lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer
"> Figure 1
<p>Expression of nine lncRNAs (long non-coding RNAs) in tumour tissue compared to non-malignant tissue. Boxplots of nine lncRNAs showing the fold change of their expression in tumour tissue vs. non-malignant tissue. Significantly up- or downregulated lncRNAs (<span class="html-italic">p</span> < 0.05) are marked.</p> "> Figure 2
<p>Association between <span class="html-italic">MIR155HG</span> and <span class="html-italic">PCAT1</span> expression fold change and survival. (<b>a</b>) Kaplan Meier curve using optimized thresholds for fold change of <span class="html-italic">MIR155HG</span> and its association with OS (overall survival) and (<b>b</b>) fold change of <span class="html-italic">PCAT1</span> and its association with DFS (disease-free survival).</p> "> Figure 3
<p>Significant associations between lncRNAs expression fold change in tumour tissue (TT) vs. healthy tissue (MT) and tumour staging. Displayed is the ratio between healthy tissue (MT) and tumour tissue (TT). A value above 1 represents elevated expression in TT. (<b>a</b>) The change in expression of <span class="html-italic">linc-ROR</span> differed significantly within the categories of AJCC staging and was largest in AJCC stage 3 samples; (<b>b</b>) The change in expression of <span class="html-italic">linc-ROR</span> was significantly higher in patients without distant metastases; (<b>c</b>) For <span class="html-italic">MALAT1</span> the fold change varied significantly between the T stages; (<b>d</b>) Change in <span class="html-italic">ANRIL</span> expression change was significantly higher in patients without lymph node involvement (N0).</p> "> Figure 3 Cont.
<p>Significant associations between lncRNAs expression fold change in tumour tissue (TT) vs. healthy tissue (MT) and tumour staging. Displayed is the ratio between healthy tissue (MT) and tumour tissue (TT). A value above 1 represents elevated expression in TT. (<b>a</b>) The change in expression of <span class="html-italic">linc-ROR</span> differed significantly within the categories of AJCC staging and was largest in AJCC stage 3 samples; (<b>b</b>) The change in expression of <span class="html-italic">linc-ROR</span> was significantly higher in patients without distant metastases; (<b>c</b>) For <span class="html-italic">MALAT1</span> the fold change varied significantly between the T stages; (<b>d</b>) Change in <span class="html-italic">ANRIL</span> expression change was significantly higher in patients without lymph node involvement (N0).</p> "> Figure 4
<p>Associations of lncRNA normalized expressions in MT and TT with overall survival. (<b>a</b>) Kaplan Meier curve for the relationship between <span class="html-italic">CCAT1</span> expression in MT with OS and (<b>b</b>) Kaplan Meier curve for <span class="html-italic">MIR155HG</span> expression in TT and its association with OS.</p> "> Figure 5
<p>Associations of lncRNA expressions in MT and TT with tumour characteristics. Displayed are the relative expression values in the respective tissue type, grouped by different clinical characteristics. A higher value corresponds to higher expression. (<b>a</b>) The expression of <span class="html-italic">linc-ROR</span> in MT differed significantly within the categories of AJCC staging; (<b>b</b>) The expression of <span class="html-italic">MIR155HG</span> in TT was significantly higher in patients without distant metastases; (<b>c</b>) <span class="html-italic">linc-ROR</span> expression in TT also significantly differed between tumour grades; (<b>d</b>) <span class="html-italic">MALAT1</span> expression in TT was on the borderline of being associated with varying tumour grades.</p> "> Figure 6
<p>Associations of expression ratios of two lncRNAs in MT with OS. (<b>a</b>) Table displays all possible expression ratios of the nine lncRNAs with their respective univariable Cox proportional hazard model p-values for association with OS. Each cell contains the p-value of the expression ratio of lncRNAs stated in the corresponding row and column headings. The <span class="html-italic">p</span>-values are identical for reciprocal ratios, that is, for X/Y and Y/X; (<b>b</b>–<b>d</b>) Kaplan-Meier curves with an applied optimized threshold for the relationship between OS and the expression ratio of (<b>b</b>) <span class="html-italic">CCAT1</span>/<span class="html-italic">ANRIL</span> in MT, (<b>c</b>) <span class="html-italic">CCAT1</span>/<span class="html-italic">MIR155HG</span> in MT and (<b>d</b>) <span class="html-italic">MALAT1</span>/<span class="html-italic">ANRIL</span> in MT.</p> "> Figure 7
