An Effective Bearing Fault Diagnosis Technique via Local Robust Principal Component Analysis and Multi-Scale Permutation Entropy
<p>Illustration of the robust principal component analysis (RPCA); A signal trajectory matrix <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>X</mi> </mstyle> <mo>∈</mo> <msup> <mo>ℝ</mo> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math> can be decomposed into a low rank feature component <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>L</mi> </mstyle> <mo>∈</mo> <msup> <mo>ℝ</mo> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math> and a sparse component <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>S</mi> </mstyle> <mo>∈</mo> <msup> <mo>ℝ</mo> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 2
<p>Illustration of the proposed LRPCA method; in the different high-dimensional phase space <math display="inline"><semantics> <mrow> <mi mathvariant="bold-script">T</mi> <mo stretchy="false">(</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> associated with the local selected anchor point <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the signal trajectory matrix <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>X</mi> </mstyle> <mo>∈</mo> <msup> <mo>ℝ</mo> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math> can be decomposed into a low rank component <math display="inline"><semantics> <mrow> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>L</mi> </mstyle> <mrow> <msub> <mi>e</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>∈</mo> <msup> <mo>ℝ</mo> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math> and a sparse component <math display="inline"><semantics> <mrow> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>S</mi> </mstyle> <mrow> <msub> <mi>e</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>∈</mo> <msup> <mo>ℝ</mo> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>×</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 3
<p>Illustration of the coarse-grained and data segments of the time series with <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, as well as the all <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>!</mo> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> type of ordinal patterns.</p> "> Figure 4
<p>A simulated fault feature signal of a bearing’s inner race; (<b>a</b>) signal waveform; (<b>b</b>) signal spectrum.</p> "> Figure 5
<p>The simulated fault feature signal of bearing outer race; (<b>a</b>) signal waveform; (<b>b</b>) signal spectrum.</p> "> Figure 6
<p>The MSPE of different types of simulated signals; (<b>a</b>) five types of signal: the two bearing fault feature signals shown as <a href="#entropy-21-00959-f004" class="html-fig">Figure 4</a> and <a href="#entropy-21-00959-f005" class="html-fig">Figure 5</a>, a harmonic signal with the main frequency of 150 Hz, a shock signal with the main frequency of 150 Hz, and a Gaussian white noise signal; (<b>b</b>) the MSPEs of four feature signals in <a href="#entropy-21-00959-f006" class="html-fig">Figure 6</a>a mixed with Gaussian white noise (signal to noise ratio (SNR) = −5).</p> "> Figure 7
<p>The flowchart of the proposed effective fault diagnosis technique via LRPCA and MSPE.</p> "> Figure 8
<p>The simulated shock signal and harmonic signal; (<b>a</b>) shock signal waveform; (<b>b</b>) harmonic signal waveform.</p> "> Figure 9
<p>Comparison of the de-nosing performance of four methods when white Gaussian noise of varying SNR is added to the multi-component signal.</p> "> Figure 10
<p>The simulated multi-component signal contains a strong white Gaussian noise with the SNR of −5 db; (<b>a</b>) signal waveform; (<b>b</b>) signal spectrum.</p> "> Figure 11
<p>The analysis result of the wavelet shrinkage denoising method; (<b>a</b>) waveform of the extracted fault feature signal; (<b>b</b>) spectrum of the extracted fault feature signal.</p> "> Figure 12
<p>The analysis result of the basis pursuit denoising method; (<b>a</b>) waveform of the extracted fault feature signal; (<b>b</b>) spectrum of the extracted fault feature signal.</p> "> Figure 13
<p>The analysis result of the EMD method; (<b>a</b>) waveforms of top 12 IMFs; (<b>b</b>,<b>d</b>) waveform and spectrum of IMF 3; (<b>c</b>,<b>e</b>) waveform and spectrum of IMF 4.</p> "> Figure 14
