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Preface

These notes represent the outgrowth of en offer by Princeton University
60 let me teach a graduate level course in cobordism theory. Despite the fact
that cobordism notions appear in the earliest literature of algebraic topology,
{t has only been since the work of Thom in 1954 that more tha.n isolated results
have been available. Since that time the growth of thls aresa has been
phenomonal, but has largely taken the form of individual research papers. To
# certain extent, the nature of cobordism as g classificational tool has led
t0 the study of many individual epplications rather than the development of a
gentral theory. In particular, there is no complete exposition of the
fundamental results of ccbordism theory, and it is hoped that these notes may
help to f£ill this gap.

Being intended for greduate and research level work, no attempt ‘1s mede
here to use only elementary ideas. In particular, it is assumed that the
reader knows algebraic topology fairly thoroughly, with cobordism being
treated here as an application of topology. In meny cases this is not the
fushion in which development tock place, for ideas from cobordism have
frequently led to new methods in topology itself.

An attempt has been mede to provide references to the sources of most_; ot
the ideas used. Although the main ideas of these sources are followed closely,
the details have frequently been modified considerably. Thus the reader may
find it helpful to refer %o the original papers to find other methods which are
uaeful. For example, the Adams spectral sequence gives a powerful computational
tool which hes been used in determining some theorlies and which facilitates
low dimensional calculations, but is never used here, Many of the ideas which
appear are of the "well known to workers in the field - but totally unavailable"

type and a few ideas are my own.
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The pattern of exposition follows my own prejudices, and may be roughly

described as follows., There are three central ideas in cobordism theory:

1) Definition of the cobordism groups,
2) Reduction to & homotopy problem, and

3) Estaeblishing cobordism invariants.

This material is covered in the first three chapters. Beyond that point, on;
must become involved with the peculiarities of the individual cobordism prob.
This is begun in the fourth chapter with & survey of the literature, followe:
by detailed discussion of specific cobordism theories in the later chapters.
Fipa.lly, two appendices covering advenced calculus and differéntial topology
are added, this material being central to the 'reduction to a homotopy probli
but: being of such a nature as to overly delsy any attempt to get repidly to *
ideas of cobordism.

I em indebted to many people for leading me to this work and developing
wy ideas in this direction. Especially, I am indebted to Greg Brumfiel,
Peter Landweber, and Larry Smith for numerons suggestions in preparing these
notes, and to Mrs. Barbara Duld for typing. I am indebted to Princeton
Unive.rsity and the National Science Foundation for financiel supporﬁ. Final.
I em indebted to my wife for putting up with the foul moods _I developed duri

this work.
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CHAPTER I
Introduction - Cobordism Categories

In order to place the general notion of cobordism theory in mathematical
perspective recall that differential topology is the study of the category
of differentieble manifolds end differentisble maps, primarily in relation
b0 the cetegory of topological spaces and continuous meps. From e slightly
leno theoretical point of view, it is the study of differentiable manifolds
by topologists using eny methods they can find. The guiding principle is
that one does not study imposed structures such as Riemannian metrics or
donnectlons and this distinguishes differential topology from differential
geonetry.

As in any subject, the primery problem is classification of the
ohjects within isomorphism and determination of effective and computable
jnvariants to distinguish the isomorphism classes. In the case of differ-
sntiable manifolds this problem is not solvable, since for any finitel;;
presented group S one can construct a four dimensional manifold M(s)
wilh fundamental group S in such & way that M(S8) and M(T) will be
tiunieomorphie if and only if 5 and T are isomorphic, but one cannot
#olve the word problem to determine whether two finitely presented groups
are isomorphic (Markov {76]). In special cases one can solve the prob_i,
hut cobordism theory works in another way - by introducing en equivalence
relation much weaker then 1somorph:lsm;

Briefly, two manifolds without boundary are called 'cobordent' if
Lheir disjoint union is the boundary of some manifold. It is worthwhile
Lo note that every manifold M with empty boundary is the boundary of
M x [0,2), To get a nontriviel theory it is standard to restrict attention

Lo compact manifolds.
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The first description of this equivalence relation was by H. Poincaré:
Analysis Situs, Journel de 1:Eeole Polytechnique, 1 (18y5), 1-121 (section
5, Hamologies). His concept of homology is basically the same as the
concept of cobordism used todsy.

The next development of cobordism theory was by L. S. Pontrjagin:
Characteristic cycles on differentiable manifolds, Math. Sbor. (N.5.), 21
(63) (1947), 233-284 (Amer. Math. Boc. translations, series 1, no. 32).
This peper shows that the characteristic numbers of & closed manifold vanis
if the manifold is a boundary (providing the invariants for g:laasiﬁcationz

The cobordism claasifice.t:lon of manifolds is rea#onably elementary in
dimensions 0,1, aend 2, since manifolds are themselves classified in the
dimensions. Using geometric methods the cobordism classification problem
in dimension 3 was solved by V. A. Rohlin: A 3-dimensionel manifold is
the boundary of a L-dimensional manifold, Dokledy Akad. Heuk. S.8.58.R.,

81 (1951), 355.

The first application of cobordism was by L. S. Pontrjagin: Smooth
nsnifolds end their applications in hbmotopy theory, Trudy Mat. Inst. im
Steklov no. 45, Izdat. Aked. Nauk. S.8.5.R. Moscow, 1955 (Amer. Math. Soc.
translations, series 2, vol. 11, 1959). Pontrjegin attempted to study
the stable homotopy groups of spheres as the grbups of cobordism classes
of 'framed' menifolds. This amounts to the equivalence of a homotopy
problem and a cobordism problem. The lack of knowledge of manifolds has
prevented this from being of use in solving the homotopy problem.

. The .major development of cobordism theory is the paper of R. Thom:
Quelques propriétés globales des veriétés differentiables, Cam. Math, Helv

28 (195k), 17;86. This paper showed that the problem of cobordism is
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#Quivalent to a homotopy problem. For many of the interesting manifold
Blasoification questions the 'resulting homotopy problem turns out to be
f#6ivable. Thus, Thom brought the Pontrjagin technique to the study of
AMnifolds, largely reversing the original idea. . '

For a brief sketch of cobordism theory there are three survey
@ticles of considerable interest. For an insight into the early development
#f the theory (up through Thom's work) see V. A. Rohlin: Intrimsic homology
$heories, Uspekhi Mat. Nauk., 1b (1959), 3-20 (Amer. Math. Soc. translatioms,
fierdes 2, 30 (1963), 255-2T1). A short article which covers many of the
Bhthples of cobordism classification problems is J. Milnor: A slirvey of
fgehordism theory, Enseignement Mathemgtiqﬁe,,a (1962), 16-23. Contained
ih the survey of differential topology by C. T. C. Wall: Topology of
gBovth menifolds, Journal London Math, Soe., 40 (1965), 1-20, is & diséussion
yl' representative cobordism theoriez

 with outlines of the methods by

vhich these problems are solved.

Cobordism Categories

In order to forﬁa.lize the notion of cobordism theory, it seems useful
t0 met up a 'general nonsense’ situation. As motivation, one may consider
WM properties of differentisble manifolds.

Let /«9/ denote the category whose oblects are ccmpact. differentieble
#ALfolds with boundary (of cless C°) and whose meps ave the differentisble
waps (again C ) which teke boundary into boundary. This category has finite
“umn given by the disjoint union and hes an initial object given by the
empty menifold. For each object of /9’ one has its boundary, egain an

vljact of © : and for each mep the restriction of it to the boundary.

\
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Further, the boundary of tire boundary is always empty. This defines an
additive functor 2 :J*> —> [r. For any manifold M, the boundary of

M 1is a subset whose inclusion is a differentisble map i(M) : 3M —> M,
This inclusion gives a natural transfon_nation i:3—>1 of additive
functors, I : /5_" —> /@" being the identity fu_nctor. Finally, the Whitney
imbedding thecrem shows that each differentieble manifold is isomorphic

to & sutmanifold of countable dimensional Puclideen space. Thus £ has

a small subcategory /36 (subma;nifolds of R ) such that each object

of £ is isomorphic to an object of f?; .

Abstracting these properties, one has:

Defipition: A cobordism category (C,a,i) is a triple in which:

1) C. is & category having finite sums and an initial object;

2) 3: C —> ( 1s en additive functor such thet for each object X
ot » 33(X) 4s an initial object;

3) 1: 3 —1I is a natural transformation of additive functors from 3
to the identity functor I; and _

L) There is a smell subcategory Cb of ( such that each object of (.

is isomorphic to an object of C.o.

As noted in motivaeting this definition, (B’,a,i) ig a cobordism
category. There ere many more examples, and in fact the purpose of '
cobordism theory is to study the interesting examples. The precise cholce
of this formulation 1s based, _somewhat vaguely, on the definition of
'sedjoint functors'.

The purpose of this definition is not to establish a general nonsense
structure; rather the definition will be used to follow the framework of
previously developed theory amd to try to unify the ideas. To begin, one

has in any cobordism category the idea of a 'cobordism relation'.



-5«

Pefinition: If (C’ »9,1) 1is a cobordism category, one says that

#ho objects X and Y of ( are cobordant if there exist objects U

B4 V of C  such that the sum of X and 23U is isomorphic to the
BB of Y and 3V. This will be written X =Y.

One has easily:

Proposition:
&) £ is an equivalence relation on the obJects of C .

b) X =Y implies 9X = 3Y.
¢) Forall X, 3X =9 where # is an initiel object.
d) If X=X', Y=Y and Z and Z' are sums of the pairs

(X,Y) and (X',Y') respectively, then Z = Z',

Broof:
a) x+a¢ix+a¢;
X+3UaY+3V=>Y+3V=X+5U; and
X+ =Y+03V, Y+ 0W=2+0F implies X + 3(UsW) = X + 30 + oW =
Y #3V.+ AW = Z 4 3V + AT = 2 + 3(V+T),
b) X+ 3U=Y+ oV implies X = X+ P = aX + 32 US Y + 23 V =
IEYEE 2
c) X + 3¢ = ¢ + 3X since 3P is initial,
Q) X+aUu=X' +23U', Y+23Vay + 0V gives Z+ 2(U+V) = Z' + a(U'+V")
NOTE: 1In all of the above A + B denotes an object which is a sum
for A and B. e .
Note: 1If one is unheppy with equivalence relstions on a category, oue
may reduce to considering = Ias an equivalence relstion on the set of
lsomorphism classes of objects of C . This is the reason for the assumption

about existence of Co.
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Definition: An object X of (. is closed if 93X is an injtial

object. An object X of . bounds 1f X 5 §§ where § is an initial

object.

Proposition:

a) X
b) X
e) X
a) x
e) X
Proof:

closed and Y = X implies Y closed.

and X' closed implies their sum is closed.
bounds implies X is closed.

and Y bound implies their sum bounds.

bounds and Y = X implies Y bounds.

a) follows directly from b) above.

b) X =g, X' =g implies 3(X4X') = g+ ¢ = ¢,

¢) X = ¢ implies 3X = 3¢ = @.
d) X=g, Y= ¢ implies X+Y = @+ ¢ = ¢.
e) is immediate since = 4is an equivalence relation. #%

Proposition: The set of equivalence classes of closed objects of C

(under = ) has an operation induced by the sum in C This operation

is associative, commutstive, and has a unit (the class of any object

which bounds).

Proof: The existence of Co implies that the equivalence classes

form a set, That the sum in L’_ gives rise to an operation on this set

follows irmediately from the propositions. Associativity and coammutativity

hold for isomorphism classes of objects, hence also here., ##
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Befinition: The cobordism semigroup of the cobordiem category

“.I.L) is the set of equivalence classes of closed objects of C with
m operation induced by the sum in C « This semigroup will be denoted

Mo,

Jyparks: 1) Q(C,B,i) may also be described as the semigroup of
“nurphism classes of ¢losed objects of C modulo the sub-semigroup of
_“ﬂﬂrphism classes of objects which bound.

R) The semigroup a(/3,i) is quite easily identifisble as Thom's -
#hordisn group 7“(, of unoriented cobordism classes of closed manifolds.

ﬁ arder to clarify this slightly, in the usual expression for equivalence
88 has X equivalent to Y 4f there is a V with 8V =X v Y. Then
NYoavaevyoos(xxI) giving X =Y, The implication X v 0U = Y v 3V dimplies
¥ vY=03T is an easy geometric argument by looking at components and
Pleving together manifolds with boundary by means of tubular nefghborhoods

# their boundary components.

Within the literature of cobordism there are a few standard constructions
performed. 'Theée may be generaliied to the categorical situation as will

Bovw be shown.

Construction I: Let (C,Ia,i') be a cobordism category, ¥ & category
with finite sums end an initial object, and F : & —> ¥ an additive
functor. For any object X of }-, form a category (/X% whose objects
arw pairs (C,f) with C an object of ( and f e Map(F(C),X) and
vhoso maps are given by letting Map({C,f),(C',£')) be the set of maps

¢ ¢ Map(C,C') euch that the dlagram
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r(c) —ELL s p(er)

If @ is en initial object of (?» and ¢ : F(P) —~ X is the unique

D

commutes.,

map, then (#,4) is an initial object of C/X. If {(D,g) and {p',8')
are objects of C/X and D+D' is a eum for D and D' in C, then
F(D#D') 4is a sum for F(D) end F(D') in X% . The maps g and g'
give a well defined map g+g' : F(D+D') —= X, and (D#D',g+g') is the
sum of {D,g) and (D',g') in C/X.

Let 3(C,£) = (3,f0F(1;)) and 3(¢) = ¢ei, to define the functor
3 : C/Xx — C/X. Define the natural transformation i : 3 —~I by
1(C,f) =1y 3¢ —C.

Then ((/%,3,i) is a cobordism category.

Remarks: 1) This is the algebraic;geometric (Grothendieck style)
notion of the category. of ob,je_cts over a given obdl.ect.

2) If one begins with the category (673,1) and tekes F : B+ {
to be the forgetful functor to the category of topological spaces. and
continuous maps, then & E’/’x,S.i) is the unoriented bordism group "]"(,(xg
a8 originally formulated by M. F. Atlyeh: Bord_ism end cobordism, Proc. Cam

Phil. Soc., 57 (1961), 200-208. _ _ "

'

Constﬁction II: Let «<c be a small category, ((2,3,i) a cobordisﬁ':
: #
category, and let Fun{oc, () be the category whose objects are ﬁmctora}i

s

{ GT——> C and whose meps are the natural trensformatioms.
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It ¢ ie an initial object of @, the constant functor
1> C i A—> ¢ is sn initial object of Fun(~,( ). It
§8 1=+ are functors, let H :x—~> (. by letting H(A) be o eum
for P(0) =nd G(A) end let (3p)y = 3p(a) * F(A) —> E(R) end
“S’A " JG(A) : G(A) —= H(A) be the maps exhibiting H(A) ss the sum.
m "F and JG are natural transformations which exhibit H as a
WAfor F and G. '

Lot 3 : Pun(ot, () — Fun(sz,(C) : F —> 3oF : x —3 3()) and let
‘ i f—1I ve the natural transformation given by th; map iF ; 3oF —~ F;
A__mll evaluation et any object A of oo is iF(A) : 5(F(A)) — F{A). ll

Then (Fun(oc, 7J,3,I) 1s a cobordism category.

merk: Many standard examples £it this construction. Suppose ..
{0 She category with one object A whose maps are a finite group
§ 3 Mup(a,A). A functor P :vt—= [ is given by selecting & menifold
‘R4 P(A) end e homomorphism G —» Map(X,X). Since G is finite, the
i_léuood map G x X ~—» X is a differentieble action of G on X. Thus
thnh-..-.,la’),s,i) is the unoriented cobordism group of (unrestricted)
@rrotions as defined by P. E. Conner and E. E. Floyd:. "Difre;'entiﬁble

Periodic Maps", Springer, Berlin, 196h (section 21).

Relative Cobordism
. ’ LB
in order to study the relationship between two coburdism categories

it is convenient to have avallable a 'relative cobordism' semigroup. In
thn geometric case this is made possible by )Joining together two menifolds
wilh the same boundery to form a closed manifold. In the categorical

alluntion, the idea is to replace a pair of objects having the same boundary
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by a palr of closed objects. For this one needs the idea of the
Grothendieck group construction. A

Recall that for any category with finite sums for which the isomorphisi
classes of objects form a set, X, one defines K(¥), the Grothendieck
group of X , to be the set of equivalence classes of pairs (X,X')
of objects of X, where (X,X') is equivalent to (Y,Y') if there
is an object A of % osuchthat X+ Y' +A=X'+ Y + A. K(X) is
an abelian group under the operation induced by the sum in J&.

Let ((,3,i) and ((1',2',i') be two cobordism categories,
F: (’.-—*- (' an additive functor, and t : 3'P 2 P2 a netural equivalenc(

of additive functors such that the diagrem
21#(a) &)y p(ap)

1p(a) N F(3,)
F(a)
cammutes. Let ﬂ be the category whose objects are triples (x,Y,£)
with Xe 2*, Ye C, Y closed, end f : 3'X —~ FY an isomorphism
and with Map((X,Y,£), (X',Y',£')) the set of (¢,b) € Map(X,X') x Map(Y,Y

such that

X —E >y

e | f L=

! _—'__p- FY!

camputes. Then ‘@ has finite sums and a small subcategory
:ﬁ)o(x e~C6, Ye cc',) such that each object of 7 is isomorphic to

an object of T)Do.
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Let J be the collection of pairs ((X,Y,£), (X',Y',£')) of objects
N .'W for which Y = Y'. Let (x,x')~(y,y') if there are objects u
o v or 1;3 such that x +u =y + v and x' +u=y'+v. Then the
X ##4 of equivalence classes *!? /~ forms an abelian group under the operation
{Aduoud by the sum.

One has a homomorphism B : K( U‘él) — :}/~, where Cél is the
Ribsatogory of closed objeets of (' by sending (X,X') imto
((%,0.3), (x',8,3')) where ¢ is an initial object of (* and J,3'
Pé the unique isomorphisms of initial objects.

If one has a homomorphism
@ /- == K(C)/E(CT) + FE(L )

Pueh that the composition with B is the quotient homomorphism of K( (_',":l),
$l9n one can define a relative cobordism semigroup as follows:

For objects (X,Y,f) and (X',Y',£') of ¥, one writes
(X.¥,£) = (X',Y',£') if there exist objecte U and U' of (I with
¥#0BU =Y +2U and for which u((x+ru,z+au,f+tu),(x'+1ru'_,!"+au',r'+tu')) = 0,
- Using the fact that o 4s a homomorphism one easily sees that = is an
#quivelence relation. The relative cobordism semigroup a(F,t,a) is the
Pt of equivalence classes under = of elements of T? with the sum

induced by the sum in Y.

One: has homomorphisms
3 : (F,t,a) — 0((,d,1) : (X,Y,f) — Y,
P, : a(,3,4) — a((,2',4') : ¥ —>FY, and

i:a(l,a,1) — a(F,t,e) : X —= (X,08,3)
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and the triangle . . !

¥, , :
n(a:agi) m—— n( l"a'.i')

3 1 '

a{F,t,a)

is easily seen to have period 2 (i.e. 31 = iF, = F,3 = 0). :
In order to clarify the relationship between the homomorphism ¢ and
the joining of two manifolds slong their common boundery, consider elements
(X,Y,£) of YP as & manifold with boundary together with additional ;
structure on its boundary. For ({X,Y,£), (X',Y',£')) € x choose an
isomorphism g : Y —i-Y' and let «(x,x') be the class of X \-'k(-x').

vhere -X' is X' with its opposite structure (e.g. orientstion), and

the boundaries of X and X' are identified via k = f'-lF(g)_r. This 1
: ]

clase does not depend on the choice of g, for if g' is enother isanorphiﬁ

one may attach X' x I to (X uk(-x')) x I u+(x uk,(—X'))] xI so ~

9
3

that the difference of two representatives is cobordant to X uk..(-x), where
K" = £°15(g7 " )r. Tdentifying 5Xx0 with 3Xx1 using k" din XxI givesé
a cobordism of X vk..(-x) and 9X X I with ends identified by k" - but :
this is isomorphic via f to the imege under F of Y X I with ends
identified using g-lg'. Thus o doee not depend on the choice of g.

. Iv‘:ltﬁ this cholce of a, suppose one has (X,Y,f) = (X',Y',£'). One 4
may then find a cobordism of ¥ and Y', say oV = Y-Y' so that i
X v (-V) v (-X') 1is cobordant to a closed manifold D with additional

structure. Thus one may find a cobordism of ¥ and Y', U = V4D,

oU = Y-Y', so that X U (-U) v (-X') bounds. This is the usual geometric

ERFIE Ny

description for cobordism of manifolds with boundery.
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' Jemark: One may let O be the subcategory of (' consisting of
© §B4%dsl objects, with F the inclusion. Then B is epic, uniquely
' .‘O\‘linlng a. The relative cobordism semigroup in this case 1s then

_dantifiable with the cobordism semigroup of (.
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Chapter II -

Manifolds With Structure - The Pontr,jagin-Thbm Theorem

The stendard cobordism theories are based on ma.uifolé.s with additional
.structure on the tangent or normal bundle. The exposition given here is
teken from the paper: R. K. Lashof: Poincaré duality and cobordism,
Trans. Amer. Math, Soc., 109 (1963), 257-277.

Denote by Gr n the Grassmann manifold of unoriented r-planes in
’

Hﬂn and let Y:_ be the r-plane bundle over Gr consisting of pairs:
? .

n

en r-plene in R™" and a point in that r-plane. Then BO_ = lim G,

me T8

with universal r-plane bundle 'rr = lim 'r: .
Db

Definition: Let f : B —>BO  be a fibration. If £ dis an
n-dimensional vector bundle over the space X classified by the map

€: X-—>BO0, thenea (Bn,fn) structure on £ is a homotopy class of .

liftings to Bn of the map £; i.e. an equivalence class of maps
E:Xx—>8 wvith rof=¢, vhere £ and § are equivalent if they
are hamotopic by a homotopy H : X x I — Bn suéh that

£ OH(x,t) = £(x) for all (x,t) € X x I.

Note: A (Bn,fn) structure depends on the specific map into BO .
There is no way tp make (Bn,rn) structures correspond for equivalent
bundles, since the correspondence is dependent upon the choice of the
equivalence.

Let M be a compact differentiable (C') manifold (with or without
boundsry) end let i : M — BT . be an i{mbedding.. The normal bundle of
i is the quotient of the pullback of the tangent bundle of Bnl-r' i't(Rmr
n+r

by the subbundle t(M). Giving t(R™T) = R™T x B™'T the Riemennien

metric obtained from the usual inner product in Euclideen space, the totel

il
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'Q'ﬁﬁo N of the normal bundle mey be identified with the orthogonal
Biplement of (M) in 1*t(R™'"), or the fiber of N at m may be
fdenuiried with the subspace of R°'F x R™** coneisting of vectors (m,x)
With x orthogonal to 1,(M) . The normal map of 1 is given by sending

B into LIER covered by the bundle map n : N — 'y: : (m,x) —> (Nm,x

r,n’
#Pponing with the inclusion into y° provides a mep v(i) : M — B0,

Whioh olessifies the normel bundle of the imbedding 1.

C——

Lemma: If r is sufficlently large (depending only on n), there
“ 8 nne-to-one correspondence between the (Br'fr) structures for the

##fasl bundles of any two imbeddinge i,.d, M® — 2T,

Proof: For r sufficiently large, any two.imbeddings 11, 12 of
? in Rn+r are regularly homotopic and any two such regular homotopies
#i#2 hemotopic through regular hemotopies leaving endpoints fixed. (A
Phular homotopy is a homotopy H : M x I === K" such that each H( ,t)
I an immersion and such that the differentials B( ,t), : T(M) — =(R™T)
“ﬂna a homotopy). See M. Hirsch: Immersions of manifolds, Trans. Amer.
Hath, Boc., 93 (1959), 242-2T6. Then a regular homotopy from 1, to i,
$ives s homotopy from v(il) to v(iz), and two hamotopies defined in
$hin way are themselves homotopilc relative to endpoints. Thus one has
§ ¥all-defined equivalence for the two bundles. Applying the homotopy
Jifting property for the map f. then establishes the correspondence

Qulte nusily, *#

Definition: Suppose one is given a sequence (B,f) of fibrations

" t B, —-BO_ and maps 8, : B, —> B, such that the diagram
v



r
Br Brl-l
rr J/ rr+l
Jr >
Bor r+l

comutes , Jr being the usual inclusion. A (Br,fr) structure on the

normal bundle of M" in Rmr

Rn'l'r'l"l

defines a wmique (B a10Tpeq)  Btructure
via the inclusion RO C . A (B,f) structure on M® ig an equiv
class of sequences of (Br,fr)_ structures £ = (Er) on the normel bundle
of M, two such sequences being equivalent if they agree for sufficiently

large r. A (B,f) manifold is & palr consisting of a manifold MR

and a (B;f) structure on M°.

If W is a manifold and M* is a sutmenifold of W with trivialig
normal bundle, one may imbed M in Rm-rr. r large, and extend by meaz@
of the trivialization to an imbedding of a neighborhood of M in W ;
into Rwr = I « R ™ so that the neighborhood meets il orthoéoua.‘é
along M. This msy then be extended to an imbedding of ‘W in R"'", The
normal planes to M in Rmﬂ‘ are then the restriction to M of the 1
, normal planes to W in R*'Y, If U :W-—=B_ 1s a lifting of the norm

map, then ;IM is o lifting for the normal mep of M. Thus a (B,f)

U

structure on W induces & well-defined (B,f) structure on M.

FEC TR

. Remarks: 1) The induced (B,f) structure depends only on the

equivalence class of the trivialization, not on the specific cholce of ,j
trivialization. §

2) If £ : ¥— ¥ is an isomorphiesm of manifolds, the normal bundlj
{

is trivislized, being zero dimensional., If 1 : M —> W is the inclusiogl

3
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§ $he lLoundary, there are two choices of trivialization, via the choice
%ﬁ {aner or outer normal. If J : M —~> W is the inclusion of a direct

Eﬁﬂaﬂﬂ. then the normal bundle is again zero dimensional, so trivialized.

Eaginition: The cobordism category of (B,f) manifolds is the category

ghiee objects are compact differentiable manifolds with (B,f) structure
gg vhove meps are the boundery preserving differentiable imbeddings with
#Fivialized normal bundle such that the (B,f) structure induced by the
@8p eulncides with the (B,f) structure on the domain manifold. The
&E&ur 9 applied to a (B,f) manifold W is the manifold 9W with
‘g;ﬂ structure induced by the inner normal trivialization, and 93 on
3@ {a restriction, The natural transformation i is the inclusion
&f tliwv boundary with inner normal trivialization.

The cobordism semigroup of this category will be denoted Q(B,f).
%ﬁ #ub-semigroup of equivalence classes of n-dimensional closed manifolds

11 be denoted nn(B,f). Clearly Q(B,f) is the direct sum of the
ﬁnla.r).

Proposition: The cobordism semigroup €(B,f) is an abelian group.

o+
Proof: Let M® be a closed manifold imbedded in BT for some
i&gl r with v : M —> Br a lifting of the normal map. Extend to an

DT R = Rnﬂ*l by the usual inclusion of I

{iibudding of M x I in R
;a R, The normal map for M x I is the composition of the projection on
B and the normal map of M. Thus the lifting for M defines a (B,f)
tpuoture on M x I which induces the given structure on M x 0. The
{pner normel along M x 1 gives rise to an induced structure on M X 1,
Bhd wlth these structures one has M + M x 1 = 3(M x I} in the catego:_'y.

Phue the structure on M x 1 is an inverse for the structure on M in

H{n,r), w»
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Considering Bor as the space of r-planes contained in some
finite dimensional subspace E® of RQ end taking the usual inner
product on the subspace of Rm consisting of vectors with only finitely
meny non-zero components, one obtains, a Riemannian metric on the universal
bundle ¥y°. If £ d1s an- r-plane bundle over & space X classified by
themap € : X —> Bor, one bas induced a Riemannian metric on £. (Note:
For the normal bundle of a manifold tl:_is colncides with the metric
obtained from the splitting). The Thom gpace of £, TE, i1s the space
obtained from the total space of & by collapsing all vectors of length |
at least one to a point, denoted ®, If £ 1s the bundle induced from s .
bundle n : Y—-»Bor. by amap g : X —> Y, then the usual bundle map
E = gn —>n induces a map Tg : TE —= Tn.

The map J, : B0, —> BO_, induces a vector bundle J;(yﬁl) over
B()r which mey be identified 28 the Whitney sum of Yr and g trivial line
bundle. Then TJ:(yﬁl) may be idéntified a8 the suspension of ™.

One then hes & cammutative diagram

8,

L8, i1

mfrl Ty J/ Tf:.--&1
r ' «
2‘.'1'30r — TBOMl

f
and & homomorphism Tg oI : wm(TBr,w) —_ wnm]_('mﬁl,w) of the honotq{

groups, vhere I denotes suspemsion, snd TBO, TB, dencte the Thom
spaces Ty and 'I‘f:(yr).
The mein theorem is the generalized Pontrjagin-Thom theorem:

N

Theorem: The cobordism group of n-dimensional (B,£) manifolds

nn(B,f) is isomorphic to ii: o

(TBr ). \
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Droof:

A) Definition of the homomorphism 6: 2 (B,f) —» lim 7, (TB ,»).
n . n+r r

Let o ¢ ﬂn(B,f) be represented by & (B,f) manifold MD. Let
l P U Rnﬂ‘ be an imbedding with a lifting VM — Br which defines
W9 gtven (B,r) structure on M. Let N denote the total space of
9 normal bundle of M, thought of as & subspace of R°'T x R'T. Under
9 svaluation map e : B°'F x B — BT ; (g,b) — a+b, the subspace
"§ in napped differentiably and on M = M'x 0 C N this mep restricts to
¥ Imbedding 1. For some sufficiently small € > O, the subspace of
' funeisting of vectors of length less then or equal to €, Ne’ is
- iiBedded by this msp eIH. .
To define 2 map g — Tf:_(vr). begin by considering . g7 ag
!v'u © and let c : 877 — ne/ane by collapsing all points of gt
: I“lldn or on the boundary of N, to a point. Multiplication by 1/e

"1, The mep n x (Vom) : N+y™ x

- dMuoes & mep N _/oN_ —= TN, denoted by ¢
m n 1is the camposition of n with the inclusion of Y: in Yr and
- % 4w the projection of N on M, is a bundle map into r:_(yr) and
#Muaen the map T(nx (Vor)) : TN —» TB,. The ecﬁposition
. $u(mx (ver)) o ¢ Loc is a map of pairs (Sn+r.°) e (TBr.°')-
. Replacing € by a smaller value does not change the hamotopy class
8 © since the maps e Yoc will be homotoplc. Replacing v by an
#ulvalent lifting simply gives & hamotopy of T(n x (vox)) =and so does
#8% change the homotopy class of €, Clearly, the map M A, pT Rttt
f#ives rise to Tg oL and thus one has defined an element of

%ilu: "n+r('mr’°) represented by the map 6.
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To show that this element depends only on the cobordism class of the
manifold M and not on the cholce of the imbedding, let W be a (B,f)
menifold and J : M + 3W —> B°'°  an imbedding with a 1ift
VM4 oW — B, giving the same (Br,rr) structure on M (here r
is sssumed large). Let H : Mx I —=R"T bea regular homotopy of the
imbeddings 1 and "lu chosen so that H(x,t) 1s i(x) 1f t < &

1

and 18 J(x) 1f t > 1-6, and let k : W —> E*'F x (0,1] be & map

2
sgreeing with J x 1 on 3W and imbedding a tubular neighborhood of 23W
orthogonally slong J(3W) x 1. The map (H x 1r2) +k:MxI+W—> g
is an 1mbe_dd1ng on & closed neighborhood of the boundary and mey be
homotoped to an imbedding F : M x I + W—>Rn+r xI bya hMOW fixe
on thet neighborhood of the boundary. Fl, . 1s a regular homotopy and
corresponding to its normel mep one may find a covering map M x I — Br
sgreeing with v on M x 0. Since the normal mep is constant near )
M % 1, one may modify the 1ift to agree with v on M x 1. Since the
(B,£) structure on W 1s induced from that of W one may f£ind a 1lift
of W agreeing with -\7 on 3W. Following the previous construction witl
the imbedding F : M x I + W—> R°'7 x I, one has & collspse

sn+r

x I — He/we vhere N isa neighborhood of (imege F), a map
et N /3N —> TN and the map (@ x (vor)) : TN —> T8, which compos:
to giire a8 map Sn+r X I ~>» TBr. This provides a homotopy for the maps '
defined by 1 and J. ‘
Teking W empty shows that the class of 6 i1s lndependent of the
imbedding of M. Further, 1f M = M' with M + 3W =M+ awW', then
(M) - o(M+W) = a(M'+3W') ~ 6(M') so ‘that the class of the map 0 depe!

only on the cobordism class of M.



3) © 1is a homomorphism, _

Ir Ml and M, represent tvo classes in ﬁn(B,f), choose imbeddings
i‘ [ Na — B™T  for which the last coordinate is positive for :I.l and
jative for i,. If tubular neighborhoods are chosen smell -enough
‘_I 1ie in the same half spaces then 9([5&] + [Mal) is represented by
F ¥ -L Ty sn+r E’f_z* TBr’ where d collapses the equator of sn+r
) 8, represents 9(-[Mu]). Since this map represents the sum of the

Bgotopy classes, © is a homomorphism.

C) o 1is epic.

Let 6 : (8°'T,p) — (TBr,b), r large, represent a class in

o Y = lip Ty': with §¥'F compect, Tfroe(smr) C ’I‘y:‘ for some
. B .
§i 'The mep Tf,00 may be deformed to amap h_  so that

+
_Eer(TBr,"). Then Tf_°6 : (8**7,p) — (TBOr,°°), and since
[

1) hr ie dif_ferentia.ble on the preimage of some open set of Trz

. : - N r _
§#taining Gr,s and is transverse reguler on G, .. Note: Ty, -=

s
) u difrerentiable manifold.
B) 1t M= h;l(Gr.s), b, is a bundle map on & normal tube of M
h .n'l'r = Sn+r_p.
3) The map £ 00 agreeg vith h_ on the preimsge ¥ of & closed

fMahtorhood of =,

Bince hrlu classifies the normal bundle of M, one may assume
h & further homotopy if necessary) that hrlM 1s the normal map

(M- G, . C G, and that hr is given by the usual translation
»

N:]
" veators to the origin on s normal tubular neighborhood of M.
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Now Tfr : TBr — TBOr is a fibration except at the point *, and -
since Tfroe(s""r - interior V) doee not contain «, the covering homotoi):

theorem applies so that the deformetion of Tfr°e Yo hr on

n+r

s - interior V may be covered by a homotopy of 6 on sn+r -~ interior .

vhich is pointwise fixed on the boundary of V. Taking the homotopy
to be constant on V, one may cover the hamotopy of TfroB to hr by a :

homotopy of 6 to & new map 6 The inverse image of Br under 6. is

1
is

1
the inverse image of BOr under hr, which is M. Further 6

a 11ft of the normal mep hr |M'

1hy

Thus one has a (Br'fr) structure on M in R°° and hence a

n+r

(B,f) structure on M. Using the given imbedding of M in R with

the 1ift o the resulting mep 8, egrees with 8, on & neighborhood

1he
‘NE of M and since TBr'Br deforms to =, one may homotope el to

egree with 6, by pushing the complement of N_ tq =. Then o(IM])

2
1 the class of 6.

D) © is monic.

Iet M bea (B,f) manifold such that ©([M]) = 0. Thus for some |

n+r

large r the stenderd msp 6 : § - TB, defined vy M is hanotopic‘i

to the trivial map el : sn+r —> ®, One may choose the homotopy

L:s™xg —> TB, so thet L, = 8, for te [o,n]. By compactness

TfroL(Sn+r x I)< '.'\."y: for gome s (> n}. As sbove, one may homotope

'I‘f_roL {relative to Ne(M) x {0,n]) in & neighborhood of cr,s to s

map H " which is differentiable neer and transverse on (}r’ e

W= n;l(er ,) 1is & sutmanifold of BT I with W =M meeting
] .

R®*¥ x 0 orthogonelly along M. One mey also assume 'HrlH is the ,

normal map snd Hr agrees with the usual translation of vectors msp on
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" § heighborhood of W. Applying covering homotopy, one may deform L

n+r

n+r = els x

$amep 0:8 xI—=TB_ with 6, =@, for small t, 0,
;ﬁ\h 6|w covering the normel msp B, of W. This defines a {B,£)
firuoture on W which induces the original (B,f) atructure on M.

fiue M+ 30 =0¢+ 37 and [M] 1s the zero clase of a,(B,2),

Tangential Structures

It is frequently desirable to define (B,f) structures on manifolds

# means of structures on the stable tangent bundle. lLet B = lim (B,,g )
4 150 = lim (Bor,ar). with f = lim’f : B-——>B0. The map
linl ] Gn,N —_ GN,n obtained by assigning to each n plane its

@Mhogonal N plane induces a map I : BO —~ BO, with 1° the identity.
' | 83— BO is a fibration and one has the induced fibration
"§8 | D%« I%B—> 0. Since I° =1, IMB% is again B. The induced
" BuBdde meps give a diagrem

I " I*
b

B B
fl f"l
v
B0 B0 —L

I I %

w

#}4h I*I' and I'I* both being identity maps.

I+ M® is imbedded in RF”“, N large, the maps V. : M —¢
N |

oy Mn—bcn,N

" ¥pdtors are related by Ty = Iy oVy+ Following these by the inclusions
- >

n

obtained by translation of normel end tangent

@0 hus meps T : M~——-B0 and v: M—>-B0 with 7 = Iv,
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& (B,f) structure on M as previously defined is precisely a
hamotopy class (through 1iftings) of 1iftings to B of the mep VvV : M —> i
The maps I' and - I* define an obvious equivalence between these classes
of liftings of v and the homotopy classes (through liftings) of liftings
to B¥ of tr : M— BO. Such & class of liftings of t is = (B®,f*)

structure on the stable tangent bundle of M.

Structures For Sequences Of Maps

If instead of fibrations one is glven only spaces cr and maps
fr : Cr — BOr, e, : Cr — cr+l such that’ fr+18r is homotopie to :
J rf p ODe may replace the maps (Cr,fr) by homotopy eguivalent fibrations._.;
The resulting meps 8, mey be deformed ilmductively to give commutative
diagreme by means of covering hamotopy. A (C,f)} etructure is then a
structure for some such fibration sequence (chosen). Sinmce the cobordism
group 1s given by homotopy of the Thom complex, which depends only on
the homotopy type of the fibrations, the resulting cobordism group does

not depend on the cholce of equivalent fibration sequence.

Ring Structure

If one has an r plane in r+s space snd an r' plane in r'+s'
ml r LY 1]
space, they span an r+r' plane im R te4st Rr-t-s x® ', Tnis

defines a map G x G — G and induces & mep

1
r,8 r',s' +r' 548

BOr x BOr, — BO pt? corresponding to the Whitney sum of vector b\md.'lea_;:

is a point and provides a base polnt in each Gr a (the usual
]

%,0

FFC ') so that BO_ v BO_, 1s mapped vie standard inclusions.

TS
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e tvisted map BO,, x BO, —»BO_ x BO! —~BO_ , 1s homotopic to
e usuad map BOr, x BOr —— BOr+r, by a rotation of Rr+r'+s+s
$8 i{nterchange factors. This gives the usual homotopy commutative H-space
l“l‘\lnture on BO.
Having similar multiplications Br x Bs —- B etg 50 that the maps
f! preserve products up to homotopy, one may define a ring structure in
{8,f) cobordism, for the multiplication defines a (B,f) structure on
e product manirold M® x ur®'( RV i gpHN' o gotn'4mA, '
The map Br x B — Br+s induces a map TB, « TBs —>TBr+
jiving & product in the steble homotopy, meking it into s ring. This ring

$iMoture is the same as that of the cobordism groups.

Relative Groups
If one has commutative dlagrams

g
B _.Z'._;.qu’

h, ' ‘Lhﬂ_l -

TR

.M w¥hich b and 4 are fibrations and g, end k_ ave fibre preserving
§ap, o (B,£) structure induces a (C,d) structure by means of the
Ypeduotion' h. This gives a functor h from the cobordism category of

(B,¢) manifolds to thet of (C,d) manifolds. An (n+l) Aimensional
Baatfold W with boundary having & (B,f) structure on 1ts boundary inducing

¥ h the same (C,4) structure on 3W as is induced by & (C,d)
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gtructure on W is a relative manifold. Using the stendard 'piecing
together' homomorphism one has defined e reletive cobordism semigroup.

If one imbeds oW 1in R°'T (r large) with lifting of the normal
map to Br’ extends to an imbedding of W (orthogonally along the boundar

using a tubular neighborhood) in BT [0,=) = BY Tkl

, selecting &
lifting of the normal map of W to cr which agrees with the h-induced
lifting on 3W, then one may apply the tubular nelghborhood map to this

imbedding~lifting situa.tion to construct a map

o (Dn+r+l’sn+r’b) - (ﬁn+r+1 U 1+ VU @,0) — (Tcr,mr,w).

If W is cobordant to W' (relatively) one may find a (B,f) manifold
U giving a cobordism of 3aW and 3W' 2o thet with proper boundary
‘identifications the closed (C,d) manifold W U (-U) U (-W') bounds.
One may imbed U in K™° x I to give the proper identifications at
W x 0 and W' x 1, with & lifting of the normal map to B, and fill .

in the manifold with (C,d) structure in HZ'THL

x I along its bou.nda.ryh
WU U () CE s ou™ x 1 u ki Ignoring corners:
{which don't affect the homotopy situation, but rather involve the

ldentification of D™'T' x I) the normal msps and their 1iftings define.

a homatopy '

L: (Dn+r+l x I’Sn-l-r x I,® x 1) — (Tcr’mr,w)

of the maps for W and W', ._‘;
L

Ignoring lots of details one sees easily that the (n+l) dimensioqu

relative cobordism group (-W being constructed from W X I) is iscmory)

to the stable homotopy group lim " (Tc ,TBr'.°°). Further, the cobord

n+rxl
triangle is identifiable as the exact homotopy sequence of the 'pair' %
bk}

.

4

'
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Chapter III
Characteristic Classes and Numbers

As mentioned in the introduction, the determination of invarients which
@iatinguish manifolds in one of the principal aims of differential topology.
h bhe framework of cobordism theory, the use of characteristic classes
'Qvldos inveriants called characteristic numbers which are cobordism
“Vlrin.nts. In order to set up the machinery for these invariants, the
'“u- of generalized cohomology theory play a central role, and for this
m basic reference is G. W. Whitehead: Generalized homology theories, Trans.

MMF. Meth. Soc., 102 (1962), 227-283.

Definition: A spectrum E is a sequence {Enln e Z} of spaces with

M0 point together with a sequénce of maps e_ : tEn'-_-b- E

o 41> I being

ﬂi suspension. If F = {Fn,fn} is another spectrum, a map h from E to

‘ is o sequence of maps b+ E —> F, wvith hoa1%e, = fno):hn.

n n n+l
Bxemples: 1) The sphere spectrum § = {8 ,on} where o : I8 —§

h the identity map.
2) Ir (B,f) is a sequence of fibratioms S Br — B0 with
M g : B, —>B_,, @8 in Chepter II, then TB = {TB, Tg } 1s
* § #peotrum, known as the Thom spectrum of the family (B,f). In particular,
ﬂ. maps 'l‘fr H TBr — TBOr define & map of spectra
B — T80 = {TBO_,T3 ).

If one chooses base points br € Br such that srbr =D then the

™1’
Pndle f:(yr) induces & trivial r-plane bundle 6" over bY, defining
A nap Tbr : P&F — TBr. Since 76" = Sr, this gives a map of gpectra
#  § — TB. Note: The idemtification of T6° with § requires s

ghuine of framing of the fiber over br.
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Definition: The homology and cohomology groups with coefficients iﬂ:

the spectrum E are defined by

: B (X,AE) = :iu_: Toag (X/A)-E;) and
#(3,48) = lin [zt (x/),E,,, ]

where X/A 1is the space obtained from X by collepsing A to a point !
(the base point), ~ is the smesh product UV = U x V/(U x #) U (» x v)_'j
" and [ , )] denotes homotopy classes of maps.

H*( ;E) and Hy( ;E) are functors satisfying all the axioms of
Eilenberg~Steenrod as cohomology and homology tlieories with the excel:rt',iox;j

of the dimension exiom.

One defines H*(X;g) to be H*(X.ﬂ;E) where §§ is the empty set |
and X/¢§ 1is the disjoint union of X and a point. If Y is & space w:g‘1

base point p, one writes ;I,(Y;E) for H*(Y,p;ﬂ).

iRl

Definition: A ring spectrum is a spectrum A = {A ,a. } with a map
o : E—»ﬁ and a pairing m : (A,{.’) —> 11_1._, i.e. a collection of maps

m t AAA —>A such that the maps of the diagram
D.q P aq Prq P o

a ~1
LA JapA B p A
( Ap) A T+l

Y T P+1-q
z(A A ) —2’-‘1—» 2(Ag

A:p-l-q_-l-l
¥ T "p,q+1
A(I}A ) _q____,, A A
represent classes of the group [E(APAAQ). A 1)4_‘1.'_]_] related by

[mrl’qo(apal)ox] = [quomé:q] = (-1)P [m °(1Aa. Youl;
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il that the dlagram

D ot i’ a
gP-a > A AL < ~8
q D' A
" l
2% ®p.a 8.4
a
\‘ Y /.1)1"1;
g

$len, vhere & 1s the multiple composition of the suspensions of maps 8

7 ) («\1)7% 48 a map whose class in the group [qup, 1 is (-1)P2

A
) joan’l
. §4BM) the class of a&. [Note: If q = O this is not a group, but (-1)P% =1

g ‘Qﬁ one does not need the group structure to find a map.)

m_g: Let R be a ring with unit, K(l‘i.n) an Eil;anberg-MacLane
m {the only non-zero homotopy group being R in dimension n) end

ﬂ "t IX(R,n) — K(R,n+1) be a map corresponding to the identification
_ g]“) = 0K(R,n+1). The spectrum X(R) = {K(R,n),xn} is & ring spectrum
L ] Iﬁ‘x;}gR)) is the usual cohomology with coefficienfs in R.

With a ring spectrum one has the usual sorts of préducts, such as cup

mun in cohemology making H¥(X;A) into e commutative ring with unit.

Pafinition: Let (B,f) 'be & sequence of fibrations f_ s B, — BO_.
Vﬁm is a map of spectra U : TB — A, where A 18 a ring spectrum.
Nov let M® bve a (B,f) manifold, i :M® —»B™" an fumbedding
#W M tmbedded tn E™™1 yitn the usual orthogonal framing along &
‘Slar getghborhood of 3M = 3M x 0 (denoting the neighborhood by 8M x [0,1])
#A M ve the normal bupdle of M and N' the normal bundle of M. Let
Gt M~ Br be a lifting defining the (B,f) structure on M with

fuim— TB, the induced map on the Thom complex.
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Conslder the mpp

N—2 8 x §-TB i x TH ——s (M/0M) TN

where A 1s the diagonal map, w the bundle projection, p is the collg
onto the Thom complex, and the last map is the obvious collapse., Under
this map the vectors of norm st least one are sent to the base point, as
are all vectors over 3M, i.e. N'. Thus one induces a map
¢ : TH/TH' —» (M/3M)TN,

Letting c : H'X —> TN be the standard (scaled) collapse, the
projection into TN/TN' sends Rn+r-1 into the base point also and henceé:
defines a collapse c : B°'T = (BT Ue) /(BT o) — TH/TH?,

Letting U = {Ur} : TB—> A bve a Thom class, one has a composite msj

n+r laTv

1U.
g0 Loy TN/ TN —F (M/3M)~TN =—T» (M/au)-'mr —3. (M/3M)~A,,

which represents an element of = nﬂ_((l&/'c)l»()»ﬁ. ). Letting r go to infin

defines a class [M,3M] ¢ Bn(u,am;'{\). This element is easily seen to dep

il A e it

only on the (B,f) structure of M.

Definition: If M® is & (B,f) manifold and U : TB—>A 1sa

Thom class, then the fundementel class of (M,3M) 4s the class

[M,2M] ¢ Hn(M,aM;f.J). If 3M is empty, this cless will be denoted
i) e B (M;8).
If one collapses the complement of the tubular neighborhood of the

boundary by

d : M/OM —= M/{3M v (M-3M x (0,1))} = I(aM/g)
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30 has the map vhich defines the boundary homomorphism in hamology

3 ¢ H_(M,0M;4) —- H__, (3M;4).

'

I ono composes the map defining [M,3M] with the map d-1, it is immediate

Mt the resulting map is the suspension of the one which defines [dM]. Thus:

Proposition: Under the boundary homomorphism in ﬁ.—homology, the

fBdanental class of (M,3M) is sent into the fundesmental class of aM.

Definition: A universal characteristic class with A coefficients for
() bundles is & class x ¢ H*(B;A) where B = lim (8,e} If § 1san
Ahhne bundle over a space X with a (Br,rr) stmture given by a lifting
. 1 X — Br’ then the x-characteristic class of the (Br,rr) bundle is
"4 oluss x(E) = E*‘g;(x) e B¥(X;4), wm;_re g, : B, —a-'B is the usual '

B toto the limit space. If M® is a (B,f) menifold, the x-normal
nn;eristic class of M 1s the class x(M) ¢ }1*(M;£) defined by

.ﬂl) = x(v) where Vv : M — B, 1s & lift of the normal map (of some imbedding

f#fining the (B,f) structure on M.

Definition: If M" 1s a closed (B,f) manifold and X ¢ HP(B;’I‘X),

¥i#n the x-characteristic number of M is the class in Hp-n(pt;y obtained

' #valuating =x(M) on-the fundemental class of M. Thus if x(M) ¢ P (M;4)

‘Q pspresented by a map y @ zi(M/m — A end [M] e Hn(M;é) is

o+t
Biprosonted by amap M : 85T —= (M/P)a,, then

l'“l s < x(M),[M] > ¢ Hp-n(pt;ﬁ) is represented by the map

: i m
Sn+r+1 _EE, ti(ﬂ/¢)nAr ..Xir Ap-l-i‘Ar m Ap+i+r'
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The usefulness of characteristic numbers in cobordism th=ory arises
from the result of L. S. Pontrjagin: Characteristic cycles on differentiab
manifolds, Math. Sbor. (N.8.), 21 (63) (1947), 233-284; Amer. Math. Soc.

translation 32.