<p>Expression ratios of two lncRNAs in MT. (<b>a</b>) Displayed are six lncRNA expression ratios in MT that are significantly or potentially associated with OS. For the ratios featured in <a href="#ijms-19-02672-f006" class="html-fig">Figure 6</a> the values of the optimized threshold used for the Kaplan-Meier curves are also shown; (<b>b</b>) Scatter plot for the correlation between the two most prognostic ratios in MT that are associated with OS; (<b>c</b>) Scatter plot of the two relative expression values of lncRNAs in MT involved in the two strongest ratios except <span class="html-italic">CCAT1</span>; (<b>d</b>) The ratio of <span class="html-italic">MALAT1</span>/<span class="html-italic">ANRIL</span> was negatively associated with tumour stage; (<b>e</b>) The expression ratio <span class="html-italic">CCAT1</span>/<span class="html-italic">ANRIL</span> significantly decreased with higher AJCC stage (Spearman: <span class="html-italic">p</span> = 0.0072).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Patient´s Characteristics
2.2. Expression Fold Change of lncRNAs (long non-coding RNAs) in Tumour Tissue (TT) Compared to Non-Malignant Tissue (MT)
2.3. Expression of lncRNAs in Non-malignant and Tumour Tissue
2.4. Expression Ratios of Two lncRNAs in Non-Malignant and Tumour Tissues
3. Discussion
3.1. Differential Expression Values in TT Compared to MT
3.2. Normalized Expression in TT and MT
3.3. lncRNA Expression Ratios
4. Materials and Methods
4.1. Patient Selection
4.2. RNA Extraction
4.3. RT-PCR
4.4. Quantitative-PCR (qPCR)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AJCC | American joint committee on cancer |
ANRIL | CDKN2B antisense RNA 1 |
CCAT1 | Colon cancer associated transcript 1 |
CCND | Cyclin D |
CRC | Colorectal cancer |
Ct | Cycle threshold |
DFS | Disease free survival |
EMT | Epithelial to mesenchymal transition |
GAS5 | Growth arrest-specific 5 |
HR | Hazard rate |
Linc-ROR | Long intergenic non-protein coding regulator of reprogramming |
lncRNA | Long non-coding RNA |
MALAT1 | Metastasis associated lung adenocarcinoma transcript 1 |
MIR155HG | MIR155 host gene |
MMR | DNA mismatch repair |
MT | Non-malignant (mucosa) tissue |
OS | Overall survival |
PCAT1 | Prostate cancer associated transcript 1 |
q-PCR | Quantitative PCR |
RT-PCR | Reverse transcription PCR |
SPRY4-IT1 | Sprouty homolog 4 intronic transcript 1 |
TP53 | Tumour protein p53 |
TT | Tumour tissue |
TUG1 | Taurine up-regulated 1 |
References
- Malvezzi, M.; Carioli, G.; Bertuccio, P.; Boffetta, P.; Levi, F.; Vecchia, C.L.; Negri, E. European cancer mortality predictions for the year 2017, with focus on lung cancer. Ann. Oncol. 2017, 28, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA. Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef] [PubMed]
- What Are the Survival Rates for Colorectal Cancer, By Stage? Available online: https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 2 February 2018).
- Can Colorectal Polyps and Cancer Be Found Early? Available online: https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/detection.html (accessed on 2 February 2018).
- Hu, X.; Sood, A.K.; Dang, C.V.; Zhang, L. The role of long noncoding RNAs in cancer: The dark matter matters. Curr. Opin. Genet. Dev. 2018, 48, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, M.; Slyskova, J.; Schneiderova, M.; Makovicky, P.; Bielik, L.; Levy, M.; Lipska, L.; Hemmelova, B.; Kala, Z.; Protivankova, M.; et al. HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis 2014, 35, 1510–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, P.; Wang, L.; Piao, H.L.; Ma, L. Long non-coding RNA HOTAIR in carcinogenesis and metastasis. Acta Biochim. Biophys. Sin. 2014, 46, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Liu, X.; Tang, Y.; Zhao, Z.; Zhang, J.; Feng, Y. Down regulation of the long non-coding RNA PCAT-1 induced growth arrest and apoptosis of colorectal cancer cells. Life Sci. 2017, 188, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Bai, Y.; Luo, B.; Zhou, X. Upregulation of lncRNA BANCR associated with the lymph node metastasis and poor prognosis in colorectal cancer. Biol. Res. 2017, 50, 32. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; He, X.; Zhang, E.; Kong, R.; De, W.; Zhang, Z. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med. Oncol. 2014, 31, 253. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Z.; Feng, W.; Ye, Z.; Dai, W.; Zhang, C.; Peng, J.; Wu, K. Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget 2016, 7, 51713–51719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Chu, Z.; Ma, P.; Meng, Y.; Yang, Y. Long non-coding RNA SPRY4-IT1 promotes proliferation and invasion by acting as a ceRNA of miR-101-3p in colorectal cancer cells. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Sun, L.; Liu, D.; Liu, C.; Sun, L. Long non-coding rna lincrna-ror promotes the progression of colon cancer and holds prognostic value by associating with miR-145. Pathol. Oncol. Res. 2016, 22, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, Z.; Ning, X.; Huang, L.; Jiang, B. The long noncoding RNA HOTAIR promotes colorectal cancer progression by sponging miR-197. Oncol. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.T.; Shi, D.B.; Wang, Y.W.; Li, X.X.; Xu, Y.; Tripathi, P.; Gu, W.L.; Cai, G.X.; Cai, S.J. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 3174–3181. [Google Scholar] [PubMed]
