Efficacy of Quantitative Muscle Ultrasound Using Texture-Feature Parametric Imaging in Detecting Pompe Disease in Children
<p>Texture-feature parametric imaging of a normal rectus femoris muscle in a 12 month old boy. (<b>a</b>) Original B-mode image, (<b>b</b>) extracted rectus femoris muscle region (indicated by the white dashed line) in the B-mode image, (<b>c</b>) autocorrelation image, (<b>d</b>) contrast image, (<b>e</b>) energy image, (<b>f</b>) entropy image, (<b>g</b>) maximum probability image, (<b>h</b>) variance image, and (<b>i</b>) cluster prominence image. F: femur bone reflection, VI: vastus intermedius muscle.</p> "> Figure 2
<p>Texture-feature parametric imaging of a pathological rectus femoris muscle in a 10 day old boy with infantile-onset Pompe disease. (<b>a</b>) Original B-mode image, (<b>b</b>) extracted rectus femoris muscle region (indicated by the white dashed line) in the B-mode image, (<b>c</b>) autocorrelation image, (<b>d</b>) contrast image, (<b>e</b>) energy image, (<b>f</b>) entropy image, (<b>g</b>) maximum probability image, (<b>h</b>) variance image, and (<b>i</b>) cluster prominence image.</p> "> Figure 3
<p>Texture-feature parametric imaging of a normal sartorius muscle in a 12 month old boy. (<b>a</b>) Original B-mode image, (<b>b</b>) extracted sartorius muscle region (indicated by the white dashed line) in the B-mode image, (<b>c</b>) autocorrelation image, (<b>d</b>) contrast image, (<b>e</b>) energy image, (<b>f</b>) entropy image, (<b>g</b>) maximum probability image, (<b>h</b>) variance image, and (<b>i</b>) cluster prominence image.</p> "> Figure 4
<p>Texture-feature parametric imaging of a pathological sartorius muscle in a five month old boy with late-onset Pompe disease. (<b>a</b>) Original B-mode image, (<b>b</b>) extracted sartorius muscle region (indicated by the white dashed line) in the B-mode image, (<b>c</b>) autocorrelation image, (<b>d</b>) contrast image, (<b>e</b>) energy image, (<b>f</b>) entropy image, (<b>g</b>) maximum probability image, (<b>h</b>) variance image, and (<b>i</b>) cluster prominence image.</p> "> Figure 5
<p>Box plots of the distributions of the seven parameters for normal rectus femoris muscles and pathological rectus femoris muscles affected by Pompe disease. (<b>a</b>) AUT: autocorrelation; (<b>b</b>) CON: contrast; (<b>c</b>) ENE: energy; (<b>d</b>) ENT: entropy; (<b>e</b>) MAXP: maximum probability; (<b>f</b>) VAR: variance; (<b>g</b>) CPR: cluster prominence; *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 6
<p>Box plots of the distributions of the seven parameters for normal sartorius muscles and pathological sartorius muscles affected by Pompe disease. (<b>a</b>) AUT: autocorrelation; (<b>b</b>) CON: contrast; (<b>c</b>) ENE: energy; (<b>d</b>) ENT: entropy; (<b>e</b>) MAXP: maximum probability; (<b>f</b>) VAR: variance; (<b>g</b>) CPR: cluster prominence; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 7
<p>Receiver operating characteristic (ROC) curves of each feature set. F1: comprising the variance and cluster prominence for rectus femoris muscles. F2: comprising the energy, variance, and cluster prominence for sartorius muscles. F3: constituting a combination of F1 and F2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ultrasound Examinations
2.3. Texture-Feature Parametric Imaging
2.4. Statistical Analysis
- (1)
- At the beginning, the initial model is an empty model, and the entrance and exit tolerances for the p-values of F-statistics are 0.05 and 0.10, respectively.
- (2)
- If any feature is not in the model and the feature has a p-value less than the entrance tolerance, add the feature with the smallest p-value to the model and repeat this step; otherwise, proceed to the next step.
- (3)
- If any feature in the model has a p-value greater than the exit tolerance, remove the feature with the largest p-value and return to step 2; otherwise, end.
- (1)
- The d-dimensional mean vectors for the different classes from the dataset are computed.
- (2)
- The within-class and between-class scatter matrices are calculated.
- (3)
- The eigenvectors and corresponding eigenvalues for the scatter matrices are estimated. An eigenvalue indicates the length or magnitude of the eigenvector.
- (4)
- The eigenvectors of the corresponding k largest eigenvalues are selected to form a d × k dimensional matrix W, where the eigenvectors are the columns of this matrix.
