Generalized Statistical Mechanics at the Onset of Chaos
"> Figure 1
<p>Numerical corroboration of Equation (<a href="#FD11-entropy-15-05178" class="html-disp-formula">11</a>) for the tangent bifurcation. Panel (<b>a</b>) corresponds to the left side of the first tangent bifurcation for <math display="inline"> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>2</mn> </mrow> </math>. Circles represent <math display="inline"> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mo form="prefix">ln</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>ξ</mi> <mi>t</mi> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </math> for the iterates of <math display="inline"> <msup> <mi>f</mi> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> </math> and <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>∼</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </math>. Panel (<b>b</b>) corresponds to the right side of the first tangent bifurcation for <math display="inline"> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>2</mn> </mrow> </math>. Circles represent <math display="inline"> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mo form="prefix">ln</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>ξ</mi> <mi>t</mi> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </math> for the iterates of <math display="inline"> <msup> <mi>f</mi> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> </math> and <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>∼</mo> <mo>+</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </math>. See text for description.</p> "> Figure 2
<p>Numerical corroboration of Equation (<a href="#FD11-entropy-15-05178" class="html-disp-formula">11</a>) for the first pitchfork bifurcation with <math display="inline"> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>1.75</mn> </mrow> </math>. Circles represent <math display="inline"> <mrow> <msubsup> <mi>x</mi> <mrow> <mn>0</mn> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msubsup> <msub> <mo form="prefix">ln</mo> <mfrac> <mn>5</mn> <mn>3</mn> </mfrac> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>ξ</mi> <mi>t</mi> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </math> for the iterates of <math display="inline"> <msup> <mi>f</mi> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> </math> and <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>∼</mo> <mo>+</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </math>. See text for description.</p> "> Figure 3
<p>Absolute values of positions in logarithmic scales of the first 1000 iterations <span class="html-italic">τ</span> for a trajectory of the logistic map at the onset of chaos <math display="inline"> <msub> <mi>μ</mi> <mi>∞</mi> </msub> </math> with initial condition <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </math>. The numbers correspond to iteration times. The power-law decay of the time subsequences described in the text can be clearly appreciated.</p> "> Figure 4
<p>The <span class="html-italic">q</span>-logarithm of sensitivity to initial conditions <math display="inline"> <msub> <mi>ξ</mi> <mi>t</mi> </msub> </math> <span class="html-italic">vs</span>. <span class="html-italic">t</span>, with <math display="inline"> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mo form="prefix">ln</mo> <mn>2</mn> <mo>/</mo> <mo form="prefix">ln</mo> <mi>α</mi> <mo>=</mo> <mn>0.2445</mn> <mo>…</mo> </mrow> </math> and initial conditions <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </math> and <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>δ</mi> <mo>≃</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>8</mn> </mrow> </msup> </mrow> </math> (circles). The full line is the linear regression, <math display="inline"> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </math>. As required, the numerical results reproduce a straight line with a slope very close to <math display="inline"> <mrow> <msub> <mi>λ</mi> <mi>q</mi> </msub> <mo>=</mo> <mo form="prefix">ln</mo> <mi>α</mi> <mo>/</mo> <mo form="prefix">ln</mo> <mn>2</mn> <mo>=</mo> <mn>1.3236</mn> <mo>…</mo> <mspace width="0.277778em"/> </mrow> </math></p> "> Figure 5
