An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings
<p>Structure and principle of the FBG.</p> "> Figure 2
<p>Structure of the planetary gearbox.</p> "> Figure 3
<p>Installation areas of FBGs at the ring gear.</p> "> Figure 4
<p>Strain of (<b>a</b>) y-direction and (<b>b</b>) x-direction.</p> "> Figure 5
<p>Installation of FBGs.</p> "> Figure 6
<p>Relationship between the axial strain and the installation angle of the FBG.</p> "> Figure 7
<p>Reflected spectrum of FBGs with different parameters: (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>6</mn> <mo> </mo> <mi>mm</mi> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>6</mn> <mo> </mo> <mi>mm</mi> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>.</p> "> Figure 8
<p>Strains measured by (<b>a</b>) FBG1 and (<b>b</b>) FBG2.</p> "> Figure 9
<p>Average strains along (<b>a</b>) FBG1 and (<b>b</b>) FBG2.</p> "> Figure 10
<p>Principle of the measurement system.</p> "> Figure 11
<p>Simulated strain measured by (<b>a</b>) FBG1 and (<b>b</b>) FBG 2 in the time domain and frequency domain.</p> "> Figure 12
<p>Light spectra of the FBG and the comb filter during the upslope of the triangular wave.</p> "> Figure 13
<p>Frequency of the light spectra of (<b>a</b>) the FBG and (<b>b</b>) the comb filter during the upslope of the triangular wave.</p> "> Figure 14
<p>Structure of the measurement system.</p> "> Figure 15
<p>Errors between the measured strain and the theoretical results.</p> "> Figure 16
<p>Experimental table.</p> "> Figure 17
<p>Installation of (<b>a</b>) FBG1 and (<b>b</b>) FBG2 in the experiment.</p> "> Figure 18
<p>Extraction of the optical fiber: (<b>a</b>) a view inside the gearbox; (<b>b</b>) a view outside the gearbox.</p> "> Figure 19
<p>Original strain signal measured by FBG1.</p> "> Figure 20
<p>Low-frequency component in the strain signal.</p> "> Figure 21
<p>Strain signal measured by FBG1.</p> "> Figure 22
<p>Strain signal measured by FBG2.</p> "> Figure 23
<p>Installation of (<b>a</b>) FBG1 and (<b>b</b>) FBG2 under a tooth crack.</p> "> Figure 24
<p>Strain signal measured by FBG1 under a tooth crack.</p> "> Figure 25
<p>Strain signal measured by FBG2 under a tooth crack.</p> ">
Abstract
:1. Introduction
2. Primary Principles
2.1. FBG
2.2. Planetary Gearbox
3. Installation of FBGs at the Ring Gear
4. Characteristics of the FBG for the Measurement of the Ring Gear Strain
4.1. Parameters of the FBG
4.2. Simulation of the Measurement
5. Measurement System
5.1. Principle of the System
5.2. Paratmeters of the System
5.2.1. Bandwidth
5.2.2. Sampling Frequency
5.2.3. Range and Resolving Power
5.3. Test of the Measurement System
6. Measurement of the Ring Gear Strain
7. Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lei, Y.G.; Lin, J.; Zuo, M.J.; He, Z.J. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [Google Scholar] [CrossRef]
- Chen, Z.G.; Shao, Y.M. Dynamic features of a planetary gear system with tooth crack under different sizes and inclination angles. ASME J. Vib. Acoust. 2013, 135. [Google Scholar] [CrossRef]
- Chaari, F.; Baccar, W.; Abbes, M.S.; Haddar, M. Effect of spalling or tooth breakage on gear mesh stiffness and dynamic response of a one-stage spur gear transmission. Eur. J. Mech.–A/Solids 2008, 27, 691–705. [Google Scholar] [CrossRef]
- Chaari, F.; Fakhfakh, T.; Haddar, M. Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking. J. Fail. Anal. Prev. 2006, 6, 73–78. [Google Scholar] [CrossRef]
- Lei, Y.G.; Liu, Z.Y.; Lin, J.; Lu, F.B. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes. J. Sound Vib. 2016, 38, 266–281. [Google Scholar] [CrossRef]
- Blunt, D.M.; Keller, J.A. Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis. Mech. Syst. Signal Process. 2006, 20, 2095–2111. [Google Scholar] [CrossRef]
- Feng, Z.P.; Zuo, M.J. Vibration signal models for fault diagnosis of planetary gearboxes. J. Sound Vib. 2012, 331, 4919–4939. [Google Scholar] [CrossRef]
- Guo, Y.C.; Parker, R.G. Analytical determination of mesh phase relations in general compound planetary gears. Mech. Mach. Theory 2011, 46, 1869–1887. [Google Scholar] [CrossRef]
- Djeziri, M.A.; Benmoussa, S.; Sanchez, R. Hybrid method for remaining useful life prediction in wind turbine systems. Renew. Energy 2018, 116, 173–187. [Google Scholar] [CrossRef]
- Benmoussa, S.; Djeziri, M.A. Remaining Useful Life estimation without needing for prior knowledge of the degradation features. IEEE IET Sci. Meas. Technol. 2017, 11, 1071–1078. [Google Scholar] [CrossRef]