- (5)
- The W eigenvector matrix is used to transform the original dimensional dataset into the lower dimensional dataset. This can be summarized by the matrix multiplication: Y = X × W, where X is the original n × d-dimensional dataset, and Y is the transformed n × k-dimensional dataset in the new subspace.
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Geel, T.M.; McLaughlin, P.M.; De Leij, L.F.; Ruiters, M.H.; Niezen-Koning, K.E. Pompe disease: Current state of treatment modalities and animal models. Mol. Genet. Metab. 2007, 92, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Di Rocco, M.; Buzzi, D.; Tarò, M. Glycogen storage disease type II: Clinical overview. Acta. Myol. 2007, 26, 42–44. [Google Scholar] [PubMed]
- Cupler, E.J.; Berger, K.I.; Leshner, R.T.; Wolfe, G.I.; Han, J.J.; Barohn, R.J.; Kissel, J.T. Consensus treatment recommendations for late-onset Pompe disease. Muscle Nerve 2012, 45, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Scholten, R.R.; Pillen, S.; Verrips, A.; Zwarts, M.J. Quantitative ultrasonography of skeletal muscles in children: Normal values. Muscle Nerve 2003, 27, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Aydinli, N.; Baslo, B.; Calişkan, M.; Ertaş, M.; Ozmen, M. Muscle ultrasonography and electromyography correlation for evaluation of floppy infants. Brain Dev. 2003, 25, 22–24. [Google Scholar] [CrossRef]
- Mellies, U.; Lofaso, F. Pompe disease: A neuromuscular disease with respiratory muscle involvement. Respir. Med. 2009, 103, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Rabie, M.; Jossiphov, J.; Nevo, Y. Electromyography (EMG) accuracy compared to muscle biopsy in childhood. J. Child Neurol. 2007, 22, 803–808. [Google Scholar] [CrossRef]
- Zuberi, S.M.; Matta, N.; Nawaz, S.; Stephenson, J.B.; McWilliam, R.C.; Hollman, A. Muscle ultrasound in the assessment of suspected neuromuscular disease in childhood. Neuromuscul. Disord. 1999, 9, 203–207. [Google Scholar] [CrossRef]
- Pillen, S.; Arts, I.M.; Zwarts, M.J. Muscle ultrasound in neuromuscular disorders. Muscle Nerve 2008, 37, 679–693. [Google Scholar] [CrossRef]
- Carlier, R.Y.; Laforet, P.; Wary, C.; Mompoint, D.; Laloui, K.; Pellegrini, N.; Annane, D.; Carlier, P.G.; Orlikowski, D. Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: Involvement patterns. Neuromuscul. Disord. 2011, 21, 791–799. [Google Scholar] [CrossRef]
- Brockmann, K.; Becker, P.; Schreiber, G.; Neubert, K.; Brunner, E.; Bönnemann, C. Sensitivity and specificity of qualitative muscle ultrasound in assessment of suspected neuromuscular disease in childhood. Neuromuscul. Disord. 2007, 17, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Pillen, S.; Verrips, A.; Van Alfen, N.; Arts, I.M.; Sie, L.T.; Zwarts, M.J. Quantitative skeletal muscle ultrasound: Diagnostic value in childhood neuromuscular disease. Neuromuscul. Disord. 2007, 17, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Pillen, S. Skeletal muscle ultrasound. Eur. J. Transl. Myol. 2010, 1, 145–155. [Google Scholar] [CrossRef]
- Zaidman, C.M.; Van Alfen, N. Ultrasound in the assessment of myopathic disorders. J. Clin. Neurophysiol. 2016, 33, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Reimers, K.; Reimers, C.D.; Wagner, S.; Paetzke, I.; Pongratz, D.E. Skeletal muscle sonography: A correlative study of echogenicity and morphology. J. Ultrasound Med. 1993, 12, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Heckmatt, J.Z.; Leeman, S.; Dubowitz, V. Ultrasound imaging in the diagnosis of muscle disease. J. Pediatr. 1982, 101, 656–660. [Google Scholar] [CrossRef]
- Pohle, R.; Fischer, D.; Von Rohden, L. Computer-supported tissue characterization in musculoskeletal ultrasonography. Ultraschall. Med. 2000, 21, 245–252. [Google Scholar] [PubMed]