Theorems If x ¢ H°(B;A) and M° is & closed (B,f) manifold, then
the x-characteristic number of M depends only on the (B,f) cobordism

class of M.' 3

Proof: Since x-characteristic numbers are clearly additive, it suffi
to show that for M = 3W one bas x[M] = 0., Letting i : M —» W be the:

inclusion one has x(M) = i*x(W), so

< x(M),[M] > = < 1*x(w),a[w;aw] > = ¢ 6i%x(W),[W,oW] >

where 6§ 1s the cochamology coboundary hamomorphism induced b.y the collspsé
o

Y

d : W/aW — E(3W/@¢). Since the cohomology sequence 4

*
BP(w;a) 155 BP(aw;a) S 8P (w, oWs4)
~ ~ ~

1s exact, 61"x(W) = 0; hence x[M] = 0. #*

Remark: Being given fibration sequences 3 —-}-1’--3 1 BO, one may th

of y € H*(B,i;‘_e.) a8 a relative characteristic class. Belng given a (_B"'A

manifold M with (B,£oh) structure on M, one has defined a relative
i

4

characteristic mumber y[M,3M} ¢ H"(P‘t;’ﬁ\-) since the normel mep gives

(M,5M) = (B,B). To see that such mumbers ere relative cobordism inva.rig_g

kS
one may suppose by additivity that there is a (B,f) manifold W with 4

35

4
W = M Vv (-U) Joined along aM;éU, with U a (B,foh) manifold. On&i‘é

QRPN g
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. mn has
(w,aw) 2 £(ow/g) 2 r(aw/u) <R~ £(M/aM)

.
Hving p,[M,3M] = 5,3[W,3W] by the orientation assumption in the

dMemposition of W and y(M,0M) = p¥q®y(W,U) where
(M,3M) =B (3w,U) > (w,U)

.“ y(M,M] = < g%y, 3,3[W,dW] > = < §J%q%,[W,oW] >, However, from the exact

$iQuence of the triple (W,3W,U) the composition
L] *
B¥(W,u) 3 5e(aw,u) 3 me(w,aw)

. {8 veoro, so y[M,3M] = 0. HNote: Taking B empty, this reduces precisely to
h 0losed case. _

In addition to the manifold theoretic treatment of characteristic
”erl by using the Thom class to comstruct fundemental classes, one may
‘_IO glve homology and cohomology theoretic de_scrlptions of characteristic
: -{bers which are freguently useful. In particular, these will be needed

. §er.
As in the construction of the map @, one has for any r-plane bundle

§ over a space X the composition
y By %y BB X x Ty — (%/8).Ty

~ fving a map @ : Ty —= (X/@).Ty.
Applylng this to the bundle f:(vr) over B,, and composing with the

et class and inclusion of B, in B gives

(1~Ur)o(ErA1)o¢ : TB, — (B/@)-A,
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inducing on homotopy the homomorphism

a (B,2) = n T oap(TB @) —> :12 Toap((B/8)-4 ) = B (B;A).

It M® is a closed (B,f) manifold, so that M/§ masps into Br/¢ unde

the normel map, one has the commutative diagram

n+r [+]

1.U_oTv
g ¢

+ T > (M/@)-TH —F— (4/p).A

Tv J( v~Ty J{ -g'rowl
g..U

R -0
18, —2— (3, /p).m8, —=E+ (8/8).A,

Thus the homotopy homomorphism is the homomorphism sending the cobordism
class of a menifold M® into the image under the normal map of the funds
class of MP, Thus the pairing of homology end cohomology of B into tli_

cohomology of & polnt gives
9 (B,2) 8 B (B;A) —> H, (B;A) @ B°(B;4) — % (pt;4)

which colncides with the evaluation of characteristic numbers.

!
]
In addition, the camposition ;
’]
i
4

1.U llnr

. 1 )
a1 e ~r.s

TBr“As _..L_.>. (Br/¢)“TBr“As —_— (Brm)“Ar"As —TYa8, (BrM)“Arl-s

glves rise to the Thom homomorphism in homology

o ¢ HJ(TB!_;,I}) —_— Hd_r(Br;f-) i

L . "
;..’:L: LI RY L:L: Teg((Bp/0)A )

determined by the Thom class U. (Note: This is given by T,o(nU) sif

the map # i1s the composition of %.l with the map used in defining cé.]lj
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motl.) The homomorphism ﬂn(B,f) — Hn(B;A) may then be interpreted

M W composition of the Hurewicz homomorphism in A-homology

-~ l.a
. & . _ 0 0
ah('nr,m) —=H (B ;A) given by TB, = TB_.8° — > TB_.A; end the
B honomorphisn determined by U (at least after letting r go to

hinity).
It is more common to consider the Them homomorphism in cohomology

8Py, It one begins with the map
1.U
-2, r
TB, (8,/9).7B, — (Br/¢).‘Ar

u #hooses & mep X ri(Br/¢) — Ap+i representing e class x, € Ep(Br;i\)
B the camposition

1 n xr.l Boix
UATB,) ———> DB, /9).8, — > A A, 5L L

' #¥esants o cless in 7P+ 1'('.l"Br;.l\). This defines the cohomology Them
nJs

Mt‘vhiam
QU : Hp(Br;ﬂ) -—bip"r(TBr;A).

‘I fonstruction of ¢ shows that QU(xr) = w;(xr) GU,, wvhere ¢
i' ) l':('rr) —B_ 1s the projection and U, : TB —+ A  1is interpreted
# b oluss U, e ﬂr('l".Br;’.l\\l).
In particular, for x ¢ Hp(B;ﬁ) one has the sequence of elements

. ) P(s . q * T .

ﬁ # §8(x) ¢ BP(B;A), 1ifting to .elements wA(x ) UU_e BT (18 ;A).

; In is s closed (B,f) manifold with cobordism class represented by

a = i3
L LW 85T —> 1B, then xIM] = g8(v¥(x )v u) ¢ FT(sTT;n) -
?‘ (p‘hﬁ). (Note: It is immediate that this agrees with ‘the previous
_;helog interpretation. All interpretations ere really based on the

BMurality of the map #).
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Definition: The Thom cless U : TB—~ A 1s sald to be an A-orienta)
if for each point 'br of Br there i1s a framing of 6° 8o that the classi

determined by U °Tb, and o : st —+ A, are the seme in ﬁr(Sr;’Q‘).

Remerks: 1) This is the assertion thet the bundles £*(y") are ‘
(uniformly) A-oriented in the semse of A. Dold: Relations between ordina.r-i
and extreordinery cohomology, Notes, Aarhus Colloquium on Algebrale Topologf
Asrhus, 1962. _

2) If the class of o @ §—> A as an element of ﬁo(SO;A does not;';
have order 2, this glves & preferred orlentation to the fiber 6?. 1f this‘i

4

class has order 2, then all '.5' cohomology is of order 2 and orientation

'
£

doesn't enter the situation. : :

[

¢

Proposition: Let U : TB —# A be an A-orientation, & en r—pla.ne

b

bundle over a finite complex X with § : X — B, a (Br,fr) structure
on E. Then the Thom homomorphism 4

K}

o+ BP(x;8) — BT (nE8)
ié an isomorphism. s

Proof: The composition Ur°‘1‘E : TE—> A, defines an ﬂ-oriente.tion;
of E. Over eny cell D" of X the bundle § 1is triviel, and _n“
belng path comnected and simply conne_cted the class Uro'fE orients the_ _
bundle E over p®. Over D" one then has the Thom space equivalent to :
DnASr, with the Thom homomorphism being just the suspension isomorphism.
Thus the Thom homomorphism defines e homomorphism of the A, spectiral
sequence of X into the reduced cchomology A spectral sequence of TE

which is an isomorphism on Ez, hence also on E_. **
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ferollary: If U: TB—~A 1s an A orientation and M s a (B,r)

pifold, then the Thom homomorphisms oV

EP(M34) — BT (34),
EP(aM;4) —= BPT (TN 54), and

AP(M,3M;A) —o ﬁp"r(TN,TN' 3A)

& tsomorphisms.
Let M be & manifold, and let M be imbedded in E°'T with

m C. Rn+r-1 in the usual way, end let v be the normal bundle of M, v' the

- J¥BAl bundle of M.

Theorem: (Atiyeh [14]) The pairs

a) (M/3M) and Tv, or
b) (M/#) and {(Tv/Tv')

W dual in ST,

(B and € in S5 ere dusl if B and C ere dlejoint end each is &

#%rong deformation retract of the complement of the other. ] -

Proof: Let N be & tubular neighborhood of M in : .C.omsider'

' F"#l es E®' x R with (Hnﬂ'-l U ®)xR\Y BT x {0 o} _ collapsed to
i bave point <. .

Consider (TWTV) as (B x0 \Ja¥ x [0,=) \J =) and then one may

#8llapse the complement which :.la
("* x (=,0) U (-§) = [0,#)} U intertor(K) x (0.)
b8 pt U (M-3M) x 1 by a strong deformation
fetract, and conversely, the complement of a point
tnaide BT x (2,0) U (-N) x [0,°) end (N-3M) x 1

may be collapsed onto (Tv/™v') by a strong deformation

pel.raction,
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¥ IS

Considering (M/3M) as (M x 1) U = one may collapse the compleme

= A,

e strong deformation retract onto the Subset
Fx0 U x [0,2] Ue, where c¢ is the cone

on 3N x 2 with vertex some polot with last Tv

T L e S e

coordingte larger than 2, where
F=0-8 N1 This subset is clearly
Just Tv, 8Similarly, removal of this set TV Py

gives a set collapsing onto M/3M.

Note: All deformations are obtained by radial deformations toward e
in question, and scalar multiplication expansions in the fibers of the nof

bundles of M, ¥

1t B,c C 6° are aisjoint sets as sbove, let py e §°-B ) C and.
stereographic projection to map B, C into Rk as disjoint subsets. Lei

£:8xCc—=8%Y vy f£(b,e) = (b-c)/|b=c|. Letting b, c be base poil
k=

of B, C respective1y7 £(B x ¢) \J £(b x ¢) 1is a proper subset of S
and f factors hamotopically through amep f : B . C—> gL,
One then has defined a duality as follows: For o ¢ f{p(B;l_\) choose»i

representative map a : Spﬂ —> B . Ai and then

PRI

Pt cladep A cBdog Tt a4 —a, o

e

defines a class in I:Ik-l'p(C;l_’.), denoted Du.

Lemma: Let be B C R* with B an imbedded disc. Then

E*(R b, R5-B;4) = 0. ]

o

2]

i : k. k :

Proof: H*(R®-b,R*-B) & H*(s%-b,5"-B) by excision. Since 5" an
sk are contractible, f{*(sl,‘—b) = ﬁ'(Sk-B) a 0 and the exact sequence l

the pair 51vés the result, #*
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Gorollery: If B C FX is an imbedded disc then
B Ip(Rk.Rk-B;J;\) —_— Hk-p(B;.g) is an isomorphism.

+ Jroof: Ome has the diagram
_(8%-b,RE-B) — H_(F*,R"-B) —= H_(R*,F*-b) = & l(Rk-b ,R5-B)
SR
B*P(B,b) —— E*P(B) ——5> FP(p) — B<PH(3,p)

gﬁluh the end maps are both isomorphisms since the groups are zero, and to

@lplete the proof one need only check D", which is clearly an iscmorphism. **

Theorem: (Alexander Duslity) For eny polyhedral pair (B,B') in KT,

- ¥ lp(ﬂk-B".Rk-B;:A) —~ E*P(3,B’ ;A) 1s an isomorphism.

Rroof: By naturality it suffices to consider the case B' = (), and then

éﬂ. BaY apply a Mayer-Vietoris argument using induction on the number of

vwl of B, the corollary and the five lemms, ¥**

Theorep: (Spanier-Whithead duality) For any peir B,C C 8% as above

X ip(B;f\) —_— }-Ik'l'P(C;{\) is an isomorphism.

Proof: D is glven by the composition of isomorphisms

' ill;g) = B (s*-c;a) & By (85c,85-0ia) ¥ B, (R R-cia) B BPH(csn). »»

Note: See Spenier [110], pages 295 and hLé62.

Teorem: (Hsiang and Wall [58]) A class o & H (Tv;A) 1s a Dold
@plentation 1f and only if the cless D"l(u) € Hn(M,BM;é) is an A orientetion
{d the sense of Whitehead; 1.e. for each point q ¢ M - 3M the class in

H"(N.“M;S) obtained by collapsing M/3M onto D7/0D® where D" 1s e disc
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neighborhood of q and the class D-l(a) heve Kronecker product the cles

defined by the unit in Ho(pt;A).

Proof: The mep D~ 1 - 3M given by taking the disc neighborhood
q defines the collepse M/3M — D"/3D" which is patently dual to the
inclusion of ™ in ™ , but m* is homotopy equivelent to the Thqm d

of a fiber, #¥

S R

Note: Similarly, the collapse Sn+r —> Tv/Tv' 1s dual to the map q

to a point.

Corollayry: If the Thom class U : TB—> A 1s an A orlentatiom,
for any (B,f) menifold M®, the fundamental class [M,3M] ¢ Hn(u,an;:q)

en A orientation in the sense of Whitehead.

Theorem: (Poincaré-Lefschetz duality) If U : IB—> A 1is en

A-orientation, ‘then for any (B,f) manifold M® one has isomorphisms

HY(M;4) —>~ H,_o(M:M:8)

q . .
HI(M,5M;A) —~> Hn-qm’:”

given by the cap-product with the fundemental class [M,3M].

The cap-product relation is given by

1.U oV :
wis™T S pyy/ont Lo (MyaM). TH — (MpM). A, Lo1s (MpM). (M/9). A i

vhere A 1s the mep given from the diegonal. If 21(M1¢) & Aq+i ‘repry

a class in Kq(M;_.ﬁ), the cep product is represented by

1 1.
£ LU (wpm)rtOygh a B2 (upM)A L, A, TSt (up), A

e

A gimiler formula defines the other homomorphism.

Proof: These isomorphisms are just the composite of Sﬁmier—Whitehe’j_

duality and the Tham isomorphisms. ** ¥
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Chapter IV

The Interesting Examples - A Survey of the Literature

L Hince cobordism theory is a classificational tool, the interest really
ull in the investigation of specific classification problems. Numerous

i .mleu have been considered and hence a vast literature exists, with few .
MLy central theoretical tools, largely due to the idiosyncrasies inherent
§8 tho exemples. The purpose of this chsﬁter is to list many of these
$Mples and indicate briefly what is known and where to find it in the

'E‘ll‘lture .

Bxagple 1: Framed cobordism: nir'.
Historically: First application of cobordism t.heory, intended to

§fdy the homotopy of spheres.
QbJects: Fremed manifolds, 1.e. manifolds with en equivalence cless
" §f ¥rivializations of the normal bundle.

Determination: (B,f) cobordism with each Br contractible (classifying

fr

hd r .
n —1imnn+r(s) is the

Ty

@Me for the identity subgroup 1. of or), 50 Q
ﬁl'bh homotopy of spheres (Pomtrjagin [101]).
nasults: A vest literature exists but is largely unre.laﬁed to cobordism.
ﬁ. of surgery (Milnor [g3], Wallace [/37]) to construct framed cobordisms
-'.vl that representatives freguently may be taken to be homotopy spheres
"illl‘\hire-Milnor [61]). Recent work of Conner and Floyd ['l.l] has placed

M o-inverient of Adsms [4) in a cobordism framework.

Lxample 2: Unoriented cobordism: /7.
Historically: The turning point for coberdism theory.

Objects: All compact menifolds, i.e. the category (£3,1).
Qbjects:
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Determiration: Equivalent to (B,f) cobordism with B_=B0, eand

£, the identity map. (Thom [127]).

Celculation: 7‘1* 1s the polynomial ring over Z, on classes x

2 1

of dimension i for each integer i not of the form 2%, Even dimensio

generators may be taken to be the classes of real projective spaces. (Thom

[127}). 044 dimensional generators were constructed by Dold [L3]. )
Characteristic numbers: Z2 cohomology characteristic numbers gilve

complete inveriants (Thom [127]). All relations among these numbers

(expressed tangentially) are given by Wu's formulae (Wu- [142]) relating

to the actlion of the Steenrod algebra (Dold [L¥]).

Exemple 3: Complex cobordism: 92.

Smcrm—cT—

Objects: Stably almost complex manifolds ~ menifolds with an equivalel
class of complex vector bundle structures on the normal bundle.

Determination: (B,f) cobordism with B, = By, = BU, the classify.

space for the unitary group U (1imit of complex Grassmann manifolds).

Calculation: 02 is the integral polynomial ring on classes X, of

]

dimension 2i for each integer 1, with X, represented by a projectivef

complex algebraic variety (Milnor [82], Novikov [92, 93]). In fact, every .
class 1s represented by such a veriety (Milnor; see Hirzebruch [54] or Thosm

[129]).

Cheracteristic numbers: Cobordism is determined by integral cohomolc;ﬁ.

characteristic numbers (Milnor [82]). All relations among these numbers
are given by the Atiyah-Hirzebruch [17] form of Riemann-Roch theorem relat:l.:

complex K-theory to rational cohomology (Stomg [117], Hattori [s2]).

i
Relation to {4 ﬂ?, meps onto the squares of classes of ||, (Mil

[87)). ;7
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Relation to ﬂ?: Every framed manifold bounds a complex manifold. The
##8 c1ass homomorphism @,((BU,£),(BL,£)) —> Q@ of the relative cobordism

§@%p induces the Adems e homomorphism (Conner and Floya [41]).

Example 4: Oriented cobordism: nf°.

Objects: Oriented manifolds.

Determination: (B,f) cobordism with Br = BSOr the classifying

AEIO for the special orthogonal group S0, (1imit of Grassmannians of
@Monted planes) (Thom [127]). '
Calculation: 020 8 Q is the rational polynomial ring on classes X,

” $he complex projective spaces CP(2i) (Thom [127]). ﬂ§0 has no odd
".ll.on (Milnor [81], Averbuh [21]) end ﬂ?,o/Torsion is a polynomial ring
i 2 on Y4 dimensiopal generstors (Milnor [81], Novikov [92,93]).
A w has only torsion of order two and the qQuotient ﬂ§0/2ﬁ§0 may be
§#ierived as follows: Let ‘14/“ be a 2, polynomial ring on classes

'I-. X5 1» for k not a power of 2, and x2,12. Let 3, "14{-—’-‘%
§9 8 derivation aiven by B xy = xp 14 3%y 1 = O alx2.12 = 0. _Tﬁen
'*/m? = kernel al and the image of the torsion will be the image of

'l (Wall [130]).

Charecteristic numbers: Cobordism is determined by 2 and 22

.ﬂm1oy, all relatiol_m among 'the _22 numbers being given by the relations
ﬂf Wu together with the .va.nishing of the first Stiefel-Whitney cless (Wall
'“0]). A1l relations among the Z numbers are given by the Riemann-Roch
$hveren (stong [117]).

Relation to 02: o) meps onto n§° /Torsion (Milnor [82]).

Beletion to '\ (*: ﬂso/zﬂfo is mepped iscmorphically to the subring
§ornel 3. described above, the X, being (well-chosen) generators of 'T'('

1
{Wal1 [1301).
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Exemple 5: w, spherical cobordism: We

Historically: This cobordism theory arises in Wall's determination
of oriented cobordism, and was completely determined by Wall [130].

Objects: Manifolds for which the first Stiefel-Whitney class ¥y
is the reduction of an integral cohahology class; 1s induced by a map intc
the sphere Sl.

Determination: (B,f) cobordism with Br the total space of the
fibration over BO . X Sl induced from the path fibration over K(Za,l) '
by the mep realizing the cohomology class v 8l+1800, gc¢ Hl(sl;zz)
being the generator.

Calculation: Given by the polynomial ring 74’. described above,

Characteristic numbers: Z2 cohomology determines cobordism, all
relations being given by thqse of Wu together with the vanishing of’ wia.

Relation of “Y7 and n,s,o: Maps monomorphically imto V4, with @

deseribing the image of 020 as above.

Example 6: Bordism: ,(B,f)[X,Al.

Objects: Let F : (B,f) —- X ©be the forgetful functor fram the
cobordism category of (B,f) manifolds to the category of topological
spaces which takes the underlying topological space. One then has the
cobordism category of (B,f) manifolds 'over' a space X. If ACX is
& subspace one has & functar J : (B,£)/A — (B,f£)/X induced by the
inclusion.

Determination: (B,f)/X cobordism is Just the cobordism theory based
on the fibretion B, xX I B, i B0, w-being the projectfon. The
relative bordism group of the pair (X,A) is ﬂn(B,f)[X,A] = ﬂn(J.ﬂ), wh
a. 18 the piecing together previously described, and is given by

Lln # (B .(X/A)) = B (X,A;TB).

Tp
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Historically: These groups were originully defined by Atiyah [13],
W0 called them the (B,f) bordism groups of the pair (X,A). He
__ﬂlurved the name cobordism for the dual cohomology theory with coefficients
“ the spectrum I3,

Tl,(x,A): The unoriented bordism of s pair (X,A) is essentially
Wiviel, being isomorphic as 77, module to [{, ® Hy(X,A;2,). Cobordism

# dotermined by 2, cohomology. (See Conmner and Floyd [36]). Operations

2
A this theory were determined by Landweber [63, €4]. Used by Brown and
Bterson [29] to study relations among Stiefel-Whitney classes.

nEO(X,A): Studied extensively by Commer and Floyd [36]. One has
l’a(x,A) isomorphic to H,(X,A;nio) modulo the Serre class of finite
‘§ups of odd order. If all torsiom of H,(X;Z) is of order 2, then 2
T 22 cohomology characteristic numbers determine cobordism class in
do {X). Kunneth theorems for this hamology theory are studied in Landweber
‘.I]. An interesting spplication is the use of QEO(BU) in the proof of
. _ #he Atiyeh-Singer index theorem (Atiyah-Singer [20], Palais [97]).
EIH(X,A): Studied by Conner and Floyd [35, 37]. If X has no torsion
" 4 {to homology AU(x) & 2U @ H,(X;Z) and cobordism is determined by
_dhvmyrel cohomology characteristic numbers. The relation of QE(X) to the
fdaplox K-theory of X is studied in Con.n‘er and Floyd [ifl ]. Operstions

“in ﬂu theory are studied in Novikov [96].

Example 7: Special unitary cobordism: QEU.

Objects: Manifolds with an equivalence class of special unitary

Mructures on the normal bundle.

7

Determination: (B,f) cobordism in which By = Bop ='BSUr is the

g¢launi fying space for the specisl unitary group SUr. —
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Calculstion: First partial results were by Novikov [93]. The main

structure was determined by Conner and Floyd [39], who proved that niU

is torsion free except for n= 1 or 2 modulo 8, and ﬂgﬂﬂ = ngg_'_z

is a 22 vector space whose dimension is the number of vartitions of k.

The multiplicative structure has been described by Wall [135].

|

Characteristic numbers: KO-theory characteristic numbers determine

cobordism class (Anderson, Brown, and Peterson [6]). Ignoring torsion,'./
integral cohomology suffices, and all relations among these follow from
appropriste Riemann~Roch theorems (Stong [117]).

Relation to QE: The kernel of n%u —- QE is the torsion subgroup
The imege was described by Conner and Floyd.

Relation to ﬂir': The image of nf" in QEU is zero except in
dimensions 8k+l and 8k+2 where it is 2
6.

o
Relation to 77,: The image of oy

A (Anderson, Brown, and Peter

U in 7T 1is the squares of

classes conteining an oriented manifold all of whose Pontrjagin numbers

divisible by ¢f; are even. (Conner and Lendweber [42]).

spherical menifolds: “M’U.

Example 8: c;

Historically: The analog in the complex case of Pr,, used by Conn?i
e et 3
¥

e

i

and Floyd in computation of QEU. '
Objects: Btably almost complex manifolds for which the first Chern

cless ¢y is induced by a map into a sphere. :

Determination: (B,f) cobordism in which B, =3By, is the tot

space of the fibretion over 52 x BUr induced from the path fibration ovi

3

K(Z,2) by the map realizing o ® 1 - 18 eq-

Calculation: Conner and Floyd determine 'W; in [39].
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Characteristic numbers: Integral cohomology characteristic numbers

- determine cobordism class.

Relation to QH: ‘WE maps monomorphically into ﬂ[z vith image all

tlasses for which numbers divisible by _cl2

Relation to "}, 7/2 has imege in ||, precisely the squares of

are zero.

®lasses of ~%, (Stong [11@], Conner and Landweber [42]).

Exemple 9: Spin cobordism: nipin_

Objects: Manifolds with an equivalence class of Spin structures on
the nom§l bundle. (S;}inn is the simply connected covering ‘group of 50 ;
- Jse Atiyeh, Bott, and Shapiro [16] and Milnor [85]).

Determination: (ﬁ,f) cobordism with B the classifying space of
lpinr; i.e. the two-connective covering space of BSOr.

Caleulstion: Preliminary results were by Novikov [93]. The main
delculstion is due to Anderson, Brown, and Peterson [7, 8] who showed that
81l torsion is of order 2, being of two types: . that arising by products
With & fremed 8' (similar to the SU case) and that which maps

'Ionomorphically into unoriented cobordism. ngpin/Torsion is the subring
of an integral polynomial ring on classes Xy, (dimension 44) consisting

" 8f all clesses of dimension & multiple of 8 and twice the classes whose

" dimension is not s multiple of 8. . -

Charecteristic numbers: Cobordism is determined by 2Z, cchomology and

2
KO=-theory characteristic numbers. The relations in integral cohomology all

" follow from the Riemann-Roch theorem.

Relation to ﬂir: The image of framed cobordiem is the seme as the

inage of fremed in SU cobordism.
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S0, Spin

Relstion to @, : The kernel of the map Qg — QEO is in dimen

Bk + 1 and 8k + 2 only and is the part genersted by framed msnifolds. -

Relation to 77,: The image in T'(, is all classes for which the

characteristic numbers divisible by w., and v, are zero. Preliminary

1
in thig direction was done by Milnor [87], P. G. Anderson [9], and Stong

showing that the cluss of the square of an oriented manifold is the class

& Spin meanifold.

.. c
Example 10: Sginc, Pin, and Pin® cobordism: ﬂfpm s nﬁi“, and @

Objects: Manifolds with an equivalence cless of Spinc, Pin, or P

structures (see Atiysh, Bott, and Shepiro [16] ).

termination: (B,f) cobordism with the obvious classifying spaces

(BSpin® is BSO with w, mede reduced integral, BPin® is BO with °

2
made reduced integral, and BPin is BO with w, killed).

Calculstion: Due to Anderson, Brown, end Peterson (ennounced in [8}

nSpin

largely as & byproduct in the study of Spin. /Torsion is diacuss,

i

in Stong [117]. 4

§
]

Remarks: Results have not yet been published for Pin aand Pin®,

F alioies e 5

groups are 2 primary, having elements of arbitrarily large order. Image#

T(, are thoae classes for which the sppropriete Stiefel—"h:.tney numbera:_,\s

Note: Pin gives the first example of a theory for which the ta.ngen‘té
and normal structures are not of the same type. Specifically, if M haJ

Pin normsl dbundle, then the tangent bundle has Wy = wla. and hence the i

tangent bundle does not necessarily have a " Pin structure.
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Example 11: Complex-Spin cobordism: Qg .

Objects: Manifolds with both & stsbly almost complex and a Spin

fnoture,

Determination: (B,f) cobordism with B the fibration over BU

m\mud from the fibration of BSpin over BSO.
Calculation: n:—s 18 the d:l.z:ect sun of niU and & free sbelian group
{ong [121]).

Bemark: Useful in trying to understand the relationship between 8U

il fpin cobordism.

Example 12: Symplectic cobordism: n,s,p .

Objects: manifolds with an equivalence class of quaternionic vector
'l.m.le structures on the normal bﬁndle. ” .

Determinstion:  (B,f) cobordism with B =B, = ... =B .
‘_IO vlassifying space BSpr of the symplectic group Sér of unitary
:Hﬂhrnionic r x r matrices (limit of qusternionic Grassmann manifolds).

Calculstion: Rovikov [93] showed that nfp @ z[1/2] 1s polynomial
g i dimensionsl generators and calculated the low dimensional gfoups.
'Huwicius [75] calculated more low groups using the Adams spectral seguence
5 ﬂI tomputetions are still in progress using thgt method.

Rulation with -7'"(.: The image in unoriented cobordism is zefo in
_hnuions less than 24 (Stong [123]).

Remerk: The corresponding bordism theory is studied in Landweber [48].

Bxample 13: Quasi-symplectic cobordism.

Objects: Manifolds for which the normal bundle 1s & sum of tensor
- jeduats of quaternionic vector bundles. (Hote: Thé tensor product of

Qusternionic bundles in only s real bundle.)
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Remerk: Introduced by Landweber [67], this cobordism is the subgroup
of s consisting of the fourth powers of all classes. This was intendes
f£ill the gap left by the fact that QEP maps into the fourth powers but n¢
onto them (as one might at first guess). In particuler, quaternionic proj:
spaces are quasi-symplectic but not symplectic (see Hirzebruch [54], Conne:

and Floyd [39], end Kraines [62]).

Example 1k: Clifford slgebra cobordism: 23'%

Objecte: Manifolds together with an equivalence class of actions of 1

2 _ P{q <2

P
Clifford algebra associsted with the quadratic form L *y n

. is1 j=prl
on the normal bundle (see Atiyah, Bott, and Shapiro [16]).

Determinstion: (B,f) cobordism for an appropriste classifying spece;

These msy be decomposed into somewhat more standsrd objects.
8) (p,a) = (0,0) is 7,.

b) (p,a) = (0,1) is al.

¢) (p.a) = (0,2) 1s @5P.
Q) (p,a) = (0,3) 1s a5P(msp).
e) (p,a) = (1,0) 1s 7{,(50). ]
£) (p,q) = (2,0) is cobordism of manifolds for which the normal bux

is the complexification of & real bundle. :

g) (p,q) = (1,1) coincides with (2,0). i

Remarks: The odd primary structure is easily computable. One can gi}

upper bounds for images in 77,, describable as at most 2k-th powers qﬁ

1

elements of 77; An unsteble version of the case (f) has been studied”

R. Wells, the unstable form occuring in an exact sequence with immersion

LER ikt e it

cobordism (see below),.
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Example 15: Self-conjugate cobordism: nfc.

Objects: Manifolds having & stsbly elmost complex structure, together
vith en isomorphism of that structure with its complex conjugate.

Determinstion: (B,f) cobordism in which B is the classifying
space for self-conjugste K-theory, BSC, defined by Anderson [5] end Green
(s21.

Calculation: When tensored with 2{1/2] this coincides with the
pymplectic bordism of Sp (studied in Landweber [68]) which is lthe
symplectic self-conjugste cobordism analog. Excei;t for low dimensions
$he 2-primary structure is unknown. ({Bmith end Stong [108]).

Remark: This provides a synthesis of symplectic and Clifford algebra

" {8,0)-type cobordism.

Exemple 16: Exotic theories associsted with classical groups.

Objects: (B,f) manifolds with B formed as follows: Let G and
N be topological groups, and 6 : G—» H, p : G —» 0 representstions
{0 bveing the orthogonal group). Let H/G denote the generalized
.'.hnmosenecus space which is the fiber of H/G 2o 5e B, gy, Then
. .(h,r) = {H/G,r) where = is the composite H/G -, g B8, g,
Calculation: If p and 6 ere inclusions of classical groups, this
feduces to the framed bordism of the space H/G. The case in which 6 is
#iven by complexification is studied in Smith and Stong {109]. The odd
primary strﬁcturé tends to be the framed bordism of H/G while the 2-primary
* Wructure is & direct summand of QE.
Remarks : Many standard cases may be expressed in this form, as for
#Xumple S0 cobordism. When G =H = U is the unitery group and 6 is.

grmplexification H/G is the second loop space of BSC, so that one obteins

thaories relasted to self-conjugate cobordism.
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ExEmple 17: k-connective and k-parallelizeable cobordism.

Objects: k-connected and oriented manifolds.

Determination: When connectivity is large with respect to dimension
these are groups of homotopy spheres (see Kervsire-Milnor [61]). In the .
other cases they coincide with k-parallelizesble cobordism, given by (B,
cobordism in which Br is the k-connective cover of BOr. Relative grot
and images of oné group in the others are particularly intriguing.

Remarks: HNext to nothing is know, end the problem is hard (the case;
k = 2 is Spin cobordism which isn't easy). Images in unorieqted eobordi}é
are zero in low dimensions (but higher than might be expected) (Stong [1lé

116]). The complex analog is studied in Lashof [71].

Example 18: Wu class cobordism: Qu< v, >.

Objects: Manifolds with a 'reduction' killing the Wu class Vie*

Determination: (B,f) cobordism with B_ the total space of the

fibration over ]30r induced from the path fibration over K(z2,k) by thi

i i

e,

map realizing the Wu class Vi+ _ . ; j
Remarks: Defined and used by W. Browder [25] in work on the Arf-Ke:

invariant. Similar questions of killing classes are studied in Lashof

[71] and Peterson [98].

All of the above examples aere basically given by manifolds, and theg

”
has been no significant problem involved in determination of the theory.)
The next group of examples are not in this psttern.

Example 19: Cobordism of peirs: nn,k(B’f;Gn-k)'

ekt i e

Obaects:. A (B,f) msnifold M® with & submanifold Vk of M

normal bundle in ¥ is reduced to the group Gn-k'

e s ..‘-,ﬂ:mn%_é‘ *
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Determination: Studied by Wall [131], the problem requires only a

{B,f) cobordism of M anda & (B x BG £ %x 7) cobordism of V

n-k’
{ueparately). This may be phresed as (B,f) bordism of the space TBG .

W Gn is the identity group ln- this is the cobordism of the

-k Kk’
fatogory Fun(oc ,(B,f)) where OC has two objects D and R and with
May(p,D) = {1D}, Map(R,R) = {1R}, Mep(D,R) = {x}, and Map(R,D) = §;
{16, the category of maps in the category (B,f) (recall that maps are

{gheddings with trivialized normal bundle).

Exemple 20: Cobordism of immersions: | Ly (x)

Objects: Menifolds together with an immersion in Euclidean space
fiaving codimension k.
Determination: Studied by Wells [137]. Using Hirsch's work (53]
- #h immersions this reduces to the stable homotopy of Thom spaces of finite
Blureifying spaces; i.e. ﬁn(k) = "rsx+k(TBok)' This is (B,f) cobordism
{4 which B, = B0, forall r2>k.
Calculation: Results are availaeble in low dimensions; i.e. near n = k.

“a rase k = 1 is the stable homotopy of projective spece, which has

Been studied by Liulevicius [74].

Exsmple 21: Cobordism of maps: ] {(m,n).
prostam S
Objects: Maps of m-dimensional manifolds into n-dimensional manifolds

Determination: Cobordism of Fu.n(ac_,B‘) with oT as in example 19.

Phin reduces to the bordism group 1lim 77n(nr+mTBO r+n)’ 2 being loop
r+® '
Bpuace. This is computable and cobordism is determined by 22 cohomology

#haracteristic numbers eesily obtained from the map itself. ({Stong [119]).
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Bemarks: One may impose additional structure on the manifolds.
Interesting veriants sre self-maps ( ot has one object X with Map(X,X)
and diffeomorphisms (oc has one object X with Mep(X,X) 5 Z). The
latter is cobordism of fibrations over Sl (teke the mepping torus),
vhich has been studied by Conner and Floyd [38], Burdick [31], Browder and
Levine [26], and FParrell [49]. (These all take a slightly different point

of view; nothing is known sbout these cobordism problems).

Exemple 22: Cobordism with group sction: n,(Fun(a(},ﬁ )).n.(G)f
ObJects: Manifolds on which one has a differentisble action of the
group G (finite or compact Lie group). a
Determinstion: As previously noted, if aa_ has one object X witl‘

Map(X,X) = G & finite group, then M(VJ m gives the cobordism

L R - e

category of unrestricted G sactions. If G 1s assumed to act freely on’

«

Vi

Y

e menifold M (gx = x implies g = 1) one has a principal differentiabﬁ
G-bundle G —> M —> M/G which is classified by & map M/G —> BG.
Conversely, if N — BG is eny map of a manifold into the classifying
space, one has induced e principal differemntiable G-bundle over N, G
ecting freely on the total space. The cobordism of free G actions, £
is then identified with the bordism groups of BG. Variants may be fou.ng‘

by restricting the isotropy groups (Gx = {g ¢ Glgx = x}) to lie in soma;

family of subgroups.

dira

Bemarks: The groups ,(G) may be handled by bordism methods. Le!
restrictive group actions are usually treated by means of exact sequenceg
relating theories. The standard method involves the cobordism analysis 6

the fixed point sets and their normal bundles. B
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The primary workers in this area are Comnner and Floyd [38, 36, 37, 4@]
{dee also Conner [33]), who initiated this method of studying group actions.
Wher vork mey be found in Anderson [10], Boardmen [22], Hoo [$7], Landweber
l6%, 701, stong [120, 122], end Su [124].

In all of the preceding examples the manifolds used have been differ-
fitiable. Many of the easy ideas carry over at onmce to non-differentiablé
Bnifolds, but there are technical problems to be overcome,

Example 23: Piecewise linear cobordism: QI:L, QEPL.

Objects: Plecewise linear manifolds.
_ Remarks: Every differentiable manifold is triangulable (J. H. C.
" Wdtehead [139], see also Munkres [91]), but & given PL menifold may have
$istinct differentisble structures (Milnor [77.]) or no differentisble
Aructure (Kervaire [60]). This leads one to consider cobordism of PL
.- #dnifolds.
. Determination: The notion of vector bundle is replaced by microbundles
{Ms1nor [86]), giving = Pontrjegin-Thom construction analogous to the
.-'.'ufferentiable case (Williamson [140]). Thus unoriented and oriented

o u cobordism groups are the stable homotopy groups of Thom spectra TEPL

Calculation: Explicit computation of cobordism groups have been made
" §y Wall [133] (oriented and unoriented in dimensions < 8) and Williemson
[i40) (oriented in dimensions < 18, ignoring 2-primary difficulties
_Iil:we dimension 9). Browder, Liulevicius, and Peterson [27] have shown

- #hat REC 3 77, ® C, C being the dual of & Hopf algebra factor of the

'Ii cohamology of BEPL. The groups n,s,PL

® @ form a polyncmial ring on Ui
dimrnsional generators and Q?L/Torsion is conjectured to be a polynomial

“ ping over % (true in dimensions < 12).
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Characteristic numbers: ﬂEL is detected by its 2, cohomology
characteristic mumbers (Browder, Liulevicius, and Peterson [27]). Btiefel
Whithey classes were defined in the comblnatorial case by Wu and Thom

[126], but do not give all 2, characteristic classes. Adams [2] showed

2
that there are no new relations among Stiefel~-Whitney numbers. Rational
characteristic classes (called Pontrjagin classes) were defined in the
combinatorial case by Thom [128] and Rohlin and Sverf [106]. Recent work
has been done on the integral (nom-torsion) cohomology of BSPL by Brumfie

and Sullivan {unpublished). : ’

Example 24: Topological cobordism: QTOP, QSTOP

Objects: Topological manifolds.

l_iana.rks: Of greet interest, but practically nothing is known. This';:
primarily due to lack of transversality, hence of a Pontrjagin-Thom
construction. What is known follows from the existence of classifying
spaces BTop and BSTop for topological microbundles, giving & hommorpla
QTOP —- w*(TBTop), hence characteristic nubers. The Z, characterisﬁ:g
classes are known to include Stiefel-Whitney classes (Thom [126]) with u

no new relations among their numbers (Adams {2]) so that J |, 1s a direc’é

summand of Q OP. Rational characteristic classes exist to map onto
S

s s

i

Pontrjagin classes (Novikov [951), so that 00 °8Q=0084Q isa d:l.rq

&

sumnand of n,S,TOP 8 Q.

Ak

Example 25: Cobord:lsm of Poincaré duality spaces: nf, QEF.

it BT

Objects: Finite CW pairs sa.tistying Poincaré-Lefschetz duality. %
Remerks: Initiated by Wall's question (see Novikov [94] page 152) sﬁ
the Seattle conference, 1963. One has normal spherical fibrations (Spimh

[111]) and hence maps into a classifying spsce BF, BSF (Btasheff [112]l
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‘Wut the mep fram cobordism to the homotopy of the Tham specbrum is not

M isomorphism (in the oriented case the index is an invarient of infinite
@fder, butthe homotopy groups are finite). The cohomology of BF has been
-§tudied by Milnor [89) and Gitler and Stasheff [50]. Examples are known.

8¢ Poinceré duality spaces not having the homotopy type of manifolds (Gitler

#nd Stasherf [50]).

Exemple 26: Cobordism of manifolds with singularity: RC.

Objects: Manifolds with boundary and a decomposition of the boundary
§8 the form AU(Bx C), A and B being manifolds with .bt.Ju.nda.ry and
§ being a closed manifold (?A = 3(B x C)), the boundary of this object
$eing A with boundery decomposition given by 3B x C.

Remarks: Introduced by Sulliven in studying the Hauptvermutung [125],
#nd called 'introduction of a singularity of type C'. Successions of this

fperation may be performed (interpreting the term manifold ebove as 'object')

_hn main result is an exact sequence relating the theories before and
.MMter adding the singuiarity. 0f perticular interest is the case when C
) ‘Il n points (C = Zn) on oriented manifolds, when this becomes the usual
$§obordism with Z  coefficients (as homology theory)._ b
Finally, there is an example of a cobordism category involving no
fpaves, which is of interest in that one need not think of cobordism as &

Benifold theoretic phenomenon.

Exemple 27: Cobordism of algebras with duality: ) (.(alg).

Objects: Let c be the category whose objects are T-tuples
{M,n*,B",i,5,6,u) in which: H and H' are finite dimensional (as z,
¥eolor spaces) graded unstable left algebras (commutative with unit) over

the Uteenrod algebra q 20 ‘H" 18 & graded unstable left d o module
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(finite dimensional over Zz) and an H' module such that
semm") = J  sqd(n')sc¥(a") if n' e H', B" ¢ B'; 4,1,5 are

J+k=1
42 modnle homomorphisms of degree 0,0,1 such that

Hl—i_;.ﬂ

[
g

is exact, 1 being an algebra homomorphism, 3 an H' module homomorph
end &(hi(h')) = Shoh', h ¢ H, h' ¢ H'; and .u : "% —> 2z, (k is call

the dimensicn) is & vector space hamomorphism so that the pairings i

B 0B —»B"-Y>2, and B6HE— %% 2, are non-singuler.

Amep f : (E,H',E") — (HO,H' ,Hg) (ignoring the maps) is a triple

(£,£',£") of homomorphisms £ : By —-E, f': B} —-E', £": B} —

0 0
(with all algebraic structures preserved) such that the maps of the di

commute.

The boundary of the septtuple (H,H',H",i,3,6,u) is (0,H,H,0,1,0,

o

P

and its inclusiom is (0,i,0).

Determination: This ccbordism category was studied by Brown and Pe1

::",w
[28]. It is analogous to the cohamology of a pair consisting of a ::
manifold and its boundary. In fact, the cchomology functor ﬁ

;L (9;3,1) —_— (@,B,i) is a good cobordism functor (Note: This is":-..,.

j
%

covariant since maps in G are reversed from the usual direction). %
W

Following Adams [2] one has a classifying algebra for the che.ra.cteristi_%

&

cohomol 6

classes defined by the Steenrod algebra (isomorphic to the 22

of B0). Brown and Peterson have shown that H* induces iscmorphisms g

the cobordism groups.



- 58 -

Although not properly cobordism theories in the cobordism categoz'-_y
fense, there are similar equivalence relations cbtained by defining two
fanlfolds to be equivalent if they bound (Jointly) some manifold with

Bdditional structure. Two examples of this are:

Pseudo-example 1: h~cobordism

Two compact manifolds V eand V' are hecobordant if there is a
Bempact mapifold W with aW = VU V' such that both V and V' are

" @§eformetion retracts of W. See Milnor [88] for details of this theory.

Pseudo-exemple 2: Cobordism with vector fields

Two (oriented) closed manifolds V and V' are equivalent if there
48 » compact (oriented) menifold W with W =V U (-V') and a non-
blngular tangent vector field on W which is interior normal along V and
#xterior normal along V'!'. This was studied by Reinhert [102] who introduced
this cobordism in order to make the Euler class a 'cobordism' invariant.
in the unoriented case, two manifolds are 'cobordant’ if and only if they
.Illvn the same Stiefel-Whitney numbers and Euler characteristie. In the
#riented case, two manifolds Vv end V'™ are 'cobordant' if and only if
they have the same Stiefel-Whitney numbers and Pontrjagin numbers -and

a) (n # bk+l) the same Euler cheracteristic

b) (n = bk+l) the manifold W with 3W =V ) (-V'} has even Euler

characteristic, [This only depends on V and V', not on the

choice of W.]

It should be noted that in both of these examples the additional

#hructure on the manifolds with boundary is not inherited by the boundary.
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Chapter V )

Cohomology of Clessifying Spaces

In order to study the interesting examples of cobordism theorles it is
$sential to have a detatled Ik.nalrledge of the cohmloﬁ of the classifying

fhces for the clessical Lie groups.
Vector Bundles

Let K be one of the fields R (real numbers), € (complex numbers),

B E (quaternions). Let k be the dimension of K as vector space over

. e reais.

Definition: A K vector bundle { is a S-tuple (B,E,p,+,*) in which

' l and E are topological spaces, p : E—> B 1s a continuous function and

+: EBE= {(e,e') ¢ E x E|pe = pe'} — L

* 1 KX E~=E

...o continuous functions such that po+{e,e') = p(e) = p(e') end

’l (k,e) = p(e) such that for each b ¢ B, the operations induced by +
.I « on p (b) meke p l(b) into a vector space over K.

B is called the bage gpage of £, E the total space of §, end p
™ projection of g. For b ¢ B, p1(b) 1s the fiber of  over b.

Definition: A section of the bundle & is a continuous map s : B~>E

el thet ps = 1.

Definition: A vector bundle £ is locally trivial (of dimension n) 1f
I ov ench point b € B there is an open set U of B containing b and

" peetions 81500448, Of & such that the map ¥ : K x U~ p'l(U) glven
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n
by ‘I’U((kl....,kn),x) = izl kisi(x) is & homeomorphism.

Proposition: Let & be & locally trivial vector bundle over a compa:
Hausdorff épsce B. There exists a finite dimensional vector space V ow
K and a surjective bundle map e : VX B — E., There is also an injecti

bundlemap 1 : E—»V x B with ei = 1,

Proof: Let I = I'(E) be the vector space of sections of £ and
e: T xB—>E: (s,b) —> s(b). Since & is locally trivial this is
surjective and for each point b of B there is an open neighborhood Ub-.
of b and a finite dimensional subspace V.b of T (spanned by n sec't:l,"{
8o that e : V, x U —»> p'l(U.b) is surjective. Since B is compact, a
finite number of the Ub cover B, and let V be the span of the co_rregj
ing Vb' Then V 1s finite dimensional and e : Vx B—»E 1s sur.jlect:l_éf

Let V‘. be given an inmer product (over K) and let E' be the :
orthogonal complement of the kernel of e. Then elE‘L H E" — E is an

isomorphism end one mey let 1 = (e "_)_1 : E—»V x B,
5

b

Corollary: A locally trivial vector bundle over a compact Hausd.orff‘“

i

space admits a Riemannian metric. ) 4
ik

Corollary: A locally trivial vector bundle over a compact Hausdorffv':%
space has an inverse. é

%

Remsrk: To each point b of B one may assign the subspace i(Eb)'

vhich defines & map B —> Gn(V) of B into the Grassmannian of n pl
of V. The usual n-plane bundle over Gn(V) then inducea the bundle §
B, so this is a classifying mep for &.

Let & = (B,E,p,+,*) be a locally trivial n-dimensional K vecto#™

bundle with B a finite CW complex and let
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P(E) = space of cne dimensional subspaces of the fibers of E,

4(E) = space consisting of peirs (o,e) where o is a one dimensional
subspace of a fiber emd e 1is a point in that subspace.

. o map n.: P(£) —~ B sending the one dimensional subspaces of p-l('b)

Mo v is the projection of & locelly trivial bundle with fiber P(n-1),

m *(n~1)-dimensional' projective space over K. The map A : R(E) — P(E

§n8ing (0,e) into o is a one dimensional K vector bundle over P(E),

" - ol restricts to precisely the cemonical line bundle over each fiber P(n-1

. e

One then hes commutative diagrams
&> B > VxB

L b T

b & B ~———

. y

| . . v
P(a-1) = P(E,) > P(E) p(vxs) = p(v)xs 2% p(v)
I -
b > B 1 - B

- ¥Mre b e B, The bundle #E) is the restriction to P(E) of the line
‘WBdle over P(VxB), which is induced from the canonical bundle over P(V),
M lonce § : P(E) —» P(V) classifies 1(§). The induced map

'-"NI‘) ~ P(V) 1is just the inclusion induced by the inclusion 1 : B —V.

Definition of Characteristic Classes

Buppose: A = {A,,s } is a ring spectrum such that for each finite
t— i1

@isensional vector space V over K there is a class ay € Hk(P(V)zQ) so

“ haL WH(R(V);A) ie the free E®(pt;A) mofule on 1, yseeesdy
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a, = 0) and such that:
1) If 4 : T—»V is the inclusion of a subspace, then i"(a.v) = o
and _
2) If q: P(Kn+1) — P(Kn+1)/P(Kn) = 85 ig the collepse, then the.

kn

image under qf of (-1)i e (Skn;'%) is of,

Hote: This choice of sign is made to try to get the ‘usual' sign
conventions. Unfortunately, signs vary wildly in the literature.

Note: If K =R, one has a cofibration S¥ —= P(R®) —» S°

and in'{
cohomology exact sequence the induced map on H‘(pt;A) = A*(s%;4) 1s ,
7

multiplication by 2, In order that such classes a exist it is necess@

that the unit cless in H"(Pt;,&) have order 2; hence H'(x;'!\\) has eve:
element of order 2 for all X. (See Araki end Tods [11]).

Bxamples: If K=R, A= 5(22); it K=, A=;}‘c’(z) or
{BU,QBU}-the spectrum for complex K-theory; if K =H, A= E(Z) or the -
spectrum for real K-theory.

