Stochastic Density Functional Theory on Lane Formation in Electric-Field-Driven Ionic Mixtures: Flow-Kernel-Based Formulation
<p>A schematic of the 2D primitive model of binary ionic mixture with a static electric field <math display="inline"><semantics> <mi mathvariant="bold-italic">E</mi> </semantics></math> applied in the <span class="html-italic">x</span>-direction. The <span class="html-italic">z</span>-valent cations and anions are modeled by equisized charged hard spheres of diameter <math display="inline"><semantics> <mi>σ</mi> </semantics></math> immersed in a dielectric medium with dielectric constant <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> at a temperature <span class="html-italic">T</span>.</p> "> Figure 2
<p>A schematic of lane formation in a binary ionic mixture. The green and orange lanes represent aligned segregation bands of cations and anions, respectively. Correspondingly, the positive and negative signs seen on the lanes indicate that each lane is a mesoscopically charged object. The wavelengths, <math display="inline"><semantics> <msubsup> <mi>λ</mi> <mi>x</mi> <mo>∗</mo> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>λ</mi> <mi>y</mi> <mo>∗</mo> </msubsup> </semantics></math>, in <span class="html-italic">x</span>-and <span class="html-italic">y</span>-directions are related to wavenumbers as <math display="inline"><semantics> <mrow> <msubsup> <mi>λ</mi> <mi>x</mi> <mo>∗</mo> </msubsup> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <msubsup> <mi>k</mi> <mi>x</mi> <mo>∗</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>λ</mi> <mi>y</mi> <mo>∗</mo> </msubsup> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <msubsup> <mi>k</mi> <mi>y</mi> <mo>∗</mo> </msubsup> </mrow> </semantics></math> (i.e., Equation (<a href="#FD58-entropy-24-00500" class="html-disp-formula">A17</a>)), respectively. In this study, these wavenumbers are determined by Equations (<a href="#FD32-entropy-24-00500" class="html-disp-formula">34</a>) and (<a href="#FD35-entropy-24-00500" class="html-disp-formula">37</a>) when considering point charges.</p> "> Figure 3
<p>A schematic of the 3D primitive model in Cartesian coordinates illustrates a binary ionic mixture confined between two parallel plates. While the <span class="html-italic">y</span>-axis is perpendicular to these plates, the electric field is applied in the <span class="html-italic">x</span>-axis.</p> "> Figure 4
<p>The real-space representation <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="script">C</mi> <mrow> <mi>q</mi> <mi>q</mi> </mrow> <mi>st</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of the charge-charge correlation function at <math display="inline"><semantics> <mrow> <mi>z</mi> <mi>E</mi> <mi>σ</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> is shown using heat maps where the length scale is in units of diameter <math display="inline"><semantics> <mi>σ</mi> </semantics></math>. We obtain the real-space correlation function from performing the 2D inverse Fourier transform of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="script">C</mi> <mrow> <mi>q</mi> <mi>q</mi> </mrow> <mi>st</mi> </msubsup> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">k</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <mover> <mi>n</mi> <mo>¯</mo> </mover> <mo>)</mo> </mrow> </mrow> </semantics></math> given by Equations (<a href="#FD22-entropy-24-00500" class="html-disp-formula">24</a>) and (<a href="#FD23-entropy-24-00500" class="html-disp-formula">25</a>). The remaining parameter set of <math display="inline"><semantics> <mrow> <mo>(</mo> <mover accent="true"> <mi mathvariant="script">E</mi> <mo>˜</mo> </mover> <mo>,</mo> <mspace width="0.166667em"/> <mover> <mi>κ</mi> <mo>¯</mo> </mover> <mi>σ</mi> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϕ</mi> <mo>)</mo> </mrow> </semantics></math> is (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.484</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>1.55</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.05</mn> <mo>)</mo> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.484</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>1.62</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.055</mn> <mo>)</mo> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>1.55</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.05</mn> <mo>)</mo> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>1.62</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.055</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure A1
