Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs
"> Figure 1
<p>Spontaneous movement quantification at 24 hpf. The following doses of methylxanthine were used: aminophylline 500 mg/L, caffeine 150 mg/L, diprophylline 5000 mg/L, doxofylline 1000 mg/L, etofylline 600 mg/L, IBMX 50 mg/L, pentoxifylline 200 mg/L, theobromine 200 mg/L, and theophylline 200 mg/L. Negative controls were treated with dilution water without any drugs. Data are the mean ± S.D. of three independent experiments. Asterisks indicate statistically significant increase of spontaneous movements compared to negative controls. Significance was determined using ordinary one-way ANOVA, followed by Dunnett’s multiple comparisons test. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.005; *** <span class="html-italic">p</span> < 0.0001. White columns: methylxanthine treated embryos; grey column: negative controls.</p> "> Figure 2
<p>Touch-and-response test performed at 72 hpf. <span class="html-italic">X</span>-axis shows the distance swam by the embryos, <span class="html-italic">Y</span>-axis shows the percentage of embryos that swam different distances. The following doses of methylxanthine were used: aminophylline 500 mg/L, caffeine 150 mg/L, diprophylline 5000 mg/L, doxofylline 1000 mg/L, etofylline 600 mg/L, IBMX 50 mg/L, pentoxifylline 200 mg/L, theobromine 200 mg/L, and theophylline 200 mg/L. Negative controls were treated with dilution water without any drugs. Data are the mean ± S.D. of three independent experiments. White columns: methylxanthine treated embryos; grey columns: negative controls.</p> "> Figure 3
<p>Cyclic AMP level in whole zebrafish embryos extract. The following doses of methylxanthine were used: aminophylline 500 mg/L, caffeine 150 mg/L, diprophylline 5000 mg/L, doxofylline 1000 mg/L, etofylline 600 mg/L, IBMX 50 mg/L, pentoxifylline 200 mg/L, theobromine 200 mg/L, and theophylline 200 mg/L. Negative controls were treated with dilution water without any drugs. Data are the mean ± S.D. of three independent experiments. Asterisks indicate statistically significant increase of cAMP compared to negative controls. Significance was determined using ordinary one-way ANOVA, followed by Dunnett’s multiple comparisons test. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.005; *** <span class="html-italic">p</span> < 0.0001. White columns: methylxanthine treated embryos; grey column: negative controls.</p> "> Figure 4
<p>Effect of nine methylxanthine compounds on zebrafish embryos development. <span class="html-italic">X</span>-axis shows the five increasing concentrations of each methylxanthine drug used in the FET test. Data are the mean ± S.D. of three independent experiments. (GMS) General Morphological defects Score; (GTS) General Teratogenicity Score. White circles: mortality rate; white squares: GMS; white triangles: GTS.</p> "> Figure 5
<p>Correlation between TC<sub>50</sub> (Toxic Concentration, 50%) of zebrafish (<span class="html-italic">X</span>-axis) and LD<sub>50</sub> (Lethal Dose, 50%) of mice (<span class="html-italic">Y</span>-axis). The analysis included seven of the nine tested methylxanthines: diprophylline was excluded because the value was too large and pentoxifylline because it was an outlier. Numbers linked to each dot correspond to a methylxanthine compound, as reported in <a href="#ijms-18-00596-t002" class="html-table">Table 2</a>.</p> "> Figure 6
<p>Correlation between TC<sub>50</sub> (Toxic Concentration, 50%) of zebrafish (<span class="html-italic">X</span>-axis) and LD<sub>50</sub> (Lethal Dose, 50%) of rat (<span class="html-italic">Y</span>-axis). The analysis included six of the nine tested methylxanthines: diprophylline was excluded because the value was too large and pentoxifylline because it was an outlier; no data were available about IBMX toxicity in rat. Numbers linked to each dot correspond to a methylxanthine compound, as reported in <a href="#ijms-18-00596-t002" class="html-table">Table 2</a>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Behavioral Assay
2.2. Cyclic AMP Measurement
2.3. Fish Embryo Toxicity (FET) Test
2.4. Correlation between TC50 Zebrafish and LD50 Mice and Rat