Theorem: Let ¢ ¢ Hk(P(E);’Q) be the class J*(a,). Then H'(P(E);’é}

is the free H*(B;A) module (via w*) on the classes 1,60000¢™ ) and !

i

there exist unique clesses oi(E) € Hu(B;A). uo(E) = 1, such that

TESTN milase

o - P lun(a, (6)) +.ont (2 Tenv(o, o (£)) + (-1)%a%(o (E)) = 0.

Proof: One has two spectral sequences Er and E; with

binh cREel R

E, = B*(B;E%(pt;A)) converging to E%(B;A) end Ej = H¥(B,E%(P(E,);A))

converging to E*(P(E);A). The direct sum of n coples of E, 1is meppeds

n-1l A - B
into E} by sending (xi) - I ciW'(x ). Bince 1,c,...,c" 1 restric'ﬂ
i=0 ’

to a base for H‘(P(Eb),A) as B'(b-A) module, this is an isomorphism a‘bg
E, level, so that iol B*(B;A) —> E%(P(E);A) is an isomorphiem. L
=0
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The relation exists since c° is uniquely expressible in terms of

$he base 1yCrees Bt e

Remarks: 1) The structure of E*(P(E);A) as n‘(n;’{«) algebra is
" gempletely determined by the relation for oo,
2) The class o(£) =1+ 0,(§) +...+ o (£) € E*(B;A) is the total
lgharacteristic' class of £. These classes are given the following names:
u) K =R: Btiefel-Whitney class w(E),
b) K= ¢: Chern cless c(E), and

c) K =H: (Symplectic) Pontrjagin class 3«5(5)-

Theorem: The total characteristic class o(E) e H'(B;'.\k_’) has the

. felloving properties:

1) o,(8) =0 1f 1> aimE; o, (E) = 15

2) o(§) is natural; i.e. if £ : B' — B is a map, then
o(£*) = £o9(E);

3) (Whitney sum formula) If E and n are two vector bundles over
B, then. o(Eén) = o(£)Uo(n); and .

4) If 2 is the canonical line bundle over P(V), then ol(x,) = oy

Proof: 1) is immediate from the definition. For 2), one has the

E fommutative diagrem : -

P(E) ———— P(vxni

T ]\ T )>‘,p(v)

P(£#E) — P(VxB!'

#o that c' = T#(c) and hence 0 = T (-l)ic'n‘i?"ﬂ'(ci(i)) =

i=0
‘E( (—l)ic'n-in"(f"ci(e)) which by uniqueness gives oi(f"E) - f'ai(E).
w()
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To prove 3), recall that E(fén) is {(x,y) ¢ B(§) x E(n)|pe(x) = pn(j;
so that one has subspaces E(£) X 0 and O x E(n) of E(E®n) and hence
may consider P(E) and P(n) as subspaces of P(E®n) with g(E#n)

restricting to 2(§) on P(£) and to 1(n) on P(n). Let
U = P(£0n) - P(£), V = P(£0n) - P(n). Then P(n) is a deformstion retr
of U and P(£) is a deformation retract of V, while P(f®n) = UL V.

Consider the class in H*(P(£én);A) given by:

‘mén
o= § (™I ] aw(o,(6) Vo, (n) =
J=0 r+s3)

L SHPLNC SO I SISO

{ z (-1)9 “'Jn*(a ONE z (-1)5e"En#(a (n)].

J-O "ﬁ;
1
[Sote: If X =R signs don't mstter, while for K# R, k 1o even so §
¢ and "0 (£)) commutel. The factor 6, = £ (-1)Jcn Inv(c, (£)) %
e 1 J=0 J i
to zero. in H*(P(E);k). hence also in H.(V;ﬁ.) so 0, comes from
E¥(P(50n),V;A). Simllarly, 6, = 3 (-1)%™*#(c (n)) comes from
kw0
H*(P(&0n),U; A) and hence © = 6,0, comes from H*(P(kon),U U V;A) =

E*(P(£0n),P(£0n);A) = 0. Since 0 = 0, it is the relation for H*(P(teH
L]

and o, (gen) = HZ ; o (E) U o (n). Toprove L), let &= (B,E,p,*,")}
g% E
be any line bundle. Then since Eb is one dimensional there is only ol !

one~dimensional subspace in each fiber and # : P(E) — B is a home
Further 1(E) is identified with E. The relation of HW(P(E); A) 1s ¢
e - 1\"(0 (£)) = 0, and with = d{interpreted as identification, 9 (g) -ﬂ

where J : B —» P(V) classifies E, *#

Remark: The non-standard part of this proof ie part 3), this pr
being taken from Conner and Floyd [34 ], page 437. (See also Conner e.nd’
[41], page LT).

LB 8 B e A R
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Proposition: If § is a trivial bundle then ui(E) =0 for i> 0.

@Biquently, if § and n are stebly equivalent then o(£) = g(n).

Proof: Since every trivial bundle is induced by a map into a point,

it suffices by naturality to prove o,(€) =0, i>0, for the trivial

Wndle p : k' — pt. For this one has « 0 in H’(P(Kn);b) which

n
) (x")
§§ the usual relation and hence Ui(E) =0 if i > 0.

If §& and n are stebly equivelent, £ & oP 2 n oo for some trivial
Bipdlen of ana 0%, so o(E) = o(£)'1 = o(E & oP) = o(n + o) = o(n)1

Gy(n), o+

Proposition: (Splitting Lemma) Let & = (B,E,p,+,”) be an n~dimensional
_ §Bator bundle. There is a space B' and amap f : B' — B such that
1) f*t splits as a Whitney sum of line bundles, and

2) % H“(B;(LL) —> H#%(B';A) is a monomorphism.
~S

Proof: lLet B . =B, E.=E and suppose for i < k one has defined
iyool 0 0 )

§paves B, maps £, + B, —= B, _, and bundles E over B, 8o that

1 1 1
BB ) =B 81, 2 aline bundle and £} : H*(B;_;;A) —> B*(B;3A) is
@hnlo, Let By = P(Ek)’ f,4; the projection w. Then f;_._l(Ek) has

§he Hiemannian metric induced from E and L(Ek) is a subbundle of
. g‘lwk)' so that one may teke Ek+l to be the orthogonel complement of
Q‘Bt) Since w* ig monic in cohomology this completes the induction.

f=f_ °,.,.0f 8o that f£* ig trivially monic on

) b 1 n-Y
gehenology, while f£%(E) eplits as the sum of the line bundles E _1»

fhen 1et B' =B _

) =4 and (f, o, ,,0¢ l)“(v.i) for 1 <i<n-2,

fi=2 -1’ i n-
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Remarks: 1) Taking the properties of o(f) from the principel theorei
as axioms, the splitting lemma permits one to see that these cheracterize q

the characteristic clesses 01. By knowledge of o, for the canonicel

1
bundle, one knows o(E) for & eany line bundle by naturelity, but the

Whitney sum formula and the splitting lemms show that o(£) 4s known for ?

all § once it is known for line bundles,

a :

, 8.0 2 15 & sum of line bundles, o(é) = 1 (1+u (l.
i=1

B0 U () 48 the J~th elementary symmetric function of the k-dimens:.onalg

2) 1f Ee=2g

cohomology classes 1(21). The splitting principle permits ome to consideyg
the class ad(e) as the J-th elementary symmetric function of (formel)

classes of dimension k when £ is an arbitrary vector bundle.

Thom Spaces

let t = (B,E,p,+,’) be given the Riemannien metric from V and
denote by D(E) the disc bundie f{e ¢ E| [le||<1)} and B8(E) the sphere b

{e c E| fe] =1)% 1et ¢ : D(§) —> P(£81) by sending e, 1into the ome

dimensional subspa.ée of (E x l()x generated by e - [l-||ex||2]1/2 R
as befcre one thinks of f and 1 as subspaces of the total space of 501
Then ¢ is & homeomorphism of D(E) - 8(£) with P(£61) - P(E) snd maps:
S(E) onto P(E) by the usual identification map. Thus one may consider ‘

P(£01)/P(E) as the Thom space of £ by means of ¢.
Theorem: In cohomology with A coefficients there is an exact sequerim
0 «— H(P(g);4) < HR(P(E81);4) +— H*(TE A) «— 0
and the image of B8 is the ideel generated by the class

G= 1 i () ¢ BUe(eo1):A).
50
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Proof: One has the exact sequence .
H*(P(E);A) <« ge(p(£01);0)

H*(P(ge1),P(£);A)

f*(TE;4)

.nd since L(E®l) restricts to 4(f) on P(E), o 48 an epimorphism, giving

" ¥Bn desired short exact sequence. The class El clearly lies in the kernel
M o (since it maps into the defining relation: Note: ¢l = 0 is the
fafining rélation in H*(P(£®1) %). ), and clearly generates the kernel as

Nm&) module.,

Denote by U the class 6 2(3) e'ﬁkn('l‘e;ﬁ). The class U is clearly
B#tural and its restriction to & fiber of § is the generator A of
'l.(ﬂlm;z) as a module over H'(pﬁ;’l\i‘). (Note: This restriction gives
e 1% i BP(e(™*)ia) which pulie back to © ¢ #°650i).)
_ It should be noted that the class U 1is multiplicative, in the sense
" $hat U(E®n) = U(E)U U(n) where T(EBn) 1s identified with T(E).T(n).
Mis 15 immediate from the Whitney sum formula.

For computations involving the Thom spaces, it is convenient to have:

_
Proposition: a) UU U= n*(cn(E)) UU= @U(on(e)), where ¢ is

" §he Thom isomorphiem definea by U.

b) If 1 : B—> T(f) is the map given by the zero section of &, then

LogMu) - an(z).

Proof: For a), one has GUU = g (-1)n'Jcn-Jn"(°J(E))'ﬁ, but ol =0

gs 0Q0= (g, (£)) UU. For b) one has the commutative diagrem
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P(E®L) —> P(VxK)xB — P(VxK)

I RIS A

B B pt

from which s*J*uv,cK = g% = 0 for the section defined for pt mey be

thought of as the inclusion of P(K) end a = "‘Ilc = 0. Thus 3

i = g#J = s"ﬂ*(cn(i)) = cn(E)- bl J

3
4
§.
Proposition: Let V be a vector space over K and £ — P(V) }i
4
the cenonical line bundle. Then the Thom space of £ may be 1dent1fied1§

P(VxK) so that the zero section inclusion is the standard mep given by £

inelusion of V in V x K. Further, the Thom class U is identified

Proof: Let = : P(261) —= P(V) be the projection. Then 2(261) }
& subbundle of w*(281) = ¥*(L) ® 1. Denote the orthogonal complement
2(281) by o. If p e P(29l) then p is & line in V x K which lies
the space w(p) X K and the orthogonsl complement p~ of p in w(p) ’i
is a line in V x K. The correspondence p —¥ p-L defines a map ::
£ : P(201) — P(VxK) with o induced fram the canonmicel bundle. If ;
15 in the image of P(%) then pl 1is the line K and so P(R) 1is m&ﬁ]
into the point P(K). Thus f induces a map £ : T(2) — P(VXK), IfJ

u e P(VxK) - P(K), let q be the point of P(261) given by the line
t

orthogonal to y in p + K, and then f(q) = y. Thus i‘ is ahcn'em%

If x ¢ P(V) then ¢(Ox) is the line generated by K in x x K so '

1

L
0(0*) = x, 50 the zero section map is Just the inclusion of P(V) 1n»;

i
P(VxK). Finally, f%(a) = o (c) snd o (o) = oy(x8(2)el - 2(z61)) = «&

L

=0 g0 o=U. #= ;

T
M
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Cohomology of Grassmann Manifolds

Let Gn r denote the Grassmenn manifold of n planes in Kn+r. One
t

has bundles Y: (n~plene, point in it) and ;: (n-plane, point of the
orthogonal r-plane) over Gn r with Y: [ ?: trivial. One then has the
’

- n ki . - _ -n (i .
sohomology classes o, = ci(yr) e B (Gn,r’f) and o, = ci(yr) e BF (Gn,r’f)’

related by the equation oo = 1.

Proposition: H*(Gn 3A) is the quotient of the polynomial algebrs

pver H*(pt%&) on o < n, by the relations imposed by 35 =0 for

10

y>r. (Hote: o, is the polynomiel of degree J in the o given by

J

formal inversion of o.)

Proof: The asserted polynomiel algebra is certainly mapped into

N"(Gn riﬁ)’ and to prove an isomorphism one mey induct on n. For n =1,
s

] P(K) g0 thet H¥(G

l,rie) is generated by a = 9 with relation

r+l r+l
a

1,r

r+l

n =0, but o =1~a +102 — e # (15T 4+ (-1) + ... and ell

relations are given by 55 =0 if J > r.

If the result holds for all Gn r with n < g, then consider Gs £
3’

A point in P(y:) is a 1line a in an s-plane u. The orthogonal complement
s e .
of a in uw is an 8-l plane & , hence a point of Gs—l,t+l’ The points

of P(Y:) mapping into v € G are precisely those lines orthogonal

g-1,t+1
to v. Thus P(Y:) is exactly P(?:;i) giving the diagram

s o m
P(vy) = P(v1y) Gl 41

"

Q&— #
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8 =ay=8=1
Letting & = l(yt) z(ytﬂ) one has n*(yt X ER n*(yt+l) =38n
with £ @ 2 @ n trivial. Now noting that c =o¢ (2), the relation
I (= 1)1 B":"-n*(cx (y )) = 0 1s precisely o, () = 0. Looking at P(Yt)
as a bundle over Gs-l,t +1
characteristic classes of §,2, end n subject only to the relations

one has that H"(P(yt)-,A) is generated by the
A%

imposed by the dimensions of £,%, and n and that their sum is trivial,

Then looking at P(y3) as a bundle over G one sees that H*(G_ _;A)
: t 8,t B,t'~";

must be generated by the characteristic classes of y: subject only to tl

relation imposed by the aimension of -Y-:- This completes the induction. T'

Using Bn = lim Gn r* B = lim Bn end inverse limit cohomology (thfi
T ’ Do :
being all that affects characteristic numbers) one has

Proposition: &) H"(Bn;,e) is the formal power series algebra over i
H"(pt;;ﬁ) generated by the universal characteristic classes o 12 i f‘g
b) H*(B;A) is the formal power series algebra over H¥(pt;A) gene

~ i

by the universal characteristic classes s 1¢<14. 4’
The Whitney sum of vector bundles induces a map Bn x B — Bom ,‘\,

or B x B—» B, Applying the Whitney sum formulas for characteristic cl&i

glves 4

Proposition: H"(B;f.ﬁ) is a Hopf algebra over H*(pt;&), vhich as

algebra is formal power series on classes ¢ { > 1, and has dlagonal:

1

given by A(c) = 0 @ o3 i.e; Als.) = Z o, 8 0.
7 gekes 400X .

oy

Note: If one nshes to be thorough, one notes that the Kiinneth thqﬁ
38

H*(xx!;g.) H*(x A) °H'(pt A) H¥(Y;A) holds if H*(Y; A) is a free H*{

moduie. For a proof see Conner and Floyd [3é ], page 131. In particulq_“,

should note that H*(BxB;’{\J) is the completed temsor product H*(B;AI)@H'(]
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It is frequently convenient to use other characteristic classes, formed
fron the o,. For any set w = (il,...,ir) of positive integers, called a

fartttion of o(w) = B-g-l igs

¥arlables tJ, 1l<J<e8e tobe the smallest symmetric function in the
i i

§a which contains the monomiel t, l...‘l;r r (s¢ = 1). Then sw(t) is

one defines the 8, symmetric function of

@pressible uniquely as a polynomial with integral coefficients in the

@enentary symmétric functions 6, = 8 (t) of the t's. If s > n(w),
1 (1,...,1) -
i
Eil¥ polynomial is independent of s, and write sw(t) = Pw(el""’en(w))'
n(uw) g, -

One defines classes sw(a) e B (B;a) vy Sw(U) = Pw(al""’un(w))'
Ein'e by the splitting principle one may consider Ui as the 4~th
@lemantary symmetric function of k dimensional classes Ul(S’.J) (F.J being
Hae bundles), sw(u) 1s represented as the s symmetric function of
$howe clesses.

The usefulness of these classes follows from

Proposition: In H*(B;A) one has 4s (o) = ) g ,{e) Vs ulo),

A w w'Uw"=w w w

the num being over all pairs of partitions «' and w" for which w = o' UDw".

1 particuler, for each integer 1, s(i)(u) is primitive. The dual

g.. finite
U*(pt;A)
Bl elasses X, 121, of degree (-ki), wvhere x, 1s duel to si(u) with

(R*(B;A), H%(pt;A)) is the polynomiel elgebra over H*(pt;ﬂ)

FPEpect to the base consisting of the sw(u) (1.e. sw(o)[xi] =0 if

(s}
¢ (1) and s(i)(u)[xi] =1legH (Pt;fe).) Homf[t?;:?é)(uﬁ(my,H*(pt;é))denotes
- H]
figmomorvhisms vanishing on all but a finite number of monomials o5 "'Uir')
Proof: If {zj) is the union of two collections of classes {ui) and
i 1

[v.l then [ zy 1...zr r

splits into symmetric functions in u's and v's,

Bhd this 1s given by s (z) = ] s (u)*s ,(v). If bundles £ and
w W'Y o"=w ¢ w
B #plit as sums of line bundles R'i and o then £ ® n splits into the
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union of the two collections, or 8 (c(E€n)) = ) 8 _,(0(£))s ,(o(n)
w VI w

giving the disgonal formula. If as above X is dual to si(c), then by

the diagonal formula one has sm(a)[x1 cee Xy 1=¢ where
1 r

m,(il,. . ,ir)’

Gw m,-=0 if w#w', 1 if o= w'. Thus the products of the xy
L

a base over H*(pt;’t) for the dual of H#(B;A)., ##

form

¥

finite
N :
ote: Hom '(Pti,ﬁ

direct 1limit of -the groups Hmﬂ*(pt;A)(R (Gr’s,'l‘\), H*(pt;A)). It ig cleﬂq

)(H'(B;ﬁ), H*(pt;'{x‘)) is clearly idemtifiable with t

that the characteristic number homomorphism defined by a manifold belongs.-";;

this set of homomorphisms.

Remark: There is another comstruction frequently used in determininé:
H*(G, _iA) provided A 1is & "good" theory (i.e. a theory for which one
, ~ i

can compute the cohomology of sphere bundles). One éonsiders the Kr bm?ji
E(y]) —-G__ with E/(y]) the unit sphere bundle. To each point :

? .
xe EO(Y:) one may associate the -1 plane orthogonel to x in n(x).!

¥

This defines a projection EO(Y:) — and one may identify Eol(':;_

Gr-l.t;wl ;
with E(707]). The bundle %7 splits off a line bundle by means of th

section x —> (x,x) over E0 with the orthogonal complement of this sell‘,a

being identifisble to ﬂ'*(ysr:i).

Letting s become arbitrarily large one heas

Eo(vr) — BE(y") —=2(v") .
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One then has an exact sequence

I 4
H’(Br-l;:e-) -2 H’(Br;,&) -1 H*(Tyr;’{\)

" 84 eince o corresponds to pulling v* back to Yr-l

81l, a is epic.
Nrther 8 being identified with the zero section, BU = ur(yr) identifying

' r
LI 5,5,) with the ideal generated by o  in H*(Br;r{\‘).

Relationship Between Fields

) Let K and K' be two of the fields R,C, and H, with KCK'

_ﬂd let A be a ring spectrum for which projective spaces over K have
’.’epnr cohomology. Let r be the dimension of K' over K(r=k'/k) and
thoose & base 1, XyseenyX, ; for K' over K with xf a -1 (from emong
‘Ahe standard 1,1,),k) 8o that ¢, : K —>K defined by x -t = ¢,(t)x;
i8 wn automorphism of K (¢f = 1),

' Let V be an n-dimensional vector space over K' - hence also a vector
j"lca over K of dimension rn. The assigmment to & one dimenaione.i K
fubepace p of V of the one dimensional K' subspace K'p containing it
Wfines amap v : KP(V) —=K'P(V). If q is & K' 1line of V.'_ Ir-l(q)
fonvists of all K 1lines in ¢, hence of all K-lines in the fiber of the

fanonicel K' 1ine bundle A' of K'P(V). Thus KP(V) 4is identified with

*_ KP(x'). 1In eddition, the K-line bundle £(A') is trivially the canonical

bundle A of XP(V).
Thus n*(xr(v);y is the free ﬂ'(K'P(V)%) module (via #*) on the

" 9lunses l,av,...,a.:;-l and hes relation f (-l)ia.;"iw*(ai(k’)) = 0.
1=0
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A —V:v —x,v is R linear and semi-linear over

by means of the automorphism ¢i of K. In particular 6

The mep 6

n sends one

dimensional K subspaces into one dimensional K subspaces and so defines
a map 0 2 KP(V) — KP(V) (ef = 1) which pulls the canonical bundle A
back to a bundle GIA. Pulling the bundle A' back over KP(V) by *

-~ r-l . '
one has 1*"A' = O;A; i.e. A 1ig a subbundle of *®*\' and the subsets
1=0
xi'x decompose w*A' into a Whitney sum over K.

Thus n'(&i(x')) = oi(ﬂ'A') is the 1-th elementary symmetric functis
» ¥,

of the variables Ul(GJA) = eJal(A). | .
Case I: K=R. Then K ig central in K' so all ¢i' are the ident

and T®A' = rA. In particular n'or(l') = a:, all lower classes being
zero since r =2 or I and all elements of ’5 cohomology have order 2.
since (a})" = of® = 0, H*(K'P(V);A) contains the free H*(pt;A) module
v . ' '~

on 1, or'(A' Yoeos ,ar(x'

with crr(A')n = 0, end since E*(KP(V);A) 1
the free module on 1,...,¢1 over thie one has that H‘(K'P(V);’ﬁ) is th{
free module on the powers of ar(A' ). :

Under the map ICP(Kr(n"'l)) — K'P(K'n+l) one has I(:E’(l(""n'":")/K.l’(l(".":l ;

sént onto K'P(K'n+l)/K'P(K'n) = g&'n by a mep of degree 1 and so

(-1)™( ¢ ink'(snk';’{l') pulls back to cr(A') (since it pulle back to aﬁ

Stnce r is even, i maps to o (A') -but (= ~( since every elemes
hes order 2. :

Thus E*(K'P(V);A) bas proper cohomology, and with this theory the
s .

i-th K' characteristic class af reduces to the ir-th characteristic

class ol:i .

Cagse I1I: K =€, K' = H. In this case one must consider the effect o

action by x, = J, the automorphism ¢1 being complex conjugation. Unde;'j
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By 6, : KP(V) —~ KP(V) the bundle A pulls back to its complex conjugate
Bundle 1, the problem being to compute GI(av)..

Since el is natural for inclusion of vector spaces, there is a power

porles h(x) = T aixi, 8
1=0

(Mhis 18 a finite sum in H*(KP(V);A).)
n

e HQ'Zi(pt-,’e),_ such that %(ay) = hlay).

S8ince oy = 0 if 4imV = 1, one must have 8y = 0. If dimV = 2,' cp(V)
fo Just the two sfhere §2 and the map 91 is of degree -1, &0 a; = -l.
In higher dimensions one can ssy nothing except under restrictions on ,{\J,
llnoo in particular one can meke different choices for Ay (It will be _
Bean later that for complex K-theory the behaviour is not good).

If e =0 for i>1, then °I(°W) = o = al(i). Thus nu(al(x')) =0
I’(uz(l")) = -“5' Hence .H'CEP(V);'%J) is the free H*(pt;,lul) module on
b aa(x'),...,aa(w)“'1 with 02(7\')“ « 0. Further (-1)%% ¢ ﬁ““(sf‘“;'e)
Bapa to o in th(cP(caﬂl) A)y (-1)%, maps to (—012)n and hence
{o4)% maps to 02(A')n in th(B.'P(Bnﬂ)',_A). Thus H*(EP(V);4) hes proper

fohomology and with this theory, the 1i~th characteristic class d? reduces
(4

Yo oy
There are two interesting cases for which a = 0 if i > 1. Trivially

his holds when K’ (pt',llé‘) = 0 for sll J < 0. Another cese in which the

. pasult is valid is when 1/2 ¢ Ho(pt;'l‘xj); for in this case one may. take

% - 'L/Z(av-h(u.v)), which is another acceptable generator, with .9;_(0&',) = -'ﬁ',-

Characteristic Numbers of Manifolds

+
Proposition: For K =R or @, the tangent bundle of KP(n) = kP (K™ 1)
$8 & K vector bundle satisfying Tt @ 1 = (n+l)f where £ 1is the canonical

bundle if K =R and the camplex conjugate of the canonical bundle if K=2¢.
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Proof: let < , > denote the usual K inner product on K°'%, wit]

Re < , > (its real part) being the usual R inner product. One may

consider KP(n) as the quotient of the sphere gl |y e Knﬂ'l [u] =

under the sction of S° % = {t ¢ K||t| = 1}. The tengent bundle to %
hes total space identifiable with {(u,v) e K*** x x"*l'lul =1, Re <u,v>.
and the pullback of the tangent bundle of KP(n) may be identified with
those tangent vectors (u,v) orthogonal to the orbits of the action of ,

sk'l; hence those (u,v) with < u,v > = 0. This is a K-vector bundle’;

]

by s(u,v) = (u,sv). ;

Under the action of S+

the total space of the pull-back collapses
t, and thus E(t) msay be represented as pairs (u,v) ¢ Kn+1 Kn+l witq{
lu] =1, <u,v>=.0, where (tu,tv) is identified with (u,v) if t qg
This 18 compatible with the K vector bundle structure since K is commd

Let ¢ : P(v) —> P(V) be the map induced by conjugation, Then the?

total space of c*(&) = £ mey be identified with the pairs (x,s) € Kn"'l

BRI

—

with |x| 21 and (x,s) identified with (tx,st) for t e gh-1 (Not'e%
(x,8) represents the point of c*(%) given by the line through x and. Q!
point sX 1in the image of that line.). The total space of (n+l) may ﬁ

thought of as pairs (u,v) ¢ gL x Kn+l with [u] = 1 with (u,v) :I.dé

k-1

with (tu,tv) for t e § and with scalar multiplication given by j

s(u,v) = (u,sv). Thus T is a subbundle of (n+l)f, and mey be considey

as the fiberwise orthogonal complement of the set of all pairs (u,su), ‘g

is & trivial line bundle. Thus (n+l)E = t81. #*

o

ﬁ
Py
4

structure, given by the 'negative' of the tangent bundle, giving a (B,f_)-;..-

Thus the normal bundle of KP(n) admits a stable K-vector bundle

structure to KP(n). Since the A cchomology of B 1s known, and sinéé'i'g

orientation class U has been constructed, it should be possible to com;m?
3
the characteristic numbers of KP(a). ’
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Let KP(n)C 8" be en imbedding with normal bundle v having a X
¥eotor bundle structure, and let [KP(n)] ¢ Bkn(KP(n);A) be the fundamental
~Jt

_:hology class of KP(n) defined by the orientation U of Tv.
Lemma: o”[KP(n)] = (~1)2 ¢ Ho(pt;é).

Proof: One has the diagram

gk e Lo, (xe(n)/¢).Tv “—n‘U—> A

1 rl k.ll ll

n.
ghn or _1.7q , ckn o, (-1)"¢c. U A

J\ /—l)ni.i
SN gkm T

ja which the maps given by cohomology class names properly exist after
fuspension, end after suspension the diagrsm commutes up to homotopy. Thus
$he mep representing o"[KP(n)] (the top line) gives the same class &s (-1)"

{she bottom line). **

Proposition: The tangential characteristic numbers of KP(n) are given
.

- n+l n+l .

o (@) = (- (™) € 2(pt;4)

it ve= (:ll,...,i ) 18 a partition of n, vhere ¢ = o, LA In addition
r w i :

s(n)(a(r))[ﬂ'(n)] = n+l.

Proof: Letting c : KP(n) — KP(n) be given by conjugation, one has

o (a) = -a + and a(t) = (l+c*a_)n+l. Thus

T i
1>2 %4° _
a (1) = (@ hen(a)® ana sg)(o(e)) = (m1)e(a). stce o™ a0,

1
o (a)” = (=a)" = (fl)"a“ and {c*{a)}*[KP(n)] = 1, *=*
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It .n(m) >n, o (1)[KP(a)] =0 since {c*(a)}®! 2 0. For nluw) <
the difficulty lies in evaluation of ak on KP(n)., Since ak does not.
come from the map into the sphere, this evaluation is not feasible without
additional assumptions. ' :

Using projective spaces one may construct other manifolds for which t
characteristic numbers are computable and which will be needed late:;? .

Let X=R or € and let B be the classifying space for K vect¢
bundles. Suppose M® 1is & closed (B,f) manifold and p is a K ling:%
bundle over M with characteristic class o(p) = 1+ 0, 8 ¢ H'(;4). :

Let f : M —> KP(N) for some N be a map for which f£*(£) =p, Bj
deforming f if necessary one may assume f is transverse regular on :

KP(§-1). Then L = £ (kP(N-1))C M 1s a closed submanifold of codimns’-_i:

.

k; the normal bundle of L in M being induced from that of KP(B-1) -

o

in XP(N) (i.e. the normsl bundle is pIL.

EIKP(N-I))’ .
The stable normal bundle of L, V.

admits a (B,f) structure

L!
identifying it with :l‘."(vaM), i Ybeing the inclusion of L in M. '];hlﬂ

<
4

_"(VL) = (1+1*e)1*(a(vM)) or a(rL) = i'c(rM)/(1+i'e).

Let x ¢ H'(L;’Q‘) be given by x = iM%y, y ¢ H*(M;MA) (for example a5
characteristic class) and consider the number x[L] e H“'(pt"e). Imbeddil_ié
end vith K norsal bundle in E°*¥ imbeds T also, vith Tv, collaps}

¥

to Ty, to give a commtetive diegram

T Ty
e! T

. TvL

The number x[L] is represented by the composition
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e B, S @l B2 Grg). el

LUU, ppp—Bsy

" Wb the collapse diagram

M —E— xp(x)

“ll L"e

To|, — €| ke (N-1)
" Semmutes, with WE(U) = 0,(€). Thus x[L] is represented by

T Sy Lo )y, 2 Gy). n/8) .y 22E 0up). (k) /9)

0,(6).U n

“——'P AAA— A

: Wioh i (y U e)[M], or x[L] = (yUe){u], (Note: This is commonly
_:Hforred to as 'maturality of Poincaré auslity').

. The ebove construction is called 'dualization of the cqhoﬁology class
", but is more properly 'aualization of the line bundle LA . l

As an example one has:
5* Eroposition: lLet 7, : KB(n) X KP(n,) —KP(n,), 1 = 1,2, with |
: I‘ »1 and let % be the line bundle WI(E)OWE(E), with

B 'I C xP(n,) x KP(n,) the submanifold duel to o.(%). Then
. I'HZ 1 2 1

3 nytn,
C oyt O, V= (%)

Proof: 8Since the cohomology of K:P(n ) 1is free over that of a point,

" o hes n'(m(nl) x KP(n ) A) = x'(xr(n ),A) ] H*(pt; A)H‘(KP(n ),A) The
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inclusion KP(n,) ﬂ»KP(n ) x KP(n,) pulls 2 back to § so

o (!.) = wIE + w;& + ] iJ(vr*a) (ﬂ*u) vhere o = c*(a) of the previ
1,1 . '

discussion of projective spaces, biJ e BEK (pt;A). Then a(tH) is

the restriction to H of

- n1+l - n2+
(1+7 Ia ) (1+7 au. )

1+ 01(2)

or s (a(tH)) is the restriction of

n1+n2-l

n +n -1 n.+n,-1 n. +n_-1
(n#1)(n85) 1 2 4 (ap1)(ngE) 12 - (o (e 2B

' +n, -1
- (o (1)) 12

+n.~1 : Bl

(for since n > 1, Enl "2 = 0). Hence
- By*0p - r

snl,,_ne_l(c('lﬁ))[l!] = -(Ul(l)) [lCP(nl) x lCP(nz)], T

-7 T e T

#3 *y n1+n2
-(wla + 1r2u.) [lCP(nl) x KP(HQ)]

B
Q

since all other terms are of degree greater than nl+n2 in the WIE

SECVUBNCR TN

are zero. But this is

Ay

(1 2)(m) rsm) ZIKP(n ) x KP(n,, )1=-<1 "2y3 llKP(n s ?[KP(n, )1~
l 1

. _(n1+n2 y, o

ny

i
Remarks: The manifold Hm n: is the non-singular hypersurface of deé
» :

(1,1) in kKP(m) x XP(n). 1If one uses hamogeneous coordinates (WO""’wné

e 2

(zo,... ,zn) this can be defined as the locus of points satisfying

WoZg *eret V2 = 0, where r = inf(m,n). If one considers KP((ml)(mlzj
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With homogeneous coordinates u 0<i<m, 0<J<n and imbeds

15°

W, % then H 18 the hyperplane section given

J 1y

r
w Y, =0 end for this imbedding & pulls back to w}t @ wiE. The
{=0

\be of these manifolds was the idea of Milnor (see Milnor [87 ] or Hirzebruch
(a4 1).

W) < 2@ by

Ordinary Cohomology of BO and BSO
For K =R, the only cohamology theories to which the previous methods
#re eppliceble are the 2-primary theorles. Unfortunately, this does not
§ive sufficient informetion to describe the spaces B0, end ™", The
ghject of this section is to conquer this technical difficulty by computing

$he cohonology of BO with other coefficients.

Proposition: Let & be a real vector bundle over B. Then § & £ admits

* @ oomplex vector bundle structﬁ.re given by
i(x,y) = (<y,x), (x,y) EE®E .

- PBin complex vector bundle is the complexification of §, denoted £ 8 C,
: : d £ 8¢ 1is isomorphic to its complex conJuéate.
If & 1is itself a complex bundle, then § 8 € is iscmorphic as complex
_ Weotor bundle with £ @ E, E the conjugate of €. In fact, £ 8 € admits a

. fusternionic vector bundle structure given by
1(x,y) = (<y,x) and I(x,y) = (ix,-1y).

Proof: 12(x,y) = i(~y,x) = (-x,-y) so 1% =-1, giving & complex
shructure. Let ¢ : £ 8 E—>E 8 E : (x,y) — (-x,y). Then ¢i = -i¢, s0

¢ 12 an isomorphism of £ 8 € with its complex conjugate. If & is a complex
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bundle, let £ : E—>=EBC by £(x)=(x,-ix) and g: g—-EQ¢C
by e(x) = (x,ix). Then fi = if and gi = -ig, so that f and g a2
maps of & and its complex conjugate into £ 8 ¢. This is a direct sum
decamposition since (x,y) = 1/2 £(x+iy) + 1/2 g(x~-1y). Finally with the
glven maps 12 = 32 = -1 and 1) = -ji, so that 1 and J give a

quaternionic structure on £ @ ¢. #*

Now suppose 'e is a ring spectrum for which CP(V) has proper
cohamology and such that c®(a) = -a. For & a real vector bundle aver:

one then has the Chern class c(f 8 €) ¢ H¥(B ,,Q) Bince E 8 € 1is isomd

to its conjugate

i

e (E0€) =c (T80 = (-1)ic (g0

80 2c2‘1'+1(5 @ C) = 0. Since the odd Chern classes have order 2, a.nd%
1

are amenable to 2-primary structure theorems, one ignores these and coni

Definition: If A 1s a ring spectrum for which CP(V) has proper"?:

cohcmology and such that c®*(a) = ~a, and £ 1ig a real vector bundle ad

B, then the i-th Pontrjagin class @1(5) is defined by
1 (8) = (-Dley (5 0 0) e w50,

The total Pontriagin cless is the 'formal' sum

gE =1+ i‘;i’l 2,(8) & BO(B:A). *

n g
Lemma: If & 1s a complex vector bundle with c(£) = I, (1#x,),

n
atm x, = 2, then wp(e) = 0 (1x,°).

n ]
Proof: c(f) = :I.El (1-x,) 8o clge¢)= 121 (l-xie)- e ¥
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Lemma: If A is & ring spectrum as above and if 1/2 ¢ Ho(pt;rjt) then

_@(E on) = g(&) Y ph).

Proof: Since 1/2 ¢ Ho(pt;ﬁ)), H*(B;'I\\J) has no 2-primsry torsion, so
; .l.i*l(g @C)=0. From c(E8C@n8C)=c(f8 ) Ucl(n®C) onehas this

‘foroule after making the proper sign modifications. #*

Proposition: If A is a ring spectrum for which CP(V) has proper
gbhonology and 1/2 ¢ Ho(pt;A) with c*(a) = -a, then H'(BO ;A) contains
| subring isomorphic to the polynomial algebra over H"(pt,A) on the universal
,.ntr,ja.gin classes @y for 1 <1< [ns2], ([ ] denotes 'integral part
W

Proof: The classes U’):l. are defined for 2i €< n, and it suffices to
. .#hew this ring maps monomorphicelly into H*(Bon;f,)‘ For this one has the
- np r: Bu[n/2] — BOn obtained by considering a complex [n/2)-plane

_ﬂMJ.o as a real bundle, with f'(‘?) =c\JC. Thus

#{ . = -
f (gi) 2c21 e,y 1€ *+ 20p oCp =esot 2c:l.+]_.ci-l LA
- A8 these generate a polynomial subalgebra of H"(BU[n ,2];,1\\3). L

In order to prove equality, one needs further restrictions on A. Thus,
“ will be assumed throughout the remainder of this section that A= K( 8)
"Where B 1is a commutative ring containing 1/2, The proof in this case is

* .'.@rly involved and depends upon & study of oriented vector bundles.

Definition: If V is an n-dimensionel vector space over R with inner
© pPoduct < , >, an orientation of V 1s a unit vector 6’ in the n-th

sMtarjor pover of V, AM(V). If €)s0ees8y is an orthonormal base of V
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such that € ~rern @ = ©’ then {el,...,en} as an ordered base may be
thought of as defining the orientation of V.
Lemma: If W is a complex vector space with inner product then W

1771
is any orthonormal base for W over ¢C.

. has a canonical orientation given by £ .if, ..... fn‘ifn where fl""’fi

Definition: An oriented vector bundle £ 1is a vector bundle togethea
with a consistent choice of orientations in the fibers; i.e. a bundle &

together with a crose section of the unit sphere bundle of the determinant;

bundle det€ = AM(£), n = dimf.

Proposition: Let £ = (B,E,p,+,") be an oriented n-plane bundle, 1
is & unique class U e H°(T£;Z) such that for each point b € B and
orientation preserving isomorphism f : B® —- Eb, the induced class

(re)*(u) e f{n(s"-,z) is the standard generator.

Proof: Let S be the unit sphere bundle of £ € 1. Then S is an. ;
oriented sphere bundle; i.e. if ¢ : [0,1] —= B, ¢{(0) = ¢{(1) = b and ﬂ
is trivialized then the mape of the fibers over 0 and 1 dinto the fibezj.a

of S over b are homotopic (rel base points).

the Serre spectral sequence one has Eg’q = #P(e g4(s™)) = #¥(;2) e B(d

Let 8 ¢t B—>~8 : b —> (Ob,l) € E xR, Then s is & section, and the

spectral sequence collapses. If V € H“(s) represents 1 @ 1n € Eg’n = ﬂ
then V restricts to a generator of the cohomology of each fiber. Bince
V is determined only up to image 7%, 7 : 8 —>= B the projection, one. ﬁi
assume s*V = o (which characterizes V completely). Then H"(S) iy thi

free H®(B) module on 1 and V.
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Using the section s : B—~ 8, one msy form S/B which is identifiable

: 4_ With TZ and one has the exact sequence of the peir (S,B) giving
“ -
0 <— E*(B) < E*(5) <& E¥(Tg) «— 0

f8entifying H¥(TE) with kernel s*, the free H*¥(B) module on V. Let
Ve (V). Since R°(pt;Z) =2, U is unique except for sign, i.e. choice

" #f orientation over the components of B. ##

Definition: If & = (B,E,p,+,') is an oriented n-plane bundle, with
‘ | B—~ T¢ the map induced from the zero section of £, then the Euler

’ m e(E) is t%(U) € E°(B;Z).

Note: If 8 : B—> 8 is the section b —» (0 ,-1), the map into
" §BeTt is t. Thus e(f) = 5%, Unless ¢ admits a nonzero cross

f0ctlon it is not clear that s and & should be homotopic, eo 8" may be

- filn-zero.
Lemma: U U U = p*(e(z)) U,

Proof: TLet I and D, denote the dise and sphere bundles of g, .

. 0

‘ t b —- D/DO' the collepse end z : B—> D the zero section. Identifying
N with D/D,, p*(e(E))U = (p*z%i%)U. Since B is a deformation retract

..M D, zp is homotopic to the identity and p¥*z* = 1. Thus p*(e(§))U=(1%U)U

Wt the external product (iJ)U coincides with the internal product U U U, #*

. Corollary: If n is odd, e(§) is of order 2, hence is zero in

CPs) iz 12 8.

Proof: UV U= (-1)dimU UJy, =
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Lemma: If £ is the underlying oriented bundle of a complex n-plan

bundle @, then e(£) = cn(w).

Proof: This assumes the fact (which will be verified later) that
CP(V) has proper integral cchomology. Then the orientation classes conaf_;g
for the oriented bundle snd the complex bundle coincide by unic'luenesa, e,nq:
hence the imegee under the zero section map must coincide, W# .

_For 8 Whitney sum of oriented bundles, the product orientation class ’

is again an orientation class, and by the same uniqueness argument:

Lemma: The Buler class of a Whitney sum of oriented bundles is the

product of the Euler classes.

1‘4

Corollary: If £ is an oriented 2n plane bundle, then e(E)2= m

Proof: 1f LRRRT L is an ordered base of the fiber over b deﬂa

i

the orientation, the fiber of £ @ £ has orientation given by the base

(el’o-)""’(e2n’°)’(°’e1)""’(O’EZn) while £ 8 € has orientation gi.ve;:'

=

R LB

by (e;,0),(0,e;),0005(e,,0),(0e, ). Thus E 8 C (-1)*(£ 0 &) as

oriented bundles ([n(2n-1) sign changes]. Thus

Pal6) = (1%, (£ @ €) = (-1)%(c 8 €) = e(£ 8 &) = e(£). *

P Y

Definition: Gn r is the Grassmannian of oriented n planes in Rn
14 E

(Equivelently -

The limit space is BSO_ = 1lim G .
no o, T
BSOn is the classifying space for oriented n-plane bundles, which .

coincides with the sphere bundle of the determinant bundle of yn over B

i
ol

The pullback of yn' to BSOn_‘ia an oriented bundle ;n.
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Proposition: If & is a commutative ring containing 1/2, then

l'(BSOn; %) is the polynomisl ring over & on

2kt1,

ﬁl""’\'?k for n

Pt P e(y?) for n = 2k

and in the latter case Px = e(‘;n)e, where ﬁ«i is the Pontrjegin class
@, ")

Proof: Let h : BU[n/E] —- BSOI_l be -the map obtained by ignoring
gomplex structure. The classes listed map to algebraically independent
#lements of H*(BU[nlal; %) and hence H*(BSOn; %) containg this polynomial
Subring. Equality is proved by induction. h

For n=1, BSO, is the double cover of RP(=) which is the infinite
#phere, hence contractible.

For n = 2, an oriented n-plane bundle is Just a complex line bundle.
In fect, if V is an oriented 2 plane with orientation Gf and v eV,
there is & unique vector W with w orthogonal to v, with |[w| = |v]

Wnd such thet vow = ke’ with k20 (k= |v|®). This v is i.v. Since -
:, W.v = v, W, 12 = -1, The orientation given by & complex structure gives

) $hat camplex structure back. Thus 13802 = BUl and -

© W(050,; 8) = Ble(y2)] = slo, 1.

To make the induction step one has
8(y") — D(y") —= "

At o point of S(;‘n) one has a non-zero vector in an oriented n-plane and
the complementary n-1 plane is then oriented. This defines a fibration

l(;n) — BSOn_ with fiber an infinite sphere. The pullback to s8(y?) of

1
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;n splits off a section to give ;n'l 9 1. The projection end zero sectic

of D(Y®) give a homotopy equivalence of BSO  and D(Y"). Thus the exad

sequence of the pair (D(Y"), S(Y')) gives an exact sequence

E¥(S(77)) <— HR(D(}R)) —— EH(V®)

U U T o

. b a
» * %*
H (BSOn_l) <« H (BSOn) <« H (Bfon)
[

where ¢ 1is the Thom isomorphism. The homomorphism & has degree n, aq
since BSOn ig identified with D(?n) by the zero section, a is multi-f
plication by the Buler class. The homomorphism b sends M (Y to

1

ﬁ'i(;n"l) since under the ldentifications Yy~ pulls back to y- — @ 1.

camputation for the induction is then straightforwerd, giving the exact ¢

sequences ;
(n = 2k) ‘

0 4—3[&,... ’ﬂk-ll @S[tpl,...,ﬁii_l,e] ﬁs[lﬁ,...,m_l,e] 4——;

L
2

A
in which the -equality for H"(Bson) is proved inductively using dimensiogi

(o = 2k+l) .

0 *—si[._‘_?ﬁ_-“"ﬂ] -e——s[,jz.i,...,éxk_l,e] e—-s[dbl,...,dpk] «—0

g
since e(y") =0 implies a = 0, so that H*(BSOn) is a subring of ,g
Hi(BSQn_l) containing S[ﬂ,vl,. "’Oak]’ but equality must hold by rank c‘ﬂ;

S[@i,...,ﬁ_l,e] having & base over S[C?i""’(j‘k] given by 1 a.nd,
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Proposition: If $ is a commutetive ring containing 1/2, then
H"(BOn; %) is the polynomial ring over & on the Pontrjagin classes

W, 1t [n/2].

Proof: BSOn is a double cover of BOn, s0 H'(Bon; $) 1is the subring
of H*(BSOn'-, $) consisting of the classes fixed under the homomorphism
induced by the map x : BSOn — BSOn which interchanges the sheets of the

x = ;
gover. BSinmce x (ﬁi) 6"1 (& comes rrgm Bon) while
x*(e(Y?)) = e(x#(v?)) = —e(¥®) since x*(¥°) is Just ¥  with reversed

urinetation, the result is clear. ##

Note: In the fibration v : B0, —= B0 with fiber §°, BO

being S(¥*), the homotopy group ﬂl(Bon) = Z, acts non-trivially on the

n-1

oohomology of the fiber.
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Chapter VI

Unoriented Cobordism

In many respects the most interesting cobordism theory is unorientedt-
cobordism; i.e. the cobordism problem associated to the category (E/,a,i)
of all compact differentiable manifolds. It has additional interest in th_-
its solution by Thom [127] illustrates all of the basic techniques for
dealing with cobordiem problems, without encountering excessive technicall

First note that ®{B879,1) decomposes as e direct sum of semigroups.?
ﬂn(lﬁfa,i), n being the dimension of the manifold. This semigroup is ’
usually dencted “nn, with ’n* denoting the direct sum. The first Stlj
theoren is: .

Proposition: 7711 is an gbelian grcup in which every element ha.s oré
2. 7‘(, is a graded commutative ring, multiplication being induced by the_i

product of menifolds, with unit, given by the cobordism class of a point. .

Proof: For any closed M, M+ M+ 3¢ = ¢ + 2(M x I) where I = [04

so the class of M 1is its own inverse. If M, Nl and N2 are closed w

N, =¥,, say N, +3U =0X,+ 23U, then MXN1+3(M*U1)=M8N2+3.5:

go M xN =MxN, Since Mx(Nl+N2)=Mle+MxN2 and .
MxNZNxM this gives /], the structure of a graded commutative ring

If p i5 apoint, Mxp=p xM=M, so the class of p 18 & unit.

The next standard step is to replace the cobordism problem by a homo‘l';’u

problem. This is accomplished for unoriented cobordism by noting that eve

manifold has & unique (BO,1) structure (1 being the sequence of identi
maps 1 : B0 — BOr). The forgetful functor from the category of (BO,.
manifolds to (/9,3,i) which ignores the (BO,1) structure for cbjects &

the normal trivialization for maps induces an ieomorphism of cobordism



-91 -

semigroups. (Note: Isomorphisms, inclusjons of bounda.ries,add sumnands are

nl nl+rl n2 n2+r2
preserved). If Ml C R and M2 C R are imbeddings, then the
n_+r_+n.+r

llzzisthe

normal bundle of the product imbedding Ml x M2 C_ R
Whitney sum of the normel bundles of the factors. Thus one has the determ-

mination theorem:

Theorem: The cobordism group 'hn is isomorphic to z1“’:1.11; nmr(TBOr,“).
The ring structure in ﬂ. is induced by the mape mr‘Ms —_— 'rnoﬁs
obteined from the Whitnmey sum operetion on vector bundle\a.A .

The next afep is clearly to try to solve the homotopy problem. It is
here that the most ingenuity is required since the various cobordism theories
differ widely at this point. The guldance one obtains from Thom's work is:
Make use of the cohamology theories for which the ma.nii_'olds in question are
orientable. .

For unoriented cobordism one mekes use of ordinary cohomology with
zz coefficients; i.e. the cohomology theory for the spectrum 5(22). One
needs a knowledge of the operations in tﬁia theory, which may be summarjzed:

The mod 2 Bteenrod algebra a is the graded algebra define.d by

2

(42)1 = Hmi(K(Zg,n);zg) i <n,

Then:

a) 42 is the associative graded algebra over Z, generated by symbols

i

Bq~ of dimension 1, and all relations are given by the Adem relations

[a/2]

=] o D
8q%q" = '):o (:_;11) 8q*P 1 gt
. 1

1t a<2b (5% =1).
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b) For any pair (X,A) there is a natural pairing
A, ® HH(X,A;7,) —> E*(X,A;Z,) such that '
1) sqt: H(X,A32,) —> H"“i(x,A;zz) is sdditive;
2) Bq°u=u for ell 4,
Bqd u= u2 if dlmension u =4, and
Sqd u=0 if dimension u < d; and
3) (Carten formila) Sq%(a Y b) = § (8¢° &) U (sqf v).

etfmd 3
{See Bteenrod and Fpstein [114]), :

1]

Following Milnor [79] one definee & diagonal map A : ((2 — 5(2 8 aﬁ

by Alsgh) = T 8¢’ 8805, wnich makes (1,
k=i ]

over 22. (Connected means that the unit defines an isomorphism of (aa

vith the ground field Zz).