<p>Time evolution, in logarithmic scales, of a distribution, <math display="inline"> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>τ</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math>, of trajectories at <math display="inline"> <msub> <mi>μ</mi> <mi>∞</mi> </msub> </math>. Initial positions are contained within a cell adjacent to <math display="inline"> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </math>, and <span class="html-italic">i</span> is the relative number of cells. Iteration time is shown for the first two subsequences (<math display="inline"> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </math>).</p> "> Figure 6
<p>Numerical corroboration (full circles) of the generalized Pesin identity <math display="inline"> <mrow> <msubsup> <mi>K</mi> <mrow> <mi>q</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>λ</mi> <mrow> <mi>q</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </math> at <math display="inline"> <msub> <mi>μ</mi> <mi>∞</mi> </msub> </math>. On the vertical axis, we plot the <span class="html-italic">q</span>-logarithm of <math display="inline"> <msub> <mi>ξ</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msub> </math> (equal to <math display="inline"> <mrow> <msubsup> <mi>λ</mi> <mrow> <mi>q</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> and in the horizontal axis <math display="inline"> <msub> <mi>S</mi> <mi>q</mi> </msub> </math> (equal to <math display="inline"> <mrow> <msubsup> <mi>K</mi> <mrow> <mi>q</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mi>t</mi> </mrow> </math>). In both cases, <math display="inline"> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mo form="prefix">ln</mo> <mn>2</mn> <mo>/</mo> <mo form="prefix">ln</mo> <mi>α</mi> <mo>=</mo> <mn>0.2445</mn> <mo>…</mo> </mrow> </math> The dashed line is a linear fit. In the inset, the full lines are from analytical results.</p> "> Figure 7
<p>(<b>a</b>) The Lyapunov coefficient function, <math display="inline"> <mrow> <mi>λ</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </math>, at the chaos threshold at <math display="inline"> <msub> <mi>μ</mi> <mi>∞</mi> </msub> </math>; and (<b>b</b>) the spectrum, <math display="inline"> <mrow> <mi>ψ</mi> <mo stretchy="false">(</mo> <mi>λ</mi> <mo stretchy="false">)</mo> </mrow> </math>. See the text for a description.</p> "> Figure 8
<p>(<b>Left panel</b>) Absolute value of attractor positions for the logistic map, <math display="inline"> <mrow> <msub> <mi>f</mi> <mi>μ</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> , in logarithmic scale, as a function of <math display="inline"> <mrow> <mo>−</mo> <mo form="prefix">ln</mo> <msub> <mrow> <mo stretchy="false">(</mo> <mi>μ</mi> <mo stretchy="false">)</mo> </mrow> <mi>∞</mi> </msub> <mrow> <mo>−</mo> <mi>μ</mi> </mrow> </mrow> </math>. (<b>Right panel</b>) Absolute value of trajectory positions for <math display="inline"> <mrow> <msub> <mi>f</mi> <mi>μ</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> at <math display="inline"> <msub> <mi>μ</mi> <mi>∞</mi> </msub> </math> with initial condition <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mrow> <mo>=</mo> <mn>0</mn> </mrow> </mrow> </math> in logarithmic scale, as a function of the logarithm of time <span class="html-italic">τ</span>; <span class="html-italic">τ</span> is also shown by the numbers close to the diamonds. The arrows indicate the equivalence between the diameters <math display="inline"> <msub> <mi>d</mi> <mrow> <mi>N</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </math> in the left panel and position differences <math display="inline"> <msub> <mi>δ</mi> <mi>n</mi> </msub> </math> with respect to <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mrow> <mo>=</mo> <mn>0</mn> </mrow> </mrow> </math> in the right panel.</p> "> Figure 9
<p>Phase-space gap formation for <math display="inline"> <mrow> <mi>μ</mi> <mo>=</mo> <msub> <mi>μ</mi> <mn>3</mn> </msub> </mrow> </math>. (<b>Left panel</b>) Time evolution of a uniform ensemble of <math display="inline"> <msup> <mn>10</mn> <mn>4</mn> </msup> </math> trajectories as a function of <math display="inline"> <mrow> <mo stretchy="false">|</mo> <mi>x</mi> <mo stretchy="false">|</mo> </mrow> </math> (black areas and open circles). The values of the index <span class="html-italic">k</span> label the order of the gap set. (<b>Right panel</b>) Rotated plots of <math display="inline"> <mrow> <msubsup> <mi>f</mi> <mrow> <msub> <mover> <mi>μ</mi> <mo>¯</mo> </mover> <mn>3</mn> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> and as guides for the identification of attractor and repellor positions.</p> "> Figure 10
