV Offset for Current Sensing Applications. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 22–26 February 2015; pp. 90–91. [Google Scholar]
- Billa, S.; Sukumaran, A.; Pavan, S. A 280 μW 24 kHz-BW 98.5 dB-SNDR chopped single-bit CT ΔΣM Achieving <10Hz 1/f Noise Corner without Chopping Artifacts. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 31 January–4 February 2016; pp. 276–277. [Google Scholar]
- Murmann, B. ADC Performance Survey 1997–2015. Available online: http://web.stanford.edu/~murmann/ adcsurvey.html (accessed on 1 June 2017).
- Kim, M.; Ahn, G.; Hanumolu, P.; Lee, S.; Kim, S.; You, S.; Kim, J.; Temes, G.; Moon, U. A 0.9V 92 dB Double-Sampled Switched-RC ΔΣ Audio ADC. IEEE J. Solid-State Circuits 2006, 43, 1195–1206. [Google Scholar] [CrossRef]
- Rabii, S.; Wooley, B.A. A 1.8V Digital-Audio Sigma-Delta Modulator in 0.8 μm CMOS. IEEE J. Solid-State Circuits 1997, 32, 783–796. [Google Scholar] [CrossRef]
- Crols, J.; Steyaert, M. Switched-OpAmp: An Approach to Realize Full CMOS Switched-Capacitor Circuits at Very Low Power Supply Voltages. IEEE J. Solid-State Circuits 1994, 29, 936–942. [Google Scholar] [CrossRef]
- Yao, L.; Steyaert, M.; Sansen, W. A 1-V, 1-MSs, 88-dB Sigma-Delta Modulator in 0.13-μm Digital CMOS Technology. Proceedings of 2005 Symposium on VLSI Circuits Digest of Technical Papers, Kyoto, Japan, 16–18 June 2005; pp. 180–183. [Google Scholar]
- De la Rosa, J.M. Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey. IEEE Trans. Circuits Syst. I 2011, 58, 1–21. [Google Scholar] [CrossRef]
- Silva, J.; Moon, U.; Steensgaard, J.; Temes, G.C. A wideband low-distortion Delta-Sigma ADC topology. IEEE Electron. Lett. 2001, 37, 737–738. [Google Scholar] [CrossRef]
- Porrazzo, S.; Cannillo, F.; Hoof, C.V.; Cantatore, E.; van Roermund, A.H.M. A Power-Optimal Design Methodology for High-Resolution Low-Bandwidth SC ΔΣ Modulators. IEEE Trans. Instrum. Meas. 2012, 61, 2896–2904. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, S.; Xu, B.; Chiu, Y. 15.1 A 24.7mW 45MHz-BW 75.3 dB-SNDR SAR-assisted CT ΔΣ modulator with 2nd-order noise coupling in 65nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 31 January–4 February 2016; pp. 270–271. [Google Scholar]
- Dorrer, L.; Kuttner, F.; Santner, A.; Kropf, C.; Puaschitz, T.; Hartig, T.; Punzenberger, M. A Continuous Time ΔΣ ADC for Voice Coding with 92 dB DR in 45nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2008; pp. 502–631. [Google Scholar]
- Maghari, N.; Moon, U.K. A Third-Order DT ΔΣModulator Using Noise-Shaped Bi-Directional Single-Slope Quantizer. IEEE J. Solid-State Circuits 2011, 46, 2882–2891. [Google Scholar] [CrossRef]
- Van de Plassche, R.J. CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Malcovati, P.; Brigati, S.; Francesconi, F.; Maloberti, F.; Cusinato, P.; Baschirotto, A. Behavioral Modeling of Switched-Capacitor Sigma-Delta Modulators. IEEE Trans. Circuits Syst. I 2003, 50, 352–364. [Google Scholar] [CrossRef]
- Chen, J.; Ker, M. Circuit Performance Degradation of Sample-and-Hold Amplifier Due to Gate-Oxide Overstress in a 130-nm CMOS Process. In Proceedings of the 2006 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, 3–7 July 2006; pp. 45–48. [Google Scholar]
- Yukawa, A. A CMOS 8-Bit High-Speed A/D Converter IC. IEEE J. Solid-State Circuits 1985, 20, 775–779. [Google Scholar] [CrossRef]