It is well known thet the 22 cohomology of real projective space P(
is the truncated polynomiel algebra over 22 on the unique non-zero class .
a of dimension one, o® = 0, and that an-l is the imege of the non-zero

class ( e i -l(Sn-l;Za). From Chapter V, one then knows the full cohcmolq

5 o

structure of BOr and TBOr using 22 coefficients. The following line
of proof is due to Browder, Liulevicius, and Peterson [ 27]. (See also - *
Liulevicius [ 73]).

Denote by i"(@;zz) the direct sum of the groups A

£(180:2,) = Lim E*""(T80_:2,).
Tpoo

M
LA
Lezma: The meps TBO .TBO_ — TBO _  obtained from the Whitney sum i

vector bundles induce & diagonal map &

v : B%(TBO;Z,) —s- H*(TBO;Z,) @ H(TBO;Z,)

meking ﬁ"(ng(J);Zz) into a connected coalgebra over 22 with counit
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#° . H* . 1
Vel (T/_§9.Z2). H (129,22) is & left module over the Hopf algebra az

with ¢ a homomorphism of “2 modules such that the homomorphism
v 42 — ﬁ'(TBO;ZZ) : a = a(U)
e .
is a moncmorphism.

Proof: This is all obvious with the exception of the assertion that v
is monie. Por this one may apply the splitting principle and the calculation
of the Thom class of a line bundle to express U formally as the product

V= x_lxzxs... of one dimensional classes X

i > 1. By the Adem formulae
1 h 2 1
az has a base consisting of operations B8q = Bg “Bq ...Bq k with

1.g > 21u+1 .
2. with only a finite number of =, # 1. Order such monomials by

xlx

and evalustion of such an operation on V glves a sum of monomials

e}

8, 8 :
1.2 . .
cee > xlx2 «ee 1f for some J,ri-si for all i<J and r.1
28 g+l s

Beg'x” =x ,x , or 0 as 130, 2° or any other if dim x = 1, one
r,r
I 1°2

has that the largest monomial of 8q V ig XXy e where rl_>_,:r2 2 e

r
1 >s.1 . Bince

and the sequence of r, has ia - 210,.,.1 é‘B‘piea of the integer 2“,

i

(] 1,.‘..,k. In addition, each sequence of r, occuring consists of powers

i
of 2. Thus BqIU =s U X s,V vhere v= o(I) contains i, - 21 .
copies of 2% w4 and w' runs through a set of partitions into integers
of the form 2% = 1 with o' <o 1in lexicographic order {if o = (Jl,.....jt)
with 311,123_..., sgy w > w' if for some vy Jesjé for all B8 <y
and JY > J"{). Bince the partitions o(I) are distinct (w(I) determines
I) v is monic. (iojg: This is the standard argument needed to determine

the dual of 4’2' Bee Steenrod and Epstein [ii4], Chapter I, 3.3), *

One then has the result of Milnor and Mocre [90 ], Theorem b, L:
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Lemma: Iet A be a connected Hopf algebra over & field F. Let 'u'
be & connected coalgebra over F with counit 1 € Mo and & left module
over A such that the diagonal mep is & map of A modules., Suppose
ViA~—+M: a— a'd) is a monomorphism. Then M 18 a free left A
module. |

Proof: Let X (C_A be the elements of positive degree and let
®*: M— N= M/AM be the projection. Let f : N —> M be any vector spact
splitting (sf = 1N) end define ¢ : A@GN—>M : a 8 n —> af(n). ¢ is
a homomorphism of A modules. )

1) is eple: ¢ : A 8N —>M is the identity map of F for
M) N M_=0. Suppose ¢ : (A8 N) —>M

i .
ceM, c- ¢(1 ® nc) meps to zero under % so c - ¢(1 @ wc) = i ai(ci)

is eple if 1 < k. If

with a; ey

c=¢(181rc)+123.1¢(xi)=¢(101rc+2aixi. Thus ¢ ¢ (AGN)k—-’-Mk ;

€A, €M Since dime, <k, ¢, = ¢(x,) for some x, and

is epic.

2) ¢ 1is monic: Consider

¥

¢

Cleerly ¢, A, end 16 7 are A module homomorphisms (4 by aessumption;

3

<

18 is an A module homomorphism since a(m 8 n) = em 8 n, while if

m' =n then (1@ nla(mem') = (18 #)(Z a'm ® a"™m') = (1 8 n)(am 8 l-m'_):\\y

EENRE . AR

=am 8 n since w(a™m') =0 if deg &" > 0; here Aa =L a' 8 a").

I

Then 1 8p—>28 f(n) —> f(n) —> £(n) 81+ 18 £(n)+

cther —» f(n) 81 + 1 8 n + other, or a®n-—ga'l 8 n+ e wvhere

ee \UJ M@@R . Projectionof M8 N on M@ Ndi ‘gives
P mn
pe<dim n

Aanmn—bmewdimn:a'en—-’-s(l)en which is monic since v is

monic, Thus Ac¢ is monic and so ¢ is monic.
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3) Thus ¢ : A® N =M is an isomorphism of A modules, so M is

a free A module, *¥

Combining these lemmas one gets

Theorem: In dimensions less than or equal to 2r, I-{“(TBOr-,ZZ) is a
free module over the Steenrod algebra a2 and, in fact, in dimensions less
then 2r TBOr has the homotopy type of a product of Eilenberg-MacLane
spaces K(Zz,n).

Thus 7711 is a Z2 vector space whose rank is the number of non-dyadic
partitions of n (w = (il""'ir) is non-dyadic if none of the i, are

of the form 2° - 1) and two manifolds are unoriented cobordant if and only

if they have the same Stiéfel-Whitney numbers.

Proof: The free module structure follows from the stability

ﬁr+i(TBOr;Zz) = g (rpo %,) for 1 <r. There is then a mep of TBO_

r+13 42
into a product of spaces K(Z2,n), n > r, inducing an isomorphism of Z,
cohomology in dimensions less than or equal to 2r, and by the generalized
Whitehead theorem (Spanier [110] page 512) the homomorphism on homotopy is

an isomorphism modulo odd torsion in dimensions less than 2r. For p an

odd prime, one has the exact sequence 0 -« H'(Bor 13

Z ) ~— H*(BO_;Z )

b rp

“«— H*(TBOr;ZP) <— 0 arising from the pair (Dy", Sy°) from which
l-l*(TBOr;ZP) = 0 in dimensions less than 2r. Thus the map into the product
of K(Zz,n)‘s is & homotopy equivalence in dimensions less than 2r. Since
the rank of f-l'n(’.;‘\BJO;ZZ) is the number of partitions of n, while the rank
of C{é is the number of dyadic partitions of 1, the rank of Trm_r(TBOr,"')
is the number of non-dyedic pe.rtitibns of n if r > n. Since this homotopy

sroup is isomorphic to 7}{1 for r large, the rank of ’)"(n is as asserted,
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Since the Hurewicz homomorphism is monic for a product of K(Zz,n)'s it is
monic for TBOr below dimension ér, and hence cobordism class is determi}

by 22 cohomology characteristic numbers. *¥

The complete structure theorem is then:

Theorem: T‘l* is a polynomial algebra over 22

x, of dimension i, i not of the form 2® - 1l; the class x, may be

(with unit) on classel

ki

chosen to be the cobordism class of any closed manifold M* for which the '

s-number s(i)(w(v))[M] = s(i)(w(‘r))[M] # 0.

Note: With v the normal bundle and Tt the tangent bundle, v @ T }

trivial, and since S(1) is primitive, s(i)(v) + s(i)(t) =0 = s(i)(trivi;'u
and s(i)(v) = -s(i)(r) = s(i)(t) (mod 2). :;.'
Note: One may prove this as did Thom by showing that the smU for

- o
non-dyadic form a base of H*(T’ES);ZZ) over 42 (see also Wall [130] pagédj

301-302). Since one wishes to have explicit constructions of generators a,xé

;

i1

indirect proof will be given here, in a sequence of lemmas. This will in

fact show that these smU form a base over ((2.

Lemma: Suppose there are manifolds M- of dimension i (i # 2°-1)

Proof: Totally order the non-dyadic partitions of n by an order {h

such that s(i)(w(v))[Ml] # 0. Then 7'“(* is the polyncmial-algebra on th
classes of the Mi. If manifolds N (i # 25-1) also give a system of

generators, then s(i)(w(V))[Ni] # 0.

compatible with the partial ordering w < w' if o' refines o (i.e. i

w = (il,...,ir) then o' = w; UU . where wg is a partition of i

o1 j'r

If o= (il""’ir) let Mm=M x,,,x M *, Then sw.(w(v))[Mm] is zer?i;

if ' does not refine w and is nonzero if w = w'. (For this b
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o 1, 1.

8, (v) [Mw] = 1 S, (v)[u ]...sw (v)[M 7] and since sa(v)[Mi] =0

-t

“‘J_U---U“ =4 1 r

T
if n(o) # 1, this must be zero unless there is some expression
w' = wy U... U w, with n(ws) = iB' ‘I o' =w, this gives

i,
o, (V)[M ] =T s(iﬁ)(V)[M Bj # 0.) Considering the matrix s, (o)) 1 |l

for w, w' non-dyadic partitions of n, one has sm.(w(v))[Mm] =0 if
W' <€ w since w' cannot then refine w, so the metrix is triangular, and
since sm(w(v))[Mm] # 0 the diagonal entries are all one (in ZZ)' Thus

the menifolds Mw are linearly inde_pend.ent over Z, and having the proper

2
nurber they sre a base for ‘7?;, which gives. the polynomial structure.

I¢ (N} is enother family of genmerators then ¥ caanot be decompossable
o @ (11....,1r) with r > 1,
8ince s(i)(w(v)) vanishes on decompossble elements, this gives

81y = 5 (w(v)) '] # 0. we

g0 one must have lli = Mi + I amMm, &, €2

Lemme: If i = 2k, then s(i)(w(r))[RP(i)]#o.

Proof: By the computetions of Chapter V, s(i)(w(r))[RP(i)] =1+1+40

mod 2. w#

Lenma: If 1 is odd end not of the form 2° = 1, write i = 2P(2q+1)-1

with p>1, g>1 and let H C RP(2P+lq)_, x RP(2P) be the

2P*1q, 2P

hypersurface of degree (1,1). Then

s(i)(w(r))[H 1+4o0.

2P*1g, 0P

Proof: From Chapter V the value of this s-class is

_(2p(2q+l))_ This .
2P
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(2P el (P oo, L (2P ge) and 2P gao®(abe1) _ 2P teamey;
(2B) (2P-1) ... (1) 2%(2b+1) 2041

so that factors of 2 divide out, making this an odd integer. **

N¥ote: This choice of generators is due to Milnor [87]. The first

construction of odd dimensional generators was by Dold [43].

To complete the determination of 7’7. it 1s desirsble to know the

complete set of relations emong the Stiefel-Whitney numbers, This problem
was solved by Dold [44 ] who showed that all relations follow from f_orm:.xla'.a':é:

of Wu [142] relating the characteristic classes with the action of the

Steenrod algebrs. A thorough study of this situation appears in Atlyah and 3|

Hirzebruch [ 19 1.

the orientation class. Since 22 is a field, the universal coefficient - .

theorem (Spanier [10] page 243) shows thet Rom(H, (M;2,):2,) = B (4;2,)

of H“'k(u;z2) with E, (M;Z ). Thus the pairing

B (4:2,) 8 B E(62,) — 2, : 8 6 b —> (a U b)[]

2

is a dual peiring. (Rote: This characterizes [M] for on a component M,

of M there will be a unique nonzero class in Hn(Mo;Zz) or Hn(Mo ;22) a.m&

The operation Hn'k(M;Za) —2,: 8> (qua)[M] is a homomorphism

i
and 80 by the dual peiring there is a unique class v, ¢ Hk(M;Za) such tha

for ell a € Bn'k(M;za) one has (qua)[M] = (\rk U a)[M]. 8ince qua. =

S

s

if k > &im a, one hes vk=0 if k>n=-k or 2k > n. The class

= % .
v(iM) =1+ V) ¥eest Vg0 in H (M,za) is called the total Wu class of

o

extie
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It is useful to form the total Steenrod operation Sq = 1 + Sql + Sq2 *ooa

8o that for . x € H“(M;Zz) one has (8q x)[M] = (v L x)[M].

Remarks: For computations to be performed it is desirsble to have a
few properties of the total Steenrod operation. By linearity of Sq_i, one
has Sg(x + y) = Sqx + Sqy. From the Cartan formula,

Sq{x U y) = (8ax) U (Sqv). Considering Sq as a formal power series
beginning with 1, one may invert Sq to define an operation Sq-l. By
dimension considerations Sq_ix =0 if 1 >0 or Sqix =x if 1 =0 for
X € H'(s“;zz) so for x € x*(s‘;za), Sgx = x. (In the terminology of .
Atiysh end ﬂirzebruch, Sq . is a cohomology automorphism.)

In order to relate the Wu class to characteristic classes one needs the

result of Thom [12¢]:
‘I'heoregz: Let Uce ﬁr(TBor;Zz) be the Thom class. Then
8q U= (a%) U U,
i.e. Squ = (n’wi) U u.

Proof: By the splitting principle. one msy write .U as a product
Xy+e+X, of one-dimensional clesses. Then Sqi(x'l...xr) is the sum of all
2 X2 ..x_ for 1<J.<...<j. <r. This is the i-th
‘11 'j:l r - 91 . i-—

elementary symmetric function of the xB

monomials XjeeeX
multiplied by x;...x , and hence
sq'U = (nhe,) U U **

One then has the resuilt of Wu [142]:

Theorem: If M® is & closed differentisble manifold with Wu class v

and tangential Stiefel-Whitney cless w(t), then

wi(t) =8Sq v or v= Sq.l‘f('l'). '
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In particular, the Stiefel~-Whitney classes are homotopy type invariants and
n .

the Wu class is & characteristic class, If one expresses w(t) = _l'[l 1+
i=

2 L
RN +.44)

n B

then ve I (1+ x
i=)

Proof: Let w = 8q v, w(v) the normal Stiefel-Whitney class of M,

n+r

Ue ﬁ'('l‘v;zz) the Thom class, ¢ : 8§ —> Tv the collapse given by an

imbedding, end y any class in H*(M;Zz). Let x € H*(M;Zz) be Sq-ly

80 ¥y = 8q x. Then

ywe(v)[M] = ¥ {(re(yine(v)ID)[8™T], E
1,

c*(8qx-Sqv-SqU)[8 {aropping w*'s from notetion)

n+r ]
)

c*(8q(xvU))[8

8qc*(xv)[s™*7],

o*(xv0) [82*7],

(x U v)[M],

{sq x)[M],

y[Ml. '

8ince thls holds for ali Ye H“(M;Ze), one has from the dual pesiring tha‘l_‘.f_';
#wly) = L. Since w(t)w(v) =1, this gives w = w(1). Since [M] and S

are homctopy invarient, 86 is w(t) = Sq v. Pinally, v = 8a v is givent

by & universal class in H®*{EO; Z ), while the formuls in one dimensional
:L i+l

clasges follows from Sql Z = ) = Z (2 +3x° )=x (Qimx=1), ™ :
i=0 i=0 i

Corollary: Homotopy equivalent manifolds are unoriented cobordant.

e wie.- L *

With this machinery one can prove the Dold theorem:
n _ : 3 ;
Theorem: All relations emong the Stiefel-Whitney numbers of closed %

dimensional differentisble manifolds are glven by the Wu relations; l.e.
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it ¢ : Hn(BO;\Ba) —Z, is a homomorphism, there is an n dimensional

N
closed manifold M® with ¢(a) = (1#(a))[M] for all a (1t : M —>BO
classifying the tangent bundle of M) if and only if ¢(Sqb + vb) = 0 for

all be H'(BO;Za) where v = Sq-lw.

Proof: By Wu's theorem t*(Sgb + vb)[M] = 0 so the condition
¢(Sab + vb) = 0 is necessary. To prove sufficiency, let x : BO — BO
be the map classifying the negative of the universal bundle (for any M,
X © T classifies the normal bundle) and let p = ¢ o X* o el in(T_E,O;ia) +z,
where ¢ is the Thom homomorphism. From the calculation of ‘m, ¢ 1is
the tangentinl characteristic number homomorphism of some manifold if and
only if o HA™(IRO;Z,)) = 0, or for all y e H*(BO;Z,), o[Sq(yU) + yul = o.

But one has

p[Sa(yu) + yul = p[BqysSqu + yUl,

pl8qy wU + yul,

ol8q(y+sq W)U + yul,
#x*[8a(y 82 ) + y1,
¢[Sq(x"y'3q'_lx"vv) + x%l1,
= olBalxty-8a (1)) + x1,

o[8q x + x'Sq-lw],

¢[sq x + wvx],

=0

(vhere x = x*y-Sq_l(l/w) = x"y-(l/Sq-lw))- b

This completes the analysis of the unoriented cobordism ring. Beginning
the pattern which will be followed throughout, one wishes to know the
relationship witﬁ other cobordism theorieé and't'he structure .of the related

bordism theory.
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Relation to framed cobordism: The Hopf invariant

Recall that a framed menifold is a manifold together with an equivalen
class of trivializatlons of the stable normal bundle, The cobordism
corresponding is (B,f) cobordism with B. a point and the cobordism yﬁﬁj
a7 are tdentified with Um v, (87,=). (Pontrjagin [101]).

The forgetful f‘unctcrr*; which ignores framing defines & homomorphism
F, : ﬂfr — 7’1. end & relative cobordism semigroup @ (F) (obtained by .
Joining manifolds along common boundaries). As with any pa:lr of (B,f)

theories one then has an exact sequence

F,
er-——.—-... 77'

N\~

oyt®) .
which is the homotopy exact sequence

Fl .
Um ¥ “r(s ,®) — lim « r('mor.-)

o rn-/
ln 2, (TBO_,5%,=)
b

C o

vhere F, 1s induced by the inclusion of & sphere which is the Thom spaqé'
of the fiber over a base point in BO .

Making use of the calculation of 7{, one may analyze this relationah;,!
One has:

- Proposition: A framed manlfold of positive dimension bounds in the

unoriented sense; 1e. P, : ﬂr'

Further F, : n::r--. Z — 770 =2z, is epic.

—»77;' 1s the zero homemorphism if .n > @j

K
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Proof: Ir M" is framed, the stable normal bundle is trivial, so
w(v) = 1, Thus for n > 0 all Stiefel-Whitney numbers of M are zerc and
M bounds. In dimension zero, M 1s a union of points (with signs =

orientations) and wo(v)[M] is the cardinality of M modulo 2. *

The homotopy exact sequence then splits up into short exact sequences

giving the diagrems

o-—-»-'f‘(n n(r)————> i’ - 0
W] rn[ 1
H(sz)—rn('moz)—»n(mo.sﬂ-—»n 8:2,)
”
0 : 0
for n-1>0, and
0=T1, >, (F) — af M, 0

ol Al

i (8;2,) — H, (TB0:Z,) — K, (780,8;2,) — _(8;2,) — E_(1B0;2,) — 0

0 Z2 22

in which the verticael maps are the Hurewicz homomorphisms (and notationally
K (8;2,) = lin B, (8 :a3%,)s ete.). Since 77, end E (T80;2,) are Z,
vector spaces with 9, monic, one has a splitting homomorphism

w B (T8952,) — 7, end the homomorphism

r - X ; - ' u
ﬂn(F) > Hn(T/§9'55za)- —_ nn(%o;ZZ) —_n’.-r(l.l"
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gives a splitting of the short exect sequences for n > 1. This defines im

fr

turn & homomorphism vy nn—l

— nn(F) also splitting the sequence (for

n>1).

Note: One could choose a splitting by choosing for any framed manifold

¥l amenitold V® with V=M end s (v)[V,0V] =0 if © is non-dyedic
This corresponds to writing TBQ as e product I K(ze,n(w)) for @ non=-
dyadic. éuppose the splitting has been chosen in this fashion.

Let M™' be o framed manifold with M™l=2v" and s (v)[V,0V] =0
if v 15 non-dyadic. The imbedding in some spece ' gefines the map
vt (V,M) = (BOr',") (the freming being interpreted as a specific
equivalence class of deformetion of M to the base point). The Pontrjagin-
Thom construction defines a map (H"",Rn"'r'l) — (TBOr,'I") which will be
considered as amap f : (Dn*r,sn-i-r-l) — (’.l'BOr,Sr) representing the humoto_;_f
class corresponding to (V,M). Let X denote the two-cell complex formed ‘
by atteching D°'

diegram of cofibratione

to 85 by themap ¢ : B™T1 —> g%, One then has the .

g° ol x Tsx /Sr = Dn-i-r /sn+r-1

SN o

§° <2 80 —> T80 /8"

in vhich ¥ is just f on the guotient spaces and g is induced by f..

Recall that n'(x;za) is a vector space over 2, with bese .1 € f(x;’zé
ac ﬂ’(x;zz) and b e a“""(x;za) (the nonzero clasges in these dimensions);
with J¥™a) = t € ﬁ’(s";zz) end b= M (') vhere 3

¢ e BT g ).
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From the relationship between the Pontrjegin-Thom construction and
characteristic mumbers, one has ?’(wa) = v (V)[V,M] - ' or
g*(w.U) = (w (v)[V,M]) - b. Writing TBO, as T K(Zyr + n(0)), w non-
dyadic corresponding to the 612 generators s U one has g"(smU) =0 if
n(w) > 0 (by dimension if n(u) # n, by choice for n(w) = n) so that the
only possibly non-zero numbers are of the form g'(SqIU). Ir I= (11,...,1r)
with r> 1, g“(SqirU) = 0. Thus the only nonzero characteristic number
would be g*(8q"U) = g*(v U) = wn(v)[V,M]. ‘b, Now J*%*(U) = 1M8(U) = { so
g*(U) = a. Thus 8q"a = w_(V)[V,M]b.

Following Steenrod [ #13], page 983, the element H(f) ¢ %, for which

8¢" a = B(f) * b is called the Hopf invariant of f.

Note: For any fremed w1 eng any W with 3W = M, one may form ths
characteristic number wn(v)[H.M]. There is & closed manifold T with
Bm(v)[T] = sw(v)[W,M] for all non-dyadic w. Then V=T U W satisfies
the above conditions. Since vn(v)['.l'] = 0 for any closed T, one has
wn(v)[W,M] = wn(v)[V,M] = H(e). One did not need the agsumptions
sm(v)[V,M] = 0 to get that this is the Hopf invariant, but only to show that
this is the only additional characteristic number arising.

Combining the above one has:

fr

- fr .
Theorem: For n>1, 0, (F)&T( 647 aa a(r)azezn’. If

1
Mn"l is & closed framed manifold and M = 3V, then the characteristic
number wn(v)[V,!ﬂ coincides with the Hopf invarient of amap f @ go*r-l . gt
representing the framed cobordism class of M. This is the only possibly

nonzero homomorphism from n:rl —e 22 obtainable from Stiefel-Whitney numbers.

From Adams' work [ | ] on the nonexistence of maps of Hopf invariant one,

one knows that there is amap f @ g1 > g% witn H{(£) # 0 if and only
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if n=1,2,4, or 8. In the above notation this may be phrased

Corollary: For n # 1,2,4, or 8 the image of 77n in ﬁn(%;ze)
coincides with that of & (F). For n =1,2,4, or 8 the image of 77
has codimension 1 in that of ﬂn(F). Equivsalently, the homomorphism

vn(v)[ 1: nn(r) -7

2 is nontrivisl if and only if n = 1,2,4, or 8. _

' Unoriented bordism : Steenrod representation

Let T denote the category of topological spaces and continuous meps .
and F: — T tre forgetful functor essigning to each differentiable .
manifold its underlying topologicel space. For any space X one mey form _'
the cobordiem category ( A7/x,3,I), obtained by Construction I. This g:lv;_i

rise to & cobordism semigroup ~771,()() vhich wes first defined by Atiyah [ 13

and which is called the bordism group of X.

Let (B,f) bve the seqﬁence of spaces and maps given by Br = X % BOr

end f_ : B —>BO_ the projection on the second factor. A (B,£) stru
on a manifold is then a (BO,1) structure together with a homotopy class or.f'.
maps into X. Since homotopic maps define the same class in 77.(1{) /one
has induced & homomorphism 9,(B,£) —~ 77, (X) which is clearly an 1somoz1;1¥{

If AS—> X 1is a subspace, the inclusion map defines a functor

is o msp, the fact that f'aM factors through the inclusion of A into
may be thought of es an additional structure on the boundary. The stand&i'd

Joining together along common boundaries permits definition of the relatives

groups. . . . o
" From the relative Pontr}agin-Thom construction one then has
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Theorem: /7, (X,A) = Lin T oap(T(X X BO_),T(A x BO_),=),
el

- m 1., (K/A).730, ),

= Hn(X,A @9).

In perticulsr, TZ.(X,A) is the homology theory defined by the ring spectrum
TBO.
Va4

Since TBO 1s & ring spectrum, H,(X,A;TBO) i1s en E,(pt;TBO) =77.
module. If f : (V,3V) — (X,A) represents a class in 7'*(,(x._A) end M
is a closed manifold representing & class in /{,, then
fom (V x M,5V x M = 3(V x M)) —»> (X,A) represents the product clasa.

The structure of ~7"?,,(1(,1\) is given by:

Theorem: For every CW pair (X,A), 77.()[,1\) is a free graded 77.
module isemorphic to Hy(X,A;Z,) 9, 7Tu-
2

Proof: let c , ¢ Hn(x,A;Ze) be an additive base with dual base

1
1]
* -
et € n“(x,A;za). Applying the Kunneth thecrem fH*((X/A).1B9:;Z,) =
1in B*7((X/A).780_;2,) hes & 3z, bese comsisting of elements
yhos ) .
ck,® BqI(smU) for I admissible and & nondyadic and in particular is
8 free 4 module on the classes c* , ® s U since
-2 n,i N

SqT(C* . @5 U) = o® , @ 8qT(s U) plus terms having second factor of lower

n,1 w n,i w
degree. ' ' .

One may then choose homotopy classes L ﬂMr((X/A).TBOr.-) (r 1lerge)

for which c; 8 U pulls back to a generator if 1 = 3 and to zero otherwise.
]

J
Applying the Pontrjagin-Thom procedure, the class a.n 1 is represented by a
. ’

manifold v;‘ C o™ withnmep £ : v; — X, r(av‘i‘) C A and one has

* U .
8% o Ty /v,y — (V/0V2). T, £33 (2/4).180, Bl's K(3,).K(2,) B K(Z,)
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so that ax':,i(c:,d BU)= 61‘..‘) Loy 18 equivalent to fn(c;’d)[vz.ﬂ‘:] = ts:'_‘1

or f,[VJ;,BV!;] sep g )

For any closed M, (£ o m )%l .8 8 )[V] x M3V} x M] = 5,8 (v)[M

that if [Mm] € ‘TL form a base, the classes (v’;‘ x um,av’i‘ x M it o 1;1)

are 8 Z2 bese for the 2 primary part of the limit of the homotopy grcupd@f

Since 7"(.()[.1\) is 2 primary, these form a base of 71,(X,8). This is

precisely the assertion that the (V°, av’;;f) form a base for 7{,(X,A) as

Ty module, ** '

This proof has several immediate consequences:

Corollary: The natural evaluation homomorphism e : ‘m(x,l\.) —_— Hn(x,-w
vhich sends the cless represented by f : (V,3V) —= (X,A) into £,{v,av)
is an épimorphism. .

This is often phrased: Every mod 2 homology ciass is Steenrod. .
representable. (See problem 25 in Eilenmberg [48 ]). This is, of course, ve

close to Poincaré's original concept of homology as given by submanifolds ot)

a space.

Corollary: Unoriented bordism theory is determined by Z2 cohomology:

characteristic numbers.
In particular, for each x € n”‘(x,A;za) and pertition w of n-m

one has a generalized "Stiefel-Whitney number" which is defined for a map ’

£ (vV',0v") —= (X,a) vy {w,(r) U £%(x)}[V,3V). Since the classes x €
form a base of H*((X/A) x BO;ZZ) the associated characteristic numbers il

a complete set of invariants.
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It is clear from the free 42 module structure of i'( (x/A).% ;2

that all relations among these generalized Stiefel-Whitney numbers arise

2

from the Wu relations.

References: In addition to Atiyah's paper [/3 ], one msy find a

discussion of unoriented bordism in Connmer and Floyd [ 3&]. The Steenrod

representability is due to Thom [127].
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Chapter VII

lex Cobordism

Historica.liy the next cobordism problem to be completely solved was the
cobordism of stably almost complex menifolds. This was defined and completei'y
determined by Milnor [82] and by Novikov {93 ]. Specifically this is (B,f):

cobordism in which B2r = B is the classifying space BU-r for complex :

2r+l M
r-plane bundles. Since a complex vector bundle has a unique stable inverse, 1
the objJects are then manifolds with a chosen complex vector bundle af;::uct'.u:.'e'--j'--T

on the normal or stable tangent bundle.

Since one has, essentially by definition, ﬂu = lim w
B e n+2r

(TBU_ =) the
cobordism problem is ready for homotopy theoretic analysis. It is well knowtf"

,

that the integral cohomology ring of C€P(n) is the truncated polynomial rine

on a 2 dimensional generator (mske use of the maltiplicative structure in the

Serre spectral sequence of the fibration Sl — 82n+1

— cP(n) ) and thus,
" . o
the integral cohomology ring H (BU!_;Z) is the polynomial ring over Z on

the universal Chern classes ¢, (of dimension 2i) with 1<1i <r.

i

Theorem: The groups ﬂg are finitely generated and 02 8 Q 1s the
rationsl polynomial ring on the cobordism classes of the complex projective

spaces, the product corresponding to the Whitney sum of complex vector

Proof: By the Thom isomorphism theorem E-(TBY;Z) = lim Hmzr('I'BUr,'_'
b \aand
is torsion free with rank the number of partitions of m if n = 2m and ra
zero if n is odd. By the universel coefficient theorem, in('r,gg;z) is &
torsion free of the same rank. Since 'I'BUr is 2r-1 connected ane has by

)
Serre's theorem [Jo7] that the Hurewicz homomorphism ﬂn

v
n

-*Hn(tl}g;z) is aﬁ;
isomorphism modulo the class of finite groups. Thus is finitely genersﬁﬂ
.

®
i
i

&

H
-
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and nE,’ ® Q@ has the same renk as a polynomial algebra on even dimensional
generators. The Whitney sum of complex vector bundles gives a complex vector
bundle - structure to the normal bundle of the product of two stably almost
complex manifolds, making n';’ into a ring. Since

8(n) (> [€P(a)] = =8 () (c(r))[@P(a)] = ~(n+1) # O the monomials

CP(nl) X...x €(n ) = €P(s) (for o = (nl.--..nr)) are linearly independent
in RH ® Q@ (as in the unoriented case). Thus nE,’ 9 Q@ 1is the polynomial ring

on the cobordism classes of the complex projective spaces by dimension count. #*®

In order to study the torsion subgroup, one makes use of Zp cohomology
for all primes p. Since H.(BUr;z) is torsion free one has ‘uy the universal
coefficient theorem that n'(BUr;zp) s H'(Bur;z) LR is the Z polynomiel
elgebra on the mod p Chern classes ey (reductions of the integral classes
coincide with the direct definition using mod p cohamology).

In order to proceed one needs a knowledge of th.e operations in mod p
cohomology. Briefly:

The mod p Steenrod algebra dp for p- em odd prime is the graded
algebra defined by

(@) = ™Rz ,0)iz) 1<

Then: )
a) dp is the associative graded algebra over 32 p generated by symbols

8 of degree 1 and @i of degree 2i(p-1) with all relations given by

Ba=0

[afp]
b att (p-1)(b-t)-1, a+tb-t ¢t
v " tfc DT gt @
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if a < pb, ang

[a/p]
&g b o _yett (p=1)(b~t)y  _atb-t .t
¢s0 tgo COTC e 80 o
[(a~1)/p]
+ ) (-1)9"”"1( (P‘i_)l():j)-l)ﬁub-ts &t
t=0

if a < pb. (ﬁo=1).

b) For eny pair (X,A) there is a natursl pairing

* *
d‘é e H (X,A;Zp) —H (x,A;zp') such that:

1') B8 is the Bockstein coboundary operator associated with the

coefficient sequence O —+ ZP - Z 2

—> 2 —>0,
P P
dmx, (gy),

2") 8lxy) = (Bx)y + (-1)
and.
1) @i : Hn(X.A;ZP) _— H‘*Ei(?'”(x,A;zp) is additive;
2) @ou =u for sll u,
Glu=vP it anu=2i, end
G,iu=0 if dimu < 21; and

3) (Cartan formula) GJi(xy) = , E i.@"x- gky.
+k=

(See Steenrod and Epstein [114]).
One may define a diagonal map 4 :dp—-dpe ap by

sg)=ge1+188, aAlphH= T d'8 * which makes ({ into s
4 J+k=_i(? - P

connected Hopf algebra over ZP (M1nor {791).

One then has:

Lemma: Let p be eny prime. The maps TBUr - TBUs — TBUH_S obtaix
fram the Whitney sum of vector bundles induce a diagonal map ¢ on

-t =R op
H (TBU;ZP) = 1lim H (TBUr;Zp) making it into a connected coalgebra over
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Z, with counit Ue ﬁo(@;zp). Under the natural ection of ﬂp on
-'('J.‘AI;U;ZP) the Bockstein operator Q, (QO =8 for p od, Q= 8qt for
P =2) 1is trivial and i’(';y;zp) is a left module over the Hopf algebra
dp/(%). the Steenrod algebra mod the two sided ideal generated by Q,
with ¢ a homomorphism of dp/(%) modules. Further, the homomorphism

v i /(@) — &' (182 ) : & —> a(v) 1s & monamorphian.

Proof: Since Q, has degree 1. while ﬁ'(gsg;z#) has only elements of
even degree, the ideal (qo) acts trivially, making i'(@;zp) an
dp/ (Q,) module. To prove v is monic ome applies the splitting prinmciple
and calculation of the Thom class of a line bundle to write U formally as the

product V s x of two dimensionel classes x

1 Epe s 4
2L 44 p=2, the Adem formilae show that dp/(qo) hes a base

i
consisting of operations dﬁI =2 1... ]

121, Letting
g =5

r

with 1 2 pi (Note: For

a+l
p=2 s~ Sc;lqui e (Qo) 80 all odd terms vanish in the Adem formulse).
Since zj)ixps = xps, x,p”l. or .0 as 1=0, ps, or any other if dim x =2
(and if in addition Sqlx =0 if pw 2; this holds for all xy above since
x; = cl(l) for some line bundle 2), one may aupli;ate the proof of monicity

of V given in studying H (TBO;Z,) for this case. **
-8
Corollary: H (IBU;Z)) 1s & free ﬂp/(qo) nodule.

One also has:

-
Lemma: Let X be a convergent spectrum such that H (X;Z) has no
-
p-primery torsion and such that E (x;zp) is a free ﬂp/(qo) module. Then

the homotopy of X has no p-primary torsion.

Remark: This was first proved by Milnor [82] using the Adams spectral
sequence. Another proof was given by Brown and Peterson {301 by constructing

e spectrum vhose zp cohomology 1s free on one generator. The result given



-~ 11k -

here is wesker than that of Brown and Peterson, but admits a reasonably

elementary proof since one need not become involved with the k-invariants.

Proof: Let Ep be the 2 cell complex formed by attaching a 2 cell
e, to a circle Sl by e map of degree p, glving a cofibration
Sl — Ep — 82.

After smeshing with X one has an exact segquence

n.(‘rlf) L 5 (x) £ ﬂ.(X.lEp).

Bince X ie & convergent spectrum the Hurewicz homomorphism Wy (X) —» ﬁ,(x";‘"' Z

is en isomorphism modulo torsion and p maps (w,(X)/Torsion} 8 z, = ﬁ,(x;z_':)u
monamorphically into a Zp vector aspace P, C w(X . Ep).

If the lemma is true then P, = 7 (X . Ep), i.e. 0 1s epic and

(X . Ep) s @ 2, vector space. If ome can show directly that

Py = 7y(X . E)) then o would be eple so miltiplication by p would be g

on 7, (X) - hence % (X) could have no p-primary torsion. The remainder ¥

of the proof is devoted to showing P, = 7,(X . EP).
One needs a knowledge of the Steenrod algebra as described by Milnor [
Let & be the set of sequences of integers (rl,r se.s) auch that

r,; 20 and r, =0 for all but a finite mumber of 1. If U,V e,

i

U-Vel{ 1s defined it > v

e ISR ]

(=7, ug=vpsene)e 8 5 € & denctes the sequence with 1 in the J~th pl

and zeros elsewhere.

for el1 1, and is equel to

There exist elements Qi and CpR in dp for 1 =0,1,2,..., and’

R e Q such that:

Y

1) amgQ = 2pt-1; ain @R =dimR=I 2ri(pi-l) 1f R= (1,750

El

1
2
A
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2) {Qi} generate & Grassmaun subalgebre ao of dp; ie. QQ =0
and Q. Q, + Q =0 for 1¢3.
173 JQi € A
3) ﬂp has a Z base given by {q - Q

v 1w gy a8 s T o™

Assertion: H (X E-z)‘i(x-z)ez{ }, where { } denot
8 ion: ~ B2y i pu,qou,were es

...0R} vhere €, =0

"vector space spanned by", dim u = 1, =snd is a free QP/J module where &
denotes the two sided ideal generated by the elements Q,, 1 > 0. If {xal
-
is a base of H (X;ZP) as ap/(Qo) module, then {xm 8 u} is & base of
%
H (X . EP;ZP) as @P/J module.
To see this, H (EP;ZP) = prl,u,QOu} and so by the Kinneth theorem
" .
H (XXE »X x u-z) is as asserted. Then qo(xeu)=x9Qu,
o9 (x 8 u) = By 8 u gives the action of the Steenrod algebra. Since
O’k-l' i? Q - ngp while the operator Q commutes with the @ in
5x . EiZ), this is an ﬂp/.ﬁ module. A base of [{p/J is given by
€ R R €
the Q) <3, €=0,1, and the {G x B Qou} are clearly e ZP base for
the cohomology.
For a sequence R = (rl,ra,...) let 2(R) = Zri. Let v be the ZP
vector space generated by R € X for which %(R) = s, Let M = 413 8V,
end ds : Ms —>Ms_l the qp homomorphism of degree +1 given by

a(1eRr) = X Q

o 3 8 (R—AJ).

et 4 : M —> JP/J by a,(18(0,0,...)) = 1. Just s in Brown end

Peterson [30 ] one has:

Assertion: The sequence

a
e M~y — Y :Q»dp/,ﬂ—»o

8=l 0

ls exact.
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To see this, let B De the Grassmahn algebre on the Qi’ i> 0. Then

a
veo.—>B8YV —2> B8V _—>,.,—+BBYV jg»—z —0
8 8~1 0 P

with homomorphisms as above is exact, being the standard resolution of a
field over s Gressmann algebra. Since ap is a free B module and
dp OB ZP Z ﬂP/J, tensoring with dp gives the exact sequence.

Now let {xu}, a € I, be a base of i'(x;zp) as ﬂp/(Qo) module and
let T be the graded Zp vector space on the X, 8 u. Using the resolution
constructed above for ﬂp/‘J one can build a modified Postnikov tower for _\
X . EP using prodgcts of K(Zp,n)'s. Specifically, one hés a sequence of

fibrations

Yin

Ty £
1
Y, ——>K(Tev,)

induced from the path fibrations, with Y

~ .
o=¥. EP, H (Yi;zp) 278 :Lmage‘

.
T @ ker di-l’ 4 and fi being given by 1 @ di' :
(Note: For brevity of notetion dimension shifts involved are ignored here).

~ %
H (K(T ® vi);zp) =T8N
Thus the homotopy of X . Ep is built up by exact sequences from the ZP
vector spaces T 8§ Vi.
On the other hand, P, =8 (T 8 VB) c 1 (X . Ep) so that by dimension
8 i

count one must have w,(X . EP) = P,, proving the lemma. **

Remark: One msy consider this as computing the Adems spectral sequenc

for X . Ep‘ 8ince w (X . Ep) conteins the vector space P, 1isomorphic,
the El term, this spectral sequence must collapse and all extensions 'must_f:

be trivial.
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Theorem: The group ﬂg is zero for n odd end for n = 2m is free
ebelian of rank equal to the number of partitions of m. In addition, two
stably almost complex manifolds are cobordant if and only if they have the

same Integrel cohomology characteristic numbers.

it
Proof: Since H ('I"QI;J;Z) has no torsion and the mod p groups are free

over %/(QO) for every prime p, the homotopy groups ﬂg are torsion free.

Since the kernel of the Hurewicz homomorphism ﬂg

group, while 92_ is torsion free, complex cobordism is determined by integral

— B (TBU;Z) 1s a torsion
N A~

cohomology characteristic numbers. #¥

In order to get the remaining structure use will be made of complex
K theory. References for this are: Atiysh and Hirzebruch [/8 ], Bott [24 ],
Atiyeh [ 5 ], =nd Husemoller [59 ]. Briefly, there is a multiplicative co-
hamology theory K' indexed by the integers (positive and negative) for which
KO(X) is the Grothendieck group of isomorphism,élasses of complex vector
bundles over X. This cohomology theory 1s periodic of period 2, the .
periodicity isomorphism p : Ki(x) —_ 11‘1"2()(') being given by multiplicetion
by a generator p(l) ¢ K-2(pt) H l~(o(82) %2,

For a complex vector bundle £ over X one defines the Chern character
of E, chi(g) e H.(X;Q) by ch(f) = aim € + E (s(i)(C(E)))/il- Ir

i=1

t=20...0 !.n is a sum of line bundles with cl(li) =x,, then

X .
ch(E) = E el By primitivity of the s-classes, ch(f & n) = ch(£) + ch(n)
1=1 .
ro that ch extends to a homomorphism KO(X) — H (X;Q). Using the tensor

product of bundles, which induces the product in KO(X) one has

ch{E ® n) = ch{E):ch(n) for if E =2, ® ....an, n=ml'9 ...Qmp then

1
t8n=I4@m, but cl(!ti ® mJ) = cl(!.i) + cl(md) so
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Yy g Sy ) -
ch(E 8n) =L e = (Ze ™) (£ e?)=ch(E)ch(n), and hence by the
splitting principle in rational cohomology the formule holds for any pair of
vector bundles. Thus ch : KO(X) — (X,Q) is & ring homomorphism. }
For & a vector bundle over 82, ch(E) = dim & + cl(E) cH (S 3Z) or
ch : £°(8%) —+H2(82;Z). In particular, one msy consider s° as cP(1) a.nd
then ch(1-A) = 1-¢® = —a. Tmus cb : KO(s%) — EX(5%;2) is en isomorphisy’
and one choose the gemerator p(l) ¢ f(o(sz) to be such that ch(p(l))[Sz] =!t
(Simply take p(l) =1 - A, Note: This is the same as A - 1 on s2, whii;ﬁ
is Bott's choice.) _
One may then extend the Chern character to a ring homomorphism
ch : K*(x) —-’-H*(X;Q) so that ch(p(x)) = ch x. For K21 (X) one coula usq
that as definition, leaving one to check the compatibility condition of (

commtativity in

<h, 5*(x;q)
P r?

“2(x) = k% . X) N (s XQ) 2 H'(X;Q) .

x0(x)

which is immediate since ch(p(1)) = ( ¢ Hz(sa;z), 2 being suspension.

then suffices to define ch on XK T(X) and for this one takes
.
(X) K (S ~ X) B, B (S - X;Q) = H (X;Q).

In order to epply K-theory to complex cobordism, let a = p'l(A-l) i

. :
K2(CP(n)) where A 1s the canonical line bundle. Then K (CP(n)) is the.

» - -0 - ~n+ R ~ .
free K (pt) module om 1, Gge0.,0" and anlso, with a© the magg_:gg

22 (s

(-1)"{, C(ek ) being the generator. Thus, by the general theory dg

characteristic classes one has defined K theoretic Chern classes, denote

Yi(E) € xzi(x), for E & complex vector bundle over X.
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Note: Following Atiyeh [12 ], if £ is a vector bundle over X, let
o
A (E) = ) alee)-tt e K2(x)[[t]] where Al denotes the 1-th exterior
1=0
power. Then At(i ®n)= At(E)At(n) and one may extend A, to a homomorphism
(-3
from K°(X) into KO(X)[[t]]. Then A (£ -asm &) = | tdply, (£)).
t/(1-t) 420 i
Thus the K-theory Chern classes are the Atiysh y <functions of stable vector
bundles except for a periodicity factor. It should be noted that this does
not coincide with the K-theory Chern classes of Bott [ 24 ] which use 1 - X
-1 * -
rather than A - 1, these being related by p (1 - X) = =c (a) where
¢ : §P(V) ~> ¢P(V) 1s given by complex conjugation.
»
~ The previous difficulty with ¢ really exists in complex K-theory. B8ince
=1, T=e1a=1/fi+(=-1)]1=1-(h=-1)+G=22+... or
- . [ . - -
T-l1s-(A-2)+(a-212+.... Thus ¢ (a) = -a+p(1)a+ ... .
. -
If one could chooge & generator B for which c (8) = -8, then & = B+ ) @iﬁi
1>2
* . - . . 2
g0 ¢ (a) = =g + .J ¢i(-s)i a-g+2 J ¢isi or ¢ (a) = ~amod 2. On
1>2 » _iz0(2)
the other hand p(I) #0 (2) so c (a) # -a mod 2. Thus one cannot choose
generators well in complex K theory.
Combining the periodicity phenomenon with the Chern ché.,rac.ter permits the

celculation of K-theoretic characteristic mumbers. Bpecifically:

Lemma: Let M° be a compact stably almost complex manifold and

x € K'(M,3M). Then

x[M,3¥] = {0 if n-i is odd,

{en(x)+ F (M)} M, M)+ p(1)° € K 25(pt) if n-t = 2s,

<

k %
vhere J(M) € H'(M;Q) is the class given by Il xJ/(e 4 1) when ci(t(M))
J=1 .

are expressed formally as the i-th elementary symmetric functions of two

dimensional classes KypesesXye
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Proof: If X 1is the canonical bundle over ¢P(n), then the Tham cley

- . . . . o :

U, ¢ EC(e(n+1)) 1a & so ch(f,) = chd = ¥ -1 s en(f)) = (=,
vhere Uy =a is the 2 cohomology Thom class. If for any bundle £ oné
x x X .

defines ,J(E) tobe I x,/(e 4 _1) when formally cf{g) = I (1+x,),"
=171 4=1 3t

via the splitting principle and multiplicativity of Thom classes one has }
en(ly) =By, = d(-£)y, foranr k.
If M is & stably almost complex manifold with- x € K.(M,2M) then oqi

has

2 o mypy By (Mjom) .

for which
%* ¥ - - . S
X[M,M] = ¢ @ (x 8 ) e KL (sH*2T) o gi-O(py),

This is zero if i -n 1is odd, and if n - 1 = 2s, this is of the form ;

02ry o g (onxe chﬁ)[§§

6" (et () ) [S™%] = fetx- JO0) M, 4], wo

8-p(1)® = c“¢“(x O_fj). Then 6 = ch(c*ﬂ'(x e 0))is

In order to compute characteristic numbers for specific manifolds
)
2|
consider first €P(n). Since for €P(n) one has (7 ® 1) 2 (n + 1)f vhe
E =1, onehas Yi(r) = (nIl)[p-l(E-l)]l- Thus one needs the evalua*l::l.on:il

Lemma: [p-l(E-l)]J[ttP(n)] = (<1)2"p(2)7d, fn
Proof: By the previous lemma ki

7 L(e-1) Pep(n)] = [eh(E-1)1d (ep(n)) [co(n)1-p(1)*d.,

Then c(f) = 1-a and (-a)?[eP(n)] =1 so 1
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-1 1Mep()] = (1) (=) [ep(n)]-p(1)",
e -1

= {coefficient of (-4)® in (-u)nﬂ/(e"“-l)“"'l"j) . p(l)n-J,

= (1/2r1) —2___ . 5™,
zgo (e2-1)2*1-d ?
= (1/2m1) —_— (l)n-J, (u = e®-1),
! ugo un+l-‘1(1+u) P vEe
; (-u)kdu
k=0 -
= (1/2n1) ugo —:;W . p(1)d,

(-1)2dp(1)7"d, -

In addition to the manifolds previously constructed it is convenient to

consider the manifolds H . C oP(q®) x ... x eP(q®) (with q factors
q ses+5q

» * *
dual to the line bundle 1r1£ [} 1r2£ 8 ... 8 an, where q 1is a prime. This
1s a hypersurface of degree (1,...,1) in the product of g copies of €P(q®

and may be taken to be a projective algebraic variety. One has:
Lenma: The complex K theoretic characteristic numbers

s, (v(1))[E o)

Q seeesd

+
are all congruent to zero modulo q if na(w) > qs+1_q unless n(w) = ¢* l-q

and w refines (g°-1,...,9°-1) (q coples of g¢®-1). In particular,

(v())[H 1=p)¥t -
B(qs-l,....q'a-l)Yt ,...0a” ?

modulo gq.

Proof: Denote H s simply by H, €P(®) x ... x ¢P(q®) simpiy
q yeeeq

by CP, and let &, = ﬂ;(E) and 8, = p"'l(Ei-l). Then (ignoring restriction

homomorphisms in notatiom),
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q 8
y(E) = 1 (1+8)8 " p"l(sl 8...06 -1)
=1 3 a

and H is dual to p'l(s1 8 ... 0 gq -1).

One has

£E,8...8 Eq = [1+f51-1)] 8 ... 8 [1+(Eq—1)] = (14p8,) 8 ... @ (1+p8q)

or

k-1

-1 - ~- 1
p (E,0...0 Eq—l) I8, + pIB.B, + ... +p I8

q-
l...Bk-i-...-l-p Bl.

where I Bl Bk

be the i~th elementary symmetric function of the B8's,

is the k-th elementary symmetric function in the B8's.

Thus letting v 1

)
: q -+l q-1
y(H)=(1+V1+...+vq) /(1+vl+pv2+...+p vq_)

g-1,
and H is dual to vl+pv2+...+p vq.

Noting that p' v, = p(1)" ey,

L] B
be expressed as a polynomial with coefficlents in K (pt) in the variables

any characteristic class 8, (Y)(E) i

Vyse “’vq and the polynomial in question has degree in the v's or B's 4

least n(w), the terms pt_lvt, t > 1, in the denominator giving rise to:

terms of degree greater than n(w).