<p><b>(Left panel)</b> Rate <math display="inline"> <msub> <mi>W</mi> <mi>t</mi> </msub> </math>, divided by the number of boxes, <math display="inline"> <msub> <mi>N</mi> <mi>b</mi> </msub> </math>, employed, of an approach to the attractor for the supercycles of periods <math display="inline"> <mrow> <msup> <mn>2</mn> <mi>N</mi> </msup> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </math> and 5 on logarithmic scales. The expression shown corresponds to the power law decay of the developing logarithmic oscillations. Right panel: Superposition of the five curves for <math display="inline"> <msub> <mi>W</mi> <mi>t</mi> </msub> </math> in the left panel via <span class="html-italic">n</span>-times repeated rescaling factors shown for the horizontal <span class="html-italic">x</span> and vertical <span class="html-italic">y</span> axes.</p> "> Figure 11
<p>(<b>Top panel</b>) Time of flight <math display="inline"> <mrow> <msub> <mi>t</mi> <mi>f</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> for <math display="inline"> <mrow> <mi>N</mi> <mo>=</mo> <mn>2</mn> </mrow> </math>; the black lines correspond to initial conditions that terminate at the attractor positions <math display="inline"> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </math> and <math display="inline"> <mrow> <mi>x</mi> <mo>≃</mo> <mo>−</mo> <mn>0</mn> <mo>.</mo> <mn>310703</mn> </mrow> </math> and the gray lines to trajectories ending at <math display="inline"> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </math> and <math display="inline"> <mrow> <mi>x</mi> <mo>≃</mo> <mn>0</mn> <mo>.</mo> <mn>8734</mn> </mrow> </math>. (<b>Right (left) bottom panel</b>) Same as the top panel, but plotted against the logarithm of <math display="inline"> <mrow> <mi>x</mi> <mo>−</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>−</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math>. It is evident that the peaks are arranged exponentially around the old repellor position, <math display="inline"> <msub> <mi>y</mi> <mn>1</mn> </msub> </math>, <span class="html-italic">i.e.</span>, they appear equidistant on a logarithmic scale.</p> "> Figure 12
<p>Same as <a href="#entropy-15-05178-f011" class="html-fig">Figure 11</a>, but for <math display="inline"> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </math>. The black lines correspond to initial conditions that terminate at any of the four attractor positions close or equal to <math display="inline"> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </math> and the gray lines to trajectories ending at any of the other four attractor positions close or equal to <math display="inline"> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </math>. As the bottom panels show, on a logarithmic scale, in this case, there are (infinitely) many clusters of peaks (repellor preimages) equidistant from each other</p> "> Figure 13
<p>Sum of absolute values of visited points, <math display="inline"> <mrow> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>,</mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi> </mrow> </math>, of the Feigenbaums attractor with initial condition <math display="inline"> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </math>. Top inset: a closer look of the path of the sum, for values of <span class="html-italic">N</span> ranging between 35 and 50. Bottom inset: Centered sum <math display="inline"> <mrow> <msup> <mi>y</mi> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> in logarithmic scales. See the text.</p> "> Figure 14
<p>Sums <math display="inline"> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> <mo>;</mo> <msub> <mi>μ</mi> <mi>∞</mi> </msub> <mo stretchy="false">)</mo> </mrow> </math> as a function of <math display="inline"> <msub> <mi>x</mi> <mn>0</mn> </msub> </math>, <math display="inline"> <mrow> <mi>N</mi> <mo>∼</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo stretchy="false">)</mo> </mrow> </math> at the Feigenbaum point.</p> "> Figure 15
<p>Histograms obtained from the sums in <a href="#entropy-15-05178-f014" class="html-fig">Figure 14</a>. The inset shows greater detail.</p> "> Figure 16
