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By E.C. Zceman

Introdus ction

The classification theorem is a beautiful example of geometric

' topology. Although it was discovered in the last

ﬂnag,cs to convey the spirit of present day recear

that we give here ic elementary, and it is hoped noce intuitive

that fourd in most textbooks, but is none the less

designed for readers who have never done an w topolegy before,

ihe sort of mathematics that could be taught in schools both to foster

Certury,
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yet it

geometric intuition, and to counteract the present day alarming

tendeney te drop gecmetry. It is profound, and yet poeserves a sonse

of fun. In Appendix 1 we explain how a-deeper result can be proves

one has available the more sophisticated tcols of analytic toix

and algebraic topology.

Examnles.

batore stating the theorem let us look at a few exanples of
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7. Knoited pretzel.

8. Sphere with two loles bored © 9, Oprheve with tiwes handles cown
through it, and onc of the ONe
hotes tnreaded thvoagh
a hole in the ollw hole.



0. Kleln boitle. Notice that this surisce, unlike the others,

intersccts itself in the circle C. The Klein hottie can be formed
by taking a cylinder, narrowing one end, bending it round, poking
R 53 b g b i % L 153

ii through the side, widening it egain, and sewing
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We call a chopping up into triangles a trianmilats

N, and any

trianpulation of the surfaces has the wo propertics:

(1) Any edpe is the edge of exnctly two triangles.

(2) Any vertex, v, is the vertex of at least twee triangles,
and all the triangles hoving v oas vertex £it round into

a cyele.

Our intuitioﬁ tells us-correctly that-eany surfzce can be
triangulated, but the proof of this fact requires considerable
analytic topolegy, well beyond the scope of this paper (see
Reference 4); and so we shall be content to assume triangulability.
The great advantage of a friangulaticn“is that it reduces our
task of classification to a finite corbinatorial problem, which e

can then tackle with finite mathematics.
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Tnerefore {rom now on we shall assume that a1l cop sucfs
anre
(i) comecled
(1) closed

(iii) triangulable.

Definition of or Aahility.

We call a surface crientable if it does not conmtain a MEbius
strip; we call it pon-orientable if it does contain o Mibius strip.

Of the ten examples above the first nine are all orientable,
and only the lazt one, the Klein bottle, is non-orientable. To ses
that the Klein bottle coﬁtains a MShius strip, imagine it to be
sliced into itwo by the plane of the paper. In particular the
seif-intersection—circle C is sliced into two semicircles. Now
slide the two pieces apart. Fach piece will intersect iteell in a
sem:circle, but we can remove these self-intersections by small
moves as follows. Lift the thin part of the botton piece up above

the paper until it is clear of the rest; similarly push the thin

part of the top piece dcwn below the papers



sush down

T+ csn be seen that each piece is a Mébius sitrip. Thorefore the
. , . ot RIS big S S
Klein bottie not only contains o Mobiun etrip, but is in fact the

o : r B . e A ey :
the union of two FMobing strips sewn topother Alonn “ooar boundaries .
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Tt i troe that the M s etrip ds one-sided,  Sare writers
also call the Klein bottle cne-sided, and claim that it has "o
inside’, but these statcmenis are not tre because of the
seli-intersection circle C. An ant cannot crawl from one side to
the other because it would get held up at C; nor can it orawl from
the dnside to the outside. It is a theovem that the Klein bottle
cannot be conatricted in d-dimensions without self-intercections
and so this difficulty is fundamental. Moreover the same difficulty
arises for any closed non-orientable surface. (The Mdbius strip is
not clesed.) n the other hand it is possible to construct a Klein ‘
bottle in 4-dimensions without self-intersections: the way to do
this is to 1ift the thimner tube a little way into the y th dimension,
and then the sclf-intersection vaniches. At the sane tine the
concept of the Klein bottle having an "inside" becomes meaningless,
as the following analogy shows.

Consider a curve in 2-dimensions with one self-intersection
point, like a figure 8. We can get rid of the self-intersection by

lifting one branch a little way into the 3rd dimension.

2 - dimensions S—
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377 dimension 1t is meaningless

then we Jift the Ddpure 8 into the
to ask vhat becones of the inzide of the figure 8, because curves in
J-dimensions canmot have “insides'" or Toutsides™.  In exactly the
sane way surfaces in Y-dimensions cannot have insides or outsides,
and therefore when we get rid of the self-intersections of a Klein
bottie by lifting it into the 3t dimension, then it is meaningless
to tallk about it being cne-sided. Therefore a Klein bottle cannot
truthfully be said to be one-sided in either 3 or b-dimensions.

Consequently we prefer the term "non-orientable" to the term

"one-sided".  This ends the digression.

Definition of homeomorphiom.
We now come to the central idea that distinguishes topology
from any other form of pzometry. Two surfaces X and Y are said to

be homeomorphic if there is a ore-to-one continuous function

between them. We often write this as
X =y or XY,
We give some examples of homeomorphisns.