Thus s, (y)(H)(E] = Pw(vl,...,vq)’(vl +PV, b .k pq'lvq)[NP] wher_é:_;_

Pm is the polynomial Just discussed. Now if o is a permutation of l,..‘.},}

g
one has ¥

i
1

ptlp -8

t-1,
© 0(1) ese so(t)[cP] =P ]Pm Bl see Bt[GP]

* -
in K {pt) by symmetry among the factors. Since pt lvt

the numbers P mpt'lvt[CP] are all divisible by

ol

has precisely (,%
t-1 g
terms p su(l) Ba(t)’ -
q if 1 <t < q. By exactly the same argument, the terms of Pw involvi"gl

‘

vl,...,vq_l contribute zero in mod q characteristic numbers.
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Thus the mod q characteristic numbers are the seme as if v(H) was

541 -1 -1,
(L+v, + ...+ vq)q /{1 + pq vq) and B were dual to pq vq.

b
One then has s (yv)[H] = q (v v ¥y ). a-1, [€P] where Q 1is
» FH WV seeey q-P a P q e o
an integral polynomial of degree n(w) in vl,...,vq,pq-lvq (the latter
k k
having degree 1). Any monomial a = vll;..qu(pq-lvq)' a*l e g , Of degree

n(w) makes a-pq-lvq of degree n(u)+q+kq+l(q-l) in the B's, and

8
. q +1 - o S ~ s+l
since B =0, ap A 0 if n(w) + q + kq_._l(q 1) > q . If

n(w) > qs"'l-q, this oceurs so sm(Y)[H] Z Omod q. For n(w) = qsﬂ'-q this
occurs 1if kq+1 > 0.
For characteristic nunbers mod q of degree qsﬂ'-q, the numbers are

8

T+l na H were dual to pq-lﬂl...Bq.
1 i

Then sw(‘i)(H) is the sum of moncmiale 811...8qq with o= w U...J wgs

the same as if Y(H) were 321 (1 + 83)

deg mt = 1t’ z it = q5+1-q and to be nonzero one must have

i

_ _ 8
l-...=1q-q-l.

Thus for su(Y)[H] # o(q) with n(w) 2 qs”'-q one must have

n(w) = qs+l-q and © refining (g°-1,...,q°~1). In perticuler

8 8
s (IE] = (®1)%2 ...63 -p(1)¥ ep] = (1) p(1)¥h .
(¢®-1,...,q°-1) 1
if ¢%-1>0, i.e. > 1 so g° Z0 (q) and this 18 p(1)% L, Ie

gq=-1=0 so 8 =0, then

(1)[E] = 1:5%%8, ... 8 [6P] = p(1)¥"L. »s

s(qs-l.---.qﬁ‘-l) 1

*
Returning now to BU, recall from Chepter V that H (BU;Z) 1s the formal
power series ring over Z on the universal Chern classes ey of dimengion 21,
» ) .
and H (BU;Q) i1s the rational power series algebra on these classes. One mey

*
consider E,(BUZ) = Hom(H (BU;Z);Z) a8 a subring of
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"
H,(BU;Q) = Hom(H (BU;Q);Q), being respectively the polynomial ring over 2

i
respect to the base consisting of the sm(c). (sw(c)(ai) =6, (i))'
t]

or @ on classes ai of dimension 2i, where o is dual to s(i)(c) with

Writing the Chern classes formally so that ey is the i-th elementary

" :
symmetric function in variables x‘1 of dimension 2, 1let sw(e) e H (BU;Q) #
X

"
the 8, symmetric function of the e J-1 and let .J € H (BU;Q) be the i

X B

product of the xJ/(e '1-1). _-Under-the diagonal homomorphism ' “7
A H“(BU;Q)"——'- E“(BU;Q) ] H“(BU;Q) one has 4s (e) = I s, (e) 8 sw«.(e3§§
w'uw'"=0 .

and ad=4 e of. !

Define & function p : H,(BU;Q) —=Q{B,] vy r(a) = L aw(e))} fa]-8,

where for o = (11,...,1r), B, = Bi Bi . By the diagonal formulae thi
r _"':

is & ring homomorphism. (Note: e*-1 = x + higher terms in x, &go

sw(e)é = sw(c) + higher terms, and the sums involved are finite.).

with p(a) € 2[8,], and let B, = ¢ B, C 8,(8U0;3). B, is a subring of 't*

B,(BU;Q). Bince By (BUu;2) = {a e E (BU,Q)ls (e)le]l € 2 if n(w) = k) a.n¥a.

for ueB,, n(w) = k gives s (c)[u] =g (e)J [u] € Z, one has

BakC B, (BU;Z). Trivielly B C nml(m;z) since both groups ere zel

2k+1

mod q, q a prime.
It M is a closed stably almost complex manifold, let

*
(M) : H (BU;Q) —~ Q@ be the homomorphism which sends x to the value of

shown to be monic. Since for any bundle n one has sw(e)(n) = ch(sm(v(n

one has for all w
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(s, (e) ) (i)

en(s, (v(x)})- JO)n,

0 if .n-n(w) 1is odd,

8, (Y(D Ml -p(1)™  1f non(w) = 2t

vhich 18 integral end thus ™™ ¢ Bn' Thus one has inclusions

w) CB, C H (B5;2).

Definition: If P e zq[Bl""] is any polynomial in variables Bi’ P is
seid to have largest monomial Bi «es B ir
1 i
(1) the coefficient of By oee B:I. in P 18 nonzero, and
1 .
(2) 1if the coeff:.c:.ent of B, «es B i8 nonzero, with B, ... B, #
Jl Js '11 Js
B:I. oo B then either
i
1 r
(a) E RIS T I 1,0+ .00 4 ir, or
(b) g +;]s=:|.l+...+ir end B > r.

(Note: A polynomial need not have a largest monomial).
If P,Q¢ Zq[Bl,...] have largest monomials B and B ,, then P-Q has

lergest monomial B 8 , = 8 Ir P, € Zq[Bl,...], i=1,,,.,n, are

wU'’
polynomials having distinct largest monomials, then the polynomials P:I. are

linearly independent over Zq.

Proposition: There exist almost complex manifolds Mf of dimension 21
for each prime p and each integer 1 such that pp(tMli)_) has largest

monomial B, if 1+1#7p° foramy s or [Bs-l P i 1+1= for
p -1

gome s.

Proof: If 1+ 170 (p) let Mli) = ¢P(1). Then {s(i)(e)J}[er] =

-(1)(c)[c1>(1)] =1+21%0 (p).
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If 14+1=0(p) but L1+ 1#p° for any s, then one may write

1+1=p(puv) with >0 and O0<v<p, If u=0, v>1 end let

r
= = = Vv ¥
MIi’ Hpr,pr(v-l)' for which {s(i)(e)a}[tlﬂ?] = s(i)(c)[TMIi’] -(pr J#o (pz
If u>0, let MII’ - Hprv,p”lu' and then {s(i)(e)g}[m’i] = s(i)(c)[mli’] s
r
- )y 40 (p).
pv
If 1+ 1=7p° for some s, let Mi’ =H_ a1 (p subseripts)
P :"-lp
Then {sm(e)a}[tuz] = sm(y(t))[Mz] which is zero mod p if n(w) > p®-p .
unless n(w) = p°-p and@ w refines (ps-l-l,...,ps-l-l). L
Corollary: If w= (1),...,4) let ¥ =M x .. x Mli’ . Then for
1 r

each prime p and each integer n, the polynomials

DP(TME)) n pp(tuzl)...pp(thr) in Zp[Bl....] with o ¢ 7(n) are linearlyl'l.';:

independent.

Proof: The polynomials pp(tMP) with w e n{n) have distinet

largest monomials. %#*

Lemma: Let ff « be a graded subring of the graded polynomial ring ’
Z[al,az,...], degree a, = i, eand suppose that for each prime p there a:ﬂ
. b

elements c? € q, 1>1, vith (&,/pF,) Zp[c:l.:]. Then Q 1s the
integral polynomial ring on classes bi € Qi’ i>1. 1If d. C Q‘ is

subring containing all of the cf then .J" = Q*. '

Note: All rings here are assumed to have the unit 1. To say that Q'
is a graded subring means that the homogeneous components of elements of *

f;?. themselves belong to ‘fi,.
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Proof: Let ﬂ\. = Z[al,...]. Since Qn Cf{-\n, Qn is a free abelien
group of rank at most Iﬂ(n)l (the number of partitions of n). Since
&)n 8 Zp = (Q“/p Q.)n has dimension |m(n)| over Zp,éz‘ has rank exactly
[7(n)].

Let a! =1 A‘L‘:’am,, w,0' € m(n), A'::, € Z be any base of Qﬂ
Applying the usual triangularization process (as for integral matrices) ome
mey form from (a. } & pew base a,=t Am, 12 W W' E n(n), A::, €2 in
wvhich A(n) =0 if w # (n). (A&; is the greatest common divisor of the
A"Z’n)). For each n, 1let b, e% be any one of the &(n) obtained in
this way. B8Since 52; #0 by rank, one may solve inductively to write ay
as & rational polynomial in the bJ () <1), and hence a base of q} is
given by bn and elements & = 2"$'bm" o, ' € n{n); w,0' # (n), u:, € Q.

Suppose inductively that in dimensions less than n, Q. is the integral
polynomiﬁ ring on the classes bi’ i <n. Let L be the free group
generated by the &, and M the free group generated by the bw’
wem(n), o # (n). Since M consists entirely of decomposable elements of
Tn’ M (C L, end since they have the same rank, the index of M in L is
finite. '

Let p be any prime. _Since @. is the integral polynomial ring on the
bi in dimensions less than n, cf is an integral polynomial in the b's
of degree i (if 1 < n), so cg eM forall w# (n), we m(n). Thus
the image of M in ¢ ® Z, hes the same renk as the image of L (equal
to I'N(n)|-l) and the index of M in L cennot be divisible by p.

Since this is true for all primes M = L. Hence @n has a base
consisting of the b, ® € m(n). Hence &. is the integral polynomial ring

on the classes b i <n+ 1 in dimensions less then n + 1, eand by

i’

{nduction q = Z[bl, 2,...].
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To show that J C/f.,, .d C&n is a free gbelian group apd for &

prime p, A maps onto Q -] zp, so the rank of _,J [w(n)]| and-,_..

the index of Jn in an is not divisible by p. Thus ‘ean = % for :

each n, W

U

Theorem: €, 1s the integral polynomial ring on classes x, of dmen&

1
2i. A stably almost complex manifold M21 may be taken to be the 2i-

dimensional generator if and only if

s(i)(c(r))[Mzi] =(t1 12 1+ 1+#p° for any prime p

tp 1f 1+ 1= pB for some prime p and integer gg
K]

Proof: Let 2lo,,...] = K, (BU;2), &, =58, wma J,=Y in the

lemme, and let cf = TME as defined above. Then J. = a. is the integﬂ

polynomial ring on classes bi of dimension 21. l‘;h-ther, a generator 1 /

characterized by its s-class. Under reduction mod p one has

i

u decomposable, u,v € ﬂgi. Thus s(i)(c)[bi] H x-s(i)(c)[cl;] mod p, Bij

8(;){c)b] = Omodp 1r 1+ 1= p® and 8(3)(e)b 1 7 0 (p) 1f 1+1__,:_.'. _

U = p P 5
v] = = = xo +
B2 Z [bI] 2z [cl]. so that bi xe; +u+pv with x¢e 2, x

Thus if 1+ 1# p° for any p, s(i)(c)[bi] is not divisible by any pr
Bo must be *1, If i+ 1=p°, then p dis unique so s(i)(c)[bi] is

divisidble by only the prime p. Since

8 8 (C)[H 8-1 ] =

B-1
p -1 he) Y

P P
(b lm® 2 L P . z wE)ee] = () Ta® (e -
1=1 = :

B 8-1 g=1
e @ Ty L )
P P
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is not divisidle by p2, one must have s(i)(c)[bi] = 2p, (Note: This is

the same type of computation aes in Chapter V. Here s > 1 so ps-l > ps—l

o pSo1
and (nia) = (0 provided p#2 or s>1., For p=2, s =1, this

2 [ 2 w..,2 w_
becomes {I ema - L nia}(t nia)[GP] which chenges the sign but not the
1 1 1

divieidility by po.). W

Theorem: All relations among the integral cohomology Chern numbers of
closed stebly almost complex manifolds come from complex K theory. Speci-
fically, 1f ¢ : E°(BU;Q) = Q is a homomorphism, there is a closed stsbly
elmost complex manifold M® with ¢(x) = x(t)[M*] for ell x ¢ E(BU;Q) 1if
end only if ¢ sends the n-dimensional component of each sm(e)d into en
integer.

Proof: This is the fact that B, = ‘l’ﬂ‘: proved sbove, ##

Remarks: 1) This mey also be phrased: The image of the Hurewicez
homamorphism "%ZN(TBUH) — iak_,_au('l'BUN) is a direct summand (N large
with respect to k) (Hattori [52]).

2) The completeness of these relations was conjectured by Atiysh end
Hirzebruch [/9 ].

Now suppose {1 + 1 = pB for some prime p (unique) and write
b:l. = xcli) +u+pr, x€2, x?0 (p), u decomposable, u,v € 9‘2’1. One may
then replace b:l. by bi = b:l. -u= xclz + pv glving another acceptable

generator. For w € w(i), this gives
s,(e)[b}] = xs, (v(t)[MP] + ps (c)iv]
vhich is divisible by p. Thus one has:

, © ngi such that if 1 + 1 = p°,

all integral cohomology Chern numbers of x, will be divisible by p.

Theorem: One msy choose generators x

i
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Remark: That this is possible was first noted by Conner and Floyd [ 36 ],-;

section 41, who called such generating manifolds "Milnor manifolds". g
This gives the following relationship with integral homology pointed

out by Joel M. Cchen [32 ]. -

Corollary: There exist polynomial generators Xy i>1, of RH and -

z 121, of H,(BU;Z) such that Tx =m, 'z, vhere m, is p if

1’ 1 i
1+1=p° for some prime p and 18 1 otherwise. If ® = -(il""’ir)’

ees W,
1 ir

groups Z/mmZ for w e n(k),

let m =m
w

. U , s
N . Then EZk(BU’Z)/mZk i8 the direct sum of the cycligj

Proof: Choose x, to be the classes of Milnor manifolds with

i
8 . .
B(i)(c).[xi] =m,. If i+1=p", =, € H21(BU’Z) maps to gero in
Hei(BU;Zp) so is divisible by p and uniquely so since HZi(BU;Z) is
torsion free. Let g, = (1/m)-vx, in E, (BU;2). Sinee s(i)(c)[zi] = 1
is en acceptable generator for H,(BU;2). **

One also has the result of Milnor (see Hirzebruch ({54 ] or Thom [l29]):_.-_§"

%

Theorem: Every class x € ﬂg contains a non-singular algebraic varietﬂs

(not necessarily connected) if n > O,

1
T
4

Y

Proof: Let Z( " Cﬂ‘: be the set of cobordism classes represented by

non-singular algebraic varie'ties; \z(. is closed under sums (disjoint
unions) and products, but not necessarily under additive inverses. (Hote) M

If one could sensibly interpret -l e i as a varlety inverses would exist)

o]
trivially). . q
Now \'l(,, contains the classes of the 6€P(n) end Hnl’nz which generé%
nH' (Note: & (2 ) = -(ps_ ) 12 p°1> 1 whnile
— (ps_l) ps—l'ps_ps-.l. ps.l N .
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B (CP(p-1)) = p so these are not divisible by p2; hence {¢P(n),H }
(p-1) n,,0,
generate n‘l [} Zp for all primes p, and hence the subring they generate
coincides with ﬂg).
1]
If one can show that there exist classes X, % € \thi with
= 1] = o
s(i)(c)[xi] m, and s(i)(c)[xi] m, then one is done, for then suppose
U, u
inductively that ‘Z(ed =0 if § <k If xefy
teZ, endif £>0, x=tx, +v, If t <0, x= [tlx{ + v, where v

then s(i)(c)[x] = tm,,
is decomposeble and hence v en. (inductively). Thus also x e\i{,.

-For 131, one has 1s[crp(i)] =14+1>0 Let M Cep(141)
+1

21’
be the hypersurface defined by ) z§+l =0, t2>1, where (zo,...,zi+l) -
J=0
give local coordinates. The derivative of u= Z z.;ﬂ' with respect to

% is (t+l)z;, not all partials can venish simulteneously, and Mi is &
non~-singular hypersurface. Letting

A t+1 .
£ : GP(i41) = 1 P(1+1) ~So gP((t+1)(1+2)-1)
3=1

be the composition of the diagonal 4(z) = (2,...,2z) and the map given in
(1) (t+1)
2 N

local coordinates by u ee 2y
) t+1'

=z f 1is transverse regular
3qe J 41 b )
on the hyperplane section Z u Jeusd = 0 with preimage Mi. Since
t+1l t+1

g'(c) =€ 0...80 ¢, f‘(E) = and M, is dual to 4

o) = (145)1*2/(24(£42)3) “ana slM,] = (£+2)[142~(¢42)'] and this 1s

Thus

negative if 1 <1 < t.

Consider A, = {xezlx= s(k)(c)[u] for some u E\Z‘Zk}' Ie

X,y e-Aak, then x+y € A2k'

both positive and negative elements. Let p be the least positive element

The above constructioné ghow that A2k contains

of A2k end n the largest negative element of A2k' Then ptn =0 (if

ptn > 0, p > pn > 0 contradicts the cholce of p; if p+n <0,
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n < ptn < 0 contradicts the choice of n). If g € Ay

t,s €2, 0<s8 <p, bdut then s==c1-l-(-t)peA2k if t <0 and s

qg=tp+s with

s=q+tned if ¢ >0 and since s <p, 8 =0. Thus A isthe_',-

2k 2k
set of multiples of p. Since the greatest common divisor of the elements

of Ay i8 m, onehas p=m, n=-m. * i

Open question: (Hiregebruch [84 ]) Which classes of nf,’ contain conréshai

non-singular algebraic varieties?

One mey prove the polynomial structure using the Adams spectral sequence

was done by Milnor and Novikov (an exposition appears in Conner and Floyd

[36 ], section 41 - for & similar situation) and then use the proof for

completeness of relations given by Hattori [52]. .
l2) If one uses the Bott choice for Chern classes with p-l(l-i) as

generator for K“(CP(n)) one obtains a different orientation class

u;: € fc"(w;) for which fh u& = T(;)-lU-E where T{(n) is the universal

class given by n(x_ill-e xj‘) if c(n) = r[(l+xi). The classes U:; and -

Ly
are related by Ué = detg*U_ (det being the determinent bundle), and de$:]

13
18 an invertible element in K°(Base space). which restricts to 1 at e
point. The literature is very confused in that the choices of Chern cl

and orientation are frequently made with opposite convenfions. The choié‘
made her_e was intended to keep the Atiyah Chern classés and keep a consiatﬁi

universal orientation, a.voidihg complex conjugation whenever possible.
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Relation to framed cobordism : The Adams invariant eg-

Just as with unoriented cobordism one has a forgetful functor F from
the category of framed menifolds to that of stably almost complex manifolds
giving a homomorphism of cobordism groups and & relative group, denoted

nl:,fr_ As with any pair of (B,f) theories, the sequence

fr U
» n.

\

Q

ot

is exact. One then has:

Proposition: A framed menifold of positive dimension bounds & ste.biy

almost complex manifold; i.e. Fy @ ﬂ:r'-—b- ﬂ: is the zero homomorphism if

n > 0. Further F,: ngr —-»-ng is ar isomorphism.

Proof: For n > O, ﬂ: is torsion free while ﬂir is a finite group so
F,=0. For n =0 both groups are isomorphic to Z, given by oriented
points. ##

The homotopy exact sequences on the Thom spaces then split into short

exact sequences giving the diagrams:

U U,fr . fr
0 — 4 nn nn—l 0
ky by

- - Y . v \
0 = B (8:2) — &, (T85s2) > 8 (TRy.832) — £, (832) = 0

for n-1 > 0, and
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J U,fr fr = U

0= ﬂl —_—— ﬂl ﬂo — ﬂo
l l Lﬂ lé
0 = H,(TBU;Z) —> H, (TBU;S52) —> Hy(832) —> H (T8U;2)

0 : Z 2

where the vertical arrows are the Hurewicz homomorphisms.

which is a finite groq

For n odd, ﬂg =0 soif n>1, n;},fr z off

n-1
Also H!'I(’TQ_I_J@;Z) = 0 and no information is available using Chern numbers.

For n evemn, n>0, h (ﬂu fr)

U

is a free abelien group, contalning th_'q::
a
subgroup kn(nn) Q.

U, fr

Thus h (ﬂ ) has rank equsl to the number of

partitions of n/2 and contains k (ﬂu) as a subgroup of finite index.

Let a € ng},{fr be represented by a stably almost complex manifold V

with a compatible framing.of 2V = Mek 1 Let 1 : (V,M) = (BU,s) be a nq)J

classifying the stable tangent bundle of V, the framing of M being

interpreted as a specific equivalence class of deformation of M to the baség

point. One then has defined Chern numbers T (c )[V,M] which completely

determine hak(u). ;
In order that hzk(a) € kzk(s_lgk) it is necessary and sufficient that

t'(sw(e)ﬁ.)[V,M] e Z for all w Since sm(e) = ch(sw(Y)) glven by the - .'

K theoretic Chern classes Y, € Kz_i(_BU,u) for 1> 0, T’(sw(e)J)[V,M] =

't'“sm(y)[V,M]‘p(l)n(m)_k € Z where T“SN(Y) € Kzn(m)(V,M) for n(w) > 0. .

Thus one has:

Theorem (Conner end Floyd [4) ]1): A necessary and sufficient conditic
that a stably almost complex manifold with framed boundary have the same
Chern numbers as a closed stably almost complex manifold is that the —\é

class be integral.
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*
Bince the homomorphism J : ng;{fr —>Q:a—~>1 28 [v,M] sends ngk

r

1 — Y/Z. One

into 2 one has defined a quotient homomorphism E : n;

has the result of Conner and Floyd [41 ]:

Theorem: The homomorphism E : ﬂ:;_l —>~ Q/Z coincides with the Adams

invarient eg : lim (s®) — q/z.

g 2k=-1+8
Remarks: The Adams invariant is defined in Adems [ 4 ]. The proof glven

here 18 due to P. S. Landweber.

Proof: Let (V,M) be imbedded 1n (H2k+2r,R2k_l+2r) with complex normal

bundle trivialized over M, defining the normsl mep v : (V,M) — ('BUr,*)
(trivialization determining the deformation of M to a point). Applying the
Pontrjagin-Thom construction defines a map £ : (D2N'2F gP*2r-1y o (1py 1

end as with the unoriented case one has a diagram of cofibrations

S2r5 hi X x/SZr = D2k+2r/52k+2r-1

S A

§" ¢S TBU —>- TBU /S

vhere X 1is the two cell complex formed by attaching D2k+.2r to Szr by

themap £ : 82"2"1 . 5% o 14, g and F being induced by f£. In

particular the class of f in the stable homotopy of spheres 1s the element

fr
2%x-~1"

The cohomology groups of X are free abelian with base 1 ¢ no(x;z),

corresponding to [M] ¢ @

#* - ~
e € HT(X;2), and b e BP'2(X;2) characterized by gla)=L ¢ %7 (5%%52)

2k+2r(D2k+2r 2k+2r~1 2)
> sal.

® - .
and b=1T ((') with ('eH B
To define the Adams invarient of the class of f one chooses any element
ue K(X) with ch{u) = a+ ¢b, ¢ £ Q (possible from the Atiysh-Hirzebruch

[18 ] spectral sequence for K theory) and lets ec([f]) =¢ in Q/Z.
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From the relat:l.on.between the Thom homomorphism and characteristic
numbers one has T.J [v,M]- (' = -f'(g—l'u)Ek-l-Qr
Tof [V Mlb = & (P g e % (TBU_;2) being the Tham class. On
the other hand & 1U = ch(U) where U ¢ Ezr('raur) 1s the K-theoretic Thom
s*(é-lU)ar = a and one has

ch(gp(1)T0) = g (chl) = a + T [V,M]b with g p(1)7 € R(X) = KO(X).

* % # . "
clags. 8ince JgU=1U=(, gU

s eg([£]) = 78 [V,u] = B(a), **

From Adems' computations with e, one has:

Corom : The homomorphism ‘J : n‘é;f" —~ Q maps precisely onto the

integral miltiples of the numbers:

a) 1/ d2t for ng;fr ,
B) 1 for ng;:;,
e) 14, , for agft,
a) 1/2 for Qgite,

where d’2t = 85 . 2521;-0-1 = 8541 and & is the denominator of Bn/hn, Bn

belng the n-th Berrnoulli number.
For facts concerning Bernoulli numbers, see Milnor [86 ] or Adems [ 3,].

That the Bernoullil numbers enter into the result is not surprising since

= t
x/(e-1) = | 8 %
eop ©
where
_ 8= 1 = . -
By, = (-1) lns. B, =5 and B,,, =0 if s5>0.
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Relation to unoriented cobordism

The relation of complex cobordism to unoriented cobordism was completely
explored by Milnor [87 ). As with any pair of (B,f) theorles one has the
homomorphism F, : 92 —_— 77. which is obtained by ignoring the complex

structure.

Proposition: Let M bee stably almost complex manifold. Then the
Stiefel-Whitney classes Voiel of M are zero end the classes W,y are the
mod 2 reductions of the Chern classes ¢ g In particular, all Stiefel-Whitney

numbers of M having en odd Stiefel-Whitney class as a factor.must be zero.

Proof: This follows at once from the change of fields theorem of

Chapter V, ®#

Proposition: A closed manifold Mn has all Stiefel-Whitney numbers with
an odd class as a factor zero 1f and only if there is & manifold M' with M

cobordant to M' X M',

Proof: If M ~ M' xM', M has the same Stiefel-Whitney num'bers as
M' X M', Under the comultiplication A4(w,) = ] w, 8w  so
: 17 ey 3K

W, e.o W, [M'" x M'] = 1 W, .. M )ewr, ... [M].
11 ir J +k =1 ‘11 Jr k1 kr
o a e
It J= (Jl,...,Jr)., K= (kl,...,i:r) and J # K, then the terms
wJ[M']wK[M'] and wK[M' ]wJ[M’] are paired, having the same value and so add
Lo zero in 22. In particular, if eny 1, 1s odd, this pairs all terms and

the number w, ... W, (M' x M'] is zero. If every 1, is even, then

1 r
ECACUES RN CACD S U

i
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Suppose all numbers of ' divisible by an odd class are zero. If n
18 odd M must bound; this being interpreted as being a product vacuously.

If n =2k, consider the homomorphism ¢ : nk(no;zz) —> 2, with
) = wai cee Wy ‘[M] obtained by composing the doubling

¢(\‘ri ces W
1 r 1 r

i
. .
homomorphism ¢ : H (BO;Za) —> H (BO;Zz) vwhich sends w, into w,, with,

. X * . * .
the evaluation on M., Let A : H (BO;ZZ) —>H (BO;Za) by sending w, imti

clessifying

2 wak. A 1s induced by maps of spaces BOr —_— 'B°2r

I+k=1
Y, ® Y. 80 A commutes with all Sqi.. Further A(w

) =0, AMwy) =

21+1
80 the kernel of A is precisely the 1deal generated by elements of odd

" " B
degree, The composition A<y : H (Bo;zz) —>H (30;22) is the homomorphism

glven by x —> x2.

Then A(Sqaixpx) = Sqai(kxpx) = qui(xa) = (Sq:"x)2 = A(‘bSqix) end

Avyx) = vovry(x) = v2uxZ = (vx)2 = AY(vx), where v=1+v + ... 1is
1

the Wu class. Comparing terms of equal degree A(vziwx) = N(vix). Thus

for all x & Hk'i(BO;Za). w(sqix +vyx) + Bqaiw + "éi“”‘ 1s in the kKerneli
A, hence vanishes on the fundamental class of M. Then _¢(Sqix + vix) =

{Squw(_x) + vakw(x)}[M] = 0. Thus there is a manifold M' with o(x) = x[i
for all x ¢ H*(B0;Z,), eand wi[M] = w [M' x M'] = wjplM'] for a1 1, |

Mo~ M ox MY,

AR P, -

One then has:

Theorem: The homomorphism Fy : o —= 77, has image /12 = {x°|x e,

v A

i.e. precisely those classes for which the Stiefel-whitney numbers having

it

il

en odd degree factor are zero. Further, one may find generators bi of

and x (1 #2°-1) of T, for wnich Fy(v,) = x> 1f 1#2°1 ana

i

R TR S R

F'(bzs-l) =0,
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Proof: 8ince x — x2 is a homomorphism in an algebre over 22 one

need only map onto generators. Let Xy = [RP(21)]1, béi = [gp(21)], and
for 1 = 2P(2q+1)-1, let x, = [N (n)], b! = [H (¢)] while
) 1 zp'.lq.! t 2P+1q.:2p
- o8 _q ]
for 1 =2-1, let b} = [d g1 o5 L g
It has slready been shown that ., =z.0x,]1, 8z, =z[b] The

* 214 * 2 bt
characteristic number computations give cw[bi] = wau[b:!L] (mod 2) by exactly
the same formulae as the computations of w [x,]. Hence F,(v}) = xf.

Further all Chern numbers (= K-theoretic numbers) of b's " are even, SO
271
F“(b's )} = 0. Bince one may choose b, ¢ QE vhich generate and which reduce
2°=1

to 'bi mod 2, the result is clear. W#

i

If one then considers the relative group ﬂo v (TBO TBU) one has

an exact triangle

n-—-——»-'TT

ﬂ*'

Since v = 0, this glves rise to an exact sequence

2x+1
oy BTy, e 0 e B 7T
| |
= Hppyy (1Y) —> By, (TBO) —> By, (T80,7BY) — B, (TBY) —> By, (180)
T, -, oo k- T “gn-l_ =0

| L]

Hy, (TBQ) — Hy, (TB0,TBY) —> i, _, (TBY) = 0
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in which the vertical arrows are the Hurewicz homomorphisms. From the

knowledge of F one may decompose this still further.

2n
First, image F2n ='77!21, 80 ng;usﬁen/ﬁi is a 22 vector space

(of known dimension), Further, this group 1s clearly detected by the Stief_i_
Whitney numbers with an odd factor. .

Next, kernel F2n is the 1ideal in n‘J generated by the elements b

(letting by = 2) and since this is a free sbelian group,

Ol '
2n+1 2 Tém-l ® ker F2n’ 7 12n+1 being precisely the torsion subgroup. '1'!

torsion free part of this group, /Tors:lon, may be characterized by

"

2n+1
ma.pﬁing into an' ‘8o that the class is determined by the Chern numbers ot
the boundary. The torsion subgroup is dzn_'_;nem_l and is detected by

Stiefel-Whitney mmbers. In mod 2 homology H, (TBY) —> H, (TB0) is
monic (the cohomology map being eplc), so that in fact the Eurewicz map deff

a splitting

o —u,, (TB0,1BU;2,) = B, (TB0:2,) — /T, .,

the latter map belng a projection.

The interesting question is how much of 09’  may be detected by Zj

cohomology characteristic numbers. For this one has:

~s

Proposition: Under the product of manifolds @ 0,U is an ng
Writing Ay = Z[b,] end letting by = 2, A3’  1s generated over 0

the elements

@ a1 € nzsﬂ_ with 32 a =b (s > 0)
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where 77‘ = Za[xi], the complete set of relations being given by

b dyfx, ...x )=o0
fa h i

b a =D a .
2t-l 25+1_l 255 2t+1_l

In addition, the kernel of the Hurewlcz homomorphism QE’U — H“(EO,T,EU;Z2)

is precisely the submodule consisting of multiples of the b s (i.e. the
2 -1

image is the free ﬁf module on the classes « and  dy(x, ... x ).
1 r

s+l

27 -l
Proof: The first part is obvious. BSince 3(b a ) =
X002 A 8+1
2°=1 2 -1
(v a )=b b , one must have b a -b o =u
2% 2%y’ Bt 2fa gt 251 oS M,

in the torsion subgroup, but all Stiefel-Whitney numbers of u are zero since
those of the b's are, and hence u = 0. PFurther the b s having zero

27-1
mod 2 npumbers fmplies that the sutmodule Ib ﬂe’u 1s annihilated by the

mod 2 Hurewlicz homomorphism. To see that thfs-:il..a the entlire kernel one
considers i“(@) — ﬂ*(/TgU) (using _22 coefficients unless otherwise
noted), which maps e free de module onto a free dzl(QO) module. By a
good cholce of generators this may be written (T @ 5) 8 & , — T8 (/q,)
vhere T,5 are Z2 vector spaces (by proper choice of characteristic
numbers 8 to detect cokernel F, and T to detect image F,). Writing
TBO = K(T) x K(S) one may project onto K(T), splitting K(S) out of the
problem. .

Letting X = TBU, ome has £ : X —> K(T) with cohomology map
Te dz —T8 QZ/(QO) and one wishes to know how much of the homotopy of
K(T)/X 1s detected by mod 2 cohomology. Bince i'(x;z) is torsion free

the classes of T are the reduction of integral classes, and letting 7 be a
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free abelian group In "y (X) (direct summand) with Te z, & T, ™ oa

complementary summand, one has the disgram
£X —— IK(T) —> G

£X = ZK(T) —> G

RS

X.Ea-—-»-zKT)——»-F

with homotopy and cohomology diagrams

Te ﬂal(%) — 10 1Azt ‘
0 ol - .
T8 dyla) ~——1 8 A,/ A8t

T8 @/J_Tédz
Sql h

T8 q,/(q) +—18 Ay azsql.

From the analysis of sSpectra of thé type of X, one knows that tﬂe suma.n&
TOV, of o e 22 = 7,(F) 1s detected by mod 2 cohomology (T & image i
while the quotient IT of IT = m,E°K(T) is detected by )
Te1C T8 azldsz]'; i.e. in H*(K(T)/X) there is a summand mapping t¢

. . ,
T8 Sql ®T®6 dl(vl) CrTe a2 = H (K(T)), end detecting homotopy classes
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the form IT ® T 8 V, C n (k(T)/%).

Thus under the Hurewicz homomorphism ﬂg’u — H*(,'I'Q_O,%J;ZQ) the image

is at least as large as B8 @ ITeTE® Vl. Since this has exactly the right

dimension, the result is proven. ##

Note: By the analysis above, one may if desired detect a ., mod 2
27 "=l

by the Stiefel-Whitney class w
254-1_ "

8q’ 1y in H (%O,T,EU;ZQ), these numbers annihilating the image of [ {y.

0,fr

In perticular, o, comes from ﬂl

corresponding to ﬂgr E] ﬂg. The other classes ay ‘do not come via framed

g+1 _(v)» corresponding to
27 7-1

and is related to the Hopf invariant,

cobordism.

Complex Bordism

Corresponding to the forgetful functor from stéb],v almost complex
manifolds to topological spaces one has defined relative bordism groups
aJ(x,A) = 1in Tupop((X/A) . TBU) = E,(X,A;TBY). The product of manifolds
mekes n‘}(m) e module over ﬂH. These modules have been studied by Conner
and Floyd [35 ], [37], or [39] Uy analysis of the spectral sequence from
H.(X,A;ng) to QI.J(X,A). One can also obtain these results as was @me for

U
2,

Theorem: For every CW pair (X,A), QE(X,A) 8 Q is a free QI.J 8 Q

module tsomorphic to Hy(X,A;Q) 8, (95 @ Q).

Proof: w,((X/A) . TBU) —> Hu((X/A) . TBU;Z) 1s an iscmorphism modulo

torsian, #%
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Theorem: If (X,A) has no torsion in its integral hamology then QH(X,A),'.
is a free QH module isomorphic to Hy(X,A;Z) @ n‘,f. In particular, the
evalustion homomorphism e : Qg(X,A) —> H,(X,A;Z) is epic. If {x} s §
a homogeneous base of H,(X,A;2Z) and £, (Mi,aMi) ~—> (X,A) is a map of &
stably almost complex manifold into (X,A) with fi,( [M,9M]) = x;, then

ng(x,A) is the free n‘,{ module with base the clesses of the (Mi,fi).

"
Proof: BSince (X,A) has no p-torsion, Q, acts trivially in H (X,A_;Z#’..
8 uu}':f

where x5

dp/(Qo) module. Thus ﬂl:(x,A) is torsion free and maps monomorphicall&:"‘

into H,((X/A) . TBU;Z). Further, the map ﬂH(X,A) $ B (X,A52) » H,(x,A;z)az-p
is epic for eech prime p, 80 the index of image e in H,(X,A;Z) is not
divisible by p. Thus e 1s epic. Choose classes (Mi,fi) mapping to x,
By the Atiyaﬁ-l!irzebruch [ 78 ] spectral sequence for X-theory, there exist

» » " .
elements 2z, €K (X,A) with Ch(zi) = x, + higher terms, {xi} being dual "

i
to the x,. Let B, C H,((X/A) x BU;Z) be the ring of homogeneous elements’

b
x for which ch(zi)sm(e)_J[x] €Z forall i and w. If £ : (M,3M) — {
then ch(zi)'sw(e)J((f x 1),[M,a¥M]) = r'z.-s WY(T))[M,2M]  which is integra
so nH(x,A) — H,((X/A) x BU;Z) : (M,F) — (f x 1),[M,3M] maps into B,
The elements (Mi £, ) have linearly independent mod p cheracteristie
numbers ch(z )s (e)J and hence B, is the image of the free n module d oﬁ’
the {(Mi,fi)}. In particulsr the Lo ,fi)} generate ﬂ,(X,A) freely as

Q0 module. ¥ .

Corollary: If (X,A) has no torsion in its integral homology, then
integral cohomology characteristic numbers determine cobordism class in

ﬂH(X,A). Further, all relations among these numbers come from K-theory.
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Briefly, for f : (M,3M) — (X,A) one has generslized Chern numbers
f.(x)‘cm('r)[M,aM] for x € H.(X,A;Z). All relations among these are given
by en(e'z)s () fM,M] € 2 for zc K (X.A).

This result mey be modified slightly to give results in the presence of

limited torsion.

Theorem: If (X,A) hes no torsion which is p-primary for p € P'
(P' a set of primes) and Q' € Q is the set of rationel numbers which have
denominators relatively prime to the elements of P' (when expressed in
lovest terms) then f3(X,A) 8 Q' is e free 9 8 Q' module isomorphic to
H,(X,A;Z) 8 nf 8 Q'. In particular, the cokernel of the evaluation is finite,

of order not divisible by p for any p € P!,

Proof: One proceeds exactly as above using only the primes p belonging
to P', showing thet QH(X,A) has no p torsion and that coker(e) i1s finite
of order prime to p. One then chooses clgsses x; € H,(X,A) which freely
generate H,(X,A) 8 Q' end can select maps (Mi,fi) which realize n,x,,
l/ni € Q'. To prove thet these generate QH(X,A) 8 Q' one may assume that
(X,A) 1s e finite complex (to prove freeness up through dimension n one
mey restrict to the n + 1 skeleton of X and A. This introduces no new
torsion and induces isomorphisms of QH(X,A) in dimensions less than or equal
to n). Noting thet all differentials in the Atiyah-Hirzebruch [ /8 ] spectral
sequence have finite order, which cannot be p primary for any p € P', one
mey find elements z; € K*(x,A) for which ch(zi) has least component of

degree equel to dim x, and with ch(zi)[xi] =m €2, l/m ¢Q (and

i

annihilating all other xy of the same or lower dimension). One lets
B*C H,((X/A) x BU;Z) be defined by ch(zi)sm(e)A [x] € 2 end proceeds as
above to prove nH 8 z{ (Mi,fi)} C QH(X,A) C B, having index of order prime

to p for each p € P!, ##
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Corollary: If (X,A) has no p primary torsion in its homology -then

al(x,4) ® Z, is a free e Z, module isomorphic to H(X,A) @ s e Z .

Corollary: If (X,A) has no p primary torsion in its homology for all
p € P', then generalized Chern numbers determine bordism class up to torsion
of order prime to all such p. Further, all p primary relations among

these numbers follow from the K-theory of the finite skeleta of (X,A).

Note: It has been assumed throughout (implicity) that (X,A) has finite
type. Notice that the K-theory of (X,A) may be zero, while that of its .
finite skeleta 1s not. in the above one tekes a large skeleton to determine -
the relations (which are independent of the skeleton chosen) with respect {:o )
the prime p and its powers. See Hodgkin [56 ) in which it is shown that. v
inverse limit K-theory venishes for many spaces (homotopy class of meps theo:j

factors through inverse limit theory for characteristic numbers). The importy

point is that the K-theory is not closely related to skeletal decompos:ltio‘ix_,i}:
h

while homology and bordism are.
It is to be noted that the resﬁlts concerning the p-primary situation
are valid for speces with p torsion provided one remains below the dimens
in which that torsion occurs, since one may restrict to e skeleton.
Landweber [66 ) has examined the homomorphism fN3(X) — H,(X;2) for®
X = K(Zp,n), k(z,n), or BU(2q,...,®) (the comnnective cover of/-’:BU)’ i

S

steble range, the interest being entirely in torsion elements. He cémplet 2
S

determines the image, but this does not determine the bordism since there dﬁ‘}_

nontrivial extensions involved.
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Chaepter VIII

o, - Restricted Cobordism

Let K be one of the fields R or €. If u 1is an n-dimensional X
vector bundle, the determinant bundle of u, dety, i1s the K 1line bundle
A;(u) given by the n~fold exterior power over K of the bundle u. If u'
has dimension n', then A;"'n'(u ou') s A;(u) OKA;'(M') s0 the determinant
takes Whitney sums to products. Combining this with the fact that detp = p
if p 1is @& l:l_ne bundle, one has det{u @ l). £ Jety ® 1 = detu, extending
the determinant to steble K vector bundles.

For any integer r > 1 one may form & cobordism cetegory of manifolds
with "P(K") structure” as follows:

1) An object consists of:

a) A compact menifold M with a chosen K vector bundle structure
on its steble tangent bundle (equivalently normal bundle; i.e.
e (BG,g) manifold, where G =0 or U);

b) Amep £: M—P(K"); and

e) An equivelence of f£*(£) with the ldeterminapt bundle of the
K-tengent bundle T of M (i.e. a bundle iscmorphism of K
line bundles). Note: For r =1, & {is the trivial line bundle

P

and the equivalence is e trivialization. ((RS §= Fanon.im 4" hs

2) Amap ¢ : (M',£') — (M,f) dis an imbedding ¢ with trivialized
normal bundle for which the K tangent bundles are competible (a (BG,g) map)
such that f£' = f+¢ with the equivelence given by restriction.

3) The boundary functor assigns to M its boundary with inner normal
trivialization to define the induced structure, and the 'inclusion' natural

treansformation is the inclusion map with inner normel trivializetion.
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The cobordism semigroup corresponding will be denoted "T/K,(K,r).

Letting M be & (BG,g) manifold with- v ¢ M —~ BG defining the normej
structure and letting ¥ : BG —> P(K) be a map with ¥*(A) = detZ{ where .
A is the canonical bundle over P(K ) and \Z( 1s the universal stable bundl
over BG, one has (y*v)}™(£) 2 dett. Any two meps obteined in this way ere
homotopic and one has a canonicel choice of homotopy defined by the iscmorphi
of (BG,g) structures for different imbeddings end choice of homotopy for the
maps $. If £ : M—> P(K°) is eny map, an equivelence of f£*(£) with d_e'_:_
mey be interpreted as a homotopy of the maps f and ¢:v. Thus a "P(Kr)
structure” on M mey be interpreted as a deformation of the canonical map
¥*v into P(K").

Interpreting a homotopy as & cobordism, it is clear that within cobordis
only the homotopy class of the equivalence matters and also thet homotopie
maps f give isbmorphic families of structures (the isomorphism depending oﬁ
the choice of homotopy). Further, & structure on M defines by projection':é
structure on M X I with the "opposite end" defining an inverse to M.

In order to meke this more precise and to determine this cobordism cateifm
as a (B,f) theory, one constructs a classifying space as follows. Let

p: BG x P(K’) —> P(X") be & map for which p*(A) = (det{f) 8 E. ILet Bm’

o0
be the total space of the induced fibration of the sphere S(K ) over the

projective spece P(KD), glving

w(?) —2 o 5(x")
m

B¢ x P(K°) & P(x™)

and let © : BK(r) —~ BG be the composition of m and the projection on l
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Being given & menifold (M,f) with P(K*) structure with v : M — BG
the normal map, v X £ : M—~BG x P(K°) pulls (det%{) ® £ back to
(detv) ® £"(E) 3 (detv) ® (dett) which is trivial. Thus v x £ lifts to
BK(r), the choice of lifting being equivalent to the choice of homotopy of
p+(v x £) to e point mep or to the choice of equivalence of £ (£) and dett.
(Note: = is a primcipel G, bundle.)
(r)

Conversely if v : M —» BK is a lifting of the normal map v : M — BG,
the compoe.ition f= "2'"'; where T, projects on P(K*) maps M into P(K)
with detv 8 £*(E) trivialized (S5(K~) 1s the sphere bundle of A and the
pullback of A to it is naturally trivialized) and the trivialization may be
interpreted as an equivelence of dett and (E).

Letting ()

" dencte the pullback of BK(r) over BGn’ one has

Theorem: ‘Zt/;(x.r) = ;’1: nn+ks(m§"),u), vhere k = dimCK.

The interest in these cobordism theories is primarily that they providel
intermediate levels between the "unoriented" theories (r = ») and the
"oriented" theories (r = 1). Briefly, one has:

1) For r = =, the space BK(r) may be identified with BG by means of
16 1%% BG x P(K”) for then p-(1 x ¥)*(2) = (aet) & (det) which is
trivial. In fact, if dim M = n then the classifying map ¥°v for detTt
sending M 1into P(K ) may be deformed ;lnto the n-skeleton and the homotopy
given by two different deformations may be pushed into the (n+1)-skeleton
giving e unique P(X°) structure provided (n+1) < k(r-1). Thus for
r > (n#l)/k + 1, ‘7/’{(K,r) -%(K.’) is the "unoriénted" cobordism group
'77n or ng. «uis vill be dencted nf in this chapter.

2) For r=1, a "P(K’) structure” on M 1is & trivialization of dett.

It t is represented as an n-plane bundle with an inner product, each fiber
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V becomes an n-dimensional inner product space. This extends to an inner -
product on the graded algebra A(V) = IA™(V) by letting A%V be orthogonal

to AkV if ) # k and setting Ly

<X,Y> = det |<xi’y.1>| :

if X = Xy aveea X Y= yl assea ys. Giving the exterior power bundles t. ;

inner products, a trivialization of dett may be thought of as choosing

of determinant one are the special orthogonal or special unitary‘gro.ups,

Note: The groups “Wg(K,1) will be denoted ﬂ%c', end the space BK(x.

is demoted BSG. Although the main reason for interest in the ~Wi(K,r) &

directly concerned with that calculetion.

3) The first analysis of the groups W(K.r)_ for r # 1, was by
Wall [i30] for the case K = R. Making use of the case r = 2, which may
thought of as "ol - spherical” cobordism, he exploited the various inter<
reletionships to determine the 2 primary structure of ﬂio. Additional m

may be found in Atiyah [ /3] end Wall [133]. The complex cese was studie

s

Conner and Floyd [ 39 ] patterned closely on the work of Wall (buf:\\us:lng theé
methods of Atig.rsh). It has been noted by Novikov in conjunction with his
of the Adams spectral sequence with "unoriented" cobordism coefficients

(Novikov [9%]) thet the J/}/,(K.,2) arise neturelly in the calculstion of t}g

"oriented" theories.
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The relationship of "P(Kz)“ theory and “ol - spherical” theory may be
seen as follows.
2 for K=R or Z for K=¢ then the first
characteristic class ol(M) = al("r) € Hk(M;ZK) coincides with the characteristic

It ZK denotes 2,

class ol(det'r). (To see this one has ol(p) = ol(detp) if p is a line

bundle and ag mentioned in discussing Hm in Chapter V,

sB
ol(a 8b)= Ol(a) + ol(b) if a,b are line bundles, so thet applying the
splitting prineiple and induction establishes ol( 1) = ol(det'r) for general
bundles).

Since P(Kz) = 85 with ol(E) ={ ¢ H‘k(Sk;ZK) one has for an object
(,£) with "P(C)" structure emep £ : M —>8* witn £*({) = o (M)
Thus al(M) is gphericsl. Conversely, being given a manifold M for which
ol(M) isg spherical there is amap f : M -->P(K2) with £°() = al(M). Since
equivalence classes of K 1line bundles are determined

P(K) = K(z,,k) = BG,

by the first ZK-characteristic class. Hence there is an equivalence of -
£%(£) eand detr.

4) The general case r > 2 1s not of special interest. Results in the
reel case have been obtained by J. B. Minkus and by C. T. C. Wall, but nothing
appears in the literature. The use of the Atiyeh bordism epproach mekes the

computation an exercise.

Semi - geometric methods :W,(K,z)

Let (X,A) be any palr, and define s homomorphism
o : 23(X,A) —J#L(X,2)(X,A) as follows. If o € R2(X,A) chodse & mep
g : (M,3M) —~ (¥,A) representing ‘@ and let ¥'v : M —> P(K) be the map
inducing dett. By ccmpact:iéss of M, there is an integer Q such that

o) C P(KY. Let 8 : P(KY) x p(K2) — P(K") be the usual imbedding
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(N = 23, given in locel coordinates by wu,, = xiyj) so that

13
6 = Bo(Yrv x 1) : Mx P(K2) —'>P(KN) clessifies dett 8 E; i.e,

O%(E£) = dett ® E. By means of e homotopy © may be deformed so that

6|aM x P(X%) is trensverse regular on P 1), and then to make 6 tranew
reguler on PUCL) keeping oM x P(K®) fixed. Then

o le(8 1) = L C Mx P(K3) with 3L =1 N (M x P(k?)). The tangent
bundle of L is isomorphic to the pullbeck of LY ® TP(KE) - det‘r 8 E, g.L

an isomorphism det(r ) & detr, 8 E 8 (det'r )" Loelct, Thus the ccmpoas

5

f: L~>Mx P(Kz) — P(Kz) defines a "P(Kz)" structure on L. The
composition ¢ : (L,3L) &= (M x P(K2),M x P(K2)) T (M,3M) —E» (x,4) th%
glves ((L,£),6) which is an “W,(K,2) bordism element of (X,A). That tlg

defines & homomorphism ¢ : nﬁ(x,A) — H.(K,2)(X,A) is an easy consequ

of trensverse regularity (think of different homotopies as cobordisms and f'__
a cobordism G : (V,U) —= (X,A) with avaM U (-M') U U, first epply
transverse regularity on U x P(Kz) keeping the boundary fixed, and then

keeping 3V X P(K2) fixed meke the map trensverse regular on all of V X P

Lemma: Let £ : M —» P(Kz) be a differentiable map. Then -
£x1:Mx P(K2) — P(Ke) x P(Kz) is transverse reguler on

_ 2 2
B = {(x,y) e P(K) x P(K")|xgy, + x,¥, = O}
Proof: Let u : P(K2) — P(X°) : (ygoyy) — (<y;s¥y): Then :ls
differentiable involution (u2 = 1). Then f x 1 is transverse regular og

Hy, if end only if (1 x p)-(f x 1) 1is trensverse regular on (1 x u)(n?