<p>Schematics of the electrophoresis-induced shear. It is found from the schematic on the right that the shear rate <math display="inline"><semantics> <mover accent="true"> <mi>γ</mi> <mo>˙</mo> </mover> </semantics></math> induced by cations (or cation-driven-shear rate) is evaluated as <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>γ</mi> <mo>˙</mo> </mover> <mo>∼</mo> <mi mathvariant="script">D</mi> <mi>z</mi> <mi>E</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math> when oppositely charged colloids with their effective diameter of <span class="html-italic">R</span> pass each other.</p> "> Figure A2
<p>Schematics of advection velocities with fluctuating flows in the <span class="html-italic">y</span>-direction. We can consider four cases of the fluctuating velocities generated under (<b>a</b>) the cation-driven-shear and (<b>b</b>) the anion-driven-shear.</p> ">
Abstract
:1. Introduction
2. Basic Formalism
2.1. Primitive Model
2.2. Stochastic Dft: Compact Matrix Forms
3. Our Aim
4. Correlation Functions Determined by the Stochastic Dft
4.1. Stationary Condition of Correlation Functions
4.2. Obtained Forms of Stationary Correlation Functions
5. Lane Formation in Terms of Charge–Charge Correlation Function
5.1. Asymptotic Behavior of Charge–Charge Correlations
5.2. Charge–Charge Correlations on 2D Cross Section of the 3D Primitive Model
6. Summary and Conclusions
Funding
Conflicts of Interest
Appendix A. Deterministic Dft: Introduction of Flow Kernels
Appendix B. Linear Stability Analysis Based on the Deterministic Dft
Appendix B.1. Dispersion Relation
Appendix B.2. Derivation of the Relation ~ zEσ Using an Expression of the Flow Kernel G(r) for Sheared Colloids
Appendix C. Details on the Derivation of Stationary Correlation Functions
References
- Levin, Y. Electrostatic correlations: From plasma to biology. Rep. Prog. Phys. 2002, 65, 1577. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095. [Google Scholar] [CrossRef] [Green Version]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Löwen, H. Introduction to colloidal dispersions in external fields. Eur. Phys. J. Spec. Top. 2013, 22, 2727–2737. [Google Scholar] [CrossRef] [Green Version]
- Glanz, T.; Löwen, H. The nature of the laning transition in two dimensions. J. Phys. Condens. Matter 2012, 24, 464114. [Google Scholar] [CrossRef] [PubMed]
- Löwen, H. Particle-resolved instabilities in colloidal dispersions. Soft Matter 2010, 6, 3133–3142. [Google Scholar] [CrossRef]
- Rex, M.; Löwen, H. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids. Eur. Phys. J. E 2008, 26, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rex, M.; Löwen, H. Lane formation in oppositely charged colloids driven by an electric field: Chaining and two-dimensional crystallization. Phys. Rev. E 2007, 75, 051402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, J.; Dzubiella, J.; Löwen, H. Reentrance effect in the lane formation of driven colloids. Phys. Rev. E 2004, 70, 012401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, J.; Dzubiella, J.; Löwen, H. Dynamical instability in driven colloids. Europhys. Lett. 2003, 61, 415. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.L.; Shi, G.; Gao, Y.; Shi, X.; Woodward, C.E.; Forsman, J. Phase transitions of oppositely charged colloidal particles driven by alternating current electric field. ACS Nano 2021, 15, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Chakrabarti, J. Length-scales of dynamic heterogeneity in a driven binary colloid. Phys. Chem. Chem. Phys. 2020, 22, 17731–17737. [Google Scholar] [CrossRef]
