Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization
<p>Graphical illustration of duality and inversion properties of the AB-divergence. On the alpha-beta plane are indicated as special important cases particular divergences by points and lines, especially Kullback-Leibler divergence <math display="inline"> <semantics> <msub> <mi>D</mi> <mrow> <mi>K</mi> <mi>L</mi> </mrow> </msub> </semantics> </math>, Hellinger Distance <math display="inline"> <semantics> <msub> <mi>D</mi> <mi>H</mi> </msub> </semantics> </math>, Euclidean distance <math display="inline"> <semantics> <msub> <mi>D</mi> <mi>E</mi> </msub> </semantics> </math>, Itakura-Saito distance <math display="inline"> <semantics> <msub> <mi>D</mi> <mrow> <mi>I</mi> <mi>S</mi> </mrow> </msub> </semantics> </math>, Alpha-divergence <math display="inline"> <semantics> <msubsup> <mi>D</mi> <mi>A</mi> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics> </math>, and Beta-divergence <math display="inline"> <semantics> <msubsup> <mi>D</mi> <mi>B</mi> <mrow> <mo stretchy="false">(</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics> </math>.</p> "> Figure 2
<p>Illustrations how the AB-divergence for <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>+</mo> <mi>β</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics> </math> can be expressed via scaled Alpha-divergences.</p> "> Figure 3
<p>Graphical illustration how the set parameters <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> can control influence of individual ratios <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math>. The dash-doted line (<math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>+</mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>) shows the region where the multiplicative weighting factor <math display="inline"> <semantics> <msubsup> <mi>q</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mrow> <mi>α</mi> <mo>+</mo> <mi>β</mi> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> </semantics> </math> in the estimating equations is constant and equal to unity. The dashed line (<math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>) shows the region where the order of the deformed logarithm of <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics> </math> is constant and equal to that of the standard Kullback-Leibler divergence.</p> "> Figure 4
<p>Convexity analysis of <math display="inline"> <semantics> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> w.r.t. <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> </semantics> </math> in the <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> plane.</p> "> Figure 5
<p>Surface plot of the exponent <math display="inline"> <semantics> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, whose role in the multiplicative update is similar to that of a normalized step-size in an additive gradient descent update.</p> "> Figure 6
<p>Conceptual factorization model of block-wise data processing for a large-scale NMF. Instead of processing the whole matrix <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">P</mi> <mo>=</mo> <mi mathvariant="bold">Y</mi> <mo>∈</mo> <msubsup> <mi mathvariant="double-struck">R</mi> <mo>+</mo> <mrow> <mi>I</mi> <mo>×</mo> <mi>T</mi> </mrow> </msubsup> </mrow> </semantics> </math>, we can process much smaller block matrices <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">Y</mi> <mi>c</mi> </msub> <mo>∈</mo> <msubsup> <mi mathvariant="double-struck">R</mi> <mo>+</mo> <mrow> <mi>I</mi> <mo>×</mo> <mi>C</mi> </mrow> </msubsup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">Y</mi> <mi>r</mi> </msub> <mo>∈</mo> <msubsup> <mi mathvariant="double-struck">R</mi> <mo>+</mo> <mrow> <mi>R</mi> <mo>×</mo> <mi>T</mi> </mrow> </msubsup> </mrow> </semantics> </math> and the corresponding factor matrices <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">X</mi> <mi>c</mi> </msub> <mo>=</mo> <msubsup> <mi mathvariant="bold">B</mi> <mi>c</mi> <mi>T</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo stretchy="false">[</mo> <msub> <mi mathvariant="bold-italic">b</mi> <mrow> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>r</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="bold-italic">b</mi> <mrow> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>r</mi> </mrow> </msub> <mo>,</mo> <mi>…</mi> <mo>,</mo> <msub> <mi mathvariant="bold-italic">b</mi> <mrow> <mi>J</mi> <mo>,</mo> <mspace width="0.166667em"/> <mi>r</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mrow> <mi>T</mi> </msup> <mo>∈</mo> <msubsup> <mi mathvariant="double-struck">R</mi> <mo>+</mo> <mrow> <mi>J</mi> <mo>×</mo> <mi>C</mi> </mrow> </msubsup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">A</mi> <mi>r</mi> </msub> <mo>=</mo> <mrow> <mo stretchy="false">[</mo> <msub> <mi mathvariant="bold-italic">a</mi> <mrow> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>r</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="bold-italic">a</mi> <mrow> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>r</mi> </mrow> </msub> <mo>,</mo> <mi>…</mi> <mo>,</mo> <msub> <mi mathvariant="bold-italic">a</mi> <mrow> <mi>J</mi> <mo>,</mo> <mspace width="0.166667em"/> <mi>r</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mrow> <mo>∈</mo> <msubsup> <mi