Tweedie Compound Poisson Models with Covariate-Dependent Random Effects for Multilevel Semicontinuous Data
Abstract
:1. Introduction
2. Tweedie Compound Poisson Models with Covariate-Dependent Random Effects
2.1. The Model
2.2. Moment Structure
3. Estimation of Parameters
3.1. Best Linear Unbiased Predictors of Random Effects
3.2. Estimation of Regression Parameters
- 1.
- 2.
- 3.
3.3. Estimation of Random Effects Parameters
4. Analysis of Basic Symptoms Inventory Study Data
4.1. Model Specification
4.2. Analysis Results
5. Simulation Studies
5.1. Simulating Data from the Tweedie Compound Poisson Model with Covariate-Dependent Random Effects
- We first generate 269 samples () using where,
- In the second step, we generate samples ( and varies from 1 to 5) for each using , where
- Finally, we generate samples ( and varies from 1 to 17) for each using , where
5.2. Simulating Data from the Tweedie Compound Poisson Model with Covariate-Independent Random Effects
- We will generate 269 samples () using .
- In the second step, we will generate samples ( and varies from 1 to 5) for each using .
- Finally, we will generate samples ( and varies from 1 to 17) for each using , where
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freedman, D.A. Ecological inference and the ecological fallacy. Int. Encycl. Soc. Behav. Sci. 1999, 6, 4027–4030. [Google Scholar]
- Wang, Z.; Louis, T.A. Marginalized binary mixed-effects models with covariate-dependent random effects and likelihood inference. Biometrics 2004, 60, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.Y.; Lam, K.F. Modeling zero-inflated count data using a covariate-dependent random effect model. Stat. Med. 2013, 32, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Scheike, T.H.; Ekstrøm, C.T. A discrete survival model with random effects and covariate-dependent selection. Appl. Stoch. Model. Data Anal. 1998, 14, 153–163. [Google Scholar] [CrossRef]
- Liu, D.; Kalbfleisch, J.D.; Schaubel, D.E. A positive stable frailty model for clustered failure time data with covariate-dependent frailty. Biometrics 2011, 67, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Hanson, T.; Jara, A.; Zhang, J. Modelling county level breast cancer survival data using a covariate-adjusted frailty proportional hazards model. Ann. Appl. Stat. 2015, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 2013, 23, 743–757. [Google Scholar] [CrossRef]
- Su, L.; Tom, B.D.; Farewell, V.T. A likelihood-based two-part marginal model for longitudinal semicontinuous data. Stat. Methods Med. Res. 2015, 24, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Strawderman, R.L.; Johnson, B.A.; O’Quigley, J.M. Analyzing repeated measures semi-continuous data, with application to an alcohol dependence study. Stat. Methods Med. Res. 2016, 25, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Bursch, B.; Lester, P.; Jiang, L. Rotheram-Borus, M.J.; Weiss, R. Psychosocial predictors of somatic symptoms in adolescents of parents with HIV: A six-year longitudinal study. AIDS Care 2008, 20, 667–676. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, N.B.; Rychtarik, R.G.; Morsheimer, E.T.; Burke-Storer, M.R. Agreement Between Parent and Adolescent Reports of Adolescent Substance Use. J. Child Adolesc. Subst. Abuse 2007, 16, 59–78. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Jørgensen, B. Nested generalized linear mixed models: An orthodox best linear unbiased predictor approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 2007, 69, 625–641. [Google Scholar] [CrossRef]