- He, X.; Tan, X.; Wang, X.; Jin, H.; Liu, L.; Ma, L.; Yu, H.; Fan, Z. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 2014, 35, 12181–12188. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, Z.P.; Li, H.; Zhang, H.Q.; Ma, F.Q. ANRIL is associated with the survival rate of patients with colorectal cancer, and affects cell migration and invasion in vitro. Mol. Med. Rep. 2016, 14, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zhou, N.; Huang, J.; Liu, Q.; Fukuda, K.; Ma, D.; Lu, Z.; Bai, C.; Watabe, K.; Mo, Y.Y. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 2013, 23, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Y.; Yu, T.; Nie, E.; Hu, Q.; Wu, W.; Zhi, T.; Jiang, K.; Wang, X.; Lu, X.; et al. Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro Oncol. 2017, 19, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Dai, Y.; Wang, F.; Hou, S. Differentially expressed long non-coding RNAs and the prognostic potential in colorectal cancer. Neoplasma 2016, 63, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liu, J.; Hu, Y.; Wang, W.; Xu, F.; Xu, W.; Han, J.; Biskup, E. STK31 as novel biomarker of metastatic potential and tumorigenicity of colorectal cancer. Oncotarget 2017, 8, 24354–24361. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.D.; Darnell, K.H.; Warnke, R.A.; Zehnder, J.L. CyclinD1/CyclinD3 ratio by real-time PCR improves specificity for the diagnosis of mantle cell lymphoma. J. Mol. Diagn. 2004, 6, 84–89. [Google Scholar] [CrossRef]
- Eis, P.S.; Tam, W.; Sun, L.; Chadburn, A.; Li, Z.; Gomez, M.F.; Lund, E.; Dahlberg, J.E. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 2005, 102, 3627–3632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeri, N.; Gasparini, P.; Fabbri, M.; Braconi, C.; Veronese, A.; Lovat, F.; Adair, B.; Vannini, I.; Fanini, F.; Bottoni, A.; et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl. Acad. Sci. USA 2010, 107, 6982–6987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, G.; Papavasiliou, F.N. Shhh! Silencing by microRNA-155. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.J.; Xiao, H.X.; Tian, H.P.; Liu, Z.L.; Xia, S.S.; Zhou, T. Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int. J. Mol. Med. 2013, 31, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Z.; Xiang, J.; Gu, X. MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in vitro. Oncol. Lett. 2018, 15, 5561–5568. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Song, J.H.; Kim, S.; Qu, P.; Martin, B.K.; Sehareen, W.S.; Haines, D.C.; Lin, P.C.; Sharan, S.K.; Chang, S. Loss of oncogenic miR-155 in tumor cells promotes tumor growth by enhancing C/EBP-β-mediated MDSC infiltration. Oncotarget 2016, 7, 11094–11112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, J.Q.; Chen, J.Z.; Chen, H.X.; Qiu, F.N.; Yan, M.L.; Chen, Y.L.; Peng, C.H.; Tian, Y.F.; Wang, Y.D. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study. Int. J. Biol. Macromol. 2017, 102, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ou, C.; Ren, W.; Xie, X.; Li, X.; Li, G. Downregulation of long non-coding RNA ANRIL suppresses lymphangiogenesis and lymphatic metastasis in colorectal cancer. Oncotarget 2016, 7, 47536–47555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congrains, A.; Kamide, K.; Ohishi, M.; Rakugi, H. ANRIL: Molecular Mechanisms and Implications in Human Health. Int. J. Mol. Sci. 2013, 14, 1278–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunnington, M.S.; Santibanez Koref, M.; Mayosi, B.M.; Burn, J.; Keavney, B. Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genet. 2010, 6, e1000899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Papagiannakopoulos, T.; Pan, G.; Thomson, J.A.; Kosik, K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009, 137, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Chen, Y.; Liao, X.; Liu, D.; Li, F.; Ruan, H.; Jia, W. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med. Oncol. 2013, 30, 588. [Google Scholar] [CrossRef] [PubMed]
- Prensner, J.R.; Chen, W.; Iyer, M.K.; Cao, Q.; Ma, T.; Han, S.; Sahu, A.; Malik, R.; Wilder-Romans, K.; Navone, N.; et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014, 74, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- PCAT1 Gene-GeneCards|PCAT1 RNA Gene. Available online: http://www.genecards.org/cgi-bin/carddisp.pl?gene=PCAT1 (accessed on 9 April 2018).