= {(x,¥)|xpy, = x;y,} vhich is the diagonal 4 inm P(K%) x P(X%). This t
the case 1f and only if (1 x u)*(f x l)'(:ldM x u) 1is transverse regular J
A, .and so 1t suffices to prove f x 1 is transverse regular on A. Writ%

(t M,‘P(Ke) (m,x) = = (1), @ (rP(Kg) ffu- (£ x 1)(m,x) e 4, (F x 1).i mapé
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(0 x (TP(KZ))x) onto 0 x (TP(I@))xC (tP(KE))x ] (TP(KE))x which is

transverse to (rA) . Thus f x 1 1s transverse to A, completing the

(x,x)
proof. %%
(I am indebted to W. Browder for the above proof, which considerebly

simplifies my own proof.)

One then has:

Proposition: The composition
F
W (K,2)(X,8) —> aS(x,8) =2 T#(k,2)(x,a)

is the identity, where F, is the homomorphism induced by the forgetful functor

which ignores "P(K2)" structure.

Proof: Let ((M,f),¢) rei)resent a class in 1{41(,2)()(,1\) with
£ : M —= P(K2) & differentiable map having f£*(E) £ dett, and

¢ : (M,9M) —> (X,A). Let 6 : M x P(Kz) — P(Kh) be the composite
M x p(2) 4 p(®) x p(x2) B> p(x*)

»
where B((xo,xl),(yo.yl)) = (xoyo,xoyl,xlyo.xlyl). Then 6 (£) 3 dett @ £.
Further, 8 1s transverse regular on the subspace P(Ks) given by v, + u3 =0,

with preimage H and f x 1 is transverse regular on Hl 1 by the lemma,
>

1,1
So thet 6 (and its restriction to dM x P(Kz_)) is transverse regular on
p(x3). '

Then L = 6 1(P(K)) = {(m,uf(m))jm € M} with the composite
v:L—MxP(K) —>M e diffeomorphism. The mep
£' ¢ L —>M x P(K2) — P(K?) may be considered as uf : M —>p(k%) and

since u 1s induced by K — K (a,b) —= (-b,a) which is a rotation



- 154 -

through 90°, u is easily homotoped to the identity, with a chosen 1smnorphif'“
of £ end wu®., The tangent bundle of L 4is the pullback of ’

Ty ® Tp(k?) " det-rM 8 £ and Tp(k2) ®1&E86E or equivalently
F -1 i
TP(Kg) EBE, while det'.rM £, 80 that 123 ie isomorphic to v 5

Thus with only "universal identificetions™ ((L,f'),$'v) coincides with

((4,£),4), and OF, =1, .%* - "

H
- -

Corollary: "M(x,z)(x,A) is e direct summand of ﬂf(X.A) for every
pair (X,A). ‘

Remark: From thie one hu.;vM(K,Q)(X,A) is isomorphic (vie F,) tQ%
the subset of fS(X,A) consisting'of those classes which are represented bﬁ!
manifold-mep (M,g) for vhich a_l(M) is spherical. This is Well's origini
definition [/30], baving eliminated. dependence on the choice of map to P(l{iﬁ

and bundle equivalence.
Proposition: For eny pair (X,A) the diegram
a8(x,a) — W(x,2)(x,4)

N

Hy(X,A52,)

commutea. In particular, a ZK homology cless is representable by e mani

wvith "P(X°)" structure if and only if it is representeble by an "unorient

4
manifold. : !

Proof: It suffices to show that for every M, the map S
v:L—>MxP(K) ZoM has v,[L,0L] = [M,2M]. This is basically a |
consequence of Poincaré-Lefschetz duslity. Letting n=dim M= dim L,

H‘(u,au;zx) is & free 1z, nodule (by duality) end hence is isomorphic to-



- 155 -

Hm(ﬂn(M,au;ZK),ZK) (universal coefficient theorem) end thus it suffices to

shov vA(x)[L,9L] = x[M,3M] for all x e H"(M,3M;Z,). Then

v (x)[L,3L] = 7%(x)- (x%o; () + v8 LM x P(C), oM x B(KP)),

= w0 (x)-58( L)L, 0 x 2()]

since x'al(M) has dimension greater than that of M, but this is then equal

to
x[M,M]° { (p(£2)] = x[M,3M]. #»

In order to determine ‘u((x,z)(x,A), it is standard to use an exact
sequence of Atiyash [/3 ] (The proof here being due to Wall [/33]). For thie
one needs to generalize the notion of submanifold dual to & line bundle.

Let M be a compect (BG,P) manifold and O e K-line bundle over M.
Let h:M—>p(k") with h*(f) & 0, and by compactness, h : M — P(E)
for some large S. One may then deform h|3M to be transverse reguler to
P(5™®) ana keeping the map fixed on M continue this deformetion to make
the map h transverse regular on P(E ), Then (P %)) =¥ tee
gubmanifold of M of codimension s+k with normel bundle in M iscmorphic
to 8:0 (as real vector bundles). For any 0 <t < s one mey give this
normal bundle the K vector bundle structure given by +. + (s~t) g, and
this gives: N a (BG,p) structure.

N is known as "the™ submanifold duel to to + (s-t)o. The manifold N
is or-\:-course not unique, but is well defined up to choice of various homotopies
used in making h transverse regular. Two such transverse regular maps being
homotopie, one may make the homotopy . H : M x I — P(KS) transverse regular,

keeping ends fixed to define & (BG,p) submanifold V of M x I. The map
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Ve M xI-T»M gives a (BG,p) bordism of the two representetives. Thus i

class of N in QC(M,3M) 1is well-defined.
Pi-ogosition: There is & homomorphism
a: afx,a) — of(x,8)

of degree -2k which sends the class of f : (M,3M) — (X,A) into the class
of the composite
a i f
£ : (N,0N) —> (M,dM) ~== (X,A)
where N is the submanifold dual to dett, @ (det'rM). Further, the sequence
Wi Fo ¢ a G |
0 —= W (X,2)(X,A) — Q,(X,A) — Q,(X,A) —=0
is exact., 3
+4
Proof: One first needs to see that d is well defined, but if H : W -
w=MUT U(M') and 'H|M = ¢, HIM, =1, HT) CAa, oT =23\ (-M")

then detrw restricts to dett, on M and detrM, on M'. Thus e sub=

M
manifold of W dual to dett, @ ('EetTw) gives & cobordism of the represent=.
atives defined by M and M'.

Since the construction may be performed separately in each summand of
[3 dis,jéint union, 4 is clearly a homomorphiem.

To prove exactness of the EEquence one has: )

1) F, 1is monic by the previous results.

2) a.F, =0, forif £ : (M,3M) — (X,A) and detr, is induced vy &

M

o4

map into P(l(z), then (N,3N) is the preimage of P(Ko) vhich is empty. ..}
3) If d(e) = 0, o being represented by f : (M,3M) — (X,A), 1let

A

. . . 4
h:M—>P(K®), & large, with h*(f) 2 dett) = 1 be made transverse regulf
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on P(K*"2) with inverse imege N dual to u @ §, and also on P(K°"1)
with inverse image L dual to u. [First make it transverse regular on P(Ks—z
giving N as inverse image. A neighborhocd T of N 1s then mapped by a
bundle map into & neighborhood S of P(Ks_z). By a defoz_'mation of h on
M-T one may push M-T out of interior(S). Since th is transverse regular
on P(K®Y) one may make & small homotopy of h fixed on T to get h
transverse regular on P(®Y) ana by a proper choice of "small" assure that
h(M-T) does not intersect P(K°~2)].

Since d(a) = 0, £ : (N,08) —> (X,A) bounds and there 15 & map
F:H—>X, ¥ e (BG,p) manifold, 3 =N\ P/(oN = 9P), F|y=%,
7p) C a.

The normal bundle of ¥ in L s (Qet? )|y, tbut
detty 8 detv = (det'tM)|N, vhere v =1 @ I 1g the normal bundle of N in M.
detv = detu ® detl = u 8 § is trivial so the normal bundle of ¥ in L is

Let U be the manifold foimed from L xI and D, the disec bundle of
(Ezt_ﬁ.), by identifying the part of D over N witﬁ a tubular neighborhood
of Nx1 in Lx1, Let U'C U be the subset L x I \JN, where N is.

the zero section of D. )

fiince N has a neighborhood of the form N x [1,2) in N, there is a strong
deformation retractién of U onto U' pro.jécting D onto ﬁ over

N - N x [1,2) and collapsing nlm‘[1 p) omto Dlgyy U ¥ x [1,2) by pushing
» .
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out radially from the sphere bundle of ZD|N*2.

|

7
P
\\ -
—~=x
[1,2]

s(2p|

p"2)

The tangent bundle of D i the pullback fyom N of Ttz @ detry (It

P! X—»Y ig a differentiasble vector bundle, Tx & p™ & p"r!, p*x being_:
the bundle along the fibers = kernel of the differential, and its orthogonal
complement in some metric being identifieble under the differential with p"r§
Thus U admits & (BG,p) setructure coineiding with thet of L x I and D

{agreeing on D| ‘Further £'7, : LXI—>X and F: N—>X agree on

N*l)' 1°

N x 1 and so define a map U' — X, Composition with the retraction gives

amap F: U-—>X extending the mep on U'. ] '
The boundary of U has three pieces: L x 0, 8L x I 8] D|p, and

L x 1 - (nbhd N) x 1 \J (sphere bundle of D) = L' :

and AL x I U Dlp meps into A, giving e cobordism of f'L with f‘IL,. i

Since s is large, one may assume that detrﬁ is induced by a mep o

A

into P(K°"?) agreeing on N with h|g, and hence this extends to a bundls

map D — P(K°1) sending D to & tubular neighborhood of P(K°™2) and |
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sgreeing with h'vrl : L x EF—> P(Ks'l) vhere both are defined. This gives a
map H : U—> P(Ks—l) which is transverse regular on P(Ka-z) (with inverse
image N UN x I). Let p denote the bundle over U induced from £ vy H.

Thus ¢ x b ¢ (L,0L) — (X x P(K®"), A x P(k®1)) s (BG,p) cobordant
to the map ¥ x ilL, : (L,0L') — (X x P(K®L), A x P(X¥® 1)) and the 1ine
bundle p over L' Induced by that over P(Ks-l) is trivial (g|
p(k51)-p(x*3)
is trivial).

Now the normal bundle of L in M ie d.etrMIL z ;L and one may aettach
the disc bundle E of ﬁ to M x [-1,0] by identifying EleO to & tubular
neighborhood of L X 0 in M x 0 to form & manifold W.

As before, W retrazcts to M x [-1,0] v U, where U 1is the zero section
of E; W admite a (BG,p) structure given by that of M % [1,0] and E
{agreeing on the interséction) and l.l 1 U — P(Ks-l) extends to e bundle mep
of E to a tubular neighborhood of P(Ks'l) in P(X®), hence giving a map
H: W—=P(K®).

The map H is transverse regular on P(Ks'l) with inverse image
U UL x [-1,0], and on P(K*2) with inverse image X U N x [0,1]U ¥ x [«1,0]

end the mep H clessifies dett,. (This is clear on M x [-1,0], while on E,

W
dett, ® ™ 8 m*ett; but on the part of U over H one hes
det-ru = p'det-rﬁ 8 p*detri - which is trivial, while on L X I one has
det-rU = det'thI which is trivial eince the normal bundle off L in M is
dett, and hence detr, 8 detr, = detr, on L.)

Thus one hes a cobordism of f : (M,3M) —= (X,A) to f£' : (M',2M') + (X,A)
with N' empty aﬁd detrM,lL, trivial.

Now let h' : M' — P(K®) be transverse regular on P(®Y) with preimage
L' end h'%(E)|., trivial. Since P(K5) = T(£) ena T(E)-P(K®Y) is

ml"
contractible one may homotope h' to coincide with the map M' 5 pyr g,
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where v' is the normal bundle of L' in M' and h" : L' —= (k")

classifies h'*(E)IL.. Since this buﬁdle is trivial, h" may be deformed vuy
e point map, so h' is homotopic to & megp into the Thom space of a point, l’..t
e k sphere,

Thus the class of f : (M,3) — (X,A) is in the image of F,.

4) Finally, 4 is epic.

To begin, one considers a differentiable K vector bundle .E over &
manifold M. p : P(E) —» M is then a differentisble bundle and
TP(E) 2 ’p*'rM ® @ vwhere 0 = kernel(p*) is the bundle tangent to ’the fiberll'

The bundle 8 is the quotient of the bundle tangent to the fibers of

S(E) by the action of Sk-l or

{(x,y) e 8(£) x E(g)|p(x) = p(y); xby}/(x,y) ~ (tx, ty).

pairs (x,8) € S(E) x K representing sx in the line [x] where

(x,8) - (tx,st), and E(X) is pairs (x,8) € S(£) x K with

(x,8) ~ (tx,t8)[(x,8) = (x,8) is a conjugate linear isomorphism]. "‘g
Then E(X 8 p*) is peirs ([(x,s)],y) ¢ E(X) x E(g) with p(x) = P%

end ([(x,ts)1,¥) ~ ([(x,5)],ty) or equivalently pairs (x,y) ¢ S(£) x E(é

4

vith (tx,ty) - (x,¥y) via ([(x,s)],y) —= (x,8y). Thus & 8 1 =X 8 p&

6 1is the orthogonal complement of the section x — (x,x).

Now suppose £ = E' @ 1, and then P(§') (C P(§) with normal ‘bundln‘s;)!n

given by X, since © @1 =X @ pa(E) =X 8 pHEr) @ X8 1. P(E') 1o the)

quotient of S(E') ¢~ 8(§) (C E(§') x K, and the complement of & tubuler

neighbornood of P(E') 1s the quotiemt or (E(E') x s*°1) (M s(e), which:.,__g
. . iy
the imege of M * 1., Over this subspace A has e section, given by
m —> [(0 ,1)]1. Thus A 15 induced from the Thom space of the normal bund
)

< it
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P(E')., Finelly then P(E') is the submanifold of P(£) duel to A (or

X, depending on choice of structure).

Now let £ : (M,3M) —~ (X,A) be any map and let u = dett, (with <

M
the steble K tangent bundle) and U=P(p 8 2), V=P(p & 1), W= P(u)

M

with projections # : U—M, #' : V—M, 1" : W —-—>NM. Let Ty be given

the stable K vector bundle structure of "'TM ®A8 (L) ®XB A

(isomorphic es real bundles with m*r, & X 8, m™(u 82)), and 7, as

M

X T8y " (Y 4
LA RN (v) & X, T, a8 T rMOAeﬂ’(u).

Then f£:7 : (U,3U) —~ (X,A) with d([U,f£:n]) represented by

v

£on" i (W,3W) —> (X,A), since dett; is 7818 4616 A=A Fow
™ : W—>M 15 a diffeomorphism and r"*u =1, so A 8 1"¥(L) =1 end ="
ls en isomorphism of (BG,p) manifolds. *#

This determines ‘?K(x,z)(x,A) as the kernel of the homomorphism 4. In
particular, if f : (M,3M) —> (X,A) represents a class in QE(X,A) with

(N,3N) dual to dett), & (detrM), then in Z, cohomology, the characteristic

K
class of N 18

o(8) = o(M)/(1 - o,%(m))
and (N,3N) is dual to cl(M)z. For x € H"(X,A;ZK),
{x-o (N)}[N,on] = {Pm(ci(M))‘cl(M)2-x)[M,3M]

vwhere Pm is some integrel polynomiel and Pm(ci(M)) = cm(M) plus terms with
cl(M) as & factor. Thus all characteristic numbers of ((N,3N),f) are zero
if end only if ell characteristic numbers of ((M,3M),f) with a factor

ul(M)2 are zero. [Use induction on the number of o, factors in am]. Hence
If Z ,-characteristic numbers determine bordism class in (X,A) one can

cheracterize W(K:2)(X,A) in terms of numbers.
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More gererally, let _ZV".,(K,r)(X,A) C nf(x,A) denote the set of cobordiﬁ,-;

classes [M,g] for which all generalized Z; charecteristic numbers
0,(7,) U g*x)[m,0m],

x € H'(X,A;ZK), which heve e factor ai are zero, Since a.l(E)r =0 in

P(K") one has Fo{u(K,r)(X,A)} C Wi(K,r)(X,A). One then has:

Proposition: If o 97'[,',(K,2)(X,A) then ¢(a) and o heve the same
generalized ZK characteristic numbers. In particular, 1f H.(X,A;ZK) is &

free Z module, then WVG(K,2)(X,A) 1 equal to FyJ7e(K,2)(X,4).

Remarks: 1) The difficulty lies entirely in the case K = §, where 2
characteristic numbers do not determine bordism clase for spaces with torsion
2) That the following proof was valid in the complex case was pointed m

to me by Wall. This proof was used in Stong [//8]. {

Proof: Let f : (M,dM) —> (X,A) with {oi-cm-f*(x)}[M,BM] =0 for au:;7

the usual generator, E[P(KZ)] =1, and let

m .
g : M' >y x p(x°) 2> n D> x, 4

A
Then o(M') = o(M)-(1 + &)?/{1 + @ + 0 (M)} wnile g*(x) = t%(x) @ 1= £*(x]

i

&
b
e

dropping useless 9's and restrietioms.

Now 5? =0 and mod Ui one has

(1+3)2/(1+G+0)) = (1+23)(1~35 -0, + 260,),

=l+(a'-ol).
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Thue ci(M') = ci(M) + (a -‘cl)ci_l(M) mod ci or

- 2 -
cw(M') = aw(M) + (a - cl)uw + o0yv, where u ,v = are polynomials in & end

the o,(M). Then
{o,"g*(x)}M! ,3M' ] = {o (Gro,)e*(x) + (3-o2)u £%(x) + o2(Gea, Iv £4(x)}+
*[M, 4] % [B(E7)]

and deleting numbers with 02

1 which are zero, this is

(o, £%(x)}(@+o, )M, 0] x [P(K%)].
Since {om'f“(x)'cl} 8 1 evaluates to zero, this is
{o, - £%(x)}(M,3u]-G[P(K?)] = {o - £*(x) }[M, 2m]

so thet ((M,3M),f) and ((M',3M'),g) have the same characteristic numbers. **

In order to compute W,(K,E), it is convenient to give this group an

algebralc etructure. For K = R, this is very easy since P(Bz) = Sl is an

1

ebelian group. Letting m : gt x 81—+ g1 : (z,w) —> z'w De multiplication of

complex numbers of norm 1, m* is .a line bundle restricting to & on

1

s'x1 and 1x8' so m"E=1‘rIE Oﬂ;E. Thus if f’:M-—*Sl, g:M'-—-»Sl

pull £ bdack to getrt ® T, 8O

and det'rM,, then Totse? 2 Ty M

M

MxM E2E gl xgl B, gl

realizes det(r This gives immediately:

MXM')'

Prg;gosition:‘%(n,z)(x,l-\) is & free MG,Z) module isomorphic to
H.(X,A;Za) 9'7’}((]1,2) and‘ﬂ/.(:R,Q) is a 2, subalgebra of 7’& .
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Proof: From the multiplication on Sl, \MCR,2)(X,A) is a ‘M(R,Q)
module and since generators of H*(X,A;Ze) may be taken to be images of
\1/*(3,2)(X,A) classes, a dimension count using the Atiyah sequence of (X,A),

and a point suffices to give the free module structure. #*¥

For K=¢, 'ZmK,Q) is not a subring of Qi, for P(Cz) has c;
spherical (by a map of tiegree 2 of §° into itself) while c:QL[P(Ge) x P(CZ)]-
(20:l + 2a2)2[P(®2) x P(cz)] = 8 # 0. Noting that 2 is the only prime dividin

8, it is not surprising that a best possible result is: 4

Proposition: —1’14!{,2) 8 Z, C QS 8 Z, is a Z, subalgebra. In fact, i

2
a,b ¢ _M(K,2) then

¢(a'b) = a'b + 2[V2k]'3a‘3b

where [Vzk] = [P(Kz) x P(Kz)] - [P(KS)], and if M ¢ a, then 2da is

represented by the submanifold of { dual to detrt

M i

G B
Proof: Since JL’K(K@) is a direct summand of &, 5

TelK,2) 8 Z, et Q& 8 2,. If p,qe 76!{,2) 8 Z,, represented by X,y € ﬂ%

then x=a+ 2u, y=Db+2v, with a,b EJ/’llﬁKﬁ), u,v € S?S. Then

. G . . . -l,t/ !
p'q € 9 8 2, is represented by a'b or o(a-b) e W, (K,2) from the formy
Thus it suffices to prove the formula for %(a-b).

To prove the formula, note that P(K") has ZK homology a free Zp

™

and hence QE(P(K )) is a free Qg module with base given by the inclusio

maps i: P(K)e—=P(K ), r > 1. Let x, = (exd),1).
Let 4 : QS(P(K"’)) —»szf(P(K“’)) by sending (M,f) to (N,f+j) wher
J : N&>M, N being dual to f*(£). A is clearly an QS module

homomorphism and ij = xj-l since the normal bundle of P(K‘j) in P(K A

is &.
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Let ¢ : QS(P(K“)) —_— 52‘2 : (M,f) — [M] be the augmentation. Then €
is an Qe module homomorphism. Let u : 93 — QE(P(K“)) by sending [M]

into (M,f) where f*(g) = detry. If P(K') x P(K) — P(K ) clessifies

the tensor product £ 8 £, one has induced a multiplication in Qg(P(Kw)).

Since detr = dettM ] dettM,, ¥ is a ring homomorphism with this product.

MxM!

If x e W (K,2), then ux comes from QS(P(KE)) S0 Mx = ax, + Bx,,

a,B € QE. Then X =eu x = o + B(exl)-, and 9x = edux = e(BxO) = Be:xo = B.
For any c € ns, olc) = ealulc) x;). Thus if a,b ¢ W(k,2),
+ a'x

= = '
pa = ax ub on + 8 xl. and

] 1°

¢(adb) = sA(qul + (ap’ + sa')xi + u'B'xi)—

Now eAxi = ex, for the submenifold H, , of P(K°) x P(K°) adal to £ @ ¢
is P(KZ)- [o(H) = {(1 + x)2(1 + y)2}/(1 +x+y) and. H is dual to x + ¥,
so o [H] = (x + Y)2[P(K?) x B(KD)] = 2 = o [P(F)]]. Also eaxs = 3exs - 2ex,

for if H C P(K2) x P(K%) x P(K2) is dual to £ @ £ @ §, then

g(H) = (l+'x)2(1+y)2(1+z)2 =1 + (x+y+z) + 2(xy+xz+yz)

l+4x+y+2

and H is dual to x+y+z, so

2(xy+xz+yz)(x+y+z)[P(K2) x P(K2) x P(Kz)],

ai[H] = g,[H]

=6
with
e = 9, o [p()) = 35 GSLE(K2)P] = 8, oplP(C)?] = b

Thus

¢(ab) = aBex, + (aB' + Bu')exl + G'B'(3€x§ - 25x2),

2
= (o + a'sxl)(s + B'exl) + a'g'(2ex) - 2ex,),

ab + 2[v2k] Ja°3b., ¥¥
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For later use, one also haa:
Lemma: If .n,b e‘t{(K,é‘).. then
3(a-b) = a-éb + b-3a - [P(K?)].2a" 0.

Proof: Let pa = oax, + a'x., ub = Bx

L}
1 0+Bx

1 Then

3(ab)

eAu(ed) = eAlpa‘ub),

eA(aBxy + (a8' + Ba')x, + a'8'x0),

1 1] rQt
{(aB' + Ba )exo-c-us € x,

(a + a! le)s' + (B +8'e .x1.)°' - G_'B' € x

1’

a'db + brda - (t:xl)aa-ab. Ll

.

Theorem: One mey choose generators Xis i4d 29-1, of 77. end b,

Y so that
“We(R,2) = 2,lx,, (xzs)2 | 3 #2%2%1],
and
“W(c,2) o Z, = Zylv,, (h25+l)2 v o sz ls20, ¢ 2% ¢ > 0]

where c ., belongs to the ideal in n},’ generated by the & ., , navin
2 .

2 -1
maps to 12 inﬂ, if Jiat-l, and bs

further property that b 3

J

maps to zero.

Proof: First, any elements b, and (b )2

s+1

J

generate a polynomial subalgebra of ng [:] 22

+ c25+2 of the given !’D’

2

by powers of the ideal generated by the b, Letting Q be one of t.he"t

M
polynomial alge)_:ras sbove, Q = Z [y'1 | 1#2,2°1] or Q=2 [y:| | 34 %
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respectively. Thus 9% 8 2, hes the same rank over 32, as Qlz] where

dim z = 2k. From the exact sequence

G

0 — WK,2) 0 2, —~ 05 0 2, 105 8 2, — 0

2

it follows that Q has the same rank es W“(K,2) 8 2, (4 has degree -2k).

2
Since MK,2) ] 2.2 is closed under multiplication, it suffices to comstruct
the generators.

Define manifolds Mi as follows

1) Ir 1=2% 1et M, = kp(2%).

2) If i is odd, not of the form 2°-1, let 1 = 2P(2q+1)-1, p,q > 1
end let ¥, C KP(2P) x kP(27"%q) e qusl to o = (2P+1)5, + (" lgr1)G,.

3) If 1 4is even, not a pover of 2, let 1 = 2°(3g+1), p.a >1 end

let MiC kp(1) = kp(2P) x K:P(ap"lq) be dusl to a, + (21’+1)?x2 + (2p+1q+1)53

1
¥ 1r 122", 21, let M, Crp(2®) x kP(2") be qual to
= (2%41)(G. + 3
o, = (2 +1)(al + ua).
The manifolds Mi provide acceptable generators for the cobordism ring
mod 2 since one has:

- 2t+1 t
1) U(M:l) = (1 + a) 80 B[M:l] = 2°+41 which i8 odd for +t > 0 and .

nonzero mod 4 if t = 0, Further s

, hes c) = 2a spherical by e map of

degree 2, and Mg bounds in-TT.

N )
2) o) = (14 5P 0 5T YL+ (Pe)E, + (P51 nas
o, = 0, hence spherical and s[M,] = -[(2-"4-1)07l + (2p+14+1)&2]i+1[1c1>] =
. . -
- (2P+1)2p(2p*1q+1)2p* q(21)(:;1*1)) which 1s odd.
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1
3) o(m) = (1+al)2‘(1+«?:2)2P*1(1+63)Z’P+ T/1245 4 (2P41) 4 (2P 415, ]

so o, = El is sphericel and S[M:L] = -['614-(2p+1)52+(2p+1q+1)33]i+1[KP]

) 1
= -(1+1)51-{(2P+1)52+(2P*1q+1)a3}1[m=1 = -(2P(2q+1)+1)(21’+1)2p(2""1q+1)2p+ .
D
(@ (2a*)y Giien 18 odd.
2P t ¢
¥) o(M,) = (1+5.)2 *1(145,)2 *1/14(2%+1)(3.43,) has o, = 0, hence
| 1 2 12 1
t+l ot+l
Ce
- 2 - -
symmetry in al,Ea, all numbers of Mi are even (the dual class oy +a,

5

sphericel end S[Mi] = -(2‘-'-0-1)2 } which ie nonzero mod L, Further, b

gives equal terms with each summend Ei) 80 M‘i: and l}: are zero in ?‘ ]“.
One may let x, = [Ml;] for 1 # 2°-1 and let b, be a generstor reduci
2 )2

to [Mf] mod 2. Then it suffices to show that (x s) +c

. 2
belong to 'W‘,(K,2) 8 Zye
+

Let ¥ C xp(1) x kp(2"

and (b
2s+1

t+l)
’

1) x kp(2 t > 0, be dual to

51 + (2t+1+1)(52+53). Then Ul(N) = El is spherical so [B] e MK,2).

t+1)2 R t+1)2) .

- ¢p(2**!) which hes v =0, N = o(RP(2

stnce [1%) = [F12 1n 77, ¥° - ep(2¥1)2

Since RP(2

maps to zero in 7 Z,, end hence
belongs to the ideal generated by 2 and the b g ¢ Thus:
, 2°=1
(x%] = [er(2%*1)12 + [N - €@(2%*1)?] has the aesired form. **
Corollary: Under the nstural homomorphism F, : A9 — /7, the direct
summand -W,(C,2) maps precisely onto the squares of elements in ""I’V.(R,a). .

i

Relation between _MK,E) and Q,S,G : Semi-geometric methods.

A

The importance of the groups '1/“-(1{,2) is thelr relationship with the

groups QEG. This is expressed in the fashion:
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Theorem: For every pair (X,;A) there is an exact sequence

aSC(x,a) —» a5%(x,a)

N

W, (x,2)(X,A)

in which p considers an oriented G menifold as a “(K,2) manifold
(degree 0), » sends (M,f) into (N,f-]) where J : N6 M is the

inclusion of the submanifold dusl to det'rM, and det'rN is trivialized vise

the identification det-rN 9 dettM & det(tN o v)= dettM where v :I.s.the normal

bundle of N in M (degree -k), and t is the homomorphism of degree k - 1

k-1

obtained by multiplication by a fixed class [S~ —, &) e n.S,G,e’ . being en BSG

structure.

Remarks: The first proof of this type theorem was due to Rohlin [/04]

vho showed nio 2, n?,o £ 77, wes exact. This proof was improved by

¥s0 n
Dold [45 ]. Well [/30] proved exsctness of & - ﬂ* -—*“VK(R,E). with an

improved proof in Wall [/33]. The bordism analog of Rohlin's result wes
proved in Conner and Floyd [ 3¢ ] giving exactness of

QEO(X,A) —_— n§°(x,A) ——-\7?;,(1(,.4). The exactness of the complex sequence
was proved by Conner and Floyd [39 ] using & modification of a proof due to

Atiyah [13 ] for the real case.

Proof: 1) 9 = 0. If £ : (M,3M) — (X,A) end detr, 1is trivialized,

M

then N 15 empty, so represents zero.
2) If 3x =0, then let f : (M,dM) —> (X,A) represent x. Let

J: N> M be dual to dett, by making themap h : M — p(K?) transverse

M

on a point P(KJ'). Thus detT

le is trivialized. Letting L : U—>X be a
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map of an oriented G menifold into X, 23U = N \J(-P)/(3N & 3P), 1.|N = £,
(P)C A, let V be formed from M x I and D, where D is the disc

bundle of the trivial K 1line bundle over U, by identifying DIK with e

@

tubular neighborhood of N x 1 in M % 1. Exactly as before, V has a

BG-manifold structure, V meps into X extending f°7, and L bY means of :

1

a retraction and detr, 1is induced by the mep into P(KZ) sending M x I by\

v
hew, and D=1V x < by the map into & disc neighborhood of h(N). This givil
e cobordism of £ : (M,3M) — (X,A) to a mep for which N is empty. sinc;f}‘
P(K%) - pt 1s contractible, this gives & trivializstion of the determinent - ;
bundle, and 8o X 1s represented by an SG menifold. !

3) If py =0 with y represented by f : (M,9M) —= (X,A) with M

oriented, then there is & BG menifold U such thet 83U = M \J(-P)/(3M = o

amap F : U—> X exténding f and sending P into A, and & map ﬁ

"g

h: U—> P(K%) with h*(E) = detT, sending M into & point gq € P(K°)

U

defining the trivialization of det'rM. Let uce P(Kz) be some other point

deform h to be transverse regulsr to u, using a deformetion which keeps

fixed, Let L = h'l(u). Then L C U 1is & submanifold with trivialized

factors through the projection onto L. The trivialization of the normal burillé

of L in U and of detTUIL gives L "an SG structure, and each fiber

* )
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g1 is glven the SG structure obtained as follows: Let ¢ : pt —-»P(Kz)-

k-1

be en imbedding and give S the SG structure obtained by trivializing

k-1

the stable normel bundle ¢*E by deforming S to a point in P(Kz) - ¢(0).

Thug y = tz, where 2z 1is represented by FIL ; (L,3L) — (X,A).

Note: In Well's proof it is mot known that dettU is induced by e map
into P(Ra), hence he gete M~V where V double covers L = h'l(u),

h: U—=P(K"). It is then necessary to show V-2L.

) ot =0 for p'([s5L, @) (4,6)) = o' ([8572, &1)0p'((M,2)) where
Pt WRO(X,A) — aS(X,A) is reauction, vhile (Y, o] bounds 1n 8%. Thus
p'tx = 0, but the map “MW(K,2)(X,A) — 93(X,A) is monic and hence ptx = Q.
5) Ir £: (M,3) —= (X,A) is a “H{(K,2) mep and h : K —~ P(k)
i trensverse regular on P(K') with ] : NS M the submanifold n 1(P(x1)),
let DF be & neighborhood of P(Kl) end N x I)k & tubular neighborhood of N
napped by projection emto DX under h., Deform f so that flnxnk coineides
vith the composition of ﬁro.jecuon on N snd f|. Let WeM- ;nterior(mtnk)

by deforming hlw to a poiﬁt in P(Kz) - P(Kl).
k-1

end then trivielize dettw

Then (W,f].) gives o cobordiom tn G30(X,A) of (81,00 (N,2l,) end the
empty mep. .

6) If £: (M,34) — (X,A) 1s an SG bordism element and
fom [Sk"l, &) (M,3M) —~ (X,A) represents zero, let P : U —»X,
=M x 81 Y (-p), Flipgk-1 = £-7, P(P) C A be & cobordism to zero.
Beginning with & point map H : U—D-P(l(z) (into P(Kz) - Dk, * e neighbor-
hood of P(Kl)) trivializing detr,;, one may homotope H in P(Ka) - D% to
coincide with the standard map M x gl gl pt (using a tubular
neighborhood). Let W be formed from U and M x D* by joining the copies

of Mx S and extend F: U—>X by fem, on M x 0¥ to define
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14

F':W—>X. The usual map M x D —>D* and H fit together to define &

mep h : W—> P(Kz) inducing detr, Since W =P \) M x D 1s mapped

-
into A, F' : (W,0W) —> (X,A) is & T#,(K,2) bordism element in (X,A).
Since h : w—»—_P(Kz) is transverse on P(K'), 3(W,F') = (M,£), and thus

(M,f) 4s in the image of 3. ¥

Relation to bordism groups

Rether than continue to attack the structure of the oriented cobordism
groups, which will be relegated to later chapters, it seems better to study

the Atiysh [ /3 ] approach to the above sequence. i

i
s
*
A
4

A

Proposition: For r > 1, (K,r)(x,a) = 658 (2(*) . (x/a)).

_Proof: Let f : BSG * P(K") — (¥ classify "UO E, p: al®) +%
(r) s

classify det a.nﬁ q : BK ~=> BSG classify ar- detns If

g= (q x p)eA BK(r) —> 158G x P(K°), then f£g and gf are both ho'motopf ‘

(r)

to 1 since they classify the universal bundles. Thus BK iz identif:

to BSG x P(K’) and the universal bundle to % ® £. The Thom space of £
(k™) so TEK(T) 1c equivalent to SO, . T€ = mesG, ; . P(K™T) in’

“

the limit. Thus

WK, r)(X,0) # L, (1T (x/8)), /

[ e

. . )
Lin T s (TBSG, - POKTT) L (X/4)),

& (YY) . (x/n)). W

n+k

1

One hé’s a cofibration sequence

& a p(K2) —> P(IC) — 8% = p(K3)/P(K2) & § s* = g**!
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and smashing this with (X/A) and applying ﬁ:G( ) gives an exact sequence

B%(s* . (x/a)) — $%(e(e?) . (x/m)) — WO L (x/m)) — ...

i I il

a8 (x,8) —— W, (€,2)(x,) —— 5% (x,4) —

where the outer identifications are suspension isomorphiems. This gives the
Rohlin-Wall exact sequence. One may then recognize the homcmorphism t as
multiplicetion by the framed cobordism class represented by a : 52k — Bkﬂ‘
which suspends the attaching map used to form P(K3) by attaching a 2k cell
to Sk.

In order to obtein the Atiysh sequence, one first needs two results:
Lezma 1: P(Km+n)/P(Km) is the Thom complex of the bundle mf over P(K).

Proof: Let f : g1 = sk(m.-fn)-l_: (x,y) — (-’{-Tyﬁ-x.‘ﬂ where
e Knllx| 21}, D®a(ye Km||y| <1}, and
gelmm)-1 _ ) o) e € x 1<"‘||x|2 +lyl®=2) 12 tek, [t] =1, then
£{tx,ty) = t-£(x,y) so f 18 compatible with the usual action of gkl If
(u,2) € Sk(m-i-n)-l and u # 0, then f'l(u,z) = {(/]-—-Iz—lzl (_u/_IuI).z)}. This
gives a homeomorphism f : T{(mf) —>~ P(Kmm)/P(Km) where P(X™) is g-i.ven as

the image of pairs (u,z) with u = 0, #*#

Lemma 2: Let £ be the dual of the canonical bundle over P(K™). Then -
~SG =
S ((x/a) . ™5 @ € 0 T)) 3 W (Kym)(X,h).

Proof: Since & 6 £ 18 naturally oriented one has

£ : B30, x P(K") —> BSG_, x P(K") with r4(u) = YO EOE, £4(£) = and

by stability of BGt, this is & homotopy equivalence up to dimension ks. '
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(Notg: Being an induced fibration, stability follows for. BSGt. 'The maps
by

BSG, —- BSG_ x P(K") —>.BSG,,, x P(K") —- BsG_,, end

P(K") ~>B3G_ x P(K") 5> B3G_,, x P(K®) — P(K®) then give hamotopy

isomorphisms in low dimensions.) Thus in the limit

B0(x/) . (0 ko B)) = lim my,, (188G, . TE @ € 0 T) . (X/A)),

= 1im n__.. (TBSG -
. ntks a+2

= &30 (/) . Ry,

(g) . (X/A)),.

= W g (Kom)(X,A). o
Bow consider the cofibration
2(3) —> B(*3) — p(*3)/p(53),

smash with (X/A) and apply 53:0 ( ) to obtain the exact sequence

520((1;/” P(K3)) — ﬁ:c((x/A) . p(]cm3)) — 5:G((X/A) R T(E.O £t ekl)) —

| | |

W, (K2)(X,4) Tl (Kan#2) (X,4) ————vW 3 (Kon)(X,4) -——-;

and letting n go to =, this gives a long exact sequence

g e S S

’”_e:i‘i e

W K2 XA) =+ 0l | (x,8) —> el (5,8 — T, (K,2)X,A) — .

S
“" a2

since for n large "I/';(K,n)(x,A) - nm(x.A). This sequence splits up to- u

the Atiyah sequence, but the splitting requires one of the previous arg\mhﬂ

r?
Remark: If F is any spectrum end E is the two cell complex s \1
one mey fora a new spectrum B F, wvhere (EP ~Elg = E, .~ Fy ;- This ﬂ

§
) <y
K

i
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a homology theory

H,(x,A;EP ~F) = lin n“s((x/A) R EP . F

g

s;l)'
= H,,, ((X/a) . Ep;l';').

From the cofibration sl — Ep — 82 one has an exact sequence

H.(X:[:\;E) 2 B (X,AF) — Hy(X,A5E, . F)
i .

§

where § has degree -1. This 1s one way to introduce Zp coefficlents into
spectral homology theory. (Another possibility is to use homotopy with zp
coefficlents rather than ordinary homotopy). With the given definitionm,

E,= P(R]) and thus one mey think of “uféa,a)' homology as oriented bordism
with 22 coefficients. This was pointed out to me by D, Sullivan, and seems
to explain the usefulness of M(R,Z) theory, which at. first glance appears

extremely artifical.
Remark: From the Atiyah bordiem approach, one has an exect sequence

“Weaix,2) —1——-*13{(&:“2)

IN a
“WelKX,n).

Then
“Wiik,2) L= x,e2) > 0% - Ux,2)

is the identity, so this sequence splits. mus“l/t/,(x,mz) 51‘((!(.2) O'Pif(x,n)

and these groups are then known inductively.
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Chapter IX

Oriented Cobordism

With the exception of the unoriented cobordism problem, the most

for "oriented" manifolds, where "oriented" is taken in the classical sense,

There are many equivalent descriptions of an "orientation" of a manifold,

vwhich may be given by:
a)
bundle;

)

in the sense of Dold; or

d) A fundamental integral homology class giving an orientation in the
sense of Whitehead. ]

In addition to the desire to classify "eriented" manifolds because of th
classical interest, definition () indicates a relation between "oriented”
bordism and integral homology and full exploration of this relatlionship is
d_.esirable for geometric understanding of integral hamology.

The analysis of "oriented" cobordism is a very complicated problem, the

major outline of its solution having been:

2) Caleulation of odd primary and mod torsion structure by Milnor [
Averbun [ 21 ], end Novikov [ 93]
3) Calculation of 2 primary structure by Wall [/30]; and

4) Analysis of oriented bordism by Conner and Floyd [3é].

.
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Using either definition {a) or (b) one has a classifying space BSO, for
oriented n plane bundles and from the Pontrjagin-Thom theorem, the "oriented"
cobordism ring n,s,° is given by the stable homotopy ring

S0 .
2 = lim 7 (TBSO ,»).
n g+o OF8 s’
From the analysis of the cohecmology structure of BSOn. one cbtains:

Theorem: The groups ni 0 are finitely generated and n'S'O 8 Q 1is the .

rational polynomial ring on the cobordism clesses of the complex projective
spaces EP(21).

Proof: As noted in Chapter V, there are unique orlentation classes
U, € i (TBSOr;Z) vhich combine to define a 2 ecchomology orientation
U : TBSO —= K(Z). By the Thom isomorphism theorem H"(TBSO;Z) =
lim n”*’(msor,w.z) 1s finitely generated, being isomorphic to H'(BSO ;Z)
;-; sufficiently large r by stability of these groups. BSince TBSOr is

S0

(r-1)-connected, Serre's theorem shows that &~ — ﬁn(TBso;z) is an

isomorphism modulo the class of finite groups. Thus ﬂ:o ‘18 finitely generated

S0

n has rank equel to the number of .

Since B*(BS0;Q) = Ql®,),
partitions of {(n/k) 4if n 4s a multiple of L4, and is a finite group
otherwise. In fact, @20 8 Q —> K,(BS0;Q) 1s & ring iscmorphism. From the

80 ;
diegonal formula 44, = J+£'1 @3 © P> % ©Q is & polynomiel ring on

generators x,, of dimension Ui, characterized by 5 i)(U)[xhil # 0 vhere
s(i)(u)) is the primitive class of dimension Ui,

For the manifold €P(21), T @ 1= (21+1)f giving c(EP(21)) = (145)%1*%
and o(x 0 € = (@20 - (15 5o ole(a1)) = (143

In general, 1if 8 1s written so that 8.1 1s the Jj-th elementéfy symmetric
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function in classes 82

¢+ dim B, = 2, the primitive class s(i)(ﬁ) is

FLY ) Gt R

z 82, Thus

b

e S

s(q)(@)(V)er(21)] = -s, (@) (r)[eP(21)], (primitivity)

= -(21+1)521[cr(2i)].

= -(21+1)

for by uniqueness of the Thom space orientation, the 80 induced fundamental

class must agree with the fundemental class arlsing from the complex structures: i3

Thus €P(21) represents an acceptable generator of dimension Li, **

Propogition: The homomorphism

Y 0‘: e, 0§0 L O,S,O/Torsion

with S, 1induced by the forgetful functor, and w7 the quotient map, has
kernel the ideal generated by the classes of dimension not a multiple of four

and hes cokernel a finite group of odd order (in each dimension).

Proof: Since Pontrjagin numbers are integer valued invariants, they

annihilate the torsion subgroup and the homomorphism

g+ 80—z, l" 1 ) — (g, (00D

obtained by reducing the Pontrjagin numbers mod 2 factors through =. The

since 5(1)(0(1))[@(21)] 18 odd, the map

U _Ss 80 @' [w(a}|
fin ™ Pun 2,
is epie.
Since nig/'l‘orsion has rank |n(a)|, this means (imy) ) hes raak

. . ) ’
end is a subgroup of odd index. BSince nls‘g‘_gl'l'orsion = 0, the kernel of ¥y
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contains the ideal generated by classes of dimension not congrient to zero
mod 4, and by rank this must be the precise kernel. #*

In order to examine the odd primary situstion, one hes:

Proposition: The mep £ : BSp —» BSO, obtained by considering a

quaternionic vector bundle simply as an orlented vector bundle, is a homotopy

equivalence mod the Serre class of 2 primary finite groups.

Proof: One has ' (BSp;2) = z[&a:], vhere 0: 1s the i-th symplectic
Pontrjagln class of the universal bundle [{, eand considering 2{ as a
complex bundle, pp3(Z() = e, (). Thue @, (L) = (-1)ey (U 8 C) ana
o(l{ 8 c) = e(F)?, =0 |

ﬁi(u) = (-1)12672(7,() + decomposables.
Thus the homomorphism
£% : H(B80;2.) = Z [, ] —= E%(BSp;Z) = 2 [}
is an isomorphism for all odd primes p. **
Corollary: The forgetful homomorphism |
Fy ¢ AP — 050
is an isomorphism modulo the Serre class of 2 primery finite groups.

Proof: The map Tf : ’I'BSp‘:l — '.'l'BSOIm induces isomorphisms on 2 o
cohomology for p any odd prime in dimensions less than 8n, using the

knowledge of f%* and the Thom isomorphism. Thus by the generalized Whitehead
theorenm, ('1‘!)' is an isomorphiam on homotopy modulo 2 primery finite groups,

and the Pontrjegin-Thom theorem completes the result, ##
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One then has the composition of homomorphisms defined by forgetful mnctoré

with 8,7, = F,, from which:

Theorem: All torsion in n,s,° 1s 2 primary. ] 3

Proof: Since F, 13 en isomorphism mod 2 primary torsion, while

ﬂH is torsion free, neither ﬂ,s,p nor ﬂfo can heve odd torsion, ##

Theorem: The homomorphism

P

Y : n‘,{ LN n,s,o s ﬂEolTorsion

is epie,

Proof: bince 7 is an iscmorphism mod 2 primary torsion, #F, = v.1
has finite 2 primsry cokernel in each dimension, so that the same holds for
Y, but it was previocusly noted that y has finite 0dd order cokernmel in

each dimension. Thus Yy 18 epic. **

Theorem: QEO/Torsion is a polynomisl ring over Z on clesses . x; of

dimension 41, and the classes x, are characterized by

i

s(i)(ﬁ(t))[xil = (t1 2141 # p° for any prime p and s € 2,

tp 2i+l = ps for gome prime p and s e Z.

Proof: Q,S,O/Torsion is isomorphie to ﬂI.J mod the ideal genera_.te'd by t!

from the knowledge of the s-numbers of generators of complex cobordism, for

. )
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M® is a stably almost complex msnifold with c(M) = r[(l+xJ) formally, then
M) = 1(+x,®) end so s (@) = £ 2,2 =5 () 00). w
To determine the two primery structure one uses the exact sequence

.,
o0ty B0 2, (R, 2)
x j

a .
in which ¢ becomes multiplication by 2 ([So, ®] 1is two points, both
positively oriented),

Let
3t w ped : “Wi(R,2) —>-‘14{(R,2)
be the composite homomorphism,

Lemma: d°' :%(R,E) —*‘MB,Z) is a derivation with (3')2 = 0, and

choosing gemerators x,, i # 2%, for T « B8uch that
t t
W(,2) = ZE[xJ’(xas)z | 342, 2%1]
as in Chapter VIII, one has

0, : B el

' =
2 Xop-1,
8‘x2m = X,n1?

, 2
3 ((xas) )= 0.

and

Proof: From Chapter VIII, one has 3'(ab) = 3'ab + a-3'b-[P(R%)]-2%a+2"b
but [P(Rg)] =0 1in 7‘(.‘, so 3' 1is a derivation. Since 23'3' = pdp2d
and 3p = 0, (_8')2 = 0. Examining the gemerators of ~?{(l‘l.E), the menifold

N representing (x s)2 is cobordant to plcP(2°)] ana 3'p =0 so
o }
an’

'[F) = 0. For «x one chose a representative
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M C Rp(1) x RP(2P) x RP(2F*1q)

1 Then 93'[M]

represented by the submasnifold dual to wl(M). i.e. the submanifold of

wal to &, + (2Pr1)g, + (2P+1q+l)53, so that w, () = &

RP(1) x RP(2P) x RP(2P*lq) aual to
a (@ + (2p+1)62 + (2p+1q+1)&3) = El((2P+1)52 + (2p+lq_+1)c':3),

since 32 = 0. Since the submanifold dual to &. is RP(2P) x RP(2P+1q),

1 1
this is precisely the representative chosen for x, ,. Since (8')2 =0,

this also gives 3! =0, ¥

Xop-1

Corollary: kera'/im 3' = 22[(x2t)2]-

Proof: ’M(R.2) is the tensor product of algebras of the form:
3 1
a) z2[xan—1'x2m] m not a power of 2, with 3'x, = X510 My 4
which has homology isomorphic to Ze[(xm)al; and
b) 22[(x 5)2] with 3'(x 32) = 0; 4isomorphic to ite homology.