- Duan, X.; Ma, R.; Zhang, X. Forecasting occurrence and quantity of monthly precipitation simultaneously while accounting for complex serial correlation. Int. J. Climatol. 2022, 42, 9494–9509. [Google Scholar] [CrossRef]
- Lee, Y.; Nelder, J.A. Hierarchical generalized linear models (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 619–678. [Google Scholar] [CrossRef]
- Lee, Y.; Nelder, J.A. Conditional and marginal models: Another view. Stat. Sci. 2004, 19, 219–238. [Google Scholar] [CrossRef]
- Ma, R.; Yan, G.; Hasan, M.T. Tweedie family of generalized linear models with distribution-free random effects for skewed longitudinal data. Stat. Med. 2018, 37, 3519–3532. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Krewski, D.; Burnett, R.T. Random effects Cox models: A Poisson modelling approach. Biometrika 2003, 90, 157–169. [Google Scholar] [CrossRef]
- Ma, R. An Orthodox BLUP Approach to Generalized Linear Mixed Models. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1999. [Google Scholar]
- Weiss, R. Modeling Longitudinal Data; Springer: New York, NY, USA, 2005. [Google Scholar]
- Islam, M.D. Analysis of Clustered Data Using Tweedie Models with Covariate-Dependent Random Effects. Master’s Thesis, University of New Brunswick, Fredericton, NB, Canada, 2013. [Google Scholar]
Variable Type | Name | Description |
---|---|---|
Response | GSI | BSI global severity index. |
Explanatory | Cluster level | Parent level |
Treatment | Intervention or not. | |
Gender.Par | 1 if Parent is female or 0 otherwise. | |
Age.Par | Parent’s baseline age. | |
Sub-cluster level | Adolescent level | |
Age.Adol | Adolescent’s baseline age. | |
Race.Adol | 1 if Adolescent is Hispanic or 0 otherwise. | |
Gender.Adol | 1 if Adolescent is female or 0 otherwise. | |
Observation level | ||
Months | Number of months adolescent in the study. | |
Spring | Spring season. | |
Summer | Summer season. |
Levels | Covariates | TMM | TMCDRE | ||||
---|---|---|---|---|---|---|---|
Estimates | St. Errors | p-Value | Estimates | St. Errors | p-Value | ||
Observation | Intercept | −1.1574 | 0.4449 | 0.0093 | −1.2114 | 0.4515 | 0.0074 |
Months | −0.0473 | 0.0072 | 0.0000 | −0.0503 | 0.0071 | 0.0000 | |
Spring | 0.0866 | 0.0325 | 0.0061 | 0.0880 | 0.0316 | 0.0045 | |
Summer | −0.0204 | 0.0338 | 0.5353 | −0.0173 | 0.0326 | 0.5892 | |
Adolescent | Age.Ad | 0.0444 | 0.0221 | 0.0455 | 0.0403 | 0.0221 | 0.0719 |
Race.Ad | 0.1226 | 0.0908 | 0.1802 | 0.1148 | 0.0908 | 0.2077 | |
Gender.Ad | 0.4017 | 0.0863 | 0.0001 | 0.4058 | 0.0863 | 0.0000 | |
Parent | Treatment | 0.0149 | 0.0916 | 0.8729 | 0.0110 | 0.0918 | 0.9045 |
Gender.Pr | 0.2305 | 0.1240 | 0.0643 | 0.2310 | 0.1326 | 0.0819 | |
Age.Pr | −0.0199 | 0.0092 | 0.0308 | −0.0165 | 0.0095 | 0.0854 | |
0.1007 | 0.1050 | ||||||
0.5921 | 0.3844 | ||||||
0.5316 | 0.6794 |