mathvariant="double-struck">R</mi> <mo>+</mo> <mrow> <mi>R</mi> <mo>×</mo> <mi>J</mi> </mrow> </msubsup> </mrow> </semantics> </math> with <math display="inline"> <semantics> <mrow> <mi>J</mi> <mo><</mo> <mi>C</mi> <mo><</mo> <mo><</mo> <mi>T</mi> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>J</mi> <mo><</mo> <mi>R</mi> <mo><</mo> <mo><</mo> <mi>I</mi> </mrow> </semantics> </math>. For simplicity of graphical illustration, we have selected the first <span class="html-italic">C</span> columns of the matrices <math display="inline"> <semantics> <mi mathvariant="bold">P</mi> </semantics> </math> and <math display="inline"> <semantics> <mi mathvariant="bold">X</mi> </semantics> </math> and the first <span class="html-italic">R</span> rows of <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math>.</p> "> Figure 7
<p>Illustration of simulation experiments with three nonnegative sources and their typical mixtures using a randomly generated (uniformly distributed) mixing matrix (rows of a data matrix <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">P</mi> <mo>=</mo> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">X</mi> <mo>+</mo> <mi mathvariant="bold">E</mi> </mrow> </semantics> </math> are denoted by <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi mathvariant="bold">p</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> </semantics> </math>).</p> "> Figure 8
<p>Illustration of the effect of the parameter <math display="inline"> <semantics> <msup> <mi>α</mi> <mo>*</mo> </msup> </semantics> </math> on the noisy observations (<math display="inline"> <semantics> <msub> <mi mathvariant="bold">p</mi> <mn>1</mn> </msub> </semantics> </math> denotes the first row of the matrix <math display="inline"> <semantics> <mi mathvariant="bold">P</mi> </semantics> </math>). Dashed lines corresponds to noiseless mixtures and solid lines to the noisy mixtures that obtained when adding noise in the deformed logarithm (<math display="inline"> <semantics> <mrow> <msub> <mo form="prefix">ln</mo> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>α</mi> <mo>*</mo> </msup> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mo>·</mo> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math>) domain. The noise distribution was Gaussian of zero mean and with a variance chosen so as to obtain an SNR of 20 dB in the deformed logarithm domain. In the top panel the value of the deformation parameter <math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, resulting a multiplicative noise that distorts more strongly signals <math display="inline"> <semantics> <msubsup> <mi>q</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mo>*</mo> </msubsup> </semantics> </math> with larger values. For the middle panel <math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, resulting in an additive Gaussian noise that equally affects all <math display="inline"> <semantics> <msubsup> <mi>q</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mo>*</mo> </msubsup> </semantics> </math> independently of their values. For the bottom panel, <math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>, distorting more strongly small values of <math display="inline"> <semantics> <msubsup> <mi>q</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mo>*</mo> </msubsup> </semantics> </math>.</p> "> Figure 9
<p>Performance of the AB-multiplicative NMF algorithm in the presence of multiplicative noise (<math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>). The distribution of the noise in the transformed domain <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> </semantics> </math> is Gaussian of zero mean and with variance set to obtain an SNR of 20 dB in the <math display="inline"> <semantics> <mrow> <mo form="prefix">ln</mo> <mo stretchy="false">(</mo> <mo>·</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> domain. The rows of the observation matrix are shown in the top panel, the equivalent additive noise <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">E</mi> <mo>=</mo> <mi mathvariant="bold">P</mi> <mo>−</mo> <msup> <mrow> <mi mathvariant="bold">Q</mi> </mrow> <mo>*</mo> </msup> </mrow> </semantics> </math> is displayed at the middle panel and the performance results are presented at the bottom panels. As theoretically expected, the best SIR of the model (<math display="inline"> <semantics> <mrow> <mn>26</mn> <mo>.</mo> <mn>7</mn> </mrow> </semantics> </math> dB) was achieved in the neighborhood of <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, the parameters for which the likelihood of these observations is maximized. On the other hand, the best mean SIR of the sources (<math display="inline"> <semantics> <mrow> <mn>18</mn> <mo>.</mo> <mn>0</mn> </mrow> </semantics> </math> dB) and of the mixture (<math display="inline"> <semantics> <mrow> <mn>21</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math> dB) are both obtained for <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> close to <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>.</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>.</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>.</p> "> Figure 10