- Reichhardt, C.; Reichhardt, C.J.O. Velocity force curves, laning, and jamming for oppositely driven disk systems. Soft Matter 2018, 14, 490–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klymko, K.; Geissler, P.L.; Whitelam, S. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles. Phys. Rev. E 2016, 94, 022608. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Wada, H.; Hayakawa, H. Instabilities and turbulence-like dynamics in an oppositely driven binary particle mixture. Europhys. Lett. 2012, 99, 68005. [Google Scholar] [CrossRef] [Green Version]
- Vissers, T.; van Blaaderen, A.; Imhof, A. Band formation in mixtures of oppositely charged colloids driven by an ac electric field. Phys. Rev. Lett. 2011, 106, 228303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scacchi, A.; Mazza, M.G.; Archer, A.J. Sensitive dependence on molecular interactions of length scales in sheared soft matter. Phys. Rev. Res. 2020, 2, 032064. [Google Scholar] [CrossRef]
- Scacchi, A.; Archer, A.J.; Brader, J.M. Dynamical density functional theory analysis of the laning instability in sheared soft matter. Phys. Rev. E 2017, 96, 062616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopper, D.; Roth, R. Nonequilibrium phase transitions of sheared colloidal microphases: Results from dynamical density functional theory. Phys. Rev. E 2018, 97, 062602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poncet, A.; Bénichou, O.; Démery, V.; Oshanin, G. Universal long ranged correlations in driven binary mixtures. Phys. Rev. Lett. 2017, 118, 118002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohl, M.; Ivlev, A.V.; Brandt, P.; Morfill, G.E.; Löwen, H. Microscopic theory for anisotropic pair correlations in driven binary mixtures. J. Phys. Condens. Matter 2012, 24, 464115. [Google Scholar] [CrossRef]
- Frusawa, H. Electric-field-induced oscillations in ionic fluids: A unified formulation of modified Poisson-Nernst-Planck models and its relevance to correlation function analysis. arXiv 2022, arXiv:2203.15428. [Google Scholar]
- te Vrugt, M.; Löwen, H.; Wittkowski, R. Classical dynamical density functional theory: From fundamentals to applications. Adv. Phys. 2020, 69, 121–247. [Google Scholar] [CrossRef]
- Frusawa, H. Non-hyperuniform metastable states around a disordered hyperuniform state of densely packed spheres: Stochastic density functional theory at strong coupling. Soft Matter 2021, 17, 8810–8831. [Google Scholar] [CrossRef] [PubMed]
- Frusawa, H. Transverse density fluctuations around the ground state distribution of counterions near one charged plate: Stochastic density functional view. Entropy 2020, 22, 34. [Google Scholar] [CrossRef] [Green Version]
- Avni, Y.; Adar, R.M.; Andelman, D.; Orland, H. Conductivity of concentrated electrolytes. Phys. Rev. Lett. 2022, 128, 098002. [Google Scholar] [CrossRef] [PubMed]
- Mahdisoltani, S.; Golestanian, R. Transient fluctuation-induced forces in driven electrolytes after an electric field quench. New J. Phys. 2021, 23, 073034. [Google Scholar] [CrossRef]
- Mahdisoltani, S.; Golestanian, R. Long-range fluctuation-induced forces in driven electrolytes. Phys. Rev. Lett. 2021, 126, 158002. [Google Scholar] [CrossRef] [PubMed]
- Démery, V.; Dean, D.S. The conductivity of strong electrolytes from stochastic density functional theory. J. Stat. Mech. Theory Exp. 2016, 2016, 023106. [Google Scholar] [CrossRef] [Green Version]
- Frusawa, H. Stochastic dynamics and thermodynamics around a metastable state based on the linear Dean-Kawasaki equation. J. Phys. A Math. Theor. 2019, 52, 065003. [Google Scholar] [CrossRef] [Green Version]