Example (i) A sphere is homeomorphic to an ellipsoid by radial

projection x + y.
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* Ceorote, (IA) 0 More drastioslly, dwagine the sphere X to be o
runbor balloon, and bend into any shapa Y (without cutting or
glucingi. Then X # Y, because each point of X is moved into a
unigue point of Y, and this determines a function X * Y, which
is continuous (since there is no cuttning) and one-to-one (since
there is no glueing). This example illustrates why topology is
sometimes called rublter shoet peometry.

Example (iii) A sphere is homeomorphic to the surface of &

- tetrahedron.  This example is important becavse it illustrates
the fact that if we iriangulate a surface X with curved triangies
and make a model Y with straight triangles, then X is homeomcrphic

| to Y.

Example (iv) Suppose that during a deformation of a surface X

we made a cut, and later sewed the cut up again exactly as it was
before, then the result would be homeomorphic to X. The following
four pictures shcw, for example, that a knotted torus is homeomorphic

i to an unknotted torus.

1. Knotted . 2. Cut (the arrows 3. Unknot b, Sew up
torus " iishow the the again.
- direction of cut) cylinder



Gne time ofi to exploin why. let K denote the
knotted torus, lel T dencte ihe unknotted toras, and et B denote
the 3-dimensional Evclidzan spece in which Uwey are both embedded,

We have tvo Tacta,

(1) There exists a homeonorphiem K 2 T, and in Dxample (iv)
above we explained hos to construct such ¢ homeomorphism,

(2) There is no homeomorphisn of I ontc itself throwing K onto
T. Ancther way of saying this ig that the knoitedness of K is not

a property of K by itgelfy but of the way it is embedded in E.

In thds paper we study just the surfaces by themselves, and do
not tackle the harder preblem of how many ways they can be knotted in
E (& problem which is still unsclved), Consequently to have them
embedded in b is sometimes confusing, and sometimes raises red
herrings like the knotting of tori, and the self-intersection and
cne-sidedness of the Klein bottle. We ought really to think of
a surface as an abstract object existing on its own, without being
embedded in anything. However this abstrection is a difficult
concept for the beginner, and only becomes rigorous after famdliarity
with the foundations of analytic topology. Therefore we shail not
insist upon it, aﬁd although tie abstract concept will be implicit

in our proofs, we shall continue to base our intuition on surfaces
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Frove that, of the ten examples at the beginning,
Example 2 = Example 3 % Example U4
Evample & = Example 6 2 Lxample 7

Example 8 = Example .

What classification means.

We classify surfaces by luveniing a list of stendard surfaces
and proving that every surface is homeomorpliic to une of the
standard ones. A more sophisticated way of saying this is that
homecmerphism is an equivalence relation on the set of all surfaces,
and we list the equivaleuce classes. Like many results in topology
the classification theorem has a remarkable simplicity for the
following reason. Homeomorphic surfaces can be so drastically
different, that the equivalence classes are huge, and so there are
very few of them, and the list is easy to compile.

Diporession on ithe difference between topology and peometry.

By camparison Euclidean geometiry is much more complicated,
because two surfeces are equivalent in Euclidean geometry if and
only if one can be moved into the other by a rigid motion. Therefore
the number of ¢ ffereni surfaces, from the point of view of Fuclidean
geometry, is so enormous that nobody has even contemplated listing

them. In other words topolegy can handle more complicated situations
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has an inner ddarcior and o ovter disootor, ond sony other

measurements, Lal vrem

point of view the most

P topolopl

dramatic property of the o o 1o hole and the fart chat it
persists in having a hole hosever much we bend T about.

In h~dimensions, and hig the difference bolweesn geometoy

and topology bocorss even porae marked,  Ceometry becomes almost

3

entirely alpebraic in order to handle the complexity, while topology

beconas more peorntric in order to handle the simplicity, By

)

gecmatric” we reon that pictures are important Loth for furnishing

the intuition to make conjectures, and for providing the inspiration
to discover the proofs. The pictures can be on blackboards or in our
imaginations, but wherever they are, it is true to say that

topology 1s now the most geomeiric sub »ject in mathematics.

The standard orientable surface of penus n.

To sew @ handle on a sphere, punch two 1ittle holes in the
sphere, take a cylinder and sew the ends of the cylincer onto

the boundaries of the holes,




The arrowe on the boundaries indicate which way to sew T
topehery  notice that the two arrows on the cylinder go the sare
way, but that the two arrows on the boundaries of the holes go
opposite ways. A sphere with a handle sewn on is homecomorphic to
a torus (3f we had got one of the arrows reverced it would have
been a Klein bottle). If we want to sew a number of handles on we
sew them on to different parts of the sphert:. Examples 6 and 9 at
ithe beginning show spheres with 2 and 3 handles sewn on. Define

the standard orientable surface of penus n (n = 0) to be a sphere

with n handles sewn on. In particular gemvs O means a sphere,

genus 1 a torus, and genus 2 a pretzel.
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tandard non-orientable; supface of penus n.