<p>Total magnetization of the cluster, <math display="inline"> <mrow> <mo>Φ</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> </math>, as a function of the cluster size, <span class="html-italic">R</span>, according to Equation (<a href="#FD29-entropy-15-05178" class="html-disp-formula">29</a>) for <math display="inline"> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mrow> </math> and 3, which correspond, respectively, to <math display="inline"> <mrow> <mi>δ</mi> <mo>=</mo> <mn>3</mn> </mrow> </math> and 5.</p> "> Figure 17
<p>A double Cayley tree of connectivity <math display="inline"> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </math> and lattice constant <span class="html-italic">a</span>. Each bond is a perfect one-dimensional conductor.</p> "> Figure 18
<p><math display="inline"> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> </math> of Equation (<a href="#FD30-entropy-15-05178" class="html-disp-formula">30</a>), for <math display="inline"> <mrow> <mi>ϵ</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </math>: (<b>a</b>) <math display="inline"> <mrow> <mi>k</mi> <mi>a</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </math> (dashed), <math display="inline"> <mrow> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </math> (long dashed), <math display="inline"> <mrow> <mn>3</mn> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </math> (continuous); and (<b>b</b>) <math display="inline"> <mrow> <mi>k</mi> <mi>a</mi> <mo>=</mo> <mn>2.6</mn> </mrow> </math> (long dashed), <math display="inline"> <mrow> <mn>3</mn> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </math> (continuous), 2.1 (dashed). The dotted lines correspond to the identity.</p> "> Figure 19
<p>Conductance as a function of generation for <math display="inline"> <mrow> <mi>ϵ</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </math>, (<b>a</b>) <math display="inline"> <mrow> <mi>k</mi> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </math> and (<b>b</b>) <math display="inline"> <mrow> <mi>k</mi> <mi>a</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </math>. Continuous lines represent <math display="inline"> <msub> <mi>g</mi> <mi>n</mi> </msub> </math> obtained directly from the map through Equation (<a href="#FD30-entropy-15-05178" class="html-disp-formula">30</a>), while dotted lines correspond to <math display="inline"> <mrow> <msub> <mi>g</mi> <mi>n</mi> </msub> <mo>=</mo> <mo form="prefix">exp</mo> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> and <math display="inline"> <mrow> <msub> <mi>g</mi> <mi>n</mi> </msub> <mo>=</mo> <msub> <mo form="prefix">exp</mo> <mrow> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>λ</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> for panels (a) and (b), respectively. The two curves in (b) differ because of a proportionality factor; see Equation (<a href="#FD32-entropy-15-05178" class="html-disp-formula">32</a>).</p> "> Figure 20
<p>(<b>a</b>) Logistic map attractor. (<b>b</b>) Magnification of the box in (a). (<b>c</b>) Noise-induced bifurcation gap in the magnified box.</p> "> Figure 21
<p>Glassy diffusion in the noise-perturbed onset of chaos. (<b>a</b>) Repeated-cell map (thick dashed line) and trajectory (full line). (<b>b</b>) Time evolution of the mean square displacement <math display="inline"> <mrow> <mo stretchy="false">〈</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo stretchy="false">〉</mo> </mrow> </math> for an ensemble of 1000 trajectories with initial conditions randomly distributed inside <math display="inline"> <mrow> <mo stretchy="false">[</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </math>. Curves are labeled by the value of the noise amplitude. See [<a href="#B17-entropy-15-05178" class="html-bibr">17</a>,<a href="#B18-entropy-15-05178" class="html-bibr">18</a>,<a href="#B19-entropy-15-05178" class="html-bibr">19</a>].</p> "> Figure 22
<p>Rank-order statistics for the world population by country ( empty circles) taken from <span class="html-italic">CIA-The World Factbook</span>. The <span class="html-italic">x</span>-axis represents the rank, while the <span class="html-italic">y</span>-axis stands for the population. Equation (<a href="#FD39-entropy-15-05178" class="html-disp-formula">39</a>) with <math display="inline"> <mrow> <mi>α</mi> <mo>≃</mo> <mn>1.86</mn> </mrow> </math> (<span class="html-italic">smooth curve</span>) is fitted to the data.</p> "> Figure 23