- Inalpolat, M.; Kahraman, A. A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors. J. Sound Vib. 2010, 329, 371–393. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, X.D.; Zhao, X.D.; Hou, C.G. Action mechanism of planetary gearbox’s typical faults on tooth root strain of ring gear. J. Vib. Shock 2017, 36, 253–260. [Google Scholar] [CrossRef]
- Wang, M.J. A new photoelastic investigation of the dynamic bending stress of spur gears. J. Mech. Des. 2003, 125, 365–372. [Google Scholar] [CrossRef]
- Pandya, Y.; Parey, A. Experimental investigation of spur gear tooth mesh stiffness in the presence of crack using photoelasticity technique. Eng. Fail. Anal. 2013, 34, 488–500. [Google Scholar] [CrossRef]
- Raghuwanshi, N.K.; Parey, A. Mesh stiffness measurement of cracked spur gear by photoelasticity technique. Measurement 2015, 73, 439–452. [Google Scholar] [CrossRef]
- Raghuwanshi, N.K.; Parey, A. Experiment measurement of gear mesh stiffness of cracked spur gear by strain gauge technique. Measurement 2016, 86, 266–275. [Google Scholar] [CrossRef]
- Hotait, M.A.; Kahraman, A.; Nishina, T. An investigation of root stresses of hypoid gears with misalignments. J. Mech. Des. 2011, 133. [Google Scholar] [CrossRef]
- Ligata, H.; Kahraman, A.; Singh, A. An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing. J. Mech. Des. 2008, 130. [Google Scholar] [CrossRef]
- Dai, X.; Cooley, C.G.; Parker, R.G. Dynamic tooth root strains and experimental correlations in spur gear pairs. Mech. Mach. Theory 2016, 101, 60–74. [Google Scholar] [CrossRef]
- Patil, S.S.; Karuppanan, S.; Atanasovska, I. Experiment measurement of strain and stress state at the contacting helical gear pairs. Measurement 2016, 82, 313–322. [Google Scholar] [CrossRef]
- Shen, W.; Yan, R.J.; Xu, L.; Tang, G.L.; Chen, X.L. Application study on FBG sensor applied to hull structural health monitoring. Optik 2015, 126, 1499–1504. [Google Scholar] [CrossRef]
- Abhinav, G.; Amitesh, K.; Ritu, R.S.; Vishnu, P. Optical sensing and monitoring architecture for pipelines using optical heterodyning and FBG filter. Optik 2016, 127, 9161–9166. [Google Scholar] [CrossRef]
- Hong, C.Y.; Zhang, Y.F.; Zhang, M.X.; Leung, L.M.G.; Liu, L.Q. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques. Sens. Actuators A Phys. 2016, 244, 184–197. [Google Scholar] [CrossRef]
- Carlos, R.; Filipe, C.; Carlos, F.; Joaquim, F. FBG based strain monitoring in the rehabilitation of a centenary metallic bridge. Eng. Struct. 2012, 44, 281–290. [Google Scholar] [CrossRef]
- Chaari, F.; Fakhfakh, T.; Haddar, M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness. Eur. J. Mech. A/Solids 2009, 28, 461–468. [Google Scholar] [CrossRef]
- Zhao, X.D.; Niu, H.; Zhang, X.D. Research on measurement for bending stress of gear with fiber Bragg grating (FBG) and optimization of FBG probe installation. In Proceedings of the IEEE 12th International conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, Korea, 28–30 October 2015. [Google Scholar] [CrossRef]
- Butter, C.D.; Hocker, G.B. Fiber optics strain gauge. Appl. Opt. 1978, 17, 2867–2869. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.B.; Liang, D.K.; Zeng, J.; Feng, L.H. Quantum-behaved particle swarm optimization algorithm for the reconstruction of fiber Bragg grating sensor strain profiles. Opt. Commun. 2012, 285, 539–545. [Google Scholar] [CrossRef]
Parameters | Planet | Sun | Ring |
---|---|---|---|
Tooth number | 18 | 36 | 72 |
Tooth width/mm | 10 | 10 | 12 |
Modification coefficient | 0.2664 | −0.0103 | 0.5615 |
Modulus/mm | 0.9 | ||
Meshing angle/degree | 20 | ||
Addendum coefficient | 1 | ||
Tip clearance coefficient | 0.25 | ||
Load/Nm | 30 |
0.1 |
Load/kg | 0.2 | 0.4 | 0.6 | |
---|---|---|---|---|
Time/min | ||||
0 | 23 | 41 | 61 | |
5 | 23 | 41 | 62 | |
10 | 21 | 41 | 61 | |
15 | 22 | 41 | 61 | |
20 | 22 | 41 | 61 | |
25 | 23 | 41 | 61 | |
30 | 23 | 41 | 61 | |
35 | 22 | 41 | 61 | |
40 | 22 | 41 | 61 | |
45 | 22 | 41 | 61 | |
50 | 22 | 41 | 62 | |
55 | 22 | 42 | 62 | |
60 | 21 | 42 | 61 | |
Theoretical result | 21 | 41 | 62 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, H.; Zhang, X.; Hou, C. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings. Sensors 2017, 17, 2872. https://doi.org/10.3390/s17122872
Niu H, Zhang X, Hou C. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings. Sensors. 2017; 17(12):2872. https://doi.org/10.3390/s17122872
Chicago/Turabian StyleNiu, Hang, Xiaodong Zhang, and Chenggang Hou. 2017. "An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings" Sensors 17, no. 12: 2872. https://doi.org/10.3390/s17122872