Levels | Covariates | True Value | CTMM | TMCDRE | ||||
---|---|---|---|---|---|---|---|---|
Bias | Sim. SE a | Est. SE b | Bias | Sim. SE | Est. SE | |||
Observation | Intercept () | −1.2114 | −0.0146 | 0.4463 | 0.4401 | −0.0238 | 0.4354 | 0.4439 |
Months () | −0.0503 | −0.0004 | 0.0075 | 0.0081 | 0.0006 | 0.0073 | 0.0086 | |
Spring () | 0.0880 | −0.0015 | 0.0303 | 0.0317 | −0.0008 | 0.0296 | 0.0309 | |
Summer () | −0.0173 | −0.0004 | 0.0318 | 0.0312 | 0.0002 | 0.0317 | 0.0312 | |
Sub-cluster | Age.Ad () | 0.0403 | 0.0012 | 0.0234 | 0.0218 | 0.0010 | 0.0233 | 0.0219 |
Race.Ad () | 0.1148 | 0.0007 | 0.0906 | 0.0899 | 0.0009 | 0.0897 | 0.0895 | |
Gender.Ad () | 0.4058 | 0.0062 | 0.0887 | 0.0852 | 0.0062 | 0.0871 | 0.0845 | |
Cluster | Treatment () | 0.0110 | 0.0081 | 0.0920 | 0.0909 | 0.0076 | 0.0906 | 0.0906 |
Gender.Pr () | 0.2310 | 0.0093 | 0.1247 | 0.1229 | 0.0090 | 0.1232 | 0.1254 | |
Age.Pr () | −0.0165 | −0.0007 | 0.0100 | 0.0091 | −0.0004 | 0.0098 | 0.0094 | |
0.1050 | 0.0018 | 0.0561 | 0.0034 | 0.0551 | ||||
0.3844 | 0.1871 | 0.1000 | 0.0117 | 0.1170 | ||||
0.6794 | −0.1471 | 0.0718 | 0.0270 | 0.1201 |
Levels | Covariates | True Value | CTMM | TMCDRE | ||||
---|---|---|---|---|---|---|---|---|
Bias | Sim. SE a | Est. SE b | Bias | Sim. SE | Est. SE | |||
Observation | Intercept () | −1.1574 | −0.0053 | 0.4170 | 0.4373 | −0.0001 | 0.4193 | 0.4455 |
Months () | −0.0473 | −0.0001 | 0.0071 | 0.0071 | 0.0001 | 0.0072 | 0.0070 | |
Spring () | 0.0866 | −0.0002 | 0.0332 | 0.0318 | −0.0004 | 0.0331 | 0.0320 | |
Summer () | −0.0204 | −0.0003 | 0.0342 | 0.0326 | −0.0004 | 0.0342 | 0.0324 | |
Sub-cluster | Age.Ad () | 0.0444 | −0.0014 | 0.0205 | 0.0217 | −0.0016 | 0.0205 | 0.0219 |
Race.Ad () | 0.1226 | −0.0029 | 0.0836 | 0.0893 | −0.0031 | 0.0848 | 0.0897 | |
Gender.Ad () | 0.4017 | 0.0020 | 0.0833 | 0.0846 | 0.0028 | 0.0840 | 0.0845 | |
Cluster | Treatment () | 0.0149 | 0.0010 | 0.0892 | 0.0902 | 0.0014 | 0.0891 | 0.0908 |
Gender.Pr () | 0.2305 | −0.0052 | 0.0091 | 0.0090 | −0.0047 | 0.0091 | 0.0094 | |
Age.Pr () | −0.0199 | −0.0003 | 0.1240 | 0.1221 | −0.0005 | 0.1232 | 0.1262 | |
0.1007 | 0.0036 | 0.0544 | 0.0104 | 0.0552 | ||||
0.5921 | −0.0294 | 0.1029 | −0.2436 | 0.1397 | ||||
0.5316 | 0.0030 | 0.0305 | −0.1576 | 0.1001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Islam, M.D.; Hasan, M.T.; Jørgensen, B. Tweedie Compound Poisson Models with Covariate-Dependent Random Effects for Multilevel Semicontinuous Data. Entropy 2023, 25, 863. https://doi.org/10.3390/e25060863
Ma R, Islam MD, Hasan MT, Jørgensen B. Tweedie Compound Poisson Models with Covariate-Dependent Random Effects for Multilevel Semicontinuous Data. Entropy. 2023; 25(6):863. https://doi.org/10.3390/e25060863
Chicago/Turabian StyleMa, Renjun, Md. Dedarul Islam, M. Tariqul Hasan, and Bent Jørgensen. 2023. "Tweedie Compound Poisson Models with Covariate-Dependent Random Effects for Multilevel Semicontinuous Data" Entropy 25, no. 6: 863. https://doi.org/10.3390/e25060863
APA StyleMa, R., Islam, M. D., Hasan, M. T., & Jørgensen, B. (2023). Tweedie Compound Poisson Models with Covariate-Dependent Random Effects for Multilevel Semicontinuous Data. Entropy, 25(6), 863. https://doi.org/10.3390/e25060863