3. Materials and Methods
3.1. Zebrafish Maintenance and Egg Collection
3.2. Behavioral Assay
3.3. Measurement of Cyclic AMP (cAMP)
3.4. Fish Embryo Toxicity (FET) Test
3.4.1. Embryo Exposure
3.4.2. Evaluation of Embryos
3.5. Correlation between TC50 Zebrafish and LD50 Rodent
3.6 Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
TC50 | Toxic concentration 50% |
LD50 | Lethal dose 50% |
COPD | Chronic obstructive pulmonary diseases |
Hpf | Hours post fertilization |
cAMP | Cyclic AMP |
FET test | Fish Embryo Toxicity test |
GMS | General Morphological defect Score |
GTS | General Teratogenic effect Score |
References
- Talik, P.; Krzek, J.; Ekiert, R.J. Analytical techniques used for determination of methylxanthines and their analogues—Recent advances. Sep. Purif. Rev. 2012, 41, 1–61. [Google Scholar] [CrossRef]
- Monteiro, J.; Alves, M.; Oliveira, P.; Silva, B. Structure-bioactivity relationships of methylxanthines: Trying to make sense of all the promises and the drawbacks. Molecules 2016, 21, 974. [Google Scholar] [CrossRef] [PubMed]
- Oñatibia-Astibia, A.; Martínez-Pinilla, E.; Franco, R. The potential of methylxanthine-based therapies in pediatric respiratory tract diseases. Respir. Med. 2016, 112, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Frary, C.D.; Johnson, R.K.; Wang, M.Q. Food sources and intakes of caffeine in the diets of persons in the United States. J. Am. Diet. Assoc. 2005, 105, 110–113. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture. Economic Research Service. Food Contributions of Nonalcoholic Beverages to the U.S. Diet. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=44713 (accessed on 27 February 2017).
- Franco, R.; Oñatibia-Astibia, A.; Martínez-Pinilla, E. Health benefits of methylxanthines in cacao and chocolate. Nutrients 2013, 5, 4159–4173. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, A.; Soleri, D.; Wacher, C.; Sánchez-Chinchillas, A.; Argote, R.M. Chemical and nutritional composition of tejate, a traditional maize and cacao beverage from the central valleys of oaxaca, mexico. Plant Foods Hum. Nutr. 2012, 67, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Szentmiklósi, A.J.; Cseppentō, A.; Gesztelyi, R.; Zsuga, J.; Körtvély, A.; Harmati, G.; Nánási, P.P. Xanthine derivatives in the heart: Blessed or cursed? Curr. Med. Chem. 2011, 18, 12. [Google Scholar] [CrossRef]
- Tilley, S.L. Methylxanthines in asthma. Handb. Exp. Pharmacol. 2011, 200, 18. [Google Scholar]
- McCarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Pentoxifylline for vascular health: A brief review of the literature. Open Heart 2016, 3, e000365. [Google Scholar] [CrossRef] [PubMed]
- Stablein, J.J.; Samaan, S.S.; Bukantz, S.C.; Lockey, R.F. Pharmacokinetics and bioavailability of three dyphylline preparations. Eur. J. Clin. Pharmacol. 1983, 25, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Riffo-Vasquez, Y.; Man, F.; Page, C.P. Doxofylline, a novofylline inhibits lung inflammation induced by lipopolysacharide in the mouse. Pulm. Pharmacol. Ther. 2014, 27, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Page, C.P. Doxofylline: A “novofylline”. Pulm. Pharmacol. Ther. 2010, 23, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Ujházy, E.; Onderová, E.; Horáková, M.; Bencová, E.; Durisová, M.; Nosál, R.; Balonová, T.; Zeljenková, D. Teratological study of the hypolipidaemic drugs etofylline clofibrate (VULM) and fenofibrate in swiss mice. Pharmacol. Toxicol. 1989, 64, 5. [Google Scholar] [CrossRef]
- Perchdlet, J.; Boutwell, R.K. Comparison of the effects of 3-isobutyl-l-methylxanthine and adenosine cyclic 3′:5′-monophosphate on the induction of skin tumors by the initiation-promotion protocol and by the complete carcinogenesis process. Carcinogenesis 1982, 3, 53–60. [Google Scholar] [CrossRef]
- Gilbard, J.P. Treatment of keratoconjunctivitis sicca in rabbits with 3-isobutyl-1-methylxanthine. Arch. Ophthalmol. 1994, 112, 1614–1616. [Google Scholar] [CrossRef] [PubMed]