The

To sew a Méhivs steip on a sphere, punch one little hole in
the sphere, take a Mobivs strip and sew the boundary of he MSbius
strip onto the bourdary of the hole. This sounds simple, and from

the sbetract point of view it is as simple as it 'sounds, but 1f we

want to visualise it happening in 3-dimensions then it is not
obvious, because the resulting surface has to intersect itself. In
a moment we shall give an alternative description thet is easier to

visualise. Meanwhile define the standard non-orientable surface of

geruis n (n> 1) to be a sphere with n Mébius strips sewn on.

Examples. , v

(i) The case n = 0 is omilied because this would give a

sphere, which is orientable. ,
(ii) The case n = 1 gives a surface called the real

prolective pilene, which is described further in

Appendix 2.




(i53) The case n = 2 gives the Klein bottie bocause sewivg
two Mhbius strips on e sphere is howeonmphic 1o

sewing two Mopius airips topother, as the following

piotures show.

© &

1. Sphere with two 2. Shrink the sphere 3. Sew the cylinder
- Mobius strips part into a little - onto one of the
sewn on, cylinder, Mobius strips.
. Alternative descriptions of sewing on MObius strips.

We shall show that the follewing threc processes are
equivalent.
(1) Sew & MObius strip on a sphere.
(2) Punch a hole in the sphere and then sew together all pairs
of diametrically opposite points on the boundarv of the

hole. We abbreviate this by saying "sew diametrically®.



Punch a hele in the sphere and then sew G a Cruss-Cap,
where a cross-cap is the surface illustrated in the

following picture.

BOHHG‘QF

Jd
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The oross-cap hes a bomndary, and intorsects itsell in the Line =y,

Tre horizontal oross-gacticons are drawn in to indicate how it

g T

intereocts itself. Wa shall chew that a cross-cap 16 the sans as
a Mobius strip with se2lf-intersections.

To see that (1) is equivalent to (2) coneider the followlng
sequence of pletures,  Starting with (1), cut the Mibivs strip along

its centre line, ond it is a well-known party trick that 1t does not

) fall apart, but becomes a twisted cylinder, which is homeonorminic to
. an untwisted cylinder, Sew the base of the cylinder onto the sphere,
and there remains to sew up the top again dianetrically, which is

homeomorphic to prescription (2).

1. MObius strip. 2. Draw in centre line. 3. Cut along centre

5

4. Cut across., 5. Untwist. 6. Sew up the last
cut.




sequence of pictures. Sew the top of the cylinder diametrically
to Torm a cross-cap, by first pinching the ends of cne diameter x,
then the ends of another diemeter y, then sewing tcgether one pair

of arcs wy, and finally the cther pair of aves yx.

1. Take the cylinder. © 2. Pinch x. 3. Fold ups




b, Pinch y. 5. Sew up xy. 6. Finally sew up yx

to forn cross-cap.

-

We conclude by deducing that the stendard non-orientable surface of
FENUS N CTOSS-caps on 'a sph.e.'r’e. This is easier to visualise than
scwing on MSbius strips, but is sesthetically less pleasing from the
abstract point of view, because of the self-intersections.

We are now in a position to state the main theorem. The
statement will resembie a watershed dividing the first half of the
paper from the second, because up till now we have been develbping
topolopical intuition so that the reader can fully understand the

meaning of the theorem, whereas from now on we shall be concentrating

cn technique in order to prove the theorem.

Clacsification Thecrem. Any connected closed trianpuleble suriuce

is homeomcrphic to one of the standard ones.
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Before proving the theoren wa nesed some dofinitions and lesmso

(o lomma is a little subsidiary theoram).

flnation of

“

let M be a curface. Choose a triengulation of M. By a

on Mwe mean a closed path without self-intersections,

conzisting of vertices and edpes of the trianpulation. The reascon
thatl we use the word "curve" for sorathing that scuds wore like a
polveon is that it conjures up the correct ivtuition. Whenever we
talk about a curve on a surface, it is easler to tlink of it

without the triangulation. Here are (wo examples of curves on a torus,

A curve is said to separate M if cutting along the curve causes
M to fall into two pieces. We call M spherelike if every curve

(in every triangulation) separates M.




woiple (3). The sphere is sphevelike - this is the famous Jordan

Curve Theorem, which we shall prove in Lemma 2. 1T is also the
JustiCleation Jor using the word stharelike,
Pyample_(33).  The torus is not spherelike, because neither of the

two curves shoun above separate it.