<p>Performance of the AB-multiplicative NMF algorithm for 25 mixtures with additive Gaussian noise and SNR of 20 dB. The best performance for <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">X</mi> </mrow> </semantics> </math> was for an SIR of <math display="inline"> <semantics> <mrow> <mn>31</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math> dB, obtained for <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>.</mo> <mn>8</mn> <mo>,</mo> <mn>0</mn> <mo>.</mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, that is, close to the pair <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> that approximately maximizes the likelihood of the observations. The best performance for <math display="inline"> <semantics> <mi mathvariant="bold">X</mi> </semantics> </math> and <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> was obtained in the vicinity of <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> <mo>,</mo> <mn>0</mn> <mo>.</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, with respective mean SIRs of <math display="inline"> <semantics> <mrow> <mn>17</mn> <mo>.</mo> <mn>7</mn> </mrow> </semantics> </math> dB and <math display="inline"> <semantics> <mrow> <mn>20</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics> </math> dB.</p> "> Figure 11
<p>Performance of the AB-multiplicative NMF algorithm when the observations are contaminated with Gaussian noise in the <math display="inline"> <semantics> <mrow> <msub> <mo form="prefix">ln</mo> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>α</mi> <mo>*</mo> </msup> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mo>·</mo> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> domain, for <math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math>. The best performance for <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">X</mi> </mrow> </semantics> </math> was for an SIR of <math display="inline"> <semantics> <mrow> <mn>22</mn> <mo>.</mo> <mn>6</mn> </mrow> </semantics> </math> dB obtained for <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>.</mo> <mn>9</mn> <mo>,</mo> <mn>4</mn> <mo>.</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>. A best SIR of <math display="inline"> <semantics> <mrow> <mn>16</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math> dB for <math display="inline"> <semantics> <mi mathvariant="bold">X</mi> </semantics> </math> was obtained for <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> <mo>,</mo> <mn>1</mn> <mo>.</mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, which gave an SIR for <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> of <math display="inline"> <semantics> <mrow> <mn>19</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math> dB.</p> "> Figure 12
<p>Performance for biased (non-zero mean) and spiky, additive noise. For <math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, we have uniform noise with support in the negative unit interval, which is a spiky or sparse in the sense that it is only activated with a probability of <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math>, <span class="html-italic">i.e.</span>, it corrupts only <math display="inline"> <semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics> </math> of observed samples. The best SIR results were obtained around the line <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mn>1</mn> <mo>−</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> for both positive and large values of <span class="html-italic">α</span>.</p> "> Figure 13
<p>Performance for multiplicative noise that is positively biased and spiky (activated with a probability of <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math>). For <math display="inline"> <semantics> <mrow> <msup> <mi>α</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, the noise in the <math display="inline"> <semantics> <mrow> <mo form="prefix">ln</mo> <mo stretchy="false">(</mo> <mo>·</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> domain (<math display="inline"> <semantics> <msub> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> </semantics> </math>) followed a uniform distribution with support in the unit interval. The best SIR results were obtained along the line <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mo>−</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> for negative values of <span class="html-italic">α</span>.</p> ">
Abstract
:1. Introduction
1.1. Introduction to NMF and Basic Multiplicative Algorithms for NMF
2. The Alpha-Beta Divergences
2.1. Special Cases of the AB-Divergence
2.2. Properties of AB-Divergence: Duality, Inversion and Scaling
2.3. Why is AB-Divergence Potentially Robust?
3. Generalized Multiplicative Algorithms for NMF
3.1. Derivation of Multiplicative NMF Algorithms Based on the AB-Divergence
3.2. Conditions for a Monotonic Descent of AB-Divergence
3.3. A Conditional Auxiliary Function
3.4. Unconditional Auxiliary Function
3.5. Multiplicative NMF Algorithms for Large-Scale Low-Rank Approximation
4. Simulations and Experimental Results
- What is approximately a range of parameters alpha and beta for which the AB-multiplicative NMF algorithm exhibits the balance between relatively fastest convergence and good performance.