- Zwillich, C.W.; Sutton, F.D.; Neff, T.A.; Cohn, W.M.; Matthay, R.A.; Weinberger, M.M. Theophylline-induced seizures in adults. Correlation with serum concentrations. Ann. Intern. Med. 1975, 82, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, P.R.; Chu, N.S. Focal seizures and aminophylline. Neurology 1975, 25, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Boison, D. Methylxanthines, seizures, and excitotoxicity. Handb. Exp. Pharmacol. 2011, 200, 251–266. [Google Scholar]
- Yokoyama, H.; Onodera, K.; Yagi, T.; Iinuma, K. Therapeutic doses of theophylline exert proconvulsant effects in developing mice. Brain Dev. 1997, 19, 403–407. [Google Scholar] [CrossRef]
- Wlaz, P.; Rolinski, Z.; Kleinroki, Z.; Czuczwar, S.J. Influence of chronic aminophylline on antielctroshock activity of diazepam and aminophylline induced convulsions. Pharmacol. Biochem. Behav. 1994, 49, 609–613. [Google Scholar] [CrossRef]
- Sarro, A.D.; Grasso, S.; Zappalà, M.; Nava, F.; Sarro, G.D. Convulsant effects of some xanthine derivatives in genetically epilepsy-prone rats. Naunyn Schmied. Arch. Pharmacol. 1997, 356, 48–55. [Google Scholar] [CrossRef]
- Czuczwar, S.J.; Kleinrok, Z. Modulation of the protective efficacu of common antiepileptic drugs by xanthine derivatives: Implications for the clinical use of xanthines in epileptic patients. Pharmacol. Res. 1990, 22, 661–665. [Google Scholar] [CrossRef]
- Guarienti, M.; Giacopuzzi, E.; Gianoncelli, A.; Sigala, S.; Spano, P.; Pecorelli, S.; Pani, L.; Memo, M. Computational and functional analysis of biopharmaceutical drugs in zebrafish: Erythropoietin as a test model. Pharmacol. Res. 2015, 102, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Gianoncelli, A.; Bonini, S.A.; Bertuzzi, M.; Guarienti, M.; Vezzoli, S.; Kumar, R.; Delbarba, A.; Mastinu, A.; Sigala, S.; Spano, P.; et al. An integrated approach for a structural and functional evaluation of biosimilars: Implications for erythropoietin. BioDrugs 2015, 29, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Ašmonaitė, G.; Boyer, S.; Souza, K.; Wassmur, B.; Sturve, J. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquat. Toxicol. 2016, 173, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Strähle, U.; Scholz, S.; Geisler, R.; Greiner, P.; Hollert, H.; Rastegar, S.; Schumacher, A.; Selderslaghs, I.; Weiss, C.; Witters, H.; et al. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 2012, 33, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Olivares, C.I.; Field, J.A.; Simonich, M.; Tanguay, R.L.; Sierra-Alvarez, R. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay. Chemosphere 2016, 148, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, L.; Jauhiainen, A.; Kristiansson, E.; Nerman, O.; Larsson, D.G. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ. Sci. Technol. 2008, 42, 5807–5813. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 408–503. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 2007, 269, 1–20. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Champagne, D.L.; Richardson, M.K. Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav. Brain Res. 2012, 228, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.M.; Desmond, D.; Kyzar, E.; Gaikwad, S.; Roth, A.; Riehl, R.; Collins, C.; Monnig, L.; Green, J.; Kalueff, A.V. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res. Bull. 2012, 87, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013, 10, 70–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraban, S.C.; Taylor, M.R.; Castro, P.A.; Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005, 131, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Afrikanova, T.; Serruys, A.-S.K.; Buenafe, O.E.M.; Clinckers, R.; Smolders, I.; de Witte, P.A.M.; Crawford, A.D.; Esguerra, C.V. Validation of the zebrafish pentylenetetrazol seizure model: Locomotor versus electrographic responses to antiepileptic drugs. PLoS ONE 2013, 8, e54166. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development (OECD). Test Guideline 236. Guideline for Testing of Chemicals, Fish Embryo Acute toxicity (Fet) Test; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Lammer, E.; Carr, G.J.; Wendler, K.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T. Is the Fish Embryo Toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 196–209. [Google Scholar] [CrossRef] [PubMed]