2
The Kiinneth theorem for the homology of a tensor product completes the

computetion. ##

n's.o = ker 3 = ker 3',

Proposition: ¢

Proof: The composite ker 3 &= ker 3' — ker 3'/im3d' is epie, for i

2

e ¢ ker 3'/imd', there is a class b ¢ 77' such that b° maps to a. Bin

b2 is the cless of a stebly slmost complex manifold, which is oriented,

‘n2 € imp = kerd. Then if a € ker 3', there is an x ¢ nfo with o - ox
mapping to zero in Kker 3'/im3' or a - ox € im3' = imp-d C imp, 80

a € imp. Thus 1imp = ker?d C kera' C imp, ™

Theorem: All torsion in a§° hes order 2.
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Proof: Suppose ﬂgo has some element of finite order which is not of
order 2. There is then a class x ¢ ﬂzo with 2x # 0, Ux = 0. Then
t(2x) = 2(2x) 4s zerc, so 2x = 3y for some y. Since MR,E) isa 32,
vector space, 3'y = pdy = p(2x) = 2p(x) =0 and y ¢ kers' = kerd, Thus

2x'= 3y = 0, contradicting the choice of x., #*

Corollary: Under the homomorphism o : QEO — MR,.?). the torsion

subgroup maps igsomorphically onto image 29',

Proof: If x € Torsion (HEO), 2x =0 80 x=203y and px =29'y ¢ imd',

Thus p(Torsion (ﬂ%o)) C im3'. Conversely, 3'z = pdz soc imd' Cpimd C
p{Torsion -_(9,8,0)). If x € Torsion (a,s,o) and px = 0, then x = 2y, but

y € Torsion (ﬂ,s.o) and hence x = 2y = 0, W

S0

Corollgz_: The homomorphism @ — kerd'/imd' induces an isomorphism

of (ﬂao/Torsion) 8 Z, with the polynomisl algebra kerd'/imd!',

Proof: The given homomorphism has kernel containing Torsion (QEO)
and defines a homomorghism ﬂ?,o/Torsion —~ kerd'/im3', This clearly sends
2(ﬂ§O/Torsion) to zero, gilving (ﬂ,s.o/‘l'orsion) 8z, —> za[(xgt)gl' By the

proposition this is épic and by the ranks must be an isomorphism, ®#*

Theorem: Two oriented manifolds are cobordant if and only if they have

the same Pontrjegin and Stiefel-Whitney numbers.

Proof: By Pontrjagin's theorem, cobordant manifolds have the seme

characteristic numbers. Conversely, suppose x, x' ¢ nio have the same 2

and 22 cohomology characteristie numbers. Since all Z cchomology

characteristic numbers of y = x - x' are gzero, y 1is a torsion cless. Thus
2y 0 end y = 3z for some g. Since x and x' have the same Stiefel~

Whitney numbers, all %, cohomology characteristic numbers of py are zero,

2



- 184 -

and thus 3'z = paz = py = 0. This gives 2z ¢ kerd', so y = 3z =0 and

x=x', *

.
1
Turning to the two primary relationships among the characteristic numbez!.E.

kY
i

one has: 1

T

s

W &

Proposition: &) The homomorphism @)‘L : n§0 — Z, vhich sends the

N %—‘

class of M into the mod 2 reduction of the Pontrjegin number

1‘?11 (?ir(T)[M] (w= (11....,1r)) coineides with evaluation of the
)2

2 W e

2 _
Stiefel-Whitney number Vou = (w211 oo w2ir .
b) The homomorphisms @‘L for w e w(m) form a base of
80 ’
Hom((nhm/Torsion) 8 Z2.Zz).
¢) There are no two primary relations eamong the Pontrjagin numbers o

oriented manifolds.

Proof: &) If M is an oriented manifold, then reducing mod 2,

@y(v) E'czi(‘r ¢) and c(re¢)=vwirter)s= w('r)2. so ﬁi(t) H w21('r)-u-
Since the integral orientation reduces to the mod 2 orientationy
2a(M]) = p (1)[M)  mod 2
= v, B,

b) Forany w= (11,....1r), let ¢P{2w) = @(211) XyooX CP(21r)

ordering partitions of m compatibly with refinement, the matrix

Il SN(Q(T))[@QN' )]”0:0' ¢ (m)

is triangular with odd diagonal entries. Thus

, o850 |
e' ) meﬁ(.m)ﬁ‘; ) n'hm —"Z2

n(m)|

is epic, hence giving an isomorphism (ﬂﬁ:/Torsion) 82,2 Zglw(m)l. )
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e) Ir I e Fur YE n(m), e, € 2, always takes even values on hm

manifolds, then I %Zﬂ, =0 8o 8, = 0 in Z2 for all w.

Alternately phrased, ﬂ?,o/Torsion — Hom(Z[(?il,Z) has imege of odd

index., ®#

Relations among the Stiefel-Whitney numbers are given by:
Proposition: The image of the forgetful homomorphism

80

. —7T,

congiste precisely of those classes for which all Stiefel-Whitney numbers with

Fu

a factor LY vanish. Equivalently all relations emong the Stiefel-Whitney
numbers of oriented manifolds follow from the Wu formulae and the vanishing

of wy; explicitly, if ¢ : Hm(BO',ZZ) —>32, isa homomo.rphism, then

#(x) = x(1)[M] for some oriented m-menifold if and only if ¢(Sqla + vici) =0

for all 1 and all a € u‘“‘i(ao;zz) and ¢(w,8) =0 forall Be u‘“'l(so;zz)

Proof: If M 4s an oriented menifold, wl(M) = wl(dettM) is zero,

since dett, is trivial, and thus all Stiefel-Whitney numbers of M with vy

M
as g factor must vanish. If =z 57"(. has all numbers divisible by w,
vanishing (¢{(x) = x(z) for some suck z), then z e7if(n,2) for all
numbers with wi .aa a factor vanish. If N represents z and KC_ ¥ is

dual to Vys then
w(K) = w(y)/ (14w, (¥))

so w,(K) = w (N) +w, ,(K)w,(N) and w (K)[K] = {w,(N) + wyu }w (§)[N§]
= w,w (F)[F]. Since Stiefel-Whitney numbers determine class in 'hf(n,z),

3'z = [K] is zero and thus z = p{[M]) for some oriented M. #*#
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Having described the two primary :elations,'one' wishes to know the odd .
primary relations among the Pontrjegin numbers. From the study of complex )
cobordism, one knows that K-theory is a reasonable place to get relations. ._ e
Unfortunately, oriented manifolds are not K-theory orientable. To circumve:'
this problem one has first a general construction.

Let K be one of the fields R or €, and let K' be € or H
rgspect ively.

Let M bea closed, n-dimensional manifold with tangent bundle ¢, 'y

being & K vector bundle over M® sothat T 2t +u'l (ue?Z, ntucsO mLI
as real vector bundles, defining a K structure on M.

Then the total. space ET is a &1fferentiable manifold and if « :
1s the projection, then the tangent bundle of Er 1s n*(t) @ n*(t), =*(7)
being the bundle along the fibers and =*(t) its orthogonal complement.
the stable tangent bundle of Etr admite a K' vector bundle structure as
(1) @ m(T) = %(1) eC.

Letting Dt and St denote the disc and sphere bundles of T, Dr h

St.
Now suppose one i3 given a ring spectrum 4 for which K' vector bu.n
are naturally oriented and suppose U ¢ ﬁnw(’ﬁ;@) = Hn+u(Dt,St;lg) isaf :

class, Then for x € H"(M;@) one mey define & number

2[4 = (r(x)-0MDr, 8t € I P(pea).

bundle t directly so that one need not 'malke & choice of 7.
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2) It is not at all clear that such numbers are cobordism invariants;

indeed they won't be in the general case.

If M is imbedded in K * yith K normal bundle Vv such that v @ T
is trivial, the induced map on tangent spaces gives an imbedding

Bte— R®*59 x ¥ 414 hence imbeddings

Et C—s- Rn+kq x Rn+kq x Ru'
Dt ¢—s ROV x pRtkatu

8t ¢ Rn-l-kq_ x Sn+kq+u—1’
end the normal bundle may be taken isomorphic to w*(v @ V).

Note: One has

M x M — BPEL  pEtEe RBTEL  pitke
A I (x,y) — (x,y-x)
M > A > 55, o

corresponding to identification of D(t) with a neighborhood of the diagonal
in M XM or DT with a neighborhood of A(M) x 0 in M X M x &Y.

One has the collapse map
c 1 82PN . pina(v 6 3))/T(n8(v @ Vlg) = X

and thinking of M imbedded in Dt as the zero section, with normal bundle
TOveV (its K structure) one has a collapse d of X onto

2T e v e I) = g2y, Using the given imbedding of Dt, the composite
gootekgru o, y 4, antkatug )

" 18 the n+kqtu-fold suspension of the map defined by the imbedding of M in
Rz:\+kq
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Rote: d can be thought of as s homeomorphism since X = T(T ® v & V). |
Suppose A 1s a ring spectrum for which the bundles T, T, v, v all ' ﬁ
have a natural, stable, miltiplicative orientation, and U is the orienta.tioa}%,
iy

clase U;. Then one has the map i
B:xXx—= (M/@) . T(T) . T(v) . T(V) = ¥

generalizing the usual @ to a &4 fold diagonal map. The cohomology class
x 8 U; ] Uv 8 U; = y may be pulled back to X in several different ways.

First one has
XeT(TOveT) —>T(T653) . T™v—> (M/F) . (T O3) . Tv—>Y

and T(T & V) 1s just the suspemsion of (M/@) with Uz 8 U; pulling back

the suspension class. Thus
c*s*(y)[8] = x[M].
Further one heas

x—-1f . x 8T (/g) . T . (v 8 ) —- ¥

pulls back to the orientation cless of X &8 a bundle over Dt. Thus

c*3¥(y)[8] = {n¥(x)*U}[Dr,87].
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Let K be R or € andlet V be a K inner product space of
dimension n, with inmer product < , > which is K linear in the first
factor and conjugate linear in the second factor (the conjugate of & being
denoted by a).

Recall that the exterior algebra over K of V, A(V) = Zg A5(V) has

an inner product given by

1) M(WLAEW) 12 34k

11) If X = X neeen X Y=y aieinyy, then <XY> = det|< 0¥y >

If eyy...e, 1is en orthonormal base of V, then {ei aeeen €
1 r

forms an orthonormal base of AT(V). "

N |11 <1}
There is a canonical antiautomorphism of A(V), o : A(V) — A(V),

defined by

12, v

a(vl Atvoa Vk)=vk—--n~ vl=('l k

vhich is K linear and preserves inner prodﬁcts.
Finally, recall that an oriemtation of V is a unit vector
g€ An(v) = det(V).
Being given an orilentation o of V, one may derine. a function

An-k

T Ak(v) —_ An-k(v) as follows: X € (v) 1s the unique vector such

that for all Y € A™%(V), one hee
<iX,Y>=<aX.Y>.

Lemma 1: <t 1s conjugate linear.
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Proof:

< t(aX),Y>=<g,aX . ¥ >,

<o0,X.¥>a8g,
= < 1X,Y > a,

= < arX,Y >
for all Y. #*

Fix an orthonormal base Brrcecsly of V with-a-el avesa €0 A

monomial X 1s en element £ e .¢... € with r, <...<r . Then for X &
Ty Ty 1 k ik

and Y monomials:

<tY>=J1 if Xe¥,
-1 if X = -¥,

0 otherwise.

Further, for any monomial X there is a unique monomial X with X . X=o0
For X a monomial, 1X is exactly X, for if Y is a monomial, '
<X, Y>= <o, X . Y> ‘s given by {1,-1,0} eas Y is {i,—i, other}.
XL x e (0O Ey  p e )RR, o Rk % e x e )"

a monomiel, 8o one has
Lems 2: If X ¢ A(V), then 12X = (-1)5(n-E)y  we

Note: T = @ as defined in Palais [97]. If a,b ¢ AS(V),

<@a,b > = det{a . #) w < a . #b,0 > defines #, Then

k(n-k) < g,#b . a >

)k(n-k)

<ba>=<a,b>®<a, #b,0>e<0,a.>= (~1)
)k(n-x)Tz

wp = (-l)k(n'k)b or th= (-1 i = #b for T2 = (-1 on

ey,
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Definition: Let u : A(V) —= A(V) : X — taX,

Definition: If K =R and dimV =2n", let 0 : A(V) &c — A(V) ac

by letting 0(x) = L5100 g 1)(x) 1£ x € A5(V) a.C.

)n(n-l)/2

Lemma 3: u 18 conjugate linear and u2 = (-1 vhile ¢ is

complex linear and 82 =1,

Progf: If X & AX(V), ax = (-1)6E1/% gy o (oq)(m-E)(nk-1)/2y

50 u2x = (-1)*X where

r = k(k-1)/2 + (n-k)(n-k-1)/2 + k(n-k),
= k(n-1)/2 + (n-k)(n-1)/2,

= n(n-1)/2. .

Letting n=2n', x ¢ Ak(V).

o2x = 1{n-k){n-k-1)}#n' julk-1)4n' ) jk(n-k)

i(n—k) (n=k-1)}+k(k-1 )+n+2k(n-k)x

18(n=1)+n-2k(n-k)+2k(n=k), (4 tne above 1dentity)

[}
®.

-

&

Lemma 4: If SG(V) denotes the inner product preserving X lineer
trensformations of V which fix o, then for g € 83(V), gr = 1@, & = ug,

and g6 = Og.
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* Proof:

<g1,'x’gy>=<1x,!>:<o’x_“Y>=<sU'sx‘gY>.

3 < 0,gX . gY > =< 1gX,gY >

for all gY, so gtX = 1gX for all X. Since clearly gua = ag, ug = sl-l._.,:i%_,'w
(s
vhile ig = gl gives g6 = 6g, e

If V and W are K inmner product spaces of dimensions n and m,
inclusions V&=V @ W, WS>V & W induce homomorphisms A(V) - A(V @} o

MW) —~ A(V & W) and then
8 : A(V) 8 MW) —= A(vow) 6 A(V&W) —»A(VaW)

is en isomorphism of graded algebras. V € W may be oriented by means of '

o= B(av ® aw).
Lemma 5: If X € AT(V), Y e A°(W) then

B(X 0 Y) = (-1)’(“"')3(1,,1( 0 1Y),
wB(X @ Y) = (-1)"%8(nX & wY),

e8(x ® ) = B(6,X 8 6.¥).

In particular, 1f &mV £ 0 (mod 2), then u may be identified with il

€1 2 Cnem for W with

Let X,Y be monomlals, so that

Proof: Fix a base e;,...,e, for v;

Oy ® € mrevn €i Oy T €y aeern S
o= 8((X .t X) 8 (Y. 1),

= (-1*®Te(x 0 1)) . B(r X @ T.¥)

and everything being monomials, T8(X 8 Y) = (-1)°(®"T)

a(rvx 6 1'"!). How.
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aB(X 8 Y) = (-1)"%8(a(X) 8 a(Y)) for (2q)(Helb+e-1)/2

(-1)!.'5(-1)!'(:'."1)/2(--1)“"(s":")/2 since

(r+8)(r+s-1) = r(r+s-1l) + s(r+s-1),

= r(r-1) + rs + s(s~1) + sr,

which gives the formula for u. To get the formula for 6, one has

o8(x 8 ) = 1(T¥s){zre-Ll(ntsm') gy o vy

ir(r—l)-l-s(s-1)+21's-0'n'ﬁn'(_l)s(Zn'-r)B(Tvx o TVY)'

(-2)73 ()R8 Tog (gD g g0(e-Lhrmty )

B(8X @ 0Y), *#
Now returning to V,_. one ha;s fox; éach v €V amap
F, : M) = AMV) t 2 —>v . x
end 1ts sdjoint (Fv)' : A(V) = A(V) defined by

<XFY>=c< r:_x,y > for all X,Y e A(V).

Definition: ¢ : A(V) —- AMV) for v eV 1is the linear tramsformatio
®*
Fv + (Fv) '
Lemma 6: For vector spaces V, W with veV, weW,

b0 (B(X 8 Y)) = Bs 2 0 Y+ (-1)4% 5 2, ).

Proof:
Fm(e(xe!)) aglveal+1l16w) .B(X08Y),

=g((v.x)0Y+ (-1 8 (w. 1Y),

at
= B(F (X) 0 Y + (-1) ™y 8 F_(1))
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giving FW°B = B°[1"'v 81+ sgn°(l ] Fv)] where
sgn : A(V) 8 A(W) —~ A(V) 8 A(W) maps A%(v) 8 A(W) by (-1)%.

Then

n
A

L (B(X 8 Y)),8(U8YV)> 8(x 8 Y),F  8(U87V)>,
= <p(xe¥),s(rue (-1 e rv]>,
= <XFU>.<YV >+(-1)8 e 3,0 >.< Y.V >,

-1)3eX

= < F:X,U >e< Y,V >4( < X, >< F",Y,V >,

= <plrex ey + (-1 5 0 pavl,pw e V) >
and thus F:woﬂ = B°[F: 81 + sgno(l & F:)].

(Note: If < X,U > # 0, then d&imX = dimlU).

Thus ¢,

peg®B = B0[0, 8 1+ 8gno(1.8 ¢ )], =

2 2
Coro : For each vevV, (6)° =]+ Ly (v)*
Proof: If this holds for both V and W, then

(¢w)2s(x 8Y)s= L Blexey+ (-1)8=Xy ¢ 4 Y],
= 8le2x 8 ¥ + (1™ x 0 ¢ 1]

+ (-1 Yy x 8 ¢ ¥+ (-1)8 %y 6 4»2!].

(Note: ¢VX has components of dimension dimX+l and dimX-1, giving the s&
. “4

eign.)

sllvi%x e v + (1) x 0 ¢ ¥ +
0% x 6 0¥ +‘||wﬂ%( e Y,

(el + Iv1®)8(x 8 1),
vl %8(x 8 ¥)

i
28

L
i

[EIF )



- 195 -

and the result also holds for V & W,
Thus, one need only check this result wvhen dimV = 1. Thus A(V) has a
bese 1, O, and v = k0, 8o .
F (1) = ko, F,(0) = 0,
< F;(l),u > = < 1,Fv(c) > =0,

< 0,k0 > =k,

< F;(c),; >= <o, (1) >
giving
r;(l) =0, F;(u) = k.
Tus ¢ (1) = ko, ¢ (o) = E, and so

62(1) = ¢_(ko) = &E = %2,

42(c) = ¢ () = Fxo = [0, e

Lemms 7: If g : V—=V is an inner product preserving linear

transformtion,l then go¢ = "gvos‘

Proof: Clearly ng(x) = g(v . *) =gv . gk= ngg(x) so gf = ngg or
F vg-l = g-ngv, and then

< g;x,y > = < p:x,g'ly > =< X.Fvg—l! > = < x,g'lpsvx >,
=< sx,gs"lpgvy >= < Sx'ngY >= < ngsx,!{ >, #»

Lemms 8: For velV, ¢vou = uotbv__ and ¢voe = eo.pv,
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Proof: If X ¢ AX(V),
<1va,'1>=<o,v. Xa.Y>,

(-1)k<c,x. v.Y>,

(-1)¥ < 0, X . F Y >,

(-1)% < ™XEY >,

(-1)% < FeX,Y >
v
so TP X = (-1)%F#1X. Then
v v

rof X = (-1){E*1)¥/2p 5
v v
= (-2)e(E 1)/ yhpuy
. v

= (-1)5(62)/2pury,
v

= F#raX
v
_ 2 _ n(n-1)/2
so WP = F:u Then u° = (-1) so
2 2
Fu=wFau = u(qu)u3 = uF:‘;uu3 = uF¥:
Thus ¢ u = ué .
Also
1]
or x = 1 (K*LI g o
v v
1]
= i (k+1)ken 121‘F;rx,
- ]
- ihkik(k 1)4n FAX,
%
= Fvex
and 82 =1, BoO
2 2

FO=0F6= 0F* = or%
v v v v
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glving

¢v6 = 9¢v. "o

Now returning to the geometric situation of interest, let £ be an
oriented n = 2n' plane bundle over & space B, with Riemannian metric
< , > and o : B—>8(A"(£)) a section of the sphere bundle of A"(E)

defining the orienmtation, Let ASV(g) = K fen A%(e), a%%e) = A(e)

k gdﬂ
and with w : DE —»~ B the projection, let

#: (%V(e) 8 6) — x*(1°%E) 8 @)

be the bundle map defined at e ¢ DE by sending (e,X) into (e,¢ex) [Lemms T
says this makes semse]. The restriction of ¢ to St is an iscmorphism,
for ¢2 = 1 by the Corollary to Lemma 6. Thus the triple
(v*1%7(£) @ ¢, =*A°%(£) @ ¢,0) defines an element w*A°V(g) & Con*r°%(g) 6 ¢
in K(DE) with an isomorphism to zero in K(8t), and therefore an element of
K(DE,SE). "
In addition, one may define the operator 6 in w*(A(E) 8 €) {Lemme
says this makes sense] as a bundle map of square 1. Since .
o:A%(g) 8¢ —>=1"(g) o, and n is even, 8 takes (A°V(g) 8 €) ana
w'(AOd(E) 8 ¢) into themselves and by Lemma 8, the map 6 commutes with ¢.
Let A2(£),A%(g) denote the subbundles of ™(1*(£) 8 §), a=ev or

od, on which 6 i1s +1 and -1 respectively, and let
aE) = (A57(6),02%E),0) - (4%7(8),12%(E),0)
in X(Dg,s8). Apﬁlying periodicity, one thén has:
Derinition: U(E) = p™'a(€) € K2O(DE,86).

Assertion 1: U(E) is multiplicative.
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Bcciin, g

Progf: It really suffices to verify this Just for vector spaces. One h

B : A(E) & A(n) — ME® n) giving isomorphisms

ASV(E @ n) = ASV(E) B A%V(n) @ A°%(2) & A%%(n),

T T

e

1°%(z ¢ n) = A°%&) & A°%V(n) @ A%(E) & A°%n),

while by Lemme 6, this decomposition is compatible with the map ¢. By L

one also hes

A(E@n)=A(E)3A(n) oA (£)BA_(n),

A(E®n)2A_(E)eA(n)eA(E)eA_(n),

being also compatible with the even-odd decomposition. Adding everything ugy
vith signs gives A(£ ® W)= 4(£):4(n), while periodicity is also

maltiplicative., W#*

Assertion 2: If £ is a complex line bundle over B, considered as

oriented bundle, then A(E) = n%& - n*¥ with 7% and =% identified oY 5

i

SE by the standard trivializations over SE.

Proof: Let V be a 1 dimensional complex vector space with izimer :
product {-, ] and v € V & unit vector. Then as a real vector space

< , >=Rel , ] is an inner product and V has en criented base {v,}
: ?

Thus A(V) hes a base {1,v,iv,0}, o = v . iv, and being monomia.ls':;é.""
%g

one gets immediately
11 = o, v = iv, Tiv = -v, 10 = 1,

This gives
8(181)=02981i, 8(v 8 1) = iv e i,

o{(ive 1) =-vei, 6{c81)=-L8i.
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Thus A+(V) hes abase {(L81+061i), (v8 1+ iv e i)} and

A(V) hes abese {(181-081), (v81-iv 6 i)}. Then the maps

v—12%V) s x—>x81+1x04,

V—>22%V) s x—>x81-ix0 41

are respectively conjugate linear and linear.

Thus, if £ is a complex line bundle

MOEERE N ORE

A7) =1, a%%E) = g,
To determine the map ¢, let x = {a + Bi)v, so0 that:

Fx(l) = x, Fx(wi) =x.v= -go, Fx(iv) = x ,iv = qg, Fx(a) = 0,'

end
<F;v,1>--<v,x>tq=<a'l.l>,
<FRlv,l > = < iv,x > ® g = < pr1,1 >,
< p;o,v > E < 0,X , V> % B < ~fviaiv,y >,
< F;o,iv >E<cg,x, iv>»=qagnm < —Bv;taiv,iv >,
80
F¥(1) = o.. F;(v) = q F:(iv) = g Fi(o) = (-ptal)v = ix.
Thus

¢x(1¢l+091)-x'01+1x01,
¢x(1a1+ooi.)-xal-1xoi

and if x ¢ 8(V), ¢i =1, 8o ¢ induces the standard trivialization by

sending ze e 1:"(5)e into z (or Z for the conjugate bundle)., **
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Corollary: If £ is the conjugate of the canonical bundle over CP(n-1);&
then U(E) = p 2(E - E) ¢ K(oP(n)).

Proof: Identifying CP(n) with T(£), the bundle £ over CP(n) is
precisely the pullback of the bundle & over CP(n-1) with the standard

trivialization. %%

Corollary: Let & be an oriented 2n plane bundle over B with
Pontrjagin class @ (L) = 1 (1 + ¥2) end let o7 : E*(TE;Q) —> HW(B;Q)

i=1
the Thom isomorphism defined by the orientation class of £&. Then

n x -x
en(u(e)) = 1 ((e - y/xy).

i=1
Hote: (¥ - e X)/x = (& xJ/Jx - Z(-x)J/J! Yx = (23. oad XJ/J! Y/x is a
power series in x2. Thus ¢Hch(U(E)) is a rational power series in the

Pontrjagin classes of ¢&.

Proof: Since the Thom homomorphism and U are multiplicative, it suffl
to prove this when & is the conjugate of the canonical bundle over CP(n-1,
It &= c, (&) e H((n) 2), UE)=p e -8 e kieP(n)), so

a_ _-a

chU(g) = ® - ¢™%, while the orientation class is &, 8o oHchU(E) =

(% - &%) /a. w
From this one has the integrality theorem:

Theorem: Let Mzn be an oriented manifold and let x ¢ KJ(M). Then
{ch(x)-8(x)}[M]l e 2

where &(1) € H*(M;Q) 1is given by the polynocmial in the ta.ngent:.a.l Pontr‘fa,y,g '

classes of M such that vhen 3(1) 11 (1+x2) formally, then
i=1
&8(t) = H (xi/ta.n.h(xi/2)).
i=1 . 7
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Broof: Since T(x) U u(r) e x9*P(pr,s1),
{m%(x) U U(t)}[Dr,87] = chlnax-u(t)] o (Dt )[D1,81]-p(1)"2"3/2

50 ch["*x'U(T)]')J](DT)[DT,ST] € Z. Then c(DT) = c(m*1 8 €) = n¥:(1 8 @)

n g n x, -x,
=7 I (1+xi)(1—xi), 80 ,J(DT) =781 (x,/e 1—1)(-xi/e 1-1)) ena

i=1 i=1
n X =-X. X -X
enlmbe o)1 for) = (o) (e I (e tee Um0 fe ) x fe e
while
ey_e-y. v ) —w =y( S - &Y ‘)
¥ (-1 (e¥-1) (¢ -~ 1)1 - &)
but
v | vRa_wa ul2.yclf2
(0-1)(10Y)  (0-1)2 v-1 vi/2. 22’
S0
y( Y ) ., gLy
(e¥-1)(1-e7Y) d72 L eV/2) amn(y/2)
Thus

(OH)-l(ch(x)‘ﬁ('r))[DT,S'r] e 2,

and since oriented bundles are naturally and multiplicatively oriented for

integral cohomology, this is precisely {ch(x)-8(t)}[M]. ##

Note: Since
ex/2 + e-x/2)/(ex/2 - e-x/2)’

x/tanh(x/2) = x(

x(2 + 2(x/2)2721 +...)/(x + 2(x/2)3/3! +...),

2 4.,

n
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n IF
the class &(t) =- 1 (xi/tanh(xi/2)) is far from stable., In order to ;{g
1 b
eliminate the power of 2 vwhich 1s causing the problem, one defines: gi;
Definition: If £ is a real vector bundle with Pontrjagin class @(E) %
n R
expressed formelly as 1 (1 + xf), dim xi = 2, then the Hirzebruch L eclass g
1 3
of £ is given by the formal product *N
L(g) = 1 (x, /tann(x,)) ?%ﬁ

E -]{ x1/t xg)). g

Note: L{(£) 1is a stable class and is closely related to §. In
particular, 2y/tenhy differs from y/tanh(y/2) in that the component of yk'

has been multiplied by 2°. Thus
2L(1) MEP] = {ﬁ (2xi/ta.nhxi)}2n[M2n].
- zﬂzﬁ x, /tann(x, /2)}, DF®],
= 2% (1) (M%),

giving

L(r) (M) = §(x) 1.

Chern classes of T 8 C. Unfortunately, K theory is badly behaved for .5:%\(

conjugation and one must make some modifications.
Let & be a real 2n plane bundle over & space B, and define K th

Pontrjagin classes'. ﬂi(E) e K(B) vy
£ slei(e) = (2) = 2 thpi(v (5 0 0)),

= At/(l-’-t)(e ec -~ 2nc)'
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where s = t - t°. Note: m(E) 1is & polynomial with integral coefficients

in the Chern classes, hence belongs to K(B).
Note: If n 1is & complex line bundle, then

A(n 86 -2) = neii-2),

(1+un) (1+uR)/(140)2,

80

(ar(t/1-8)n) C {a+(e/2-2)7m)

A (hegc-2)=
t/(1-t) (1/1-t) (1/1-¢)

= (1-t+tn)l -t +t7),

1+ t(n-2)1{2 + t(n-1)],

1+ tln+ 7= 2)+ t3(2-n-n)

gince n'n =1,
If the Pontrjagin class of the bundle & is expressed formally as

n
m(1 + x2), so that c(E 8 C) = ﬁ(l + x,)(1 - x,), then
1 J 1 J J

' X -X X -X
n I tlpt(r (€8 €) =T (1+tledre I-2) + tP(2-e Jue )

BT

80
n X -X
ch 7 (E) = T (1 + s(e S4e 9-2))
8 1.

end ch'ﬂl(E) is the i-th elementary symmetric function in the variables
x -x‘1 ) .
e J+e -2.

Definition: If £ is a real vector bundle over B with @(£) expressed
formally as N(1 + x?), let sw(e 0)(5) € H®B;Q) be given as the s,
x

-X
symmetric function in the variables e 3 + e 4. 2.
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Pl
1

Proposition: Let M be an oriented manifold. Then for all x € K*(M),

{ch(x)L(T)}[M] € z[1/2].

A
4
».
In particular, é
:l

{sm(eo, YL(t)}[M] € 2[1/2]

¢
;
B
M
4

for all w,

Proof: This will follow at once from L{t) = ch(u)é(tr) with

=X

u e K(M)[1/2]. ‘Let (x/taphx) = v-(x/tanh(x/2)), a = e"+e *-2, and b
giving '
v = tanh(x/2) /tazh(x), k
- (e*-1)(1-e%) / eX-a7X ' ]’
X =X x, ~x ° S
e -e e +e 3
L pasHew™ 2 :m

(b->"1)2 v2

U 0%e%) _ Pa vt

212 () vl

(oo~ 1)/ (br2ep™l) = (a+2)/(ath),

l - 2/(3"'“')'

1 - 1/2(1/(1+a/k)),

=1 - 1/2[1 - a/b + (a/8)% -... ],

= 1/2 + 1/2(a/k) - 1/2(a/4)2 + 1/2(ask)> -...,

e z[1/2][e®+e"*-2].

Thus L(t)/6(t) € ch(K(M)[1/2]), being a symmetric polynomial in the
X -X
e Jte -2 with coerficients in z[1/2]; *e
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In order to evaluate the expressions sm(e@ )L, one may use:
Lemmg: If € 415 a complex n-plane bundle then
s,(eg)(6) = 5,,(€)(&) + £ 8,5, () )

with n('l) > 2n{w), &, € 2.

A

Proof': )
x - -
€ +e X2 = (e5-1)(1-e¥)
= (ex-lfe-e-x,

(e%-1)2-1/(1+(e*-1)),

(1) - (e*-1)3 + (X1)¥ 4... .

Thus the 8, symmetric function in variables ex+e'x—2 given by

szm(e) + L aAsA(e)

vhere s, €2, n(i) > 2n(w), and s“(e) is the 8, symmetric function in

variebles e*-1, ¥4

Lemma: If M is & stably almost complex manifold of real dimension 2n

then
L(t) = {1 + £ b,s, (e)}-, J(0)

vhere b

A€ z{1/2], =n(x) > o.

Proof: If co(M) = H(1 + xi), then

Lr) = B((e L-1)/sann(x,))- J ()
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ef -1 _ (X)(eMe®) & . t*'
tanh x ex--e_x e* ’

= (1) 2)/0P1), (u=e5)

= (u241)/(ur1),

_ [ew-1)11)%0

(u-1)+2
= (2+2&+32)/(2+a). (a = u-1 = e*-1)

{1+a+ (a2/2)}{1 - a/2 + (a/2) -...},

so L(t)/S{(M) = 1 + a, where & is symmetric of positive degree in the ~
x .
e 1-1 with coefficients in 2z[1/2]. ** .

In H*(BSO;Q) one writes the Pontrjagin class formally as 11(1+x§),
dim x, = 2, and defines sm(g) and sm(e@) es the s symmetric functi: 4

’ 2 Mo 3
of the variables x:l and e Y+e Y-2 respectively, and defines L as

H(xd/tanh(xj)). Then Asm(@) = Ln'UZM"ﬂn sm.(@) (] smu(@)),
As (e@) = I sm,(ee) 8 smu(e(,?), and AL =1L 8 L.

w'yU u"=0

Let p : H,(B80;Q) —Q[B,] : 2 —> I{s (e )L}[z]*B  and let

le4
p' : E,(BS0;Q) —> Q[ui] 1z —3% sm(B))[z]'um. Then let

B, = {z ¢ H (B30;Q) | a(z) ¢ z[1/2][8,], p'(2) € z[o;1}
and

By = ¢ B C H,(BS0;Q).
n _

For p an odd prime, let L : By — zp[ai] by letting pp(z) be
reduced mod p (1/2 ¢ zp) and let p} : By —> Z[a.]. by pi(z) = p'(z)

reduced mod 2.
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One then has:

Lemma: There exist stably almost complex manifolds MIE):I. of dimension Ui

for all primes p and integers 1 so that
a) For p odd, pp[thi] has largest monomial
1) 8, if 21+ 4 p° for any s,

2) (8 1P if 2141 = p° for some s.
(p7-1)/2

b) 9é[rM§i] has lergest monomisl .

Proof: For the 2 primary case, cne has s(i)(G)[GP(Ei)] = 2i+1, so let

Mgi = ep(21). 1In the odd primary case, let M,

From the computations for complex manifolds, for M complex one has

be as given in Chapter VII.

(s (e @IL)IM] = (35, () )IH] + o (s, (e) i

with s, € Z[1/2], n(}) > 2n(w). For the manifolds Mgi the largest monomial

is then known from Chapter VII. %*#

Theorem: a) REO/Torsion is a polynomial ring over Z onm classes X, of

dimension U4i, and the classes x, ere characterized by o

i

154

8(5)(p(NIx,] = 1 if 2i+#1 # p° for any prime p eand integer s,

3.4

p if 2i+l1 = ps for some prime p and integer s.

b) The forgetful homomorphism

?, : 82 — 05%/Torsion

is epic.
c¢) All relations among the Pontrjagin numbers of oriented manifolds follow
from the integrality of the Pontrjagip classes and the conditions

(s,(e g LH™] € 2{3/2] from K theary; i.e. w0 e B,
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3 e SRR .

Proof: One considers 'I‘F,,ﬂl,',I C B,, with cg = TF*[Mgi] as in Chapter

VII, showing thet B, is polyncmial with TF,09 = t93° = B,.. The condition

Al

on the characteristic numbers for generators in immediate since if dim M = Ui

?
and the characterizing numbers for generators of n‘,{ are known, #* §

Note: The use of the Hirzebruch L class and relations arising as in

the Atiysh-Singer index theorem was suggested to me by Hattori (private

communication). It is also possible (as in Stong [/r7]) to use the A& class®

defined by l'l(xi/z)/sinh(xi/E). To see that this is equivalent

one has the following argument (of Dop Anderson)
(x/2)/sinh(x/2) = ux /tanh(x)
gives
u = (tabh x/2sinh(x/2)),
= (5= %)/(Fre ) (X 2ue7H/2),
and squering this

u? = (eZXee Zo2)/(ePee 42) (eFre5w2)

and letting & = e'+e *-2, e'+e * = a+2, 80

W = (&+2)2-1‘/(a+_2).2--a = (a2+ha)/a-(a+2)?,

x (a+h)/(a+2)? = (+e/U) (1 - af2 + (a/2)2 -...)2.
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Thus u° is a power series over 2[1/2) in a, with leading term 1, and

from the binomial theorem

ATv=1+ ] 1/2(-1/2) ... (-(2k-1)/2)v**1,
X=0

so u 1is a power series over 2[1/2) in a with leading term 1. Thus
A = ch(E)L

with E € K(BSO}[1/2] an invertible class.

Oriented Bordism

As previously noted, one of the main reasons for interest in oriented
cobordism is the realizability of integral homology. The main study of these

bordism groups was made by Conner and Floyd [3é].

Thecrem: For every CW pair (X,A), ﬂfo(X,A) ®Q is a free n‘B.O 8Q

module isomorphic to H,(X,A;Q) oq(n?,° 8.

Proof: @ ((X/A) ';B\/SO) — ﬁ.((X/A) - EESJO;Z) is an isomorphism modulo

torsion., %**

Lemma: There is a 2 primary homotopy equivalence

£ : B89 —> K(20).

Proof: Let TBSQ be mapped into a product of spectra K(Z,n(w))
realizing the classes 4p U, and spectra K(zz,ni) realizing classes dual to
the torsion of nfo to define a map f. The induced homotopy homomorphism

is monie, with finite odd order cokernel in esch dimension. ##



- 210 -

Theorem: For a.ny CW peir (X,A), there is an isomorphism mod the Seiﬁ'

class of finite groups of odd order
£y 1 950(X,8) —> B, (X,8;220).

Proof: By the lemme, the induced homomorphism

£4 + To((X/a) | TBSQ) —> 1a((x/8) L K(R0))

is an isomorphism mod odd torsion. *#

Theorem: Let (X,A) be any CW peir. For esch class c :Hn(x,A;Z) B
there is an integer k with (2k+l)c represented by g,([M°,5M%]) with

(M,34) —~ (X,A) an oriented bordism element of (X,A).

QiO(X,A) — H_(X,A;2) is

Proof: 'The evaluation homomorphism e,
induced by the composite TBS9 —> K(94') —>~ K(250) = K(Z), © being the

projection. By the previous theorem, coker e, is finite of odd order.

To determine the odd primary structure of ﬂio(x',A); one has the

homomorphisms
T#
aSP(x,a) -2 al(x,a) -E% o5%(x,a)
with the composite being an isomorphism modulo 2 primary torsion.

Theorem: If (X,A) hes no torsion in its integral homology then
220(x,0) is & free 95° module isamorphic to Hy(X,A;Z) 8 85°. In
particular, the evaluation homomorphism e : so(x A) — H(X,A;2) 1is epi ;
1r {xi} is & homogeneous base of H,(X,A;2) and £,

is a msp of an oriented manifold into (X,A) with fi,([Mi,aMi]) = x
S0

il

S°(x A) 1is the free 9, module on the classes of the (Mi,fi).

il

ki



- 211 -

Proof: e' : ng(x,A) — H,(X,A;2) 1is epic, so e is epic. Choose a

collection of maps (Mi,fi) as above, defining a homomorphism

¢ Hy(X,A32) 8 630 — a3%(x,a).
: ' S0 S0
Considering the composite fyo'™: Hy{(X,A;2) 8 @) — H,(X,A;0, ), one

may write H,(x,A;ﬂEo) as H,(X,A;Z) @ a§° by the universal coefficient

theorem (since H,(X,A;Z) is torsion free), with r*om\(xi 1) = %, ® 1.

In this form f,°-™ is simply

102, : By(X,A32) 8 RS0 — H,(X,A;2) 8 250

#

where r# is the homotopy homomorphism induced by f. The ‘construction of f

shows that f, and hence f ™ and ‘wm are monic with odd primary cokernel

#.
Let g (Ni,BNi) — (X,A) be complex bordism elements with

€;5([N;,3N,]) = x, and use these to define homomorphisms giving a commrtative

diagram

B,(X,052) & 0 2258 1 (x,a;2) & 230

-w! J/i 'Y\J( Hy(X,A;Z) 8 ﬂﬁo.
o

0(x,4) ——2— > a5%x,4)

Suppose M maps onto ﬂio(X.A) for J < n. Then since S, has 2

primary cokernel; there is an integer k with 2ka € imS, C imMm for all

= n,

o € 92°(X,A). In particular, for all i with dim x,

24,2, 1) = & (5,6, 1P,

with P.] = S,QJ € Q,S,o. Applying e gives at once

25y, 2,1) = 25(08,,8,1) +  [N,,g, 1P
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with Pj € QEO having positive dimension. By the inductive assumption, this

gives Ek[Ni,gi] ¢ imm, In particular, for any o € ﬂzo(X,A)

2ka =z [NJ,g‘,’]RJ

vith Ry ¢ 6,0y and dim ¥, <n. Tus 2%(2%) ¢ imw. Since M has odd

3
primary cokernel, this gives a ¢ im™. Thus ™™\ is epic by induction., *#

o

Theorem: Let (X,A) be a finite CW pair such that all torsion of

H (X,A;Z) has order 2. Then two classes in n,s,o(x,A) ere the same if and .

¥

only if they have the same Z and Z2 cohomology cheracteristic numbers.

H' s,

Proof: "One has gio(x,A) = B'(X,A;sz,s,o) since neither group has od'd
torsion (the first ﬁy being a direct sWd of ﬂE(X,A) eicep}: for the'.\priinp 3
2, the second by the universal coefficient theorem) and th}flé ;_:;.11 torsion in J
n§°(x,A) has order 2. If all Z cohomology characteristic numbers of a
vanish, then & 18 a torsion class so 2a = 0. If also all Z2 characteri
numbers vanish, then a maps to zero in \M{(R,EA)(X,A) and thus o = 28.

Since B is also a torsion class, 0 = 28 = a. **

Making use of the arguments for QH(X,A) one also obtains:

Theorem: TFor any finite CW pair {X,A) having no 2 primery torsio

all p primary relations. among the integral characteristic numbers for

ﬂﬁo(X,A) are given by

{f*ch(x)‘sw(ev,('r) JL(7)}M,3M] e 2{1/2]

(where £ : (M,aM) —> (X,A)) for ell w and all x € K¥(X,A). ##
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Relation to Framed Cobordism

Proposition: A framed manifold of positive dimension bounds an oriented
menifold; i.e. the homomorphism Fn H nﬁr —_— ﬁio induced by the forgetful

functor is the zero homomorphism if n > O. Further, F, : ol — nSO =

o’ "% o =2

is an isomorphism.

Proof: Oriented cobordism class is determined by 2 and Z2 cohomology
characteristic numbers which must vanish on positive dimensional framed
manifolds., Note: One may also prove this by noting that ¥, factors through
complex cobordism, ##

Forming the relative cobordism theory $,(F) = lim = ’,_r(TBSOI_,Sr,’)-

o
the resulting exact sequence will split up to give short exact sequences

0—a90 — g (F) =0 —0
n n n-1
for n-1 > 0, and
S0 fr )
o—v-n1 —»-nl(F) — 9, -8, —o0.
I I l I
0 0 Z Z

The main questions are tgen the nature of the extension in these sequences
and the invariants of fremed ccbordism cbteineble by characteristic numbers.
First exemining the torsion subgroup of Qio, one notes that since

Stiefel-Whitney numbers detect the torsion, this subgroup may be split.:

In particular, the torsion subgroup may be analyzed by mapping this sequence
into the relative sequence for fremed and unoriented cobordism. The only
invariant of framed cobordism arising from Stiefel-Whitney numbers is the

2 primary Hopf invariant obtazined by evaluating the top dimensional
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ik

Stiefel-Whitney cless. (Note: Since vl(V) = 0 for an oriented manifold
with framed boundary, this invariant will be non~%zero only for n = 2,4, or 8.

To see that no additional 2 primary informetion is cbtainable,

conglider

t
gF G TBSO_, Lo mK(Z,44+r) x TK(Z,, #+7)

where fr is the unsteble 2 primary homotopy equivalence similer to that 4

of the previous section., The only 2 primary information obtainable from 1;

oriented cobordism is then the same as that obtained from the map ¥ — K(Zg_l:_:_

realizing the fundamental class. In particular, since the 22 cohomology map

induced by K(Z,r) —~ K(Zz,r) is epie, corresponding to the map
T,B\Slo — ,Tg,o, no new information cen be obtained.

Turning to the torsion free structure, consider an oriented manifold V
with framed boundary. Corresponding to an imbedding Ve Hn+r one has
the normsl map v : (V,3V) — (BSO_,#) by interpreting the framing of the
boundary as a deformation of the normal map c;f v t;: a point. One may then;
form the Pontrjagin numbers of (V,3V) which will be integers. Since the
2 primary relations among the integral characteristic numbers of orientea
manifolds follow from integrality of the Pontrjagin numbers, this shows tha.t:
the relative sequence splits insofaxr as the prime 2 1is concerned and that
no 2 primary information about framed cobordism is obtainable from integra

cohomology cheracteristic classes.

clags U(t) € K¥(D1,51) and for any x e K*(V,3V), one has

g,

is integral for all x e K*(Vv,3V)., Since 1 8 € - ng € K(V,3V) one hsas

Jreti
s

8,(0p)(1) & cBK(V,2¥) if n(w) >0, end L(x) = ((1/2)*2 + en(e))s(r) wh
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8 ¢ K(v,av)[1/2]. Thus sm(eo,)L(r)[v,av,] e 2[1/2) for all « if end only
it L(t){v,av] ¢ 2{1/2].

Since a closed oriented manifold has L(t)[M] = 8(7)[4] € 2, this gives

Theorem: A necessary and sufficient condition that an oriented manifold
with framed boundery have.the same Pontrjagin numbers as a closed oriented

manifold is that the L number be integral.

Note: If the class L(E)hn is expfessed in the form of an integral
polynomial in the Pontrjagin classes with relatively prime coefficients,
divided by an integer u(Lhn)’ then u(Lhn) is odd. This is immediate from
the lack of 2 primery relations.

Since the homomorphism L' : Q.(F) —~ Q sends ﬂﬁo into 2Z, one has

induced a homomorphism L" : ﬂ? — Q/Z. One then has:

Theorem: The homomorphism L" : ﬂ,f,r —» Q/Z coincides with the odd
primary part of the Adams invarient ec; f.e. for a e nf",
ec(a) = (a/b) + (c/2k) for some integers a,b,c, and k, with b oda., and
L"(a) = {a/b). 1In particular, .L“ snd e, coineide when reduced to

Q/z[1/2].

Proof: 1If o = [M], choose a stably almost complex manifold V with

3V = M. Then

L(x)[v,M], |
@+ s, e,

egla) + I b8, (e)s(V)V,M],

1"(a)

vhere b, € 2[1/2], n{A) > 0. Bince each sA(e)S(V)[V,M] e Z,
L"{a) = ec(a) + (a/2%) for some integers 4 and m. Since the denominator

of the L polynomial is odd, one also has L"(a) = (a'/b') for some integers
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a' é&nd b' with b' odd. The result is immediate by combining these

expressions, #*

Note: This shows thet the L" invariant gives less informetion than

Relation to Unoriented Cobordism

Letting G, @ ﬁ?,o —*77* be the homomorphism induced by the forgetful !

S0

functor, the two primary esnalysis of 2, hes given fairly complete knowle

of ' Gy. In perticular, the kernel of G, 18 the ideal generated by 2, wh.':'
is free e.bel:la.n and so the relative group splits. The knowledge of \ﬂ/(R 2
gives essentially complete description of the cokernel of G, which is a
vector space end equel to the torsion subgroup of the relative group.
There are several abproa.ches to finding a description of the relative
groups n°'s° ‘

One approach is to link the exact sequences-

SO 2 So_g’_vnf(n 2)

Ry
T

a _"MR'Z) Eﬂ"m Am -0

to give a long exact sequence

S0 Fa (3,d4) .80 (2,0) S0
oo = 20 SIS TT o, o7 , i PPN

where 3 1s the homomorphism tsking the submanifold dual to vy (¥ote: @} ¥

has 3 = 30F,.) From this sequence, it is clear that
0,80 . S0
0050 = o0 o T7 .

This exact sequence was first noticed by Dold [46].
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A semigecmetric argument msy be given as follows: Let (Vn.Mn_l) be a
menifold with oriented boundary and let £ : V —> RP(N) be a map with
f4g = detr , sending M to a point not in RP{N-1). Make f transverse
regular on RP(R-1) keeping M fixed, to obtain a closed manifold
Wl 2 ¢"U(RP(N-1)) end mep | : W —>RP(v). Ietting v demote the normal

bundle of W In V, detv £ v £ £¥# = dett 80 dett, # detr

VIW’ W VI
trivielized. Thus one has &an oriented bordism element of RP(=). Identifying

wedetv is

Dv with a tubular neighborhood of W in V, W—(D\))o is an oriented manifold
with boundary M - Sv and may be used to give a ccbordism of (V,M) to
(Dv,3v) (the union of the three pieces bounds V x I). Thus one has defined
a homomorphism ﬂg’so — nﬁfl(m’(-:)). .

The inverse homomorphism mey be described as follows: Let & : X — RP()
be an or.iented bordism element and to it assign the class of (Dg*E,Sg*E) in
ﬂg’so. Since g extends to Dg*t -—"DE_C RP(=+1) = RP(»), eutcmatically
trensverse recovering X, this is clearly an inverse to the above.

Tus 0050 =

50 80
 ~,(RP(=)) and the isomorphism with % °, a‘T‘(n_2 is
obteined by sending (X,g) to (X,Y) where Y C X 1s the submanifold dual
to g%g, That this is an isomorphism may be seen by noting that ﬁigl(m’(”))
is isomorphie to a0 plus the reduced group @80 (RP(~)) & 77 .
n=-1 n-1 n-2

Another proof may be given by using the Atiyah bordism approsch. One
has the cofibration sequence RP(1) —» RP(N) — RP(N)/RP(1), and
RP(N)/RP(1) mey be identified as the Thom space of 2f over RP(N-2). Since
P?E is an oriented bundle, there is a Thom isomorphism for oriented bordism
(Note: If £ : X —BSO . 1is & mep, then Tf : TP*J( — TBSO may be
thought of as a cchomology cless in TBSO theory, which defines the
=80

orientation.) and one has the exact sequence obtained by applying nn-l-l

and letting N go to =
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coe —= 89 (rp(1)) — 850, (RP(=)) —r @0 (m(26)) — ...

I i 0

e 00— P —— 0 (mR(e)) — ...

M ey L

Since the map TBSO .~ RP(1) = I TBSO —> TBSO . RP(») = L TBO 1is just the

suspension of the inclusion TBSO —> TBO induced' by G, the relative graup

ek 1y P g iGdat.

is precisely the homotopy of the cofiber or the bordism of T(2() wup to

g BTN

dimension shifts.

This situation hes been generalized slightly by George Mitchell (Thesis; ,\F

'v

Univvers:.ty of Virginia) who comsiders the bordism theory defined by meps

(v,8V) — (X,A) with 9V oriented. This is denoted 02'%(x,a), end 9"5'

is given by the homotopy of the cofiber of the map E

(A/¢) . TBSO . RP(1) —> (X/@) . TBSO .. RP(w)
given by suspending
(a/@) . TBSO —= (X/@) . TBO.