<p>The analysis result of the SSA method; (<b>a</b>) waveform of the one-dimensional component signals; (<b>b</b>) waveform of the extracted fault feature signal; (<b>c</b>) spectrum of the extracted fault feature signal.</p> "> Figure 15
<p>Analysis result of the proposed technique; (<b>a</b>) waveform of the one-dimensional component signals; (<b>b</b>) the MSPE of the components; (<b>c</b>) waveform of the extracted fault feature signal; (<b>d</b>) spectrum of the extracted fault feature signal.</p> "> Figure 16
<p>Bearing-gear fault experiment table; (<b>a</b>) physical photograph; (<b>b</b>) structural drawing: 1—AC motor; 2—the mounting position of fault bearing; 3—magnetic powder brake; 4—gearbox.</p> "> Figure 17
<p>The acquired bearing fault signal; (<b>a</b>) signal waveform; (<b>b</b>) signal spectrum.</p> "> Figure 18
<p>Analysis result of the wavelet shrinkage denoising method; (<b>a</b>) waveform of the extracted fault feature signal; (<b>b</b>) spectrum of the extracted fault feature signal.</p> "> Figure 19
<p>Analysis result of the basis pursuit denoising method; (<b>a</b>) waveform of the extracted fault feature signal; (<b>b</b>) spectrum of the extracted fault feature signal.</p> "> Figure 20
<p>Analysis result of the EMD method; (<b>a</b>) waveforms of top 12 IMFs; (<b>b</b>,<b>d</b>) waveform and spectrum of IMF 1; (<b>c</b>,<b>e</b>) waveform and spectrum of IMF 8.</p> "> Figure 21
<p>Analysis result of the SSA method; (<b>a</b>) waveform of the extracted fault feature signal; (<b>b</b>) spectrum of the extracted fault feature signal. The fault feature extraction results of SSA. The peaks of the fault feature frequency (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>o</mi> </msub> </mrow> </semantics></math>) and its triple frequency (<math display="inline"><semantics> <mrow> <mn>3</mn> <msub> <mi>f</mi> <mi>o</mi> </msub> </mrow> </semantics></math>) were obvious in the spectrum. But there are still many interference peaks and noise, which affect the identification of the fault feature. These above analysis results indicate that neither EMD nor SSA can provide a good fault diagnosis performance for the experimental fault signal.</p> "> Figure 22
<p>Analysis result of the proposed technique; (<b>a</b>) waveform of the one-dimensional component signals; (<b>b</b>) the MSPE of the components; (<b>c</b>) waveform of the extracted fault feature signal; (<b>d</b>) spectrum of the extracted fault feature signal.</p> ">
Abstract
:1. Introduction
2. Theory Description
2.1. Notations and Abbreviations
2.2. Decomposing a Signal into Single-Components via LRPCA
2.2.1. RPCA
2.2.2. LRPCA
Algorithm 1 solve (8) by ADMM |
Input: signal trajectory matrix ; |
Parameter: number of anchor points: ; regularization parameter: ; |
for all i = 1:, parallel do; |
1. select uniformly in , and calculate by Equation (7); |
2. ; |
Initialize: , , , , ; |
while not converged do; |
3. fix the others and update by: |
4. fix the others and update by: |
5. update Lagrange multiplier : ; |
6. update : ; |
7. check the convergence conditions: |
end; |
end; |
output: . |
2.3. Identification of Bearing Fault-Related Signal through MSPE
2.3.1. Basic Theory of MSPE
- (1)
- Transform into a successive coarse-grained time series () by averaging the time data points in with the given non-overlapping time slice of the increasing length, . Then, each element of is defined as:
- (2)
- For each coarse-grained time series , the PE value needs to be calculated. Firstly, is cut into a series of data segments through and :There will be data segments in total. Then, there are different types of ordinal patterns () in the data segments. Then, count the frequency of each pattern and denote them as . Thus, the relative frequency of each pattern can be written as:Finally, the PE of is expressed as:For convenience, we normalize by dividing its maximum value :
- (3)
- The PE values of different coarse-grained time series can be obtained and plotted as a function of the scale factors. The vector , formed by the set of PE values, is the MSPE of the original time series. Figure 3 shows the process of coarse granulation and the data segmentation of a time series.