- McKeown, K.A.; Downes, G.B.; Hutson, L.D. Modular laboratory exercises to analyze the development of zebrafish motor behavior. Zebrafish 2009, 6, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, L.M.; Goody, M.F.; Kelly, M.W.; Reynolds, C.J.; Khalil, A.; Crawford, B.D.; Henry, C.A. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol. 2012, 10, e1001409. [Google Scholar]
- Saint-Amant, L.; Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 1998, 37, 622–632. [Google Scholar] [CrossRef]
- Goody, M.F.; Henry, C.A. Motility assay for zebrafish embryos. Bio Protocol 2013, 3, e787. [Google Scholar] [CrossRef]
- Selderslaghs, I.W.T.; Hooyberghs, J.; Blust, R.; Witters, H.E. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol. Teratol. 2013, 37, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Parsons, W.J.; Ramkumar, V.; Stiles, G.L. Isobutylmethyixanthine stimulates adenylate cyclase by blocking the inhibitory regulatory protein, Gi. Mol. Pharmacol. 1987, 34, 37–41. [Google Scholar]
- Kukovetz, W.R.; Pöch, G.; Holzmann, S. Overadditive synergism between theophylline, diprophylline and proxyphylline in tracheal smooth muscle relaxation. Arzneimittelforschung 1983, 33, 1450–1454. [Google Scholar] [PubMed]
- Baggott, M.J.; Childs, E.; Hart, A.B.; de Bruin, E.; Palmer, A.A.; Wilkinson, J.E.; de Wit, H. Psychopharmacology of theobromine in healthy volunteers. Psychopharmacology 2013, 228, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Guarienti, M.; Gianoncelli, A.; Bontempi, E.; Moscoso Cardozo, S.; Borgese, L.; Zizioli, D.; Mitola, S.; Depero, L.E.; Presta, M. Biosafe inertization of municipal solid waste incinerator residues by cosmos technology. J. Hazard. Mater. 2014, 279, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Raldua, D.; Pina, B. In vivo zebrafish assays for analyzing drug toxicity. Expert Opin. Drug Metab. Toxicol. 2014, 10, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Mumford, G.K.; Evans, S.M.; Kaminski, B.J.; Preston, K.L.; Sannerud, C.A.; Silverman, K.; Griffiths, R.R. Discriminative stimulus and subjective efects of theobromine and caffeine in human. Psychopharmacology 1994, 115, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.C.; Sneed, B.; Haider, J.; Blavo, D.; White, A.; Aiyejorun, T.; Baranowski, T.C.; Rubinstein, A.L.; Doan, T.N.; Dingledine, R.; et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 2007, 67, 11386–11392. [Google Scholar] [CrossRef] [PubMed]
- Lantz-McPeak, S.; Guo, X.; Cuevas, E.; Dumas, M.; Newport, G.D.; Ali, S.F.; Paule, M.G.; Kanungo, J. Developmental toxicity assay using high content screening of zebrafish embryos. J. Appl. Toxicol. 2015, 35, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Antkiewicz, D.S. Heart malformation is an early response to tcdd in embryonic zebrafish. Toxicol. Sci. 2005, 84, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Chemidplus: A Toxnet Database. Available online: https://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Aminophylline. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/317-34-0 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Caffeine. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/58-08-2 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Diprophylline. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/479-18-5 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Doxofylline. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/69975-86-6 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Etophylline. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/519-37-9 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: 1-Methyl-3-isobutylxanthine. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/28822-58-4 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Pentoxifylline. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/6493-05-6 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Theobromine. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/83-67-0 (accessed on 1 August 2016).
- Chemidplus: A Toxnet Database. Substance Name: Theophylline. Available online: https://chem.sis.nlm.nih.gov/chemidplus/rn/58-55-9 (accessed on 1 August 2016).