- Baruqui, F.; Petraglia, A. Linearly Tunable CMOS OTA With Constant Dynamic Range Using Source-Degenerated Current Mirrors. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 797–801. [Google Scholar] [CrossRef]
- Aguirre, P.; Silveira, F. Bias Circuit Design for Low-Voltage Cascode Transistors. In Proceedings of the 19th Annual Symposium on Integrated Circuits and Systems Design, Ouro Preto, Brazil, 28 August–1 September 2006; pp. 94–97. [Google Scholar]
Capacitance | Value | Capacitance | Value | Capacitance | Value |
---|---|---|---|---|---|
21.16 | 0.92 | ||||
42.32 | 211.6 | 0.92 | |||
3.68 | 9.2 | 0.92 | |||
0.92 | 9.2 | 0.92 | |||
0.92 | 9.2 | 1.84 |
Parameter | SVMA1 | SVMA2 | SVMA3,4 | Units |
---|---|---|---|---|
53.4 | 4.47 | 2.68 | pF | |
0.77 | 0.71 | 0.91 | - | |
<28 | <28 | <28 | ns |
Parameter | Typical 20 °C | Fast −40 °C | Slow 80 °C | Units |
---|---|---|---|---|
G(DC) | 74.1 | 74.7 | 73.9 | dB |
1 | 1 | 1 | mA | |
7.41 | 7.8 | 7.1 | mA | |
SR | 139 | 146 | 133 | V/µs |
GBW | 221 | 250 | 206 | MHz |
55.8 | 48.9 | 62.8 | ° | |
16.41 | 14.24 | 19.57 | ns |
Slow | Typical | Fast | ||
---|---|---|---|---|
−40 °C | 110.2 | 109.2 | 111.4 | dB |
27 °C | 110.6 | 111.3 | 110.7 | dB |
80 °C | 110.7 | 109.3 | 109.6 | dB |
[13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | This Work | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Technology (nm) | 350 | 180 | 28 | 350 | 250 | 180 | 180 | 160 | 180 | 180 | 180 | 180 |
Architecture | ΔΣ | ΔΣ | ΔΣ | ΔΣ | ΔΣ | ΔΣ | ΔΣ | SAR + ΔΣ | ΔΣ | ΔΣ | ΔΣ | ΔΣ |
Modulator order | 2 | 2 | 2 | 5 | 4 | 2 | 5 | 2 | 3 | 3 | 3 | 4 |
Circuit technique | RC + SC | SC | RC | SC | SC | RC + SC | RC + Gm-C | SC | RC | SC | RC | SC |
Supply voltage (V) | 0.7 | 1, 3.3 | 5 | 3.3 | 1.8 | 1.8 | 5 | 1.8 | 1.8 | |||
Diff. full scale (Vpp) | 6.6 | 5.7 | 1.4 | 1.8 | 4.4 | 2.4 | ||||||
Sampling rate (MS/s) | 6.14 | 5 | 24 | 5.12 | 20 | 6.14 | 41.7 | 0.05 | 57.5 | 0.15 | 6.144 | 13.6 |
Bandwidth (kHz) | 20 | 25 | 24 | 20 | 1000 | 20 | 200 | 0.0125 | 600 | 0.1 | 24 | 50 |
Supply power (mW) | 18 | 0.87 | 1.13 | 55 | 475 | 37 | 210 | 0.0063 | 21 | 0.505 | 0.28 | 7.9 |
Area (mm2) | 0.82 | 2.16 | 0.022 | 5.6 | 20.2 | 0.65 | 6 | 0.38 | 0.99 | 0.8 | 1.33 | 1.8 |
DR (dB) | 106 | 100 | 100.6 | 111 | 103 | 102 | 98 | 103.6 | 97 | |||
(dB) | 102.6 | 90 | 100.8 | 107.6 | 105.3 | |||||||
(dB) | 97 | 95 | 98.5 | 105 | 95 | 90 | 100.6 | 98.5 | 96.6 | |||
(dB) | 157.5 | 169.6 | 171.8 | 160.6 | 166.2 * | 152.3 | 149.8 | 182.8 * | 164.6 * | 153.6 | 177.8 | 164.6 |
Bootstrap-free | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Calibration-free | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dei, M.; Sutula, S.; Cisneros, J.; Pun, E.; Jansen, R.J.E.; Terés, L.; Serra-Graells, F. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation. Sensors 2017, 17, 1273. https://doi.org/10.3390/s17061273
Dei M, Sutula S, Cisneros J, Pun E, Jansen RJE, Terés L, Serra-Graells F. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation. Sensors. 2017; 17(6):1273. https://doi.org/10.3390/s17061273
Chicago/Turabian StyleDei, Michele, Stepan Sutula, Jose Cisneros, Ernesto Pun, Richard Jan Engel Jansen, Lluís Terés, and Francisco Serra-Graells. 2017. "A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation" Sensors 17, no. 6: 1273. https://doi.org/10.3390/s17061273