Kinetic Models of Discrete Opinion Dynamics on Directed Barabási–Albert Networks
<p>Fourth-order Binder cumulant <math display="inline"><semantics> <msub> <mi>U</mi> <mn>4</mn> </msub> </semantics></math> as a function of the disorder parameter <span class="html-italic">p</span> for several number of nodes <span class="html-italic">N</span> and two connectivity numbers: <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (<b>b</b>). The vertical arrows indicate the corresponding estimate of <math display="inline"><semantics> <msub> <mi>p</mi> <mi>c</mi> </msub> </semantics></math>, which is given in <a href="#entropy-21-00942-t001" class="html-table">Table 1</a>. For clarity, only the general trend of the cumulant behavior is shown without the error bars.</p> "> Figure 2
<p>(Color on-line). Ln-ln plot of the average opinion at the estimated critical disorder <math display="inline"><semantics> <mrow> <mi>O</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> as a function of the number of nodes <span class="html-italic">N</span> for different connectivities <span class="html-italic">z</span>. The lines are the best linear fit with the slope being the critical exponent ratio <math display="inline"><semantics> <mrow> <mi>β</mi> <mo stretchy="false">/</mo> <mi>ν</mi> </mrow> </semantics></math>. Please note that the shown error bars are smaller than the symbol sizes.</p> "> Figure 3
<p>Ln-ln plot of the susceptibility <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at the estimated <math display="inline"><semantics> <msub> <mi>p</mi> <mi>c</mi> </msub> </semantics></math> as a function of the number of nodes <span class="html-italic">N</span> for different connectivities <span class="html-italic">z</span>. The lines are the best linear fit with the slope being the critical exponent ratio <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo stretchy="false">/</mo> <mi>ν</mi> </mrow> </semantics></math>. The displayed error bars are smaller than the symbol sizes.</p> "> Figure 4
<p>Ln-ln plot of the susceptibility <math display="inline"><semantics> <mi>χ</mi> </semantics></math> as a function of <span class="html-italic">N</span> for several values of the connectivity <span class="html-italic">z</span>. Open symbols correspond to the susceptibility evaluated at <math display="inline"><semantics> <msub> <mi>p</mi> <mi>c</mi> </msub> </semantics></math>, while full symbols are evaluated at the maximum value of the susceptibility <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. The lines are linear fits with the corresponding exponents ratio given in <a href="#entropy-21-00942-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Ln-ln plot of the maximum of the susceptibility <math display="inline"><semantics> <msub> <mi>χ</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> at <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> as a function of the number of nodes <span class="html-italic">N</span> for different connectivities <span class="html-italic">z</span>. The lines are the best linear fit with the slope giving the critical exponent ratio <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo stretchy="false">/</mo> <mi>ν</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>Critical exponents ratio <math display="inline"><semantics> <mrow> <mi>β</mi> <mo stretchy="false">/</mo> <mi>ν</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo stretchy="false">/</mo> <mi>ν</mi> </mrow> </semantics></math>, and half value of the effective dimension <math display="inline"><semantics> <msub> <mi>D</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math> as a function of the connectivity <span class="html-italic">z</span>. Full symbols correspond to the present BCS model, and open symbols to the MVM [<a href="#B8-entropy-21-00942" class="html-bibr">8</a>], both on the same DBAN. Full and dashed lines are only guide to the eyes.</p> "> Figure 7
<p>Phase diagram in the connectivity <span class="html-italic">z</span> and disorder <span class="html-italic">p</span> parameters plane for the BCS model (circles) and MVM (squares) on the DBAN.</p> ">
Abstract
:1. Introduction
2. Model and Simulations
2.1. Biswas-Chatterjee-Sen Model
2.2. Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barabási, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.-L. Scale-free networks: a decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.W.S.; Plascak, J.A. Magnetic models on various topologies. J. Phys. Conf. Ser. 2014, 487, 012011. [Google Scholar] [CrossRef]
- Sumour, M.A.; Shabat, M.M. Monte Carlo simulation of Ising model on directed Barabasi–Albert Network. Int. J. Mod. Phys. C 2005, 16, 585–589. [Google Scholar] [CrossRef]
- Sumour, M.A.; Shabat, M.M.; Stauffer, D. Absence of ferromagnetism in Ising model on directed Barabasi-Albert network. Islamic Univ. J. 2006, 14, 209. [Google Scholar]
- De Oliveira, M.J. Isotropic majority-vote model on a square lattice. J. Stat. Phys. 1992, 66, 273–281. [Google Scholar] [CrossRef]
- Lima, F.W.S. Majority-vote model on (3, 4, 6, 4) and (34, 6) Archimedean lattices. Int. J. Modern Phys. C 2006, 17, 1273–1283. [Google Scholar] [CrossRef]
- Biswas, S.; Chatterjee, A.; Sen, P. Disorder induced phase transition in kinetic models of opinion dynamics. Physica A 2012, 391, 3257–3265. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Chatterjee, A. Disorder-induced phase transition in an opinion dynamics model: Results in two and three dimensions. Phys. Rev. E 2019, 94, 062317. [Google Scholar] [CrossRef] [PubMed]
- Binder, K.; Heermann, D.W. Monte Carlo Simulation in Statistical Phyics; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Lima, F.W.S. Majority-vote on undirected Barabási-Albert networks. Commun. Comput. Phys. 2007, 2, 358–366. [Google Scholar] [CrossRef]
- Grinstein, G.; Jayaprakash, C.; He, Y. Statistical mechanics of probabilistic cellular automata. Phys. Rev. Lett. 1985, 55, 2527. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.F.C.; Brady Moreira, F.C. Majority-vote model on random graphs. Phys. Rev. E 2005, 71, 016123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
z | |||||
---|---|---|---|---|---|
2 | |||||
4 | |||||
6 | |||||
8 | |||||
10 | |||||
20 | |||||
50 | |||||
100 | |||||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, F.W.S.; Plascak, J.A. Kinetic Models of Discrete Opinion Dynamics on Directed Barabási–Albert Networks. Entropy 2019, 21, 942. https://doi.org/10.3390/e21100942
Lima FWS, Plascak JA. Kinetic Models of Discrete Opinion Dynamics on Directed Barabási–Albert Networks. Entropy. 2019; 21(10):942. https://doi.org/10.3390/e21100942
Chicago/Turabian StyleLima, F. Welington S., and J. A. Plascak. 2019. "Kinetic Models of Discrete Opinion Dynamics on Directed Barabási–Albert Networks" Entropy 21, no. 10: 942. https://doi.org/10.3390/e21100942
APA StyleLima, F. W. S., & Plascak, J. A. (2019). Kinetic Models of Discrete Opinion Dynamics on Directed Barabási–Albert Networks. Entropy, 21(10), 942. https://doi.org/10.3390/e21100942