Definition of the Euler characteristic.

let M be a swface. Choose a triangulation of M. Let v be
{he nurber of vertices, e the nurber of edges and t the number of

triangles. The Euler chavacteristic X(M) is defined by the formula

X(M}) = ve-et+t,
The remarkable fact abouty (M) is that it is independent of the
triangulation, although of cource v, € and t deb:nd upen the
triangulation. The result for spheres was first published by Euler
in 1752, although was probably known to Archimedes in the second
century B.C. The result for other surfaces was discovered by Peincaré
in the 1890's, and out of this small germ grew the whole of
algebraic topology. The first rigorous proof of the invariance of
Y(M) was not until the 1930's, and is beyond the scope of this paper
(sec Appendix 1). The formula works not oniy for triengulation with

triangles, but also for "triangulations" with polygonal laces.
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Tetrahedion.,

= 4 vertices - b6 edges + U irlangles = 2.

1
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2. Cube. :
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3. Torus

Xz 9 vertices - 18 edges + 9 squares = 0




— 27 -

Py teiongulating suitably show that

foo Noylinder) = G

¢ xMobius strip) = 0.

3. HMsphere with n holes punched in it) = 2 - n.
Deduce  that

bo  Metendard ordentable curface of genus n) = 2 - 2n,

5. Xetandard non-orientable swrface of genus n) = 2 - n.

We now state two lenmas, The programme will be first to prove
the theorem using the lemnas, and then to prove the lemmas (with the
help of further lemras). The reason for doing it this way round is

to give motivation for the lemnas.

lemma 1. If M is a connected closed triangulable surface then

Kons 2,

wrrae

iemma 2, If M is a connected cloced triangulable surface then the

following three conditions are equivalent:

(a) M is spherelike

b) XM = 2

LA . Ay o ey - oY pen
{c) M is honeomorphic o a spherc.

Proof of the Theorem.

ct M be a given connccted closed triangulable surface. We have

to prove that M is homeomorphic to one of the standard ones.
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Chocse & trianpulation of M, and corpute X (M), ThenX (M) <2 by

Termz 1. IOX (M) = 2 then M is homeoporphic to a sphere by Lomma 2.
Therefore assune X(M) < 2. Therefore M is not epherelike by lLemna 2, .

and so we can choose a curve C not separating M.
Consider a thin strip of surface containing C. There are two

posaibilities: the strip is either a cylinder or a Mdtius strip.

If it is a cylinder we call C an orientation-preserving curve on

M, and if it is a Mdbius strip we call C orientation-reversing. We
now construct a new surface Ml by a process called surpery, which is
defined as follows. If C is orientation-presevving, cut along C and
fill in each side with a disk. It is important to leave the arrows
on the boundaries of the disks in order to rerdnd us which way to

. . :
1

sew them up again later on.

o e .




If C is orientation-reversing, again cut along C, but this time only
one bonndary curve is formed instead of two, 0 £i1l this in with
one disk instead of two. If the surgery is performed on an abstract
surface there is no difficulty about Self-—intersecti;wns, but if the
surgery is performed in 3-dimensions then new self-intersections may
arise. We claim that

x(rll) = [x(M) + 2, if C is vrientation-preserving

y(M) + 1, if C is orientation-reversing.

To preve this suppose that C contains k vertices and k edges. Then
(C) =k - k = 0. Therefore removing C does not alter x(M). In the

orientation-preserving case we form Ml by adding two disks, where each

disk is obtained by joining C to a point.
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Therefore each disk confains (k+1) vertices, “k edpes and k triangles.
Therefore y(disk) = 1 and X(M_'_l‘> = (M) + 2y(disk) = x{(M) + 2.

In the orientation-reversing cace only one disk is added; although
this disk contains 2k trdangles it gtill has chavaclecistic ’1, and so
X(Ml) = x(M) + 1. In both cases x(M) < x(Ml).,

We now proceed inductively. Fither x(My) = 2 and My is
homeomnorphic to a sphere, or else X(Ml) < 2 and we can surger Ml
into M, vhere x(MJ_) < x(M?). By Lemma 1 the process must stop after
a finite number of steps, and so we obtain a finite sequence of

surfaces M, Ml’ M2’ evey Mr such that
x(M) < X(Ml) < x(M?) < .l < X(Mr) = 2, with M. }'1omeomorphi¢ to a

sphere by lemma 2. As an exercise the reader is recommended to

draw the pictures for thz examples at the beginning of the paper.




e ”‘1" contuing a nurber of Litile disks acising fron the

coprernes, and wo can ensue that all these disks ore dicieint by
the Tollowing trick. The only way in which two dicks mipght not Le
9.8 4*“ VLY Ve A4t . - 4 . . e e w4} Pk e |
disjoint would be 1f the curve of a later surgery cut across. the disk
of an eariier surpery. The trick is to shrink each disk into the
interior of one of its triangles, because this will ensure that it

aulonaticelly nisses any Jater curves.