<p>The map in Equation (<a href="#FD42-entropy-15-05178" class="html-disp-formula">42</a>) with a trajectory. The inset shows the time dependence of the trajectory.</p> "> Figure 24
<p>Size-rank statistics for the eigenfactor of physics journals. Equation (<a href="#FD42-entropy-15-05178" class="html-disp-formula">42</a>) with the identifications provided in the text when <math display="inline"> <mrow> <mi>α</mi> <mo>=</mo> <mn>2</mn> <mo>.</mo> <mn>01</mn> </mrow> </math> and <math display="inline"> <mrow> <mi>ϵ</mi> <mo>=</mo> <mo>−</mo> <mn>0</mn> <mo>.</mo> <mn>00064</mn> </mrow> </math> (smooth curve) is fitted to the data.</p> "> Figure 25
<p>Periodic Feigenbaum graphs for <math display="inline"> <mrow> <mi>μ</mi> <mo><</mo> <msub> <mi>μ</mi> <mi>∞</mi> </msub> </mrow> </math>. The sequence of graphs associated with periodic attractors with increasing period <math display="inline"> <mrow> <mi>T</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> </math> undergoing a period-doubling cascade. The pattern that occurs for increasing values of the period is related to the universal ordering with which an orbit visits the points of the attractor. Observe that the hierarchical self-similarity of these graphs requires that the graph for <math display="inline"> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </math> is a subgraph of that for <span class="html-italic">n</span>.</p> "> Figure 26
<p>(<b>Top</b>) Series <math display="inline"> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </math> as a function of time t for the first <math display="inline"> <msup> <mn>10</mn> <mn>6</mn> </msup> </math> data generated from a logistic map in its version <math display="inline"> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>1</mn> </mrow> </math> at the period-doubling accumulation point (only the first 33 data are shown). The data highlighted is associated with specific subsequences of nodes. (<b>Left</b>) Log-log plot of the rescaled variable <math display="inline"> <mrow> <mi>z</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>−</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </math> as a function of <span class="html-italic">t</span>, for the same series as the upper panel. This rescaling is performed to reflect the multifractal structure of the attractor. The order of visits to some specific data subsequences is highlighted. (<b>Right</b>) Log-log plot of <math display="inline"> <mrow> <mo form="prefix">exp</mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </math> as a function of the node <span class="html-italic">N</span> of the graph generated from the same time series as for the upper panel, where <math display="inline"> <mrow> <mi>N</mi> <mo>=</mo> <mi>t</mi> </mrow> </math>.</p> ">
Abstract
:1. Introduction
2. Critical Attractors in Unimodal Maps
2.1. Two Different Routes to Chaos in Unimodal Maps
2.2. Dynamics at the Tangent and Pitchfork Bifurcations
2.3. Dynamics within the Period-Doubling Accumulation Point
3. Dynamics towards the Feigenbaum Attractor
3.1. Diameters, Repellors and Gap Formation
3.2. Sums of Diameters as Partition Functions
3.3. Dynamical Hierarchies with Modular Organization
3.3.1. Preimage Structure and Flow of Trajectories towards the Attractor
3.3.2. Dynamical Hierarchy
4. Distributions of Sums of Deterministic Variables
4.1. Sums of Positions of a Single Trajectory within the Attractor
4.2. Sums of Positions of an Ensemble of Trajectories Evolving towards the Attractor
5. Manifestations of Incipient Chaos in Condensed Matter Systems
5.1. Critical Clusters
5.2. Mobility Edge
5.3. Glassy Dynamics
5.3.1. Noise-Perturbed Onset of Chaos
5.3.2. Aging
5.3.3. From Diffusion to Arrest
6. Manifestations of Incipient Chaos in Complex Systems
6.1. A Minimal Theory for Rank Distributions
6.1.1. Rank Distributions and Their Nonlinear Dynamical Analogs
6.1.2. Rank Distributions from a Statistical-Mechanical Viewpoint
6.2. Complex Network Images of Time Series at the Transitions to Chaos
6.2.1. Fluctuating Dynamics and Graph-Theoretical Lyapunov Exponents
6.2.2. Entropic Functionals and Pesin-Like Identities
7. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Beck, C.; Schlogl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Mori, H.; Rata, H.; Horita, T.; Kobayashi, T. Statistical mechanics of dynamical systems. Prog. Theor. Phys. Suppl. 1989, 99, 1–63. [Google Scholar] [CrossRef]