- Zhai, H.; Sui, M.; Yu, X.; Qu, Z.; Hu, J.; Sun, H.; Zheng, H.; Zhou, K.; Jiang, L. Overexpression of long non-coding RNA TUG1 promotes colon cancer progression. Med. Sci. Monit. 2016, 22, 3281–3287. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ding, C.; Yang, Z.; Liu, T.; Zhang, X.; Zhao, C.; Wang, J. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J. Transl. Med. 2016, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Cai, W.S.; Feng, Z.; Chen, J.; Feng, J.; Liu, Q.; Fang, Y.; Li, K.; Xiao, H.; Cao, J.; et al. Long non-coding RNA SPRY4-IT1 promotes colorectal cancer metastasis by regulate epithelial-mesenchymal transition. Oncotarget 2017, 8, 14479–14486. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shen, Z.; Yan, Y.; Wang, B.; Zhang, J.; Shen, C.; Li, T.; Ye, C.; Gao, Z.; Peng, G.; et al. Long non-coding RNA GAS5 inhibits cell proliferation, induces G0/G1 arrest and apoptosis, and functions as a prognostic marker in colorectal cancer. Oncol. Lett. 2017, 13, 3151–3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Q.; Zhang, L.; Liu, X.; Zhou, L.; Wang, W.; Han, Z.; Sui, H.; Tang, Y.; Wang, Y.; Liu, N.; et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br. J. Cancer 2014, 111, 736–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, Z.H.; Roche, V.; Chew, X.H.; Fadieieva, A.; Tay, Y. A non-canonical tumor suppressive role for the long non-coding RNA MALAT1 in colon and breast cancers. Int. J. Cancer 2018, 143, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Category | Number | % |
---|---|---|---|
gender | F | 24 | 38.1 |
M | 39 | 61.9 | |
age (in years) | 30–50 | 8 | 12.7 |
50–70 | 32 | 50.8 | |
>70 | 23 | 36.5 | |
T stage | T1 | 1 | 1.6 |
T2 | 14 | 22.2 | |
T3 | 40 | 63.5 | |
T4 | 6 | 9.5 | |
unknown | 2 | 3.2 | |
N stage | N0 | 39 | 61.9 |
N1 | 13 | 20.6 | |
N2 | 10 | 15.9 | |
unknown | 1 | 1.6 | |
M stage | 0 | 47 | 74.6 |
1 | 11 | 17.5 | |
unknown | 5 | 7.9 | |
tumour grade | G1 | 12 | 19.0 |
G2 | 42 | 66.7 | |
G3 | 5 | 7.9 | |
unknown | 4 | 6.3 | |
AJCC staging | I | 11 | 17.5 |
II | 19 | 30.2 | |
III | 14 | 22.2 | |
IV | 11 | 17.5 | |
unknown | 8 | 12.7 | |
primary tumour location | right or transversum | 16 | 25.4 |
Left or sigma | 10 | 15.9 | |
rectum or rectosigma | 31 | 49.2 | |
non-specific | 6 | 9.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiele, J.-A.; Hosek, P.; Kralovcova, E.; Ostasov, P.; Liska, V.; Bruha, J.; Vycital, O.; Rosendorf, J.; Opattova, A.; Horak, J.; et al. lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2672. https://doi.org/10.3390/ijms19092672
Thiele J-A, Hosek P, Kralovcova E, Ostasov P, Liska V, Bruha J, Vycital O, Rosendorf J, Opattova A, Horak J, et al. lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer. International Journal of Molecular Sciences. 2018; 19(9):2672. https://doi.org/10.3390/ijms19092672
Chicago/Turabian StyleThiele, Jana-Aletta, Petr Hosek, Eva Kralovcova, Pavel Ostasov, Vaclav Liska, Jan Bruha, Ondrej Vycital, Jachym Rosendorf, Alena Opattova, Josef Horak, and et al. 2018. "lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer" International Journal of Molecular Sciences 19, no. 9: 2672. https://doi.org/10.3390/ijms19092672
APA StyleThiele, J.-A., Hosek, P., Kralovcova, E., Ostasov, P., Liska, V., Bruha, J., Vycital, O., Rosendorf, J., Opattova, A., Horak, J., Kralickova, M., Vodicka, P., & Pitule, P. (2018). lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer. International Journal of Molecular Sciences, 19(9), 2672. https://doi.org/10.3390/ijms19092672