2.3.2. Mathematical Model of Bearing Fault Feature Signal
2.3.3. Identification of Fault-Related Components through MSPE
2.4. The Process of the Effective Fault Diagnosis Technique
- (1)
- Using the proposed LRPCA method to decompose the trajectory matrix consisting of the acquired bearing fault signal into multiple low-rank matrices and to suppress the noise synchronously;
- (2)
- Convert the low-rank matrices obtained into one-dimensional component signals by inverse transformations and identify the fault-related components from these signals through the MPSE characteristic of the signal;
- (3)
- Using the weighted Nadaraya–Watson regression model and inverse transform to combine the low-rank matrices corresponding to identified components into a one-dimensional signal to represent the extracted fault feature component;
- (4)
- Confirm the bearing fault by identifying the fault-related frequency contents from the signal spectrum.
3. Experiments
3.1. Numerical Simulation Experiment
3.2. Experimental Signal Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Wang, S.; Selesnick, I.; Cai, G.; Feng, Y.; Sui, X.; Chen, X. Nonconvex sparse regularization and convex optimization for bearing fault diagnosis. IEEE Trans. Ind. Electron. 2018, 65, 7332–7342. [Google Scholar] [CrossRef]
- Lv, Y.; Yuan, R.; Song, G. Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing. Mech. Syst. Signal Process. 2016, 81, 219–234. [Google Scholar] [CrossRef]
- Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Kou, Y.; Zhang, J.; Ning, S.; Zhao, Z. Weak fault diagnosis of wind turbine gearboxes based on MED-LMD. Entropy 2017, 19, 277. [Google Scholar] [CrossRef]
- Chen, J.; Pan, J.; Li, Z.; Zi, Y.; Chen, X. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 2016, 89, 80–92. [Google Scholar] [CrossRef]
- Bab, S.; Najafi, M.; Sola, J.F.; Abbasi, A. Annihilation of non-stationary vibration of a gas turbine rotor system under rub-impact effect using a nonlinear absorber. Mech. Mach. Theory 2019, 139, 379–406. [Google Scholar] [CrossRef]
- Liang, M.; Bozchalooi, I.S. An energy operator approach to joint application of amplitude and frequency-demodulations for bearing fault detection. Mech. Syst. Signal Process. 2010, 24, 1473–1494. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Ferracuti, F.; Freddi, A.; Monteriu, A. Statistical Spectral Analysis for Fault Diagnosis of Rotating Machines. IEEE Trans. Ind. Electron. 2017, 65, 4301–4310. [Google Scholar] [CrossRef]
- Tang, B.; Liu, W.; Song, T. Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution. Renew. Energy 2010, 35, 2862–2866. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Pan, J.; Chen, G.; Zi, Y.; Yuan, J.; Chen, B.; He, Z. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2016, 70, 1–35. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Liang, L.; Jiang, K. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2015, 54, 259–276. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, S.; Zhao, H.; Yang, X. A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing. IEEE Access 2018, 6, 35042–35056. [Google Scholar] [CrossRef]
- Xiao, M.; Wen, K.; Zhang, C.; Zhao, X.; Wei, W.; Wu, D. Research on fault feature extraction method of rolling bearing based on NMD and wavelet threshold denoising. Shock Vib. 2018. [Google Scholar] [CrossRef]
- Pachori, R.B.; Nishad, A. Cross-terms reduction in the Wigner–Ville distribution using tunable-Q wavelet transform. Signal Process. 2016, 120, 288–304. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, J.; Dong, G. Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum. Mech. Syst. Signal Process. 2011, 25, 1773–1785. [Google Scholar] [CrossRef]