- Pillen, S.; Van Dijk, J.P.; Weijers, G.; Raijmann, W.; De Korte, C.L.; Zwarts, M.J. Quantitative gray-scale analysis in skeletal muscle ultrasound: A comparison study of two ultrasound devices. Muscle Nerve 2009, 39, 781–786. [Google Scholar] [CrossRef]
- König, T.; Steffen, J.; Rak, M.; Neumann, G.; von Rohden, L.; Tönnies, K.D. Ultrasound texture-based CAD system for detecting neuromuscular diseases. Int. J. Comput. Assist Radiol. Surg. 2015, 10, 1493–1503. [Google Scholar] [CrossRef]
- Gaitini, D.; Baruch, Y.; Ghersin, E.; Veitsman, E.; Kerner, H.; Shalem, B.; Yaniv, G.; Sarfaty, C.; Azhari, H. Feasibility study of ultrasonic fatty liver biopsy: Texture vs. attenuation and backscatter. Ultrasound Med. Biol. 2004, 30, 1321–1327. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Yang, K.C.; Lee, M.J.; Huang, K.C.; Chen, J.D.; Yeh, C.K. Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease. Sci. Rep. 2016, 6, 35083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinari, F.; Caresio, C.; Acharya, U.R.; Mookiah, M.R.; Minetto, M.A. Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Ultrasound Med. Biol. 2015, 41, 2520–2532. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Hughes, M.S. Analysis of ultrasonic waveforms using Shannon entropy. IEEE Ultrason. Symp. Proc. 1992, 1, 1205–1209. [Google Scholar]
- Lin, Y.H.; Liao, Y.Y.; Yeh, C.K.; Yang, K.C.; Tsui, P.H. Ultrasound entropy imaging of nonalcoholic fatty liver disease: Association with metabolic syndrome. Entropy 2018, 20, 893. [Google Scholar] [CrossRef]
- Jansen, M.; Van Alfen, N.; Nijhuis-Van Der Sanden, M.W.; Van Dijk, J.P.; Pillen, S.; De Groot, I.J. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul. Disord. 2012, 22, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Koppaka, S.; Shklyar, I.; Rutkove, S.B.; Darras, B.T.; Anthony, B.W.; Zaidman, C.M.; Wu, J.S. Quantitative ultrasound assessment of Duchenne muscular dystrophy using edge detection analysis. J. Ultrasound Med. 2016, 35, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.S.; Marsh, J.N.; Wallace, K.D.; Donahue, T.A.; Connolly, A.M.; Lanza, G.M.; Wickline, A.S. Sensitive ultrasonic detection of dystrophic skeletal muscle in patients with Duchenne muscular dystrophy using an entropy-based signal receiver. Ultrasound Med. Biol. 2007, 33, 1236–1243. [Google Scholar] [CrossRef]
- Gao, P.; Li, Z.; Zhang, H. Thermodynamics-based evaluation of various improved Shannon entropies for configurational information of gray-level images. Entropy 2018, 20, 19. [Google Scholar] [CrossRef]
- Maurits, N.M.; Bollen, A.E.; Windhausen, A.; De Jager, A.E.; Van Der Hoeven, J.H. Muscle ultrasound analysis: Normal values and differentiation between myopathies and neuropathies. Ultrasound Med. Biol. 2003, 29, 215–225. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Martínez-Payá, J.J.; Ríos-Díaz, J.; Del Baño-Aledo, M.E.; Tembl-Ferrairó, J.I.; Vazquez-Costa, J.F.; Medina-Mirapeix, F. Quantitative muscle ultrasonography using textural analysis in Amyotrophic lateral sclerosis. Ultrason. Imaging 2017, 39, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Matta, T.T.D.; Pereira, W.C.A.; Radaelli, R.; Pinto, R.S.; Oliveira, L.F. Texture analysis of ultrasound images is a sensitive method to follow-up muscle damage induced by eccentric exercise. Clin. Physiol. Funct. Imaging 2018, 38, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Wu, J.C.; Li, C.H.; Yeh, C.K. Texture feature analysis for breast ultrasound image enhancement. Ultrason. Imaging 2011, 33, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Hwu, W.L.; Lee, N.C. Pompe disease: Early diagnosis and early treatment make a difference. Pediatr. Neonatol. 2013, 54, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tridandapani, S.; Beitler, J.J.; Yu, D.S.; Yoshida, E.J.; Curran, W.J.; Liu, T. Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: An in vivo study of late toxicity. Med. Phys. 2012, 39, 5732–5739. [Google Scholar] [CrossRef] [PubMed]