- Krüger, M.; Solon, A.; Démery, V.; Rohwer, C.M.; Dean, D.S. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory. J. Chem. Phys. 2018, 148, 084503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, M.; Dean, D.S. A Gaussian theory for fluctuations in simple liquids. J. Chem. Phys. 2017, 146, 134507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, D.S.; Lu, B.S.; Maggs, A.C.; Podgornik, R. Nonequilibrium Tuning of the Thermal Casimir Effect. Phys. Rev. Lett. 2016, 116, 240602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scacchi, A.; Krüger, M.; Brader, J.M. Driven colloidal fluids: Construction of dynamical density functional theories from exactly solvable limits. J. Phys. Condens. Matter 2016, 28, 244023. [Google Scholar] [CrossRef] [Green Version]
- Aerov, A.A.; Krüger, M. Driven colloidal suspensions in confinement and density functional theory: Microstructure and wall-slip. J. Chem. Phys. 2014, 140, 094701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, M.; Brader, J.M. Controlling colloidal sedimentation using time-dependent shear. Europhys. Lett. 2011, 96, 68006. [Google Scholar] [CrossRef] [Green Version]
- Brader, J.M.; Krüger, M. Density profiles of a colloidal liquid at a wall under shear flow. Mol. Phys. 2011, 109, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Rauscher, M.; Domínguez, A.; Krüger, M.; Penna, F. A dynamic density functional theory for particles in a flowing solvent. J. Chem. Phys. 2007, 127, 244906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cats, P.; Evans, R.; Härtel, A.; van Roij, R. Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations. J. Chem. Phys. 2021, 154, 124504. [Google Scholar] [CrossRef]
- Adar, R.M.; Safran, S.A.; Diamant, H.; Andelman, D. Screening length for finite-size ions in concentrated electrolytes. Phys. Rev. E 2019, 100, 042615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, R.L.; Evans, R.; Rosenfeld, Y. Decay of correlations in fluids: The one-component plasma from Debye-Hückel to the asymptotic-high-density limit. Phys. Rev. E 1999, 59, 1435. [Google Scholar] [CrossRef]
- Leote de Carvalho, R.J.F.; Evans, R. The decay of correlations in ionic fluids. Mol. Phys. 1994, 83, 619–654. [Google Scholar] [CrossRef]
- Frusawa, H. On the equivalence of self-consistent equations for nonuniform liquids: A unified description of the various modifications. J. Stat. Mech. Theory Exp. 2021, 2021, 013213. [Google Scholar] [CrossRef]
- Frydel, D. Mean Field Electrostatics Beyond the Point Charge Description. Adv. Chem. Phys. 2016, 160, 209–260. [Google Scholar]
- Varela, L.M.; Garcia, M.; Mosquera, V. Exact mean-field theory of ionic solutions: Non-Debye screening. Phys. Rep. 2003, 382, 1–111. [Google Scholar] [CrossRef]
- McDaniel, J.G.; Yethiraj, A. Understanding the properties of ionic liquids: Electrostatics, structure factors, and their sum rules. J. Phys. Chem. B 2019, 123, 3499–3512. [Google Scholar] [CrossRef]
- Lee, A.A.; Perez-Martinez, C.S.; Smith, A.M.; Perkin, S. Scaling analysis of the screening length in concentrated electrolytes. Phys. Rev. Lett. 2017, 119, 026002. [Google Scholar] [CrossRef] [Green Version]
- Anousheh, N.; Solis, F.J.; Jadhao, V. Ionic structure and decay length in highly concentrated confined electrolytes. AIP Adv. 2020, 10, 125312. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z.Y.; Yuan, J.; Laaksonen, A.; Fayer, M.D. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 2020, 120, 5798–5877. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frusawa, H. Stochastic Density Functional Theory on Lane Formation in Electric-Field-Driven Ionic Mixtures: Flow-Kernel-Based Formulation. Entropy 2022, 24, 500. https://doi.org/10.3390/e24040500
Frusawa H. Stochastic Density Functional Theory on Lane Formation in Electric-Field-Driven Ionic Mixtures: Flow-Kernel-Based Formulation. Entropy. 2022; 24(4):500. https://doi.org/10.3390/e24040500
Chicago/Turabian StyleFrusawa, Hiroshi. 2022. "Stochastic Density Functional Theory on Lane Formation in Electric-Field-Driven Ionic Mixtures: Flow-Kernel-Based Formulation" Entropy 24, no. 4: 500. https://doi.org/10.3390/e24040500