Tne el angulét.i on has served 1ts purpose, and we ncw forget it;
we concentrate oniy on the (J'i;sks in Mr‘ Iragining Mr to be made
of rubber, we «an move together each pair of disks that arose from
an orientation-preserving surypery., iHore precisely, we can chcose
the homeomorphism from Mp 1o the sphere, so as to bring each pair
close together.

We then desurger, as follows. There are three types of

desurgery.



Two disks with arrows poing opposite ways., Panove the

dieks, push up Jittle tubes and sow together:  the effoct

sew @ handle on the sphere,

CC

Type (ii)  One disk. Remove the disk and sew the boundary

diametrically: the effect is to sew on a Mobius strip.

Type (iii) Two disks with arrows going the same way. Remove the
disks, push cne tube up and one tube down, bend round and sew together.
The effect is to sew on a Klein bottle, which is equivalent to

sewing on two Mdbius strips.
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pocferming all the desurgeries aimiitancously we obtain a surfacc
1, hemeonorphic to the original M.

b

e _orientable cose.

1f M is orientzble so is M. Therefore My containg no
Mibius strips, ond so only desurperies of type (1) cen ooour.
Therefore M, is a standard orientable surface, namely a sphere with
o handles sewn on. The gznus, n, is the number of surgeries (or
desurgeries) end therefore can be computed from the Uuler
characteristic

n=1--3x(M.

The non-orientable case.

I{ M is non-orientable then all three fypes of desurgery can
memur.  IF only tvpe (i) cccurs, then My will be crientable, which
is a contradiction, and therefore at least some of types (ii) and
(iii) must occur. Perform these first. We now use a trick to
convert all type (i) desurgeries into type (iii), as follows.

Given a pair of disks corresponding to a type (i) desurgery,
transporf (i.e. pull along rubber-wise) one of the disks round the
sphere to one of the MSbius strips that has already been scwn on,
round the MSbius strip, and back. Like the ant, which found

itself on the other side after crawling round a Mobius strip, so the
arrow on the disk will be going the other way round after its
transportation. In other words the type (i) will be converted into
type (iii). Therefore M, is a standard nen-orientable surface,

namely a sphere with n Mébius strips sewn cn. The genus, N, is the
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purher of type (51) desirporics plus lwice the nunbopy

ol therelfove con be comnputod
n=2 - M.

.

This completes the proof of the Theoren,

In owder to prove Lammes 1 end 2 it is necessary to introduce

BT

praphs. A graph is a comnected set of vertices and edgso,

reans that it is all an one piece, or equivalently that any two

vertices are cormected by a path in the graph.

Example 1. Erample 2.

—

There are two possibilities: a graph may or may not contain loops.
bxample 1 contains loops, but Example 2 does rot., A graph that

contains no loops is called a tree.

-,

e e e e A 6 i

B e e e o e A e




Tenna 3. A tree always contains ot least one end vertex (i.e.

foverton on onay onz edee),

Fmrp—

Proof.  Suppose not. Suppose thal every vertex lies on two or wore
edges.  Then, starting at any vertex, it is possible to proceed
along a path in the graph, such that each edge is followed by a
different edge. If we continue for more steps than there are
vertices, then we must bave performed a loop, which is a contradiction.
Therefore the lemma is true. |

If G is a graph with v vertices and e edpes, then the Euler

characteristic »(G) = v -~ e.

lemma 4,  If T is a tree then x(T) = 1.

Proof. The proof is by induction on the number e of edges in T.
The: induction begins with e = 0, for then T is a peint and so

x(T) =1 -0 = 1. Suppose the lemma true for e - 1, and suppose we
are given a tree T with e edges. By Lemma 3 choose an end vertex.
Removing that vertex and the edge containing it will not alter

x(T), and will leave a tree, T1 say, with e - 1 edges. Therefore

x(T) = x(T.) = 1, by induction.

1
a 5. If G is a praph containing a loop then y(G) < 1.

v

Len

Proof. Since G contains a loop, we can remove one edge from that loop
without disconnecting G, and therefore obtain a graph, G1 say, such
that x(G) = X(Gl) - 1. Either Gy is a tree, or else we can remove
another edge to form a graph 62. We can go on removing edges until

we hit a tree, and we must hit a tree after a finite number of steps

because e is finite. Suppose, therefore, that Gr is a tree, r2 1,



e,

e

x(C) = X(Gr) -1
= 1~ 1r, by lema b
<1,

Dual-triangulations.

Let M be a cormected closed triangulable surface. Choose a
trianpulation of M. The dusi-triangulation is defined as follows.

It is shown dotted in the picture.

Within each triengle X choose an interior point x, and call it the
dual-vertex of X, If two triangles X, Y have an edge E in comron,

join their dual-vertices x, y to form a dual-edge xy. The dual-

edge xy intersects b once, and does not meet any other edges.




friy tres congistirg of duel-vertices and dual-edges is called a

dual-t
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The corplenent K of a dual-tree T is defined to be the

set of all vertices, edges and triangles of M that do not meet T.