- Valckx, F.M.J.; Thijssen, J.M. Characterization of echographic image texture by cooccurrence matrix parameters. Ultrasound Med. Biol. 1997, 23, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.D.; Shan, J.; Ju, W.; Guo, Y.; Zhang, L. Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit. 2010, 43, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Pope, P.T.; Webster, J.T. The use of an F-statistic in stepwise regression procedures. Technometrics 1972, 14, 327–340. [Google Scholar] [CrossRef]
- Hastie, T.; Buja, A.; Tibshirani, R. Penalized discriminant–analysis. Ann. Stat. 1995, 23, 73–102. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.E.; Hsu, T.R.; Lee, Y.H.; Wang, H.K.; Chiou, H.J.; Niu, D.M. Muscle ultrasound: A useful tool in newborn screening for infantile onset pompe disease. Medicine 2017, 96, e8415. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Lee, N.C.; Thurberg, B.L.; Chiang, S.C.; Zhang, X.K.; Keutzer, J.; Huang, A.C.; Wu, M.H.; Huang, P.H.; Tsai, F.J.; et al. Pompe disease in infants: Improving the prognosis by newborn screening and early treatment. Pediatrics 2009, 124, e1116–e1125. [Google Scholar] [CrossRef] [PubMed]
Variable | Normal (n = 6) | Pompe Disease (n = 22) | |
---|---|---|---|
LOPD | IOPD | ||
Male:Female | 4:2 | 12:5 | 2:3 |
Age (Mean) | 12.14 months | 21.82 months | 0.04 months |
GAA activity by DBS (Mean ± SD) | - | 0.40 ± 0.22 μm/L/h | 0.08 ± 0.03 μm/L/h |
LDH level (Mean ± SD) | - | 459.1 ± 271.3 U/L | 511.2 ± 90.6 U/L |
CK level (Mean ± SD) | - | 314.7 ± 329.7 U/L | 661.0 ± 384.9 U/L |
ALT level (Mean ± SD) | - | 51.7 ± 50.4 U/L | 41.4 ± 18.1 U/L |
AST level (Mean ± SD) | - | 90.8 ± 88.2 U/L | 94.4 ± 17.8 U/L |
Feature Sets Performance | F1 * | F2 | F3 |
---|---|---|---|
Accuracy (%) | 94.6 | 85.7 | 94.6 |
Specificity (%) | 83.3 | 91.7 | 100 |
Sensitivity (%) | 97.7 | 84.1 | 93.2 |
PPV (%) | 95.6 | 97.6 | 85.7 |
NPV (%) | 90.9 | 78.6 | 100 |
Az (mean ± standard error) | 0.95 ± 0.03 | 0.90 ± 0.04 | 0.98 ± 0.02 |
Az (95% CI) | 0.88–1.00 | 0.82–0.98 | 0.95–1.00 |
Texture Feature Parameters | IOPD | LOPD | |
---|---|---|---|
Mean ± SD | p-Value | ||
CPR for rectus femoris muscles * | 6.00 ± 2.18 | 8.01 ± 2.64 | <0.0001 |
AUT for sartorius muscles | 5.90 ± 1.49 | 8.63 ± 2.60 | 0.0002 |
ENT for sartorius muscles | 0.89 ± 0.16 | 1.05 ± 0.17 | 0.0151 |
MAXP for sartorius muscles | 0.69 ± 0.07 | 0.62 ± 0.06 | 0.0176 |
VAR for sartorius muscles | 16.52 ± 4.07 | 23.12 ± 7.84 | 0.0071 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiou, H.-J.; Yeh, C.-K.; Hwang, H.-E.; Liao, Y.-Y. Efficacy of Quantitative Muscle Ultrasound Using Texture-Feature Parametric Imaging in Detecting Pompe Disease in Children. Entropy 2019, 21, 714. https://doi.org/10.3390/e21070714
Chiou H-J, Yeh C-K, Hwang H-E, Liao Y-Y. Efficacy of Quantitative Muscle Ultrasound Using Texture-Feature Parametric Imaging in Detecting Pompe Disease in Children. Entropy. 2019; 21(7):714. https://doi.org/10.3390/e21070714
Chicago/Turabian StyleChiou, Hong-Jen, Chih-Kuang Yeh, Hsuen-En Hwang, and Yin-Yin Liao. 2019. "Efficacy of Quantitative Muscle Ultrasound Using Texture-Feature Parametric Imaging in Detecting Pompe Disease in Children" Entropy 21, no. 7: 714. https://doi.org/10.3390/e21070714
APA StyleChiou, H.-J., Yeh, C.-K., Hwang, H.-E., & Liao, Y.-Y. (2019). Efficacy of Quantitative Muscle Ultrasound Using Texture-Feature Parametric Imaging in Detecting Pompe Disease in Children. Entropy, 21(7), 714. https://doi.org/10.3390/e21070714