- What is approximately the range of parameters of alpha and beta for which the AB-multiplicative NMF algorithm provides a stable solution independent of how many iterations are needed.
- How robust is the AB-multiplicative NMF algorithm to noisy mixtures under multiplicative Gaussian noise, additive Gaussian noise, spiky biased noise? In other words, find a reasonable range of parameters for which the AB-multiplicative NMF algorithm gives improved performance when the data are contaminated by the different types of noise.
5. Conclusions
References
- Amari, S. Differential-Geometrical Methods in Statistics; Springer Verlag: New York, NY, USA, 1985. [Google Scholar]
- Amari, S. Dualistic geometry of the manifold of higher-order neurons. Neural Network. 1991, 4, 443–451. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Amari, S. Integration of stochastic models by minimizing α-divergence. Neural Comput. 2007, 19, 2780–2796. [Google Scholar] [CrossRef] [PubMed]
- Amari, S. Information geometry and its applications: Convex function and dually flat manifold. In Emerging Trends in Visual Computing; Nielsen, F., Ed.; Springer Lecture Notes in Computer Science: Palaiseau, France, 2009a; Volume 5416, pp. 75–102. [Google Scholar]
- Amari, S.; Cichocki, A. Information geometry of divergence functions. Bull. Pol. Acad. Sci. Math. 2010, 58, 183–195. [Google Scholar] [CrossRef]
- Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S. Nonnegative Matrix and Tensor Factorizations; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Cichocki, A.; Zdunek, R.; Amari, S. Csiszár’s divergences for nonnegative matrix factorization: Family of new algorithms. In Lecture Notes in Computer Science; Springer: Charleston, SC, USA, 2006; Volume 3889, pp. 32–39. [Google Scholar]
- Kompass, R. A Generalized divergence measure for nonnegative matrix factorization. Neural Comput. 2006, 19, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, I.; Sra, S. Generalized nonnegative matrix approximations with Bregman divergences. Neural Inform. Process. Syst. 2005, 283–290. [Google Scholar]
- Amari, S. α-divergence is unique, belonging to both f-divergence and Bregman divergence classes. IEEE Trans. Inform. Theor. 2009b, 55, 4925–4931. [Google Scholar] [CrossRef]
- Murata, N.; Takenouchi, T.; Kanamori, T.; Eguchi, S. Convergence-guaranteed multi U-Boost and Bregman divergence. Neural Comput. 2004, 16, 1437–1481. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y.; Murata, N. A modified EM Algorithm for mixture models based on Bregman divergence. Ann. Inst. Stat. Math. 2007, 59, 57–75. [Google Scholar] [CrossRef]
- Zhu, H.; Rohwer, R. Bayesian invariant measurements of generalization. Neural Process. Lett. 1995, 2, 28–31. [Google Scholar] [CrossRef]
- Zhu, H.; Rohwer, R. Measurements of generalisation based on information geometry. In Mathematics of Neural Networks: Model Algorithms and Applications; Ellacott, S.W., Mason, J.C., Anderson, I.J., Eds.; Kluwer: Norwell, MA, USA, 1997; pp. 394–398. [Google Scholar]
- Nielsen, F.; Nock, R. Sided and symmetrized Bregman centroids. IEEE Trans. Inform. Theor. 2009, 56, 2882–2903. [Google Scholar] [CrossRef]
- Boissonnat, J.D.; Nielsen, F.; Nock, R. Bregman Voronoi diagrams. Discrete Comput. Geom. 2010, 44, 281–307. [Google Scholar] [CrossRef]
- Yamano, T. A generalization of the Kullback-Leibler divergence and its properties. J. Math. Phys. 2009, 50, 85–95. [Google Scholar] [CrossRef]
- Minami, M.; Eguchi, S. Robust blind source separation by Beta-divergence. Neural Comput. 2002, 14, 1859–1886. [Google Scholar]
- Bregman, L. The relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. Comp. Math. Phys. USSR 1967, 7, 200–217. [Google Scholar] [CrossRef]
- Csiszár, I. Eine Informations Theoretische Ungleichung und ihre Anwendung auf den Beweiss der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl 1963, 8, 85–108. [Google Scholar]
- Csiszár, I. Axiomatic characterizations of information measures. Entropy 2008, 10, 261–273. [Google Scholar] [CrossRef]
- Csiszár, I. Information measures: A critial survey. In Proceedings of the Transactions of the 7th Prague Conference, Prague, Czechoslovakia, 18–23 August 1974; pp. 83–86.