Ipmma 6. The comlonent X of a doal-tree T is connocted.

Proof.  Since K contains all the vertices of M, it is enough to
prove that any two vertices of M can he connected by a path aleng
the edoes of K. The proof is by induction on n, the number of
edges in T. The induction begins with n = 0, for then T consiste of
one dual-vertex, so K contains all the edges of M, and therefore K
is connected becauce M is connected. Now assume the result true
forn « 1. Given a dual-treec T with n edges, choose an end
dual-vertex x by lesuma 3, and let xy be the dual-edge of T
containing x. Let X, Y be the triangles with dual-vertices X, y

and let the vertices of X be A, b, ¢ as shom.



let T1 be the Jual-tree obtained from T by removing x and xy, and

let K, be the complement of Ty. Then K, is connected by $nduction.
But K is obtained fran Kl by removing the triangle X and the edge

ab. This dees not disconnect 1 because any path in Ky contaiﬁing
the edge ab can be replaced by a pafh in K containing edgeé ac and

cb. Therefore K is connected.

Lemua 7. A maximal dval-tree contains all the dual-vertices.

Proof. Let T be a maximal dual-tree, that is to say T is not
contained in any larger dual-~tree. Supposeithat T does:not contain
the dual-vertex x. Then we shall prove a contradiction.

For, let P be a path from x to any point of T. By shifting
P slightly we can make sure that it does not go through any

vertices,
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let p be the first point on the path P that lies in a triangle Y,
whose dual-vertex y lies in T. Since p is the first such point,

it must lie on some edge of Y (and not at a vertex by construction).
Let Z be the other triangle containing this edge. Then the dual-
vertex z of Z does not lic in T (otherwise p would not have been
the first such point). let T, be the dual-tree obtained by adding
yz and z to T. Therefore Ty is larger thar T and so T is not
maximal, and the contradiction proves lemma 7.

Proof of Lemma 1.

let M be a connected closed triangulable surface, and chocse

a triangulation of M. lLet T be a maximal dual-tree, and let G be the



W T, Then T containg all the dual.sertices by lemna 7,

vl g0 G contains no tidangles. Therefore G consisis of verlices aid
edren, and is connected by lemma 6. Therefore G is a graph. There
are onz-tomone corresponcences belwesn

vertices of M - vertices of G

edges of M -y eodpes of T ’fmd G

trienpgles of Mé———) Verticeé of T.

x(T) + x(G)

b

Therefore x (D

1+ x(G), by Lemma b

it

-« -
= 2, by Lama b.

Proof of Lemma 2.

We have to show that the follc»wing three statements are
equivalent: (1) M ie spherelike
(2) M) = 2

(3) M is homeamorphic to a sphere.

We shall prove that (1) ==3 (2) 5 (3) ==3(1). First we prove

that (1) implies (2). Therefore assune M is spherelike, and

suppose x (M) # 2, and we shall prove a contrradiction. let T be

a mavimal dual-tree and let G be its complementary graph. Then
x(B) = x (M) = (T) =y (M) - 1# 1. |

Therefore G is not a tree, and consequently contains a loop C.
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Thiz leop is a curve® on M, and thorefore geparotes M inte two
T » k

Voo,
o triangle, and therefore at least one dual-vertex. Rut all
dual-vertices are :*om'ai,n;.crd in I by Lenna 7, and any tve eon be
cormected by a path in 1 because T iz a tree, and a tree is
commected. This path dews not weet G, the complenent of T, .:-mctf
therefore does not meet the curve C. In other words peints in the
twa pleces of M e be joined by a path not meeting C.  Tharefore
C does not separate M alter all, which is a contradiction. This
completes the proof that (1) implies (2).

We now prove that (2) implies (3). Therefore assune that
x (1) = 2. We have to show, that M is hameomorphic tc a sphere.

Let " be a maximal dual-tree, and let G be the canplemnsntary graph.

Then G is alsc a tree by Leima 5, because x(G) = x(M) - x(T) = 1.

e S N et e Y Ty N e . r oyt o g sabe N oy b
beeowss M ds spherelike. Lach plece of M contadus et least

# The reader may ask why ve use two different words "lcop" and
"curve" for apparently the same thing. The reason is that each
gives the correct intuition of its context: a loop in a graph is
'like a loop in an electronic network, while a curve is something

" that one draws on a gurface.

A

P S,

stk s
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Lot N(T) be a neighbourhood of T fo by thickening T. We colaim

Uiat N{T) Is homeosorpilc to a disk, and the prool ie as follows,

By applying Lemna 3 inductively shrink T to a point by netrecting
edpe after edpe.  Starling from the point we can reverse the process
by expanding ont edge after edpe. Now put a little disk around

the point, and every ture an edge cxpands out grow out an arm

amoeba-like to centain his edge. At the end the disk has grown

horeomorphically into N{T).

