Double Model Following Adaptive Control for a Complex Dynamical Network
<p>(<b>a</b>) Time response curves of reference displacement velocity <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Time response curves of reference stiffness vibration <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 2
<p>The time response curves of the model following errors for the displacement velocity <math display="inline"><semantics> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> without a controller.</p> "> Figure 3
<p>The time response curves of the model following errors for the stiffness vibration <math display="inline"><semantics> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> without a controller.</p> "> Figure 4
<p>(<b>a</b>) Time response curves of displacement velocity <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for a controlled elastic beam with a controller and coupling term. (<b>b</b>) Time response curves of stiffness vibration <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for a controlled elastic beam with a controller and coupling term.</p> "> Figure 5
<p>(<b>a</b>) Model following error curves of displacement velocity <math display="inline"><semantics> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for a controlled elastic beam with a controller and coupling term. (<b>b</b>) Model following error curves of stiffness vibration <math display="inline"><semantics> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for a controlled elastic beam with a controller and coupling term.</p> "> Figure 6
<p>The time response curve of the estimate value <math display="inline"><semantics> <mover accent="true"> <mi>δ</mi> <mo>^</mo> </mover> </semantics></math>.</p> "> Figure 7
<p>The time response curve for the norm of estimate matrix <math display="inline"><semantics> <msub> <mi>K</mi> <mi>p</mi> </msub> </semantics></math> in the controller.</p> ">
Abstract
:1. Introduction
- The problems of double MFAC are first formulated and solved for nodes and links in CDN.
- To solve the double-MFAC problem, the dynamic equations of nodes and links are modeled by matrix differential equations (MDEs), which enables us to employ the matrix algebra methods for system analysis.
- Note that the state information of LG is unavailable, and thus the LG cannot be controlled directly. In order to address this issue, an effective coupling mechanism between NG and LG is proposed based on a new adaptive control scheme synthesized for NG.
2. Model Description
3. Main Results
4. Simulation Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CDN | Complex dynamical network |
MFAC | Model following adaptive control |
NG | Nodes group |
LG | Links group |
MDEs | Matrix differential equations |
Appendix A
Proof of Theorem 1
References
- Hu, J.; Wang, Z.D.; Liu, S.; Gao, H.J. A variance-constrained approach to recursive state estimation for time-vary complex networks with missing measurements. Automatica 2016, 64, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Barrett, D.G.; Morcos, A.S.; Macke, J.H. Analyzing biological and artificial neural networks: Challenges with opportunities for synergy? Curr. Opin. Neurobiol. 2019, 55, 55–64. [Google Scholar] [CrossRef]
- LV, Z.H.; Zhang, S.B.; Xiu, W.Q. Solving the security problem of intelligent transportation system with deep learning. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4281–4290. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.N.; Huang, T.W. Passivity-based synchronization of a class of complex dynamical networks with time-varying delay. Automatica 2015, 56, 105–112. [Google Scholar] [CrossRef]
- Radenković, M.S.; Krstić, M. Distributed adaptive consensus and synchronization in complex networks of dynamical systems. Automatica 2018, 91, 233–243. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Feng, J.; Lü, J. Fixed-time synchronization of complex dynamical networks: A novel and economical mechanism. IEEE Trans. Cybern. 2022, 52, 4430–4440. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.J.; Suarez, O.J.; Sanchez, E.N.; Chen, G.; Elvira-Ceja, S.; Rodriguez-Castellanos, D. Trajectory tracking in complex networks via inverse optimal pinning control. IEEE Trans. Autom. Control 2019, 64, 767–774. [Google Scholar] [CrossRef]
- Vega, C.J.; Suarez, O.J.; Sanchez, E.N.; Chen, G.; Elvira-Ceja, S.; Rodriguez, D.I. Trajectory tracking on uncertain complex networks via NN-based inverse optimal pinning control. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ho, D.W.; Li, L.; Liu, M. Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Trans. Cybern. 2015, 45, 2142–2155. [Google Scholar] [CrossRef]
- Yan, T.R.; Xu, X.; Li, E. A subsystem-based analysis approach for fixed-time consensus of multi-agent systems with local pinning strategy. Automatica 2022, 142, 110372. [Google Scholar] [CrossRef]
- Gao, Z.L.; Li, Y.F.; Wang, Y.H.; Liu, Q.S. Distributed tracking control of structural balance for complex dynamical networks based on the coupling targets of nodes and links. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Gao, Z.L.; Wang, Y.H. The structural balance analysis of complex dynamical networks based on nodes’ dynamical couplings. PLoS ONE 2018, 13, e0191941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Wei, B. A review on model reference adaptive control of robotic manipulators. Annu. Rev. Control 2017, 43, 188–198. [Google Scholar] [CrossRef]
- Wu, H.S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Trans. Autom. Control. 2004, 49, 611–616. [Google Scholar] [CrossRef]