- Ali, M.; Silvey, S. A general class of coefficients of divergence of one distribution from another. J. Roy. Stat. Soc. 1966, Ser B, 131–142. [Google Scholar]
- Hein, M.; Bousquet, O. Hilbertian metrics and positive definite kernels on probability measures. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Barbados, 6–8 January 2005; pp. 136–143.
- Zhang, J. Divergence function, duality, and convex analysis. Neural Comput. 2004, 16, 159–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Matsuzoe, H. Dualistic differential geometry associated with a convex function. In Springer Series of Advances in Mechanics and Mathematics; 2008; Springer: New York, NY, USA; pp. 58–67. [Google Scholar]
- Lafferty, J. Additive models, boosting, and inference for generalized divergences. In Proceedings of the Twelfth Annual Conference on Computational Learning Theory (COLT’99), Santa Cruz, CA, USA, 7-9 July 1999.
- Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman divergences. J. Mach. Learn. Res. 2005, 6, 1705–1749. [Google Scholar]
- Villmann, T.; Haase, S. Divergence based vector quantization using Fréchet derivatives. Neural Comput. 2011, in press. [Google Scholar]
- Villmann, T.; Haase, S.; Schleif, F.M.; Hammer, B. Divergence based online learning in vector quantization. In Proceedings of the International Conference on Artifial Intelligence and Soft Computing (ICAISC’2010), LNAI, Zakopane, Poland, 13–17 June 2010.
- Cichocki, A.; Amari, S.; Zdunek, R.; Kompass, R.; Hori, G.; He, Z. Extended SMART algorithms for nonnegative matrix factorization. In Lecture Notes in Artificial Intelligence; Springer: Zakopane, Poland, 2006; Volume 4029, pp. 548–562. [Google Scholar]
- Cichocki, A.; Zdunek, R.; Choi, S.; Plemmons, R.; Amari, S. Nonnegative tensor factorization using Alpha and Beta divergences. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, USA, 15–20 April 2007; Volume III, pp. 1393–1396.
- Cichocki, A.; Zdunek, R.; Choi, S.; Plemmons, R.; Amari, S.I. Novel multi-layer nonnegative tensor factorization with sparsity constraints. In Lecture Notes in Computer Science; Springer: Warsaw, Poland, 2007; Volume 4432, pp. 271–280. [Google Scholar]
- Cichocki, A.; Amari, S. Families of Alpha- Beta- and Gamma- divergences: Flexible and robust measures of similarities. Entropy 2010, 12, 1532–1568. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Lee, D.; Seung, H. Learning of the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [PubMed]
- Lee, D.; Seung, H. Algorithms for Nonnegative Matrix Factorization; MIT Press: Cambridge MA, USA, 2001; Volume 13, pp. 556–562. [Google Scholar]
- Gillis, N.; Glineur, F. Nonnegative factorization and maximum edge biclique problem. ECORE discussion paper 2010. 106 (also CORE DP 2010/59). Available online: http://www.ecore.be/DPs/dp_1288012410.pdf (accessed on 1 November 2008).
- Daube-Witherspoon, M.; Muehllehner, G. An iterative image space reconstruction algorthm suitable for volume ECT. IEEE Trans. Med. Imag. 1986, 5, 61–66. [Google Scholar] [CrossRef] [PubMed]
- De Pierro, A. On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans. Med. Imag. 1993, 12, 328–333. [Google Scholar] [CrossRef] [PubMed]
- De Pierro, A.R. A Modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans. Med. Imag. 1995, 14, 132–137. [Google Scholar] [CrossRef] [PubMed]
- De Pierro, A.; Yamagishi, M.B. Fast iterative methods applied to tomography models with general Gibbs priors. In Proceedings of the SPIE Technical Conference on Mathematical Modeling, Bayesian Estimation and Inverse Problems, Denver, CO, USA, 21 July 1999; Volume 3816, pp. 134–138.