- Liu, W.Y.; Gao, Q.W.; Ye, G.; Ma, R.; Lu, X.N.; Han, J.G. A novel wind turbine bearing fault diagnosis method based on Integral Extension LMD. Measurement 2015, 74, 70–77. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wang, R.; Huang, W. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 2016, 360, 277–299. [Google Scholar] [CrossRef]
- Lv, Y.; Yuan, R.; Wang, T.; Li, H.; Song, G. Health degradation monitoring and early fault diagnosis of a rolling bearing based on CEEMDAN and improved MMSE. Materials 2018, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Imaouchen, Y.; Kedadouche, M.; Alkama, R.; Thomas, M. A frequency-weighted energy operator and complementary ensemble empirical mode decomposition for bearing fault detection. Mech. Syst. Signal Process. 2017, 82, 103–116. [Google Scholar] [CrossRef]
- Bustos, A.; Rubio, H.; Castejón, C.; García-Prada, J. EMD-based methodology for the identification of a high-speed train running in a gear operating state. Sensors 2018, 18, 793. [Google Scholar] [CrossRef] [PubMed]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Lv, Y.; Dang, Z.; Xiao, H.; Yu, X. Quaternion singular spectrum analysis using convex optimization and its application to fault diagnosis of rolling bearing. Measurement 2017, 103, 321–332. [Google Scholar] [CrossRef]
- Kouchaki, S.; Sanei, S.; Arbon, E.L.; Dijk, D.J. Tensor based singular spectrum analysis for automatic scoring of sleep EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Song, L.; Chen, P.; Guan, Z.; Fang, Z.; Li, K. An effective singular value selection and bearing fault signal filtering diagnosis method based on false nearest neighbors and statistical information criteria. Sensors 2018, 18, 2235. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nie, F.; Huang, H.; Makedon, F. Fast nonnegative matrix tri-factorization for large-scale data co-clustering. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Lin, T.; Zha, H. Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 796–809. [Google Scholar]
- Erichson, N.B.; Voronin, S.; Brunton, S.L.; Kutz, J.N. Randomized Matrix Decompositions Using R. J. Stat. Softw. 2019, 89, 1–48. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Graph-regularized fast and robust principal component analysis for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3185–3195. [Google Scholar] [CrossRef]
- Dang, C.; Radha, H. RPCA-KFE: Key frame extraction for video using robust principal component analysis. IEEE Trans. Image Process. 2015, 24, 3742–3753. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhu, L.; Bao, W.Z.; Jiang, Y.L.; Yuan, C.A.; Huang, D.S. Convex local sensitive low rank matrix approximation. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017. [Google Scholar]
- Morabito, F.C.; Labate, D.; La Foresta, F.; Bramanti, A.; Morabito, G.; Palamara, I. Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy 2012, 14, 1186–1202. [Google Scholar] [CrossRef]
- Yi, C.; Lv, Y.; Ge, M.; Xiao, H.; Yu, X. Tensor singular spectrum decomposition algorithm based on permutation entropy for rolling bearing fault diagnosis. Entropy 2017, 19, 139. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Zhou, J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 2015, 69, 164–179. [Google Scholar] [CrossRef]
- Zheng, J.; Pan, H.; Yang, S.; Cheng, J. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis. Mech. Syst. Signal Process. 2018, 99, 229–243. [Google Scholar] [CrossRef]
- Ge, M.; Lv, Y.; Yi, C.; Zhang, Y.; Chen, X. A Joint Fault Diagnosis Scheme Based on Tensor Nuclear Norm Canonical Polyadic Decomposition and Multi-Scale Permutation Entropy for Gears. Entropy 2018, 20, 161. [Google Scholar] [CrossRef]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717. [Google Scholar] [CrossRef]