- Baldovin, F.; Robledo, A. Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: Rigorous nonextensive solutions. Europhys. Lett. 2002, 60. [Google Scholar] [CrossRef]
- Mayoral, E.; Robledo, A. Tsallis q index and Moris q phase transitions at the edge of chaos. Phys. Rev. E 2005, 72, 026209. [Google Scholar] [CrossRef] [PubMed]
- Robledo, A.; Moyano, L.G. q-deformed statistical-mechanical property in the dynamics of trajectories en route to the Feigenbaum attractor. Phys. Rev. E 2008, 77, 036213. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Saldaña, H.; Robledo, A. Fluctuating dynamics at the quasiperiodic onset of chaos, Tsallis q-statistics and Mori’s q-phase thermodynamics. Physica A 2006, 370, 286–300. [Google Scholar] [CrossRef]
- Baldovin, F. Routes to chaos, universality and glass formation. Physica A 2006, 372, 224–237. [Google Scholar] [CrossRef]
- Schuster, H.G. Deterministic Chaos: An Introduction, 2nd ed.; VCH Publishers: Weinheim, Germany, 1988. [Google Scholar]
- Hilborn, R.C. Chaos and Nonlinear Dynamics, 2nd ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Contoyiannis, Y.F.; Diakonos, F.K. Criticality and intermittency in the order parameter space. Phys. Lett. A 2000, 268, 286–292. [Google Scholar] [CrossRef]
- Contoyiannis, Y.F.; Diakonos, F.K.; Malakis, A. Intermittent dynamics of critical fluctuations. Phys. Rev. Lett. 2002, 89, 035701. [Google Scholar] [CrossRef] [PubMed]
- Robledo, A. Critical fluctuations, intermittent dynamics and Tsallis statistics. Physica A 2004, 344, 631–636. [Google Scholar] [CrossRef]
- Robledo, A. Unorthodox properties of critical clusters. Mol. Phys. 2005, 103, 3025–3030. [Google Scholar] [CrossRef]
- Martinez-Mares, M.; Robledo, A. Equivalence between the mobility edge of electronic transport on disorderless networks and the onset of chaos via intermittency in deterministic maps. Phys. Rev. E 2009, 80, 045201. [Google Scholar] [CrossRef] [PubMed]
- Robledo, A. Universal glassy dynamics at noise-perturbed onset of chaos: A route to ergodicity breakdown. Phys. Lett. A 2004, 328, 467–472. [Google Scholar] [CrossRef]
- Robledo, A. Aging at the edge of chaos: Glassy dynamics and nonextensive statistics. Physica A 2004, 342, 104–111. [Google Scholar] [CrossRef]
- Baldovin, F.; Robledo, A. Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation. Phys. Rev. E 2005, 72, 066213. [Google Scholar] [CrossRef] [PubMed]
- Robledo, A. A dynamical model for hierarchy and modular organization: The trajectories en route to the attractor at the transition to chaos. J. Phys. Conf. Ser. 2012, 394, 012007. [Google Scholar] [CrossRef]
- Fuentes, M.A.; Robledo, A. Renormalization group structure for sums of variables generated by incipiently chaotic maps. J. Stat. Mech. 2010, P01001. [Google Scholar] [CrossRef]
- Fuentes, M.A.; Robledo, A. Stationary distributions of sums of marginally chaotic variables as renormalization group fixed points. J. Phys. Conf. Ser. 2012, 201, 012002. [Google Scholar] [CrossRef]
- Fuentes, M.A.; Robledo, A. Sums of variables at the onset of chaos. Eur. Phys. J. B 2013. submitted for publication. [Google Scholar] [CrossRef]
- Altamirano, C.; Robledo, A. Possible thermodynamic structure underlying the laws of Zipf and Benford. Eur. Phys. J. B 2011, 81, 345–351. [Google Scholar] [CrossRef]
- Luque, B.; Lacasa, L.; Robledo, A. Feigenbaum graphs at the onset of chaos. Phys. Lett. A 2012, 376, 3625–3629. [Google Scholar] [CrossRef]
- Ergodicity is referred here in relation to the total phase space on which the map is defined.
- Baldovin, F.; Robledo, A. Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics. Phys. Rev. E 2002, 66, 045104. [Google Scholar] [CrossRef] [PubMed]
- Robledo, A. Incidence of nonextensive thermodynamics in temporal scaling at Feigenbaum points. Physica A 2006, 370, 449–460. [Google Scholar] [CrossRef]
- Robledo, A. The renormalization group and optimization of non-extensive entropy: Criticality in non-linear one-dimensional maps. Physica A 2002, 314, 437–441. [Google Scholar] [CrossRef]
- Robledo, A. Criticality in nonlinear one-dimensional maps: RG universal map and nonextensive entropy. Physica D 2004, 193, 153–160. [Google Scholar] [CrossRef]
- Hu, B.; Rudnick, J. Exact solutions to the feigenbaum renormalization-group equations for intermittency. Phys. Rev. Lett. 1982, 48, 1645–1648. [Google Scholar] [CrossRef]