PR
et =
v
>
»
H
H
'
&

Similarly a neighbourhood N(G) of the tree G is homecrorphic
to a disk. The idea is *o choose N(T) and N(G) so that their union
is the whole surfsce M, and their intersection is the boundary of
each. This can be done as follows. First make a model of the
surface in which the edges ave straight, the triangles are flat,
and the intersections of triangles and dual-edoes are straight.
Given a point x in the medel, let X denote the triangle containing

x (or one of the triangles contaiming », if x happens to lie cn an

",




cooe), and let ©x), glx) denote the distances lfrom
2t Tn X, CnX

seidvely. Put x dnto N(T) if t(x) S g(a), and into H{G) if

plzy < t(x)., The rnterscction N(T) 1 N(G) consisis of points
such that t(x) = g(x), and is the boundary of both., The intersecticns

of N{T) and N(G) with typicil trionpgles are shiown below.

O

\

Consequently M = N{T) U N(G) is homecmorphic ta two disks scwn
along their boundaries, nanely & sp}.el;e. This completes the proof
that (2) implies (3).

Finally we prove that (3) implies (15, that é sphere is
spherelike. JTn other words we have to show that any curve C on
a sphere separates the sphere, This is a polypenai form of the
celebrated Jordan Curve Theorem. Assume that C is a polygon

consisting of a finite number of great-circle arcs.



Choose a point » on the sphere, not on C, nor

preat-circles containing arcs of C. Regard x

L

Given any other point y, not on €, nor at the

to be even or odd according as to whether ‘the

on any of the
as the north pole.
south pole, define y

number of intersecticns

of C with the meridional arc xy is even or cdd. We have a conventicn

that an intersection like

counts as 0 or 2. With this convention we deduce that all points

near an even point are even, and all points near an odd point are

odd. Therefore along any path not crossing C

the parity remains




constent.,  In other words no even point cin be Joined to an odd
point without crussing C, and o C separates the sphere ko
evens and odds.  The poles give no trouble because x s even, and
if the south pole is not on C it has unambiguous parity. This
completes the proof of Lemma 2, and hence also completes the pronf of
the Classification Theorem.

We conclude the paper with four appendices.

1. For the experts,

2. The real projective plane.

3. Why non-orientable surfaces have to have seli-intersecticns.

4, Some problems on knots.

Appendix 1. TFor the experts.

The discerning reader will have obsemed that we mauaged to get
thrcugh the paper without ever defining a surface. And deliberately
so. For the topologist, the correct définiti.on is as follows: a
surface is a 2-dimensicnal locally-Euclidean compact connected
Hausdorff space. The advantages of this definition are that it is
intrinsiec, it is in topological terms, and it generalises irrmediately
to higher dimensions. But we did not introduce it at the begiiuing
Lecause it is too technical: it cannot be uncerstood without
reading a book on. analytic topology (for example Reference 5). We
wanted to present gecretry to the beginner, cnd it is tough going for
the beginner to have to first plough thmughb the foundations of

analytic topology.
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e cecond reason for onitting ihe dafinivien was to aw 1d the

reechtem of Ty dengulabitity. The only correct published proof that a

.

eprfnce can be trianguleted is Pelirence 6, which is much too hard for

i bepinner.  In o assundng trlangulebility we drndicitly delined a

surface to be a collection of trianples fitting topether aceonding

o he rules (3) each edpe lies on two triangles, and (ii) each

vertex is joinad io a poiygon. With this implicit definition our

proots were rigorous. However it would perhaps have been a little : 3,
@aesth ic to make this into an explizit defindtion, because it
sounde rather actifisial. And indeed we should have been in danger ‘ \
of confusing the concept with the tool. The concept of surface is |
one of man's richest intuitions, whereas a triangulation is a mere
rahenatical tool. erefors our taste was to present the ideas of
"intuition and tool" and avoid any "definition" that was too
technical or artificial.

The other major omission was the proof of the topological
invariance of x. Invafiance is necessary in order tc prove that two -
surfaces of different genera are not homeomorphic. The preof is hard
and requirec the Full power of 1lgebraic topo;ogy {sce fov examnple
Reference 4). One expresses X in terms of hcomology groups, | and then

proves the hcmology groups to be topological invariants.

.