- Arabi, E.; Yucelen, T. Set-theoretic model reference adaptive control with time-varying performance bounds. Int. J. Control 2019, 92, 2509–2520. [Google Scholar] [CrossRef]
- Yu, H.C.; Liu, T.S. Adaptive model-following control for slim voice coil motor type optical image stabilization actuator. J. Appl. Phys. 2008, 103, 07F114. [Google Scholar] [CrossRef] [Green Version]
- Landau, I.D.; Courtiol, B. Design of multivariable adaptive model following control systems. Automatica 1974, 10, 483–494. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y. Stability analysis of discretized structure systems based on the complex network with dynamics of time-varying stiffness. Math. Methods Appl. Sci. 2021, 44, 13344–13356. [Google Scholar] [CrossRef]
- Soto, M.G.; Adeli, H. Semi-active vibration control of smart isolated highway bridge structures using replicator dynamics. Eng. Struct. 2019, 186, 536–552. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.L.; Huang, C.Z.; Wu, W.H.; Li, Z.J. Modelling a cracked beam structure using the finite element displacement method. Shock Vib. 2019, 2019, 7302057. [Google Scholar] [CrossRef]
- Wei, C.X.; Shang, X.C. Analysis on nonlinear vibration of breathing cracked beam. J. Sound Vib. 2019, 461, 114901. [Google Scholar] [CrossRef]
- Nascimento, T.P.; Saska, M. Position and attitude control of multi-rotor aerial vehicles: A survey. Annu. Rev. Control 2019, 48, 129–146. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, W.L.; Zhang, L.L. State synchronization of controlled nodes via the dynamics of links for complex dynamical networks. Neurocomputing 2020, 384, 225–230. [Google Scholar] [CrossRef]
- Gao, Z.L.; Liu, L.Z.; Wang, Y.H.; Gao, P.T.; Li, Y.F. Stabilization and synchronization control for complex dynamical networks with dynamic link subsystem. Inf. Sci. 2022, 609, 1588–1600. [Google Scholar] [CrossRef]
- Gao, P.T.; Wang, Y.H.; Zhao, J.X.; Zhang, L.L.; Peng, Y. Links synchronization control for the complex dynamical network. Neurocomputing 2022, 515, 59–67. [Google Scholar] [CrossRef]
- Kreindler, E.; Rothschild, D. Model-following in linear-quadratic optimization. AIAA J. 1976, 14, 835–842. [Google Scholar] [CrossRef]
- Adams, C.; Potter, J.; Singhose, W. Input-shaping and model-following control of a helicopter carrying a suspended load. J. Guid. Control Dyn. 2015, 38, 94–105. [Google Scholar] [CrossRef]
- Rezaee, M.; Fekrmandi, H. A theoretical and experimental investigation on free vibration behavior of a cantilever beam with a breathing crack. Shock Vib. 2012, 19, 175–186. [Google Scholar] [CrossRef]
- Radisavljevic, V.; Skataric, D. Exact decoupling of non-classically damped matrix second-order linear mechanical systems. In Proceedings of the ASME IMECE2009, Lake Buena Vista, FL, USA, 13–19 November 2009. [Google Scholar] [CrossRef]
- Zhao, Z.S.; Niu, J.C.; Shen, Y.J.; Yang, S.P. Forced vibration of two-degrees-of-freedom machine tool feed system with clearance and friction. Appl. Math. Model. 2021, 92, 281–296. [Google Scholar] [CrossRef]
- Gao, P.T.; Wang, Y.H.; Liu, L.Z.; Zhang, L.L.; Tang, X. Asymptotical state synchronization for the controlled directed complex dynamic network via links dynamics. Neurocomputing 2021, 448, 60–66. [Google Scholar] [CrossRef]
- Cai, Y.; Teru, H. The linear approximated equation of vibration of a pair of spur gears (theory and experiment). J. Mech. Des. 1994, 116, 558–564. [Google Scholar] [CrossRef]
- Zhan, J.; Fard, M.; Jazar, R. A CAD-FEM-QSA integration technique for determining the time-varying meshing stiffness of gear pairs. Measurement 2017, 100, 139–149. [Google Scholar] [CrossRef]
- Alavi, A.; Mele, E.; Rahgozar, R.; Farsangi, E.N.; Takewaki, I.; Malaga-Chuquitaype, C. Uniform deformation design of outrigger braced skyscrapers: A simplified method for the preliminary design stage. Structures 2021, 31, 395–405. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, G.H.; Wu, G.X.; Li, L.Y. Modeling and nonlinear optimal control of active mass damper with rotating actuator for structural vibration control. Struct. Control Health Monit. 2022, 29, e2871. [Google Scholar] [CrossRef]
- Chen, C.J.; Li, Z.H.; Teng, J.; Wu, Q.G.; Lin, B.C. A variable gain state-feedback technique for an AMD control system with stroke limit and its application to a high-rise building. Struct. Des. Tall Spec. Build. 2021, 30, e1816. [Google Scholar] [CrossRef]
- Wang, Y.H.; Fan, Y.Q.; Wang, Q.Y.; Zhang, Y. Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers. IEEE Trans. Circuits Syst. Regul. Pap. 2012, 59, 1786–1795. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.H.; Deng, S.Q. Adaptive synchronization on uncertain dynamics of high-order nonlinear multi-agent systems with partition of unity approach. Int. J. Control. Autom. Syst. 2014, 12, 259–264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Y.; Li, S. Double Model Following Adaptive Control for a Complex Dynamical Network. Entropy 2023, 25, 115. https://doi.org/10.3390/e25010115
Li X, Wang Y, Li S. Double Model Following Adaptive Control for a Complex Dynamical Network. Entropy. 2023; 25(1):115. https://doi.org/10.3390/e25010115
Chicago/Turabian StyleLi, Xiaoxiao, Yinhe Wang, and Shengping Li. 2023. "Double Model Following Adaptive Control for a Complex Dynamical Network" Entropy 25, no. 1: 115. https://doi.org/10.3390/e25010115
APA StyleLi, X., Wang, Y., & Li, S. (2023). Double Model Following Adaptive Control for a Complex Dynamical Network. Entropy, 25(1), 115. https://doi.org/10.3390/e25010115