- Lantéri, H.; Roche, M.; Aime, C. Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms. Inverse Probl. 2002, 18, 1397–1419. [Google Scholar] [CrossRef]
- Byrne, C. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative (RBI) methods. IEEE Trans. Med. Imag. 1998, IP-7, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Lewitt, R.; Muehllehner, G. Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum-likelihood estimation. IEEE Trans. Med. Imag. 1986, MI-5, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C. Signal Processing: A Mathematical Approach; A.K. Peters, Publ.: Wellesley, MA, USA, 2005. [Google Scholar]
- Shepp, L.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1982, MI-1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L. Maximum likelihood, least squares, and penalized least squares for PET. IEEE Trans. Med. Imag. 1993, 12, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Lantéri, H.; Soummmer, R.; Aime, C. Comparison between ISRA and RLA algorithms: Use of a Wiener filter based stopping criterion. Astron. Astrophys. Suppl. 1999, 140, 235–246. [Google Scholar] [CrossRef]
- Cichocki, A.; Zdunek, R.; Amari, S.I. Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In Lecture Notes on Computer Science; Springer: London, UK, 2007; Volume 4666, pp. 169–176. [Google Scholar]
- Minka, T. Divergence measures and message passing. In Microsoft Research Technical Report; MSR-TR-2005-173; Microsoft Research Ltd.: Cambridge, UK, 7 December 2005. [Google Scholar]
- Févotte, C.; Bertin, N.; Durrieu, J.L. Nonnegative matrix factorization with the Itakura-Saito divergence with application to music analysis. Neural Comput. 2009, 21, 793–830. [Google Scholar] [CrossRef] [PubMed]
- Itakura, F.; Saito, F. Analysis synthesis telephony based on the maximum likelihood method. In Proceedings of the 6th International Congress on Acoustics, Tokyo, Japan, 21–28 August 1968; pp. 17–20.
- Basu, A.; Harris, I.R.; Hjort, N.; Jones, M. Robust and efficient estimation by minimising a density power divergence. Biometrika 1998, 85, 549–559. [Google Scholar] [CrossRef]
- Jones, M.; Hjort, N.; Harris, I.R.; Basu, A. A comparison of related density-based minimum divergence estimators. Biometrika 1998, 85, 865–873. [Google Scholar] [CrossRef]
- Kivinen, J.; Warmuth, M. Exponentiated gradient versus gradient descent for linear predictors. Inform. Comput. 1997, 132, 1–63. [Google Scholar] [CrossRef]
- Cichocki, A.; Lee, H.; Kim, Y.D.; Choi, S. Nonnegative matrix factorization with α-divergence. Pattern Recogn. Lett. 2008, 29, 1433–1440. [Google Scholar] [CrossRef]
- Févotte, C.; Idier, J. Algorithms for nonnegative matrix factorization with the β-divergence. Technical Report arXiv 2010. Available online: http://arxiv.org/abs/1010.1763 (accessed on 13 October 2010).
- Nakano, M.; Kameoka, H.; Le Roux, J.; Kitano, Y.; Ono, N.; Sagayama, S. Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with β-divergence. In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Kittila, Finland, 29 August–1 September 2010; pp. 283–288.
- Badeau, R.; Bertin, N.; Vincent, E. Stability analysis of multiplicative updates algorithms and application to nonnegative matirx factroization. IEEE Trans. Neural Network. 2010, 21, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Favati, P.; Lotti, G.; Menchi, O.; Romani, F. Performance analysis of maximum likelihood methods for regularization problems with nonnegativity constraints. Inverse Probl. 2010, 28, 85013–85030. [Google Scholar] [CrossRef]
- Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M. Nonnegative least-squares image deblurring: Improved gradient projection approaches. Inverse Probl. 2010, 26, 25004–25021. [Google Scholar] [CrossRef]
Appendix
A. Non-negativity of the AB-divergence
B. Proof of the Conditional Auxiliary Function Character of
C. Necessary and Sufficient Conditions for Convexity
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/.)
Share and Cite
Cichocki, A.; Cruces, S.; Amari, S.-i. Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization. Entropy 2011, 13, 134-170. https://doi.org/10.3390/e13010134
Cichocki A, Cruces S, Amari S-i. Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization. Entropy. 2011; 13(1):134-170. https://doi.org/10.3390/e13010134
Chicago/Turabian StyleCichocki, Andrzej, Sergio Cruces, and Shun-ichi Amari. 2011. "Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization" Entropy 13, no. 1: 134-170. https://doi.org/10.3390/e13010134
APA StyleCichocki, A., Cruces, S., & Amari, S.-i. (2011). Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization. Entropy, 13(1), 134-170. https://doi.org/10.3390/e13010134