- Cai, Z. Weighted nadaraya–watson regression estimation. Stat. Probab. Lett. 2001, 51, 307–318. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Lebanon, G.; Singer, Y.; Bengio, S. LLORMA: Local low-rank matrix approximation. J. Mach. Learn. Res. 2016, 17, 442–465. [Google Scholar]
- Jones, M.C. Simple boundary correction for kernel density estimation. Stat. Comput. 1993, 3, 135–146. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lin, Z.; Zhang, C.; Gao, J. Robust latent low rank representation for subspace clustering. Neurocomputing 2014, 145, 369–373. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Proceedings of the Advances in Neural Information Processing Systems 2009, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088. [Google Scholar]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM (JACM) 2011, 58, 11. [Google Scholar] [CrossRef]
- Lv, Y.; Ge, M.; Zhang, Y.; Yi, C.; Ma, Y. A Novel Demodulation Analysis Technique for Bearing Fault Diagnosis via Energy Separation and Local Low-Rank Matrix Approximation. Sensors 2019, 19, 3755. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Luo, Z.Q. On the linear convergence of the alternating direction method of multipliers. Math. Program. 2017, 162, 165–199. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, M.; Wu, L.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices; Coordinated Science Laboratory Report no. UILU-ENG-09-2215, DC-247; Coordinated Science Laboratory: Urbana, IL, USA, 2009. [Google Scholar]
- Feng, Z.; Ma, H.; Zuo, M.J. Amplitude and frequency demodulation analysis for fault diagnosis of planet bearings. J. Sound Vib. 2016, 382, 395–412. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J.; Chobsaard, S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech. Syst. Signal Process. 2001, 15, 945–962. [Google Scholar] [CrossRef]
- Feng, Z.; Zuo, M.J.; Qu, J.; Tian, T.; Liu, Z. Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes. Mech. Syst. Signal Process. 2013, 40, 56–75. [Google Scholar] [CrossRef]
- Cheng, J.S.; Yu, D.J.; Yu, Y. Research on the intrinsic mode function (IMF) criterion in EMD method. Mech. Syst. Signal Process. 2006, 20, 817–824. [Google Scholar]
- Tanner, J.; Wei, K. Normalized iterative hard thresholding for matrix completion. SIAM J. Sci. Comput. 2013, 35, S104–S125. [Google Scholar] [CrossRef]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
I | L | A | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
800 | 0.02/ | 250 | 100 | 1 | 0.0004 | 2/ | 2000 Hz | 30 Hz | 125 Hz |
Number of Roller Elements | Roller Diameter (mm) | Medium Diameter (mm) | Contact Angle | Rotation Frequency (Hz) | Fault Frequency (Hz) | Sampling Points | Sampling Frequency (Hz) |
---|---|---|---|---|---|---|---|
= 7.225 | = 51.05 | N = 20,000 | = 10,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, M.; Lv, Y.; Zhang, Y.; Yi, C.; Ma, Y. An Effective Bearing Fault Diagnosis Technique via Local Robust Principal Component Analysis and Multi-Scale Permutation Entropy. Entropy 2019, 21, 959. https://doi.org/10.3390/e21100959
Ge M, Lv Y, Zhang Y, Yi C, Ma Y. An Effective Bearing Fault Diagnosis Technique via Local Robust Principal Component Analysis and Multi-Scale Permutation Entropy. Entropy. 2019; 21(10):959. https://doi.org/10.3390/e21100959
Chicago/Turabian StyleGe, Mao, Yong Lv, Yi Zhang, Cancan Yi, and Yubo Ma. 2019. "An Effective Bearing Fault Diagnosis Technique via Local Robust Principal Component Analysis and Multi-Scale Permutation Entropy" Entropy 21, no. 10: 959. https://doi.org/10.3390/e21100959
APA StyleGe, M., Lv, Y., Zhang, Y., Yi, C., & Ma, Y. (2019). An Effective Bearing Fault Diagnosis Technique via Local Robust Principal Component Analysis and Multi-Scale Permutation Entropy. Entropy, 21(10), 959. https://doi.org/10.3390/e21100959