- Barkai, E. Aging in subdiffusion generated by a deterministic dynamical system. Phys. Rev. Lett. 2003, 90, 104101. [Google Scholar] [CrossRef] [PubMed]
- Gaspard, P.; Wang, X.J. Sporadicity: Between periodic and chaotic dynamical behaviors. Proc. Natl. Acad. Sci. USA 1988, 85, 4591–4595. [Google Scholar] [CrossRef] [PubMed]
- Baldovin, F.; Robledo, A. Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004, 69, 045202. [Google Scholar] [CrossRef] [PubMed]
- Anania, G.; Politi, A. Dynamical behaviour at the onset of chaos. Europhys. Lett. 1988, 7. [Google Scholar] [CrossRef]
- Hata, H.; Horita, T.; Mori, H. Dynamic description of the critical 2∞ attractor and 2m-band chaos. Progr. Theor. Phys. 1989, 82, 897–910. [Google Scholar] [CrossRef]
- Moyano, L.G.; Silva, D.; Robledo, A. Labyrinthine pathways towards supercycle attractors in unimodal maps. Cent. Eur. J. Phys. 2009, 7, 591–600. [Google Scholar] [CrossRef]
- Grassberger, P. Proposed central limit behavior in deterministic dynamical systems. Phys. Rev. E 2009, 79, 057201. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ruelas, A.; Robledo, A. Emergent statistical-mechanical structure in the dynamics along the period-doubling route to chaos. Europhys. Lett. 2013. submitted for publication. [Google Scholar] [CrossRef]
- Antoniou, N.G.; Contoyiannis, Y.F.; Diakonos, F.K.; Papadoupoulos, C.G. Fractals at T = Tc due to instantonlike configurations. Phys. Rev. Lett. 1998, 81, 4289–4292. [Google Scholar] [CrossRef]
- Antoniou, N.G.; Contoyiannis, Y.F.; Diakonos, F.K. Fractal geometry of critical systems. Phys. Rev. E 2000, 62, 3125–3134. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Farmer, J.D.; Huberman, B.A. Fluctuations and simple chaotic dynamics. Phys. Rep. 1982, 92, 45–82. [Google Scholar] [CrossRef]
- For a review see: de Benedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar]
- De Benedetti, P.G. Metastable Liquids. Concepts and Principles; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Kaneko, K. Overview of coupled map lattices. Chaos 1992, 2, 279–282. [Google Scholar] [CrossRef] [PubMed]
- See, for example: Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Robledo, A. Laws of Zipf and Benford, intermittency, and critical fluctuations. Chin. Sci. Bull. 2011, 56, 3643–3648. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [PubMed]
- Luque, B.; Lacasa, L.; Luque, J.; Ballesteros, F. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009, 80, 046103. [Google Scholar] [CrossRef] [PubMed]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Robledo, A. Feigenbaum graphs: A complex network perspective of chaos. PLoS One 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Robledo, A. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos 2012, 22, 013109. [Google Scholar] [CrossRef] [PubMed]
- Luque, B.; Nuñez, A.; Ballesteros, F.; Robledo, A. Quasiperiodic graphs: Structural design, scaling and entropic properties. J. Nonlinear Sci. 2013, 23, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Núñez, A.M.; Luque, B.; Lacasa, L.; Gómez, J.P.; Robledo, A. Horizontal visibility graphs generated by type-I intermittency. Phys. Rev. E 2013, 87, 052801. [Google Scholar] [CrossRef] [PubMed]
- Núñez, A.M.; Luque, B.; Cordero, M.; Gómez, M.; Robledo, A. Quasiperiodic graphs at the onset of chaos. Phys. Rev. E 2013. submitted for publication. [Google Scholar]
- Hanel, R.; Thurner, S.; Gell-Mann, M. Generalized entropies and the transformation group of superstatistics. Proc. Natl. Acad. Sci. USA 2011, 108, 6390–6394. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S.; Gell-Mann, M. Generalized entropies and logarithms and their duality relations. Proc. Natl. Acad. Sci. USA 2012, 109, 19151–19154. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Robledo, A. Generalized Statistical Mechanics at the Onset of Chaos. Entropy 2013, 15, 5178-5222. https://doi.org/10.3390/e15125178
Robledo A. Generalized Statistical Mechanics at the Onset of Chaos. Entropy. 2013; 15(12):5178-5222. https://doi.org/10.3390/e15125178
Chicago/Turabian StyleRobledo, Alberto. 2013. "Generalized Statistical Mechanics at the Onset of Chaos" Entropy 15, no. 12: 5178-5222. https://doi.org/10.3390/e15125178
APA StyleRobledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 15(12), 5178-5222. https://doi.org/10.3390/e15125178