- Knöbel, M.; Busser, F.J.; Rico-Rico, A.; Kramer, N.I.; Hermens, J.L.; Hafner, C.; Tanneberger, K.; Schirmer, K.; Scholz, S. Predicting adult fish acute lethality with the zebrafish embryo: Relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ. Sci. Technol. 2012, 46, 9690–9700. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R. DarT: The embryo test with the Zebrafish Danio rerio—A general model in ecotoxicology and toxicology. ALTEX 2002, 19 (Suppl. S1), 38–48. [Google Scholar] [PubMed]
- Klüver, N.; König, M.; Ortmann, J.; Massei, R.; Paschke, A.; Kühne, R.; Scholz, S. Fish embryo toxicity test: Identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds. Environ. Sci. Technol. 2015, 49, 7002–7011. [Google Scholar] [CrossRef] [PubMed]
- Selderslaghs, I.W.; van Rompay, A.R.; de Coen, W.; Witters, H.E. Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod. Toxicol. 2009, 28, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Belanger, S.E.; Rawlings, J.M.; Carr, G.J. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ. Toxicol. Chem. 2013, 32, 1768–1783. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, M. A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Oregon, OR, USA, 2000. [Google Scholar]
Compound | Dose (mg/L) | ||||
---|---|---|---|---|---|
Aminophylline | 100 | 250 | 500 | 750 | 1000 |
Caffeine | 30 | 60 | 90 | 150 | 300 |
Diprophylline | 200 | 500 | 1000 | 2000 | 4000 |
Doxofylline | 200 | 400 | 600 | 1000 | 1500 |
Etofylline | 100 | 200 | 400 | 600 | 1000 |
IBMX | 30 | 50 | 100 | 150 | 200 |
Pentoxifylline | 30 | 100 | 200 | 400 | 600 |
Theobromine | 30 | 100 | 200 | 400 | 600 |
Theophylline | 50 | 100 | 200 | 300 | 500 |
Methylxanthine Compound | TC50 Mortality | TC50 GMS | TC50 GTS |
---|---|---|---|
mg/L | |||
1. Aminophylline | 875 | 900 | 827 |
2. Caffeine | 634 | 329 | 251 |
3. Diprophylline | * | * | * |
4. Doxofylline | 1385 | 1205 | 1092 |
5. Etophylline | 1058 | 848 | 892 |
6. IBMX | 183.5 | 139 | 111 |
7. Pentoxifylline | 564 | 372 | 243 |
8. Theobromine | ** | 1840 | 1975 |
9. Theophylline | 500 | 446 | 369 |
Affected Endpoints | Control | Aminophylline Caffeine Doxofylline IBMX Pentoxifylline Theobromine Theophylline | Diprophylline | Etofylline | |
---|---|---|---|---|---|
Morphological endpoints | Somite formation | − | + | − | + |
Movement defect | − | + | − | + | |
Abnormal heart beating | − | + | + | + | |
Abnormal blood circulation | − | + | − | + | |
Teratogenic endpoints | Yolk sac edema and/or deformation | − | + | − | + |
Pericardial edema | − | + | − | + | |
Malformation tail | − | + | − | + | |
Scoliosis | − | + | − | − |
Compounds | LD50 (mg/kg) Mice | LD50 (mg/kg) Rat | References |
---|---|---|---|
Aminophylline | 150 | 243 | [55] |
Caffeine | 127 | 192 | [56] |
Diprophylline | 1954 | >400 | [57] |
Doxofylline | 841 | 965 | [58] |
Etophylline | 400 | 710 | [59] |
IBMX | 44 | - | [60] |
Pentoxifylline | 1225 | 1170 | [61] |
Theobromine | 837 | 1265 | [62] |
Theophylline | 235 | 225 | [63] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basnet, R.M.; Guarienti, M.; Memo, M. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs. Int. J. Mol. Sci. 2017, 18, 596. https://doi.org/10.3390/ijms18030596
Basnet RM, Guarienti M, Memo M. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs. International Journal of Molecular Sciences. 2017; 18(3):596. https://doi.org/10.3390/ijms18030596
Chicago/Turabian StyleBasnet, Ram Manohar, Michela Guarienti, and Maurizio Memo. 2017. "Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs" International Journal of Molecular Sciences 18, no. 3: 596. https://doi.org/10.3390/ijms18030596
APA StyleBasnet, R. M., Guarienti, M., & Memo, M. (2017). Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs. International Journal of Molecular Sciences, 18(3), 596. https://doi.org/10.3390/ijms18030596