It is true in Lemma 2 we pr*ow,d that x{sphere) = bu . -




e pesalt depended upon cur proof of the Jordsn Covve T

s

HEOVRRL,
5 f‘:f rere ===y spherelike

shich was only for triangulations made up of great-circle ares. Yo
pet a topologically invariant prv Sf the triengulation must be
allowed to be arbitrarily wigply, The proof that we gave breaks
down becnuse an arbitrary curve may meet a meridian in an infinite
mrber of points, Ve remark, however, that this part of our proof
was not really necessary, and only put in for good measure. The
careful reader will have noticed that the only pa arts of Lemnz ? that
were veed in the proof of the classification t.heor‘e_u were the other
two parts:

spherelike ===y = 2 -===)sphere,

Ve conclude the appendix with some romarks about current
research., We claimed at the beginning that the clessification
theorem was a beautiful example of geometriC' topology, and this is
because if has strong overtones of higher dimensions .v The
definition of an n-manifold is an ix-di;nexasional locally—-Euclideari
compact connected Hausdorff space. In other words a surface is the
ame om a Z2-manifold (thie was why we used the letter M to dor rote
a swface). The classification of 2-manifolds (surfaces) was
achieved in the last century, and for the whole of this century
topologists have been S'truggiing in vain thclassify 3-manifolds.
The m;\in stumbling biock is the celebrated Poincaré Conjéct&r*e,
which is the 3-dimensicnal analogue of

spherelike -======3} zphere.
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Veineerd conjectured this in 1899, Lut it is still unsolved today -

[¥2]

Ty spdte of this, the annlogous Poincaré Conjecture in dimersions @
e solved in 1861 by Smale and others. During the last Five years

Tiers have been spectacular (auvce"“c,c in high diwensional gec snetric
tepology, which have given us new iﬂSlg}"lt into the low dimensions.
"The new proof of the classification theorem that we have given above
is an example of this insight.

Appendix 2. The real projective plane,

We begin by emphasising the word "real", because often it is
fot clear whether a writer is discussing real projective geomr.%*tm’ or
complex projective geometry. There are three definitions cf the real
projective plane, P. |

(1) P is the set of lines through the origin in Luclidean
3-dimensions. |

(2) The px‘ojective planc is nU n_ where n is the Luclidean
plane, and w_ the set of "points at infinity". |

(3) The standard non~arientable surface of genus 1, namely
a disk and a M8bius strip sewn together.

We shall show that all three definitions are equivalent. From
the geometrical point of view definition (1) is the most elegant,
hecause it also contains the linear structure of P. Definition (2)
is aesthetically bad because fml’tc points are dmfferent from mfmn:e
points, whereas all peints P are qualitatively the same. Definition

(3) is the topologists viecwpoint,




To ghow (1) implies (2), let = be a plane in 3-dimensions not
through the crigin., Then each line through the origin wmeets n in a
unique point, or else is parallel to , in which case we say that
it meets w in a "point at infinity". Therefore there is a
cne-~to-one correspondence Pe&-——ts U n_,

To show (1) is equivalent to (3), let S be the unit sphere
centre the origin. Each line through the origin meets S in a pair
of antipodes. Therefore there is a one-to-one coprrespondence

points of P¢«— pairs of antipodes of S.
tTherefore to recover P, sew S together antipodally. First sew the
northern hemisphere onto the southern hemisphere, and then sew the
equator diamctrically, This is equivalent to sewing a Mébius strip
on a sphere. |

Appendix 3. Why non-orientable surfaces have to have

self-intersections.

‘

Theorem.  Any closed connected surface in 3-dimensicns has_an

inside and an outside.

Proof. ‘I'he proof is analogous to {hat of the Jordan Curve Thecrem.
Let M be the given surface in 3-dimensions. Choose a point x well
anay from M. Given any other point y not on M, call y even or cdd
according as to whether the number of intersections of xy with M is

even or odd. Define x to be even. Then the even points form the
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sodes. ard the odd points the inside, and there is no path from an

NIy

Lsmide point to an outside point without crossing M.

Se

covollary.  Any closed non-crientihle surface in

1 f-intersections,

Preof. Suppose not.  Suppose we have M without self-intersections.

“ithout loss of generality we can ascume M is comnected. By the

theorer 1 has an inside and an outzide, and since !1 is non-

ortentable it contains a Mébius strip. If we start an ant on the .
inside, end let it crawl round the Mébius strip, then it will finish

up on the outsile, and will have traced a path from inside to out side

without crossing M, which is a contradiction.

Appvvr-dix 4, Some prcoblems on knots.

The following problens ere harder than they lock, hut playing
with them may help the reader to sharpen his intuition. A general
'infroduc'tion to knot theory is Reference 3.

1. The torus in Example 3 at the beginning of the paper is '

knctted on the outside because the outside is not horearnorphic to the |

outside of an unknotted torus. Similarly the torus in Example Y is 7
knotted on the inside. Prove that a torus cannot be knotted cn both -

vthe inside and the outside at the same time, (see Reference 1).
2. Prove that any curve in 4-dimensions can be unknotted.
3. Prove thaf a sphere can be knotted in 4-dimensions |

(see Reference 2).

4., Prove that any sphere in 5-dimensions can be unlnotted
{see Refereiice 7).

5. Prove that two spheres can be linked in S5-dimensions.
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