Up to dimension shift, this is the oriented bordism of the pair

((x/¢) . RP(=), (A/@) -~ BP(1)) or (X x RP(=), A x RP(1) \J X x #).

Relation to Complex Cobordism

The homomorphism S, : 'n‘;} — ﬂ§0 has previously been examined in

considerable detail. In particulsr, the kernel of 8, is free sbelian 80} )

o

that the relative group n,,(s) splits as the direct sum of kernel S, an

cokernel 8.
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If one considers the composite
.ﬂH LLEN n'?.o LAl (ﬂ?,o/Torsion) ® 77",
writing QH & Z[bi] in the usual way, then since W X p is monic, the kernel

of 8, is the intersection of the ideals kernel(pS,), generated by 2 and

the b s * and kernel(wX,), generated by the b Thus kernel(S,) 'is

251 24+1°
the ideal gemersted by the elements b _  and 2b,, . (2i+l # 2%.1).
27 -1
Since Z[ba] maps iscmorphically to ﬂio/Torsion, the subgroup

S.(Z[bZi]) of 'QEO forms a complementary summend for Torsion(n,s,o). Thus,

the torsion subgroup meps onto cokernel S, which is therefore a 22 vector
space and forms the torsion subgroup of R,(S). In particular, S, maps onto
295° 2o that cokernel 8, & (250/2050)/12, where 95072050 1s thought of

as a subgroup of 77 . Since cokernmel 8, maps monomorphically into the torsion

0,

subgroup of .’ , this subgroup is detected by Z, cohomology charecteristic

2
numbers, while the torsion free part is detected by integral cohomology

characteristic numbers.

The Index

Let M® be a closed oriented manifold of dimension n = 4k. By Poincaré

duality and the.universal coefficlient theorem, the pairing
E*(R) @ H5(0GR) —~B : x 8y — x VU yln]

where R denotes the reals, is a nondegenerate pairing. Since -
dim x = dim y = 2k 1is even, one has x \) y[M] = y U x[M], and this peiring
is symmetric, One may then choose a base for H2k(M;R) so that the matrix

of the pairing is diagonal. One then defines the index of M, I(M), to be
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the number of positive diagonel entries minus the number of negative diagonal
entries. This function is extended to manifolds of dimension not divisible
by 4 by letting I(M) = 0 in these cases.

Recalling that the only inveriants of symmetric bilinear forms over the
reals are the rank and the index, vhile an orientation preserving homotopy

equivalence of closed manifolds must preserve the pairing, one has:

Theorem: The index of M 1is an invariant of the oriented homotopy tlype

s

e D e SR R S S S A r R it TR e

of M, ##

Theorem: The index has the following properties:
a) I(M+ N)=I(M)+ X(N), . I(-M) = -I(M);

7

b) I(Mx N) = I(M)-I(N);

¢) If M bounds then I(M) = 0; end
a) 1(eP(2x)) = 1.

Thus, I : ﬂ?,o —> 7 1s the unique ring homomorphism taking the value 1 onm
each €P(2k).

Proof: a) is clear for H25(M + M;R) 1is the direct sum of H-S(M;R)
sz(ﬁ;n), with the peiring being the 'sum' of the two pairings, while the
pairing for M with orientation reversed is just the negative of that fér

To prove b), let P=Mx N, with dimensions p,m, and n respectivl
If p#0 (mod 4), then at least one of m and n is not zero mod bk se

that I(P) and I(M)-I(N) are both zerc. If p = 4k, then
% 2k-8
E5(pR) & | EP(GR) @ C(NR) .
s=0

by the Klinneth theorem. This vector space decomposes into the subspaces

1 (M;R) o 258 (R) @ EY S (;R) 8 HETE(N;R)
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for s < m/2, and the space
B™/2(u;R) o 1*/2(n;R),

with distinct summands being 'orthogonsl' under the pairing and with the
restriction of the peiring to each summand being nondegenerate.

If s <m/2, choosea base X, for E°(M;R) and a base y, for

H2k- 2k+s

S(N;R) with dusl bases xt and y* in B (M;R) and HTS(N;R)

respectively. Using the base x, ) ya, x; ) y; for the s-subspace, the
pairing sends all pairs of basis vectors to zero except for the pairs
(xi 8 ¥y x;_' B y3‘) and ,(xi‘ [ y.'j', % 0 yJ) on which the value is (-1)t wvhere
t = (2k-s)(m-x). Thus the pairing mastrix -decomposes as a direct sum of
'orthogonal' 2 dimensional subspaces witix matirx (<1)% (?_ %) . Since the
index of this 2 x 2 matrix is zero, each of the s-subspaces contributes zero
to the index of P.

Thus, the index of P is precisely the same as the index of the pairing
on Hm/z(M;R) [} Hn/Z(N;R). If both m and n are congruent to zero mod 4,
choosing bases for which the forms of M and N are both disgonal gives the
basis of products in vhich the form on EM2(R) 8 B/2(NR) is aiegonsl.
Looking at the'aiagonal entries gives immediately I(P) = I(M)-I(N). If bot;.h
m and n are congruent to 2 mod 4, then the pairings
B%(MR) 8 B2(M;R) — R and that of N are both skew-symuetric. Thus
one may choose a base of Hm/Z(M-,‘B) so that thé peiring matrix is a direct
sum of copies of (_g g) , and similarly for N. Looking in the product of
two such two dimensiomsl subspaces, the pairing matrix is (g, ‘(I)) with
J 0 1} a Jt = (0 _1) . This matrix has index 0, so

“l-1 o 1 0
1(P) = 0 = 1(M)*I(N).
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The proof of ¢) is due to Thom [126]. Suppose M* = W'l with n = bk
and M and W are oriented. By Lefschetz duality, one then has a comu_tativ
exact ladder . %

oo —— (W) —£2s 7 () — ¥ w,m) — B () — ...

) —>5 ) S E_ ) —E_ (10 — ...

Hn-l-'l-r

vhere f : M—> W is the inclusion, all groups having real coefficients.

Let AT = Imege((f*)) a.ud- K. = kernel((,), ).

By exactness, one has AT —~ Kn-r'

If acA”, beA”, then <alb, [M] >=0. fTo see this, one has |

<a\Jb, [M] > =< r#(a\J 8),3[W,M] > = < 62%(c \JB), [W,M] > = < 0,[W,M] ¥

By L Hypt) '

I It

B*P(w) L2 5 P(y)

cammites, giving Hn_P(M)/Kn_P 2 auel of AP, Thus AP ie precisely the

annihilator of AP,

2k 2k

With dim Mebk, this gives E-5(M) = AX @ B yith A and B dus

]
paired and with dual bases a:'_,l::‘1 such that a.i‘% = 6“, a:'_aJ = bibJJ 0.
Ordering the basis as a‘I’bl’aZ’b2”"' » the matrix of the pairing consists

01
1 0

then compute the index, which is zero, giving I(M) = O,

o
of 2 x 2 blocks ( along the diagonal, with zercs elsewhere. One
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For part 4), Eak(CP(Zk);R) has & base given by ak, wvhere
o€ Hz(cP(Zk);R) is the first Chern class of the canonical bundle. Under the
pairing, of 8 of is sent to aak[(!P(Zk)] = (-l)ak = 1. Thus the pairing
matrix is (1), &nd the index is 1.

Finally, properties a)-d) indiceste that the inde;c defines a ring
homomorphism I : ﬂ?,o—* Z sending each ¢P(2k) to 1. 8ince any ring
homomorphism to Z or Q@ must annihilate the torsion subgroup, while the
CP(2k) generate ﬂ%o 8 Q as a ring (over @), such homomorphisms are

completely determined by their values on the €P(2k), proving uniqueness. #**

Since the index defines a homomorphism of ﬂ?,o into Q, there must be

an expression for the index of an oriented n manifold as a retional linear
combination of the Pontrjegin numbers. The precise expression for the index

is the Hirzebiruch index theorem [55 ]:

Theorem: The index homomorphism I : ﬂﬁo —> 2 1s given by the evaluation

of the L class; i.e. for any closed oriemted menifold, I(M) = L(t)[M].

Propf: Let L' : Q‘S.O —>Q : [M] — L(t)[M], be the homomorphism defined
by the L cless evdluation. From the diagonal formule AL = L 8 L, it is
immediate that L' is a ring homomorphism. In order to show thet I = L',
it then suffices to show thet L(t)[¢P(2x)] = 1 for each k. For GP(2k),
-2)2k+1

1]

one has 0(1) =(1+a where @ € Ez(CP(Zk);_Z) is the first Chern

class of §, and hence

(3/tenn’) 2 [ep(2x) ],
2k

L(t)[¢P(2k)]

in (E/tanha)2k+l:

= coefficient of &
(1/27i) ¢ az/(tenhz

(1/2ni) § au/u>* (102, (u = tanhz)

(1/271) § (1p=*

1, W=

Ly(a + u? +...)du,



It is convenient to know the form of the power series x/tanh x. Since ! 4

one has

x__ _(-2x)
tanh x  (e~2-1)

x + ,

the knowledge of the power series for y/(e¥-1) gives

K
.. 1.2 1 b k-1 _2 2
x/ta.n.hx-1+3x S5 X Gt (-1) z—-)—alek_x +oaey

vwhere B, is the k~th Bernoulli- number.

0dd Pr; Date. ; %
.'N ]

It is frequently convenient to know something of the p primery struct;ﬁ

of BSO and the Zp cohomology charecteristic number structure of oriente

cobordism, which the chosen approaech to cobordism has made unnecessary. It i
is possible to approach oriented cobordism in this fashion also. First, con

the case p odd.

have p-~primary torsion. The Bockstein operator Qo is trivial in 1}'('1‘

making this an ap/(ao) module, and as such it is a free module.

Proof: Since H'(BSO;ZP) = zp[@i'] is nonzero only in dimensions ca: e
to zero mod k, the universal coefficient theorem shows that there is no
p-primary torsion in the integral groups. By the Thom isomorphism .tll‘eorem;;
the same is true of ﬁ-(%x);z). Since the groups ﬁ'(@;zp) are nonz :
dimensions congruent to zero mod 4 only, while d&im Qo =1, Qo must 8
trivially. Using the map BU — B80, .one has induced a homomorphism

~l . -Q .
HY(TB8O;Z ) —> H(IBU;Z ) sending the Thom class of TESQ to that of
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and the homomorphism 41)/(%) — H'(TBSO;ZP) induced by action on the Thom
class is monic, since the composite homomorphism to ﬁ“(@;zp) is monic. By

the Milnor-Moore theorenm, H'(TBSO;ZP) is a free ap/(Qo) module, ##

Using the mod p GEteenrod algebre one may then duplicate for oriented
menifolds almost all of the comstructions made for the prime 2 in unoriented
theory.

it M is an oriented manifold, then Poinceré duwality and the universal
coefficient theorem imply that Hi(M;Zp) ) H““i(m;zp) —7 :28b—a\)b[M]
is a dual pairing. Thus there are unique Wu classes vi € Hzi(p-l)(M;Zp) such

that

@ia[M] =v, U a[u]

: -1
for a1l a e pi-2i(P )(M;_ZP). Letting v =1+ v) + ... € B¥(G2 ), one

1
defines a class Q=1+ Q. + ... € H*(M;Z ) where dim Q, = 2i(p-1) by
1 D i

Q= Av.
Theorem: If M® is a closed oriented manifold, then the class Qi is the.

mod p reduction of the class s((p—l)/2,...,(pl)/?)(t?(T)); i.e. .if the

i
tangential Pontrjagin class of M is expressed formally as N(1 + xi), then

the class Q is given by IN(1 + xg'l).

Proof: Dupli'cating the proof for the relation between Wu class and
tangential Stiefel-Whitney classes, it suffices to consider the effect of
applying ﬂi to the Thom class in ﬁ'('.l'BSOak;Zp). Using the splitting
principle, U may be written as a product xlx.k of 2 dimensional classes,
. s0 thet 9 (x;...x) 1s the sun of ell monomtals xl...xgl...xgi...xk. This
Is the i-th elementary symmetrie function in the veriebles x?" 1" tines the

".
class xl. <o Xy
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Note: Writing the tangential Pontrjagin class of M as IN(1 + xi), the

Wu class v 1is.the mod p reduction of

2 k 1
11 + (x, -x§+x§ Foot (1) p +..)F0,

To see this, one nas Py=1+ <1 g:uring y=1 + (@ x)P_l. and if

w4 et e VS e

dim x = 2, then @ x=x-xp+xp Fooot (—l)kxp + e

A

One then hes the mod p anelogue of the Dold theorem:
Theorem: All relations emong the mod p reductions of the Pontrjagin
numbers of closed oriented n menifolds are given by the Wu relations; i.e.

A

: 5
if ¢ Hn(BSO;ZP) —_ Zp is a homomorphism, there is & closed oriented n g
dimensional manifold with ¢(a) = (t*(a))[M] for a2l1 a if and only if ;,;%
'

¢{ypbwb) = 0 for all b e H*(BS0;Z ).
@ ) . for a ( P)

. o .

Proof: From the free module structure of H®TBES0;Z ) es an dp/(qo)
module, and the knowledge of the homotopy of spectra of this type, it is
immediate thet the image of 7,(IBSQ) in i,(l/f@g);zp) consists precisely of
those classes annihilating apﬁ-('rnsg;zp). Using the proof given for Dold’

theorem, the result is immediate., #*

in exactly the seme way using the fact thet fl'('IELJ;ZP) is a free (]p/(Qo')

module) were first proven by Atiysh and Hirzebruch [ /9 ]. Since all p-pr

these Zp relations should be derived from the K theory. . The .'deriigation;.% .
N

‘which follows, is due to Atiyeh and Hirzebruch. '"“1“',__:_ !

- . o d
Theorem: For each w, let 6 € H'(BSO,R) be the class obtained from %ﬁ
s (e )L by multiplying the component of dimension 2i + in(w) by qi

q= pll (p-l). Then each component of eu is expressible as a power of
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times a rational polynomial in the Pontrjagin classes with denominator reletively
prime to p, so that em has a meaningful mod p reduction, pp(ew). In
=gl .
fact pp(em) =9 sm( @) v. Thus
~1 . _ {n/2-2n(w)}
(7 s,(@) v - 5, ()] = q o fe )t - s, (@)
which is zero mod p, and hence the K—théoretic relations imply the Wu

relations: {FT1*(b) ~ v-1*(0)}[M] =0 for all b e H“(BSO;ZP).

Proof: It suffices to apply the splitting principle and write ‘each class

es a symmetric function.

The power of p in k! is at most (k-1)/(p-1) and equelity holds if
and only if k is a pover of p. By the Wilson th.eorem, |
(%) 1/p° = (-1)% = (-1)) mod p, where e = (p'-1)/(p-1), so

(e%* - 1)/q = JEO (-l)dpr mod p

B Hx)

or

(Ve 2) 24 e¥*-1)(1-e %) .’
2
a q q

g g,

@-l(xa)

and letting - ¢, be otained from sm(ee) by multiplying the term of degree
2i + kn(w) by qis . "
ax3, -ax)
eltte " -2y =l 2yy _ -1 :
¢m=sm( q2 )-c sw(g. (xJ))-- g s-m-(g).
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aid

%

Also 5
i

A

—~3x = S‘LX -qx = {1/[133 (-1)J(2x)pj-l]} - qx :
tanh gx  (e“¥-1) J=0 . 2

J ® J
but 2P 1=y (p) and qx = 0 (p), while letting y = [ (-1 (x)? -1,
J=0

@ o J+1 .
()P = (] (_1)pr Y=1 (SRR -xy + %, since (a+b)P = aP+oP n
=0 320

Thus x = x5 + (xy)? or ify=1+ (xy)P-l. This gives

® J
—-q‘L—El+(I (-l)pr )P-l mod p,
tanh gx 3=0

and letting L* bDe obtained from L by mltiplying the component of dimensid
21 by q_i, L¥ has mod p reduction equal to v.

Then

" -1
pp(em) = pp(%) pp(L') =

s (@) v,

This gives

fn/2-2n(w)}{ (

{@ 1 (G) v-s (@)}[M] =q e)I.. - sw((?)}[M]

reduced mod p, end since sw(e@)L[M] and sm(@)[ul e 2[1/2], this is
mod p.

Then for amy b, 0b=2xs(@),xezp s0 .
bv - 9b =@ (&b) v - (gb) = Ia {@ 5,(@)v - s (@)} giving the Y

relation, **

Note: One mey use the seme techniques in the complex situation. In .

if the component of dimension 2i + 2n(w) in sw(e)‘\f is mtiplied by
- . o b
the resulting class reduces mod p to give 9 lsm(c)-v, and the Wu relati]

ell follow from the K-theory relations. This also works for p = 2, sinol

terms involwving Zp =l pever eppear and since s (e),.g M} e 2.
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To complete the p~primary study, note that just es in the Z, cohomology

2
situation, one has:

Theorem: If p 4s an odd prime, then for any framed manifold M®  there
is an oriented manifold _V‘nﬂ with 8V =M and the mod p Hopf invariant of

the homotopy class represented by M is given by

5(2;—1,...,221-)(@("”[”]

e
i
vhere 2i(p~1) = n+tl. This is the only invariant of framed cobordims defined

by Zp cohomology characteristic numbers of this type.

A

Note: From the work of Liulevicius [72] on the decomposability of the
operations Ui, it follows that thé mod p Hopf invﬁria.nt corresponding to

@i can be nonzero only for i =1, For n=2p - 3, one has

B (M1) = @ (WIV,M] = vy (WIEV,M] = —v, (T)[V,M]

= -pLP___l(t)[V.M] = -peg({M]) mod p.
2 ) _
Thus, if the Adams invariant ec([IM]) is written as {afp) + (b/c) with

a,b,c € 2 and c¢ relatively prime to p, then 'Hp([M]) is the class of -a
mod p. Thus the Adams invaeriant determines the mod p Hopf inveriant in a

precise fashion.

Iwo Primary Data

To complete the study of oriented cobordism end oriented vector bundles
it seems desirsble to have a basic knowledge of the 2 primary structure of BSO,

which has not been necessary in the approach to cobordism taken here.
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" Theorem: The cohomology ring H'(BSO(n);Zz) is the polynomial algebre

j
over Z, on the Stiefel-Whitney classes wi(yn) for 1<1i<n. %
Proof: Let f_: BSO(n) —> BO(n) be the msp classifying Y. Then &

£% : H¥(B0(n);3,) = Z,[w, |1 < i <n] —= B¥(BSO(n);Z,), semding v, to wi(;'.'

Since wlﬁn) = wl(det;n) = 0 because det;n is trivial, this induces

""fx"i".aﬁ _ -ﬁyt ﬁ.ﬂ

¥ . = » . I
£ : P, Zz["1|1 < i < n] — H*(BSO(n);Z,). i

To see that this is monic, let : BO(n-1) — B30(n) be e map
&,

b

classifying the bundle v" ™' @ dety™™', which is orientable. Then ghf*(v.) )

is given by v, + wlwi-l it i <n, and Vo1 if i1 = n. Since these
elements are algebraically independent in 22[w1|1 <1 £n-1], £* mst be
monic (on. Pn)'

To see that this is epic, use induction on n. For n =1, BSO(l) is
point while for n = 2, BS0(2) = BU(1) = €P(») whose cohomology is the
polynomial algebre genereted by wz(;z) = cl(;z). Assuming that f% , 1is epl

one hes the diagram of the peir (DY®, Sy°)

BSO(n-1) — B30(n) —=~ TBSO(n)

Lol

BO(n-1) — BO(n) —> TBO(n)

giving e commutetive dlagram

0 «— HL(BS0(n-1)) <— H'(880(n)) +— HP(BS0(n)) <— 0

i . i i-n
fae1 T fﬁ'T fa T

0 «— B (B0(n-1)) < E'(B0(n)) <— EI®(B0(n)) «— 0

means of the Thom isomorphism. (Noté: This sequence splits up since 8 ﬁ*‘
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s is epic.) Using induction on 4, gi-n

epic, and r is epic since f;_ n

1
is epic, end ij';-l is epic, so f:; is epic. Hence f; is epic. #%

Note: This Justifies the fact that the only Z2 cohomology cheracteristic

numbers of oriented cobordism were Stiefel-Whitney numbers.

Lemma: In H'(BO;ZZ), one has Sqlw = wow, + (1+l)w

i 11 i+1°

Proof: Apply the splitting principle to write w; = Z XyeoeXye Then
Sqlwi = X x?_xz...xi + On the other hand wl'wi is the sum of the monomials

Xyee .x2... X, and moncmiale Xy -eoX the latter occurring once for each

J 1+1°

subscript which came from the Wy factor. Thus

. *%
V¥ = 8(a,1,,,,,1) (v .

1

Now consider the operation Sq~ : H'(BO;Za) —> H*(B0;Z,). One has

Sql(a-b) = 5qla-b + a-Sqlb and (by the Adem relations) .SqlSql = 0. Since

Sql is a derivation of square zero, one may form the homology with respect

to Sql.
Lemma: The homology groups with respect to Sql are given by

B(E%(80;2,),5¢7) = Z,lwy, %1,

H(E#(830(n)32,),5¢") = Z,[v,,®|2) < n] 1f n 1s cag,

2 .
= Zz[“2,1 ,wn|2,1 <nl if n is e.ven.
. si #(BO:Z
Proof: Since _Sql’w21 = Vain + w,¥,,, oOne mey write H*(BO; 2) as the
polynomial algebra on Wi» Wy, end Sq1w21. Thus B'(?O;Za) is the tensor

product of polynomial elgebras of the forms

1
Zz[wzi ,Sq w2i] and Zg[wll
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on which Sql act. Applying the Kiinneth theorem, the homology of H¥(BO)
is the tensor product of the homology groups of the factors, being Za[wzia]

2
For the groups H'(BSO(n);Za) the given computetion still applies. One

end Z_ respectively.

1
has H¥(BSO(2k-1)3Z,) = Z,[w,,.5q weili < k], and

¥

HY(BSO(2k) ;2,) = Zz[wai,Sqlwéi Wy lt < K], with Sq'w, =0 1in the latter. »
Corollery: All torsion in H¥(BSO(n);Z) has order 2.

Proof: It hes previously been noted that all torsion is 2 primary. If

some torsion class in H,(BSO(n);Z) has order 2k, k > 1, then the homology

of H“(BSO(n);Zz) with respect to Sql must be nonzero in two consecutive
dimensions. ## A
an

N

B

Turning ettention to the Thom spectrum TBSQ, one has; ;\3

. 5

Lemme: The homomorphism v : az — H'(TBSQ;ZZJ : a — a(U) hes kernel

precisely d 2Sq1.

Proof: Using the pair (DY®, §Y7) one has the exact sequence

0 +— H%(BS0(n-1);2,) ~— EW(BSO(n);Z,) ~— i*(TBSO(n);ZQ) “«—0

under which the Thom class is sent to LA and the cohomology of the Thom
space is identified with the multiples of w . Since Sqlwn =ww, =0, 8 iic9
annihilates the Thom class and the kernel of v contains 4‘23ql'. ;
n-1 n=-1

Letting g, * BO(n-1) — BSO(n) - classify ¥ ® dety one has

. : 1 -
g;(wn) =ww ,=6¢gw .. Considering H*(TBO(n-1);Z,) as the multiples o

W,y in E¥%(BO(n-1);Z,), one knows that within the stable range the

homomorphism dz — ITI'(T’\EO;ZZ) : & = a(U) is monic. Thus the kernel of.

A

v is contained in the kernel of 42 — ﬁ'('r,pg:za) : g - a.Sql(U), {and

& e v
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since the kernel of 42 —.#42 T e = aSql is dzs‘;l, the kernel of v is

dgs‘ll- -

: i H*
Corollary: The homomorphism 42 — K .(T’g{
(2)

(2);22) obtained by evaluation

on the Thom class is monic, end thus fl'(}g ;Zz) is a free 42 module.

(2) TBSO . RP(2), one may consider ﬁ“(%(Z);ZZ)

Proof: Since TAB,R
as H®(TBSQ . RP(2)32,) & E%(TBSO;Z,) & A*(RP(2);Z,), with the Thom class
being UBx, x¢€ HJ'CRP(Z);ZZ). One may take as & base of 6?2/42&;1 the
admissible sequences SqI, I= (il,...,ir)- with i > 1, and 42 has a

bese (SqI,SqISql}. " Then

5q* (U 8 x) = (SqU) @ x + terms divisible by x°,

sa’sa’ (U 8 x) = sqT(v 8 x?) = (s¢™U) 8 x>,

Since the SqIU are linearly independent over 2 these are also linearly

2!
independent, so evaluation on U & x 1is monic.

1 (2)

As previocusly noted 8 is e group, making BR into an H-space.
This makes ﬁ'(,T&R(Z);ZZ) a coalgebra with counit the Thom cless, and by the

Theorem of Milnor-Moore, ﬁ'(T/gB(z);ZZ) is a free 42 module. #*#

Note: From this and the fact that the cohomology of BO maps onto that
of BR(Z) one may conclude that "LV,(R,2) meps monomorphically into [

end in fact draw out all of the structure of ‘74{(1!,2).

One can also obtain from this the result of Well:

Theorem: As a module over the Steenrod algebra, H"'('§§9;Z2) is a direct
sum of copies of d2 and ﬁZ/JZSql. Further, there is a map of TBSD into
a product of spectra of the types ¥{(Z) and L{(Zz) vhich is & 2 primery

homotopy equivalence.
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- Proof: Let T = ﬁi(%p;zz). From the cofibretion S* —> RP(2) — 82
- one obtains by smashing with TBSO and taking 22 cohomology, an exact

sequence

0<-—T<-—T(x,x2}4-—T<-—o
t8x2<—t

te—t 8®x

vwhere U = T{x,xa} denotes the free T module on x and x2. which represey

ﬁf(@;so ~ BP(2);2,) = i-("rg(a);za) and 1s a free ({, module.

Let m: T o> T/q- 2T be the projection. Let K bea subspace of

kernel(Sql) in T mepping isomorphically onto 'lr(kernel(Sql)) and le'.t‘.-
LCT bea subspace mapping isomorphically onto a complementary summand _for-:-;’.
w(keﬁel(Sql)).' . ‘

The natural 'homqmorphism of .az modules a2 8 (L&K)—~T is epic
(as in the Milnor-ﬁoore theorem), and since Sql ‘annihilates K, induces’
homomorphism £ :ﬂz oL@ 42/42&;1 8 kK —= 1.

For a ¢ da and t € T, one has
a(t o x2) = (at) ® x2,
a(t @ x) = (at) 8 x + (a't) 8 x2,

where da=2a81+a'® S +.... Letting

F:aae(LOxaaLOxOKOx)*U, this gives

sk 8 x = a(k @ x) + 'S¢’ (k 8 x), sk @ x° = aSg’(k 8 x),

ai & x = a(4 8x) +a'(18x2), at 8 x° = a(t 8 x°),

and since f 1is epic, F 1s epic.
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Since the composite L ® x + X 8 x —F>U — U/&aU — T/&zT is an
isomorphism, L ® x + K 8 x forms part of & base for U as 42 module. Since
P 1is epic, one may find e subspace L' L 80 that L' ® x2 +Lex+K®x
is & bese for U, In particular, f : 02 8L'® a2/028q1 ® K=—=> T is monic
(with image T') since the composite into U maps isomorphically onto
A1 852 0 A saix 0 x).

Choose a complementary summand M for L' in L, L=M®L', and
suppose MJ =0 for J <i, end 'meMi, with m # 0. Let

Ut = U/ﬂa(L' 8 x°+ L' 8 x + K 8 x) and consider the composite T —»U'.

Since the T ® x2. components of all c'laaseé in dz(L' -] X+l ex+K8 x)
belong to T' @ x2, the mep T/T' —~U' is monic. Since m ¥ 0 in T/T'
because it maps into t'he c-anplemem.; of ', m® 2 e Ut éﬂa OM8x is
nonzero. Thus the natural map U’ —> T/T' must heve nonzero kernel in
dimension i + 2, Thus, there are elements m' € M1 end m" € Miﬂ vhich are

not both zero so that Sq (m' 8 x) + m" @ x € (5(2 sMe x)*2 =

+,
)12

Sql(Mi 6 x)® M*! 8 x which ‘maps isomorphically onto (U’ is sent to

zero under the map into T/T'. Thus

Sqlm' +n" = image. of (Sql(m‘ 8 x) +m" 8 x)

1]
= Lot +] bk,

with u; €L, k K, and 8,b, ¢ aa. Applying T to this with the
independence of M,L', and K shows that n" = 0, ai’bJ t_:da. Since
Sql(Sqlm') =0, Sql(z aili + ] kaJ) = 0, end since kemel(Sql)/:Lmage(Sql) =K

in (y0 1 + dyldpd o K, one nes

Sq'n' = sq™(] a,%,) + 8q(} iJkJ).
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Letting L' be the sum of the terms Eizi for which Ei ¢ da, this gives

sa't = sq'(] a2 + ] Byx,) ¢ sa™(Q )

R f - - 1 ‘ ,"I
where £ =m' + &', Z aizi is the sum of terms with 8 € a o wvhile 8Sq ..

. - = \ 1
annihiletes terms with b f £ q o+ This gives 4 + ) AN kernel(Sq~) with %
JI

ci € d 2° 80 that w¢ bélongs to the image of K, contradicting the choiceiigf

of L unless & =0. Since L=M® L', this gives m' = £' = 0, 80 that

both m' and mn" are zero. This contradicts the choice of m' and m"
and thus M=0, Thus T=T' and f is an isomorphism.

To complete the proof, one has f : aa oL® gﬁa/dasql ® K — T. Undé

both being isomorphic to K. Since Sq'U = 0, one has H(R*(TBS0;7,),5q")
isomorphic to H(H'(Béo;za),za) by the Thom isomorphism, for the ‘I'han

isomorphism sends both kemel(Sql) and :'unage(Sql) into the corresponding
groups. Thus, one may choose K to be the span of the classes wzmzu, whi
are the reductions of integral classes, the ﬁwU. This gives & ma.p. of
into a product of I_((Z) spectra realizing the summend a 2/42&;1 8K int
cohomology. One may also mep T/ILSO into a product of 1_{(22) spectra to
realize the surmand 42 8 L. The product map sends T’EJSO into a product o
K(z) anda K( ZE) spectra, inducing an isomorphism of 2, cohomology, and 3

thus giving & two primary homotopy equivalence. **

Note: This result has previously been proved by geometric arguments.

This proof, using only cohomological methods, is essentially that of Wall [
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Chapter X

Special Unitary Cobordism

Heving already built up the machinery to study special unitary cobordism,
the 'oriented' analogue of complex cobordism, one msy obtain much of the
structure in failrly easy fashion. The one new feature which arises is the use
of KO-theory characteristic numbers.

Since 8U cobordiem is the (B,£) theory in which B2r - B2ﬂ1 = BSU_,

one has the determination theorem:

SU .
nn E 1lim 1rn+2r(TBSUr,°°).

The primary requisite for the study of these groups is then a knowledge of

the structure of BSU. In cohomology, this is provided by:

‘Lemma: The cohomology ring H"(BSUn;Z) is the integral polynomial ring
on thé Chern classes ciﬁn). 1< i<n, where yY" 1s the universal oriented

complex n-plane bundle over BSUn.

Proof: Let f : BSU —-BU be the map classifying §°. Thern
*n
2 : H*(BU ;2) = Z[cill <1< n] —E¥(BSU_ ;Z) sends ¢ to e,(y"), Since

cl(;n) = cl(da'lﬁn) = 0 because dety® is trivial, this induces
4 : B = 2ley|1 < 1 < n] — H¥(BSU ;2).

To see that this is monic, let &, : BUn-l e BSUn - be a map classifying

. n-1 n-1 P -
the onentab}e bundle Y . @ dety , 80 that gnfn(ci) 18 ¢ - cje,
if 1 <n and L if 1 = n. Thus the ele:ments g;f:(ci), 1<ic< n,

are algebraically independent in Z[_cill <1 < n-1] eand eo f; is monic on

P.
n
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To see that this is epic, one may use induction on n exsctly as in the
study of H'(Bson;za). To begin the induction, BSUl is a point and

BSU, = B8p, = HP(*) for which the result is known. %*

Since the spectrum ;.gy is oriented for integral cchomology, the same

holds for the spectrum TBSU and one has:

SU

Proposition: The groups ﬂn are finitely generated and OEU 9 Q is a

rational polynomial algebra on classes X5 of dimension 2i, i > 1. ,
J

RS

Proof: The standard methods give everything here, proving that

U 8 Q = Hy(BSU;Q). To see that this is & polynomial ring, consider the

submanifold M® of €P(n+l) dual to dett. Then c(Mzn) = (1+a)" 2/cL+(n+a)m
so sn(c(t))[Mzn} = (n+2)[(n+Qa® - {{n+Da)MaicP(n+1)] = (n+2)? = (m2)?*? _

which is nonzero if n # 1. Thus n*S.U 8 Q maps onto & polynomial subalgebra

d
5
]

of A eQ.

Corollary: The kernel of the forgetful homomorphism F, ¢ 0§U — nI.J
is precisely the torsion subgroup.

For the odd primary structure one has as always that i'(TBSU;Zp)' is a
connected coalgebra over 'ZP with coundt U e ﬁO(TBBU;ZP). Since the .

cohomology is all even dimensional, this is an dp/(Qo) module and one haé :

Lemma: The homomorphism Vv : dp/(Qo) —-’-I’I*(TB/\S}I;ZP) : a—a(U) is'

monic if p is an odd prime.

Preof: 'From the msp g : _1 — BSU_, ome has H*‘(TBSUn,ZP)

identified with gn(H‘(BBU 12, Mee, o 1C H(BU _ A ). 1In steble dimension%
H'(T,?;Un_l;zp) = Hl(BUn_l;ZP) e _ C He (Fu 1% ) iz a free a /(Qo) mod
Since cl(eP(l)) = 2 # 0{(p), one generator of this module may be taken to be

e
€1¢,.17 and thus Vv is monic.

,
e i 47
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Remarks: 1) An alternate proof is obtainable by letting h : BSp — BSU
c:_l.assify the universal bundle, since an Sp bundle iz 8U, and (Th)* . is
monic, so \‘) is also.

2) For p = 2, doubling gives an isomorphism of I:I”('.EIQ_S/O;Za) and
i'(wy;za). Thus i'(TBﬁS/U;Za) is e direct sum of copies of dzl(Sql) and
(A /(SN (562 )) 80 = Ay/(84") + (5. Tis 1s not & particulerly

useful description.

SU

Corollery: All torsion in R, 1is 2 primary.

To complete the calculation of the odd primary structure, let n’iSUC nH

be fhe set of cobordism classes for which all Chern numbers diﬂsible by 2

are zero. It is clear, since ¢ is zero for SU mahifolds,'that

F.BEU C nfsu. One also has:
Lemma 1: (Conner and Floyd {39 ], (11.5)) Z!ESUC. F.ﬂfu-

. Eroof: If M® has all Chern numbers with ¢, ae & factor zero, let
F*C M x (1) be the sutmanifold dual to ¢, (or dett), so N° has en

SU structure. One has
STy
M) {14+t
c(N) = J_Lr(T_L;i-cl M) + 5%
glving for characteristic numbers
o, 8] = (o, (M) + Gu, + (o (MI42E)v. ) (e, (M)+2E) x €2(1)],
= ¢ (M){M]-23[cp(1)],

= 2cw[M]
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where u , v are polynomials in the ci(M) and & (Note: These additional

w® w
terms all vanish since 32 = 0 eand Chern numbers of M with a factor ¢y z

are zero). Thus 2[M] = [N] ¢ F.nEU. e

Insofar as odd primery structure is concerned, this identifies nfU with

n'fBU. For exsmple, all odd primary relations emong the Chern numbers of SU

JRPFN-TR SR

menifolds follow from the vanishing of e and the X-theory relations for

etably slmost complex menifolds. The mumltiplicative structure follows from:

)

Proposition: Let p be an odd prime. There exist SU manifolds

i

¥ e ﬂi‘i’. i 2> 2, such that pp(r(Mi’)), the mod p reduction of
D(T(Mf)) -1 Sw(e),J[M]'Gu, hes largest monomial

: L AR S B e A

(1) ay ir 1 ¢ ps, p-s-l for any 8, 2 ya
(2) ups-l- ir 1 =p® for some s, and
P

(3) ups-l if 1 = p°-1 for some s.
p =1

Proof: For any elmost complex M, M C. M denotes the submanifold &

to ¢ which edmits an 8U structure.

1’
For part (1), one has si(e),d[M] = si(c)[M] if daimM =21, and it

One choice of such @ 1is:

(a) 4, 4+1 £0 {p) : v = (1,1,1-1);

(b) i+l = pT(pusv), >0, 0 <v<p, 1#p -l
(1) u>o0:w= (v, u),
(2) u=0: w= (p",p"(v-1)); ena

{¢) 1=p(putv)y, >0, O<vep, 1#p:
1) u>0:w= (1,0%vp ),

(2) u= O:tws (lopropr("‘l))'
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For part (2), 1 =p° eand let MIi’ a(ep(1) x GfP(pE':L X, ..% CP(ps_l))

The total Chern cless of M‘i’ is

s-1
(14x)2 - ?(hxd)p /(1s2xr(z"21) [ x,) ama W s aual to

with p copies of CP(pB-l).

2x+(ps'1+l) 1 x,. Working mod p, the terms ) X, give p equal terms in
characteristic numbers, so for mod p numbers this is the same as if

c(Mf) =§(l+xd)ps‘l+1 and Mf were dusl to 2x. Thus the mod p Chern
numbers of Mf are the same as those of 2@P(ps—l)p. For w e n(i),

su(e)/J[ME] = sm(c)[Mf] = 2su(c)[d:P(ps'1)p] = 2sw(e),J[¢'P(ps-1)p], and since

the result follows.

op'[cr(ps'l)] hés largest monomial o _ .,
P

For part (3), 1=p™1, 521 endlet N=M = 2 (cP(p®L)x...xcp(p )

with p copies of €H(p°~l), with H C €P(p°"1) x...x 6P(p°1) dual to

8-1
£10...86 s considered in Chapter VIL. (M is qusl to (€) 8.8 £ Ll

M has total Chern class H(1+x )p +1/(1+(ps-1+1) 1 xd) and is dual to

(%) I x, vhile H ha.s total Chern class ﬁ(lﬂ: )p /(1+Z"J) and

is dual to Z Xy Thus for s 2 2, ¢, (M) =c, (H) + ps ]'vu where v, is
8-1 g-1 .
-1
symmetric in the xd, i.e. = az x'g x? xg , and
multiplying by (ps-]'ﬂ) Zxd and evaluating on the product of €P's gives

#Li1)c, (8] mod 2. For we m(k), k> pP-pHl, aimV=p°-1,

c, M) = (p
2

s, () 1V] = § (ay/m)c,[V], 8, b, €2, b 7007, so

su(e))gY[M] = (ps'l-l-l)su (eLJ[H] mod p. Thus M has the same largest monomial

as H, which is as given. For s = 1, cm[M] Z Omod p by symmetry in the

x's, eo su(e),J[M]'-Z (%/_bu)cu[M]

then b ? 0 (p)). Thus one needs only )J[M] 7 0 (p). However,

Omodp if ne n(k), k> 0 (since
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)J[M]

T (e /(@102 - (2P (er(1)P),
=1

'_1_§_02_zd_Z)P_ (L§_§.=___)P

(21:1 (e2-1)2 ori | (e%-1)? . ’

1 f ()P \P Y R S - )P (u = e®-1)
(2ﬁi § w?(u +1)) (21ri § (u) ) ’

l - (']-_)p:

=2'

#0Q (p). = : )

4

Corollary: SU o Z[1/2] is a polynomial ring over Z[1/2] on classes

X4 i> 1. ' : ;

s el

Notes: 1)} The manifolds M{ given in the proposition provide mod p.

generators of n,s,U.

2) The odd primery structure of n,s,u was first calculated by Novikov

193] using the Adams spectral sequence method.

R i i S o .

The calculation of the 2 primery structure was done by Conner and Floyd
[39 ], whose methods are used here.

One has exact sequences

and

0 — We,2) ¥ ol & ol —» 0.

s

o TR

e
e,

i el A
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U

Since 23_1(‘13,2) C n2,1-1 =0, this gives an exact sequence

L —erg’;—"»’ha’a(c,a)—a»nsu 2a 08U,

23-1 2)-2 2j-1
Lenma 2: Q(S)U N niu £ Zz, and ﬂ:u z Z2. If 6 ¢ Q?IU is the nongzero
class, then 82 is the nonzero class in ngu.

Proof: One has 0 —»“ﬂg(c,z) F—*O-ﬁg =2 - ﬂt_]h = 0—>0 and

. _
o—e) Tral =250, =0 —0. men a5 Blc,2) gl =y

2 -2 0
are isomorphisms. Since “142(@,2) = 2 generated by @P(1), with a€P(1) = 2,
the homomorphisa 2 =##(¢,2) > ng" =2 nes cokernel Z, 3 oS’ with

8 = t(1) the nonzero element. Since 3 is monic on %(0,2), this also

gives an isomorphism t : QEU —_— ngul. Since the homomorphism t is
multiplication by © = t(1), this gives ngu = Z2 with nongzero element 92. bk

Proposition: All torsion in ﬂﬁu has order 2.

sU 8U

Proof: Since t : 923_2 — 923_1 is epic and given by multiplication
by ©, ﬂgg_l consists of elements of order 2. The torsion subgroup of ngg

is the kernel of the cemposite ngg i-"”é(c,z) s, ngd, but F, is monic,

50 Tors:lon(ﬂgg) = kerpel(p) = image(t), which consists of elements of order

2, #e

Proof: (Due to Lashof and Rothenberg). One has the forgetful homomorphism

fr

Sy : Oy — QEU induced by the inclusion J : S —> TBS| with

J* : H¥(IBSY;2) — I.'I"(§;Z) an isomorphism in dimensions less than U and epic
in dimension k4, so the homotopy map 8, is an isomorphism in dimensions less

than 3 and epic in dimension 3. Let a ¢ n{r with 8,(a) = 6. Since 2u =0,
3. 0, and since 2T = ol a3 = 28. Thus 3= S.(cla) = 25,(8) but

3
all torsion in f  hes order 2, so 28,(8) = 0. Finally t : O3 —» ngu

2a

is epic, so 05 = 0 dimplies t6° = 0 and ,ngu =0. w
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KNote: An alternate proof may be given as follows. From
0o —e,2) —>a)=z0z-50) =2 —>0, W[(6,2) 52 and a generstor
is represented by 9ep(1)° - 8¢P(2) with ci =0, c, =12, and with ;4
number 1. For a 4 dimensional SU menifold, the ,Ej" number must be even _
(X0 +theory characteristic number e.rgumeht to be given later), so that

o : 030 —U{(€,2) 1s ot eplc. Thus 3 :H}(6,2) — A3 = 2, 1s eple

and t @ ﬂgu —_ ﬂgu is both epic and zero, giv'lng_ ng = Q, :
Considering the exact triangle

A

a%(c,z)

as an exact couple, one has a derived couple

Iméeet—t—'lmaeet

N2

H(W)

vhere H(m is the homology of “W4(6,2) with respect to the differential

3 Wele,2) —>'h{(e,2). This gives an exact sequence
SU y St

' a'
—>1;(s12‘1 ) t(n HZJ(‘M'Y—-« 63, 3 t(nz‘1 o) = e

) — t(ns") hes

Now 09 = (0% ) since ¢ is epic so ¢ : 'I;(ﬂz‘1 1

2)-1. 2)-2

imege t (ﬁg'1 2) but t3 = 0 since 03« 0. This sequence then splits up
as

0—*t(ﬂsu) —a-ﬂ ('W) —w-'t-.(ﬂz‘1 3) — 0,

| |

sU - sU
a4 - Paye3 '
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Since kernel(pd) = ﬂESU, while Lemma 1 proved that ZQESU C image(p3),

KZJ(‘M is a 22 vector space, and the above sequence splits to glve

+ oSU sU
Lemma b: EZJ('M 2 “2.1+1 ® 02.1-3' L1

Since the torsion structure of ﬂ,s,U is entirely determined by the groups

U
f
23+1°

To begin this computation, one has an exact sequence

knowing H.(‘n/) would give.the torsion structure.

0 — 7(8,2) W (¢,2) —Wic,2) 2 Z, — 0
giving a homology exact triangle
B, (W) —2— 5,0
5,(Ws z,)
but every element in H.(m has order 2, so cne has
0 — iy (WS — B, (W'e 2,) — H2k-2(M — 0.
From Chapter VIII one has:

Assertion: “J#,(€,2) 8 Z, 1s & polynomial elgebra over 2, -on classes

2z for n ¥ 2, The boundary homomorphism is given by 322 =0, azhn =%

2n
if n> 2, and satisfies 3(sb) = (3a)b + a(db) + z,(3e)(3p).
Since 3z, = 0, 3(z,8) = z,(3a), end the 1deal W" C ‘“}4(6,2) 8 Z,

generated by 2z, is a subcomplex. From the short exact sequence

2

0 —> " —> W(e,2) 2 2, — W' =H,(¢,2) 8 /" —~ 0

one has an exact sequence ’

Hy(W") — B,(We 2,)

Hy(w'),
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Bince W' ® Zyls, n2 2] with 3z, =3z, , end a(x) = x(ay) + (axly,
- 2 :
By(w') = 2,0z 1.
From the product formula for » 1in ‘i(€,2) 9 2,, H(H® zZ,) isa

ring, and the homomorphism to H,(W') 1s & ring homomorphism. Now

2-
3[(21‘") + z2211n-2zlln] = (2zhnzlln-2 + z2z!m 2) +ez zhn 2 =0

2
so the classes h&n =2z + TP in K.(WO Z ) meap onto the poly'nomi

generators of n,(w'_). This splits the exsct sequence to give

mm:&-.& ALt (O U T TREE L s S i,

0 - H,(W") — B, (T o zz) — H,(W') — 0.

From the formula B(zax) = ze(ax) previously noted, one has

Hy(W") = 2B (e 2,), giving:

Lemms 5: H.W ] 22) is a polynomial algebra over Z, with generators
h, (represented by ER ) and hg» D2 2, (represented by
()% + 20, 2%k )"

Returning nov to '14/((: 2), one "notes that the generstors z, , B £ 2,
for *‘h’,(c,z) 02, are .repreeented by classes zén € 7’/1{(@,2) with
paz!'m = zl'm_2 if n> 2, end bazé = 2, Using the product in ns and the

extension 3' of p? to QH, one also has -
) h 1 1
¢(a-b) = a:b + 2[V ]-a'ad'd
and

a'(ab) = ala'd) + (3'a)v - z3(3"a)(a'D)

’ 1]
for a,be ‘M(C.Z). [Vh] being given by 222 - ¢r(2).
If M has ell mumbers divisible by ¢, zero (3'(K]=0) and X is :
any stebly almost complex manifold, then the submanifold of M x X dual to
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cl 1°

Thus 3'([M]'[x]) = [M]-3'([X]). In particular, H,(W) dis & ring and the

has.the same Chern numbers as M X N where ¥ C X 1s dual to c

homomorphism into H,(H'® Z,) 18 & ring homamorphism.

One then has:’

Lemms 6: The homomrphiam : My o] —'-B.(WO Z,) maps B:X¢/g)
isomorphically onto the subalgebra generated by (h )2 and hg., k2 2.

Thus K (M is a polynomial algebra on classes e, and cg, k22,

Proor: $(e(1)%) = G212 + 8(v*] = 96P(1)? - 8eB(2) ¢ Wi(€,2) nas
all Chern numbers divisible by e, zero (ci =0, c,= 12), so is a cycle
in ﬂ’.(e.z). This class represents the product zg in ‘u/,(e,a) 82, or
(8,)% n E,(We z,).

For n > 2,

3'0(2;‘5) = 3'(21': + 2[Vh](3'z£n)2).
) ' ' v, 12 I 1 . 12
= (22,02, = 2 oy p) + 2TV ] gy, o
v '2
=20 5 - B

for 3'[Vh] is a 2 dimensional class with cl(a'[vl'])-o, so 3'[Vh] =0

Also
a'o(zézl'm) 2 a'(z.'zzl"n + h[Vh]zl"n_z).
" oplnp + oy - 2oy p ¢ W IV, o
s P L P
Thus

o(z;‘:‘;) - ‘l'm-z [ (’é’l';n) e"M{(e,z)
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~‘\ ¥ !ﬁ'.

is a cycle (ii'zlm = 0) and reduces to (zh ) * 2oz STy € ﬂ/(m 2) 8 Z2

so to hg € H, (/e Z,).
Thus H.(‘t'f/) meps onto the esserted subring or H, (e Z,), while the

exact sequence O — B.(1VS — K.CWO Z, ) — B.(% — 0 together with a.

3

< B e SR St

dimension count make this an isomorphism. #*

Returning to the isomorphism H (14/) 2n+1 ® 02:_3, one heas

. . su su -_
Hoeo(M 2 By o) 20 so ) s ) =0. stnee Hy,, (WS = HBk(WS.
sU su 8U su

R

(via multiplication by ch) Uges1 @ gy 3 ] “Bk+5 80y ., or
SU SU sSU a3
an+5 nak_3, end {nduction on k, beginning with & _3 =0 gives nak+5 =$

This then gives n&k'l-l a HBk( M, and one has the result of Conner and
Floyd [39] (18.3):

Theorem: The torsion of nSU is given as follows: Torsion(nsu) =0

unless n = 8k+l or Bk+2, in which case 'I‘Orsion(n ) is a 22 vector

space of rank the number of partitions of k.

Proof: Sinece EB.(I/ﬁ is the 2, polynomial algebra on the cg ., k :

2 sy su i
and ey with an+l = HBk(M the odd groups n satisfy the given
conditions. Since t : l:: e Torsion(n I"') 1s an isomorphism, the torsi o
subgroup is known in the even dimensional case also. -**

Returning to the exact sequence

_Ea.ngl;_ﬂa.‘ﬂ/ (£,2) 2050 .80 _.

sU
0—-a 2§-2 23-1

2§~1

one has:
sU /%
Theorem: The homomorphism p : n2.1 —_ 2,J(GS,E‘) has image equal to

group Z(%(C,Z),pa) of cycles if 2j # 4 (8) and has image equal to t

grouwp B(75,(€,2),03) of boundaries if 25 = b (8).
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Proof: If 2] #bL (8), 2j-2 # 8k+2 so ﬂgg_a is torsion free and

p ¢ ﬂgg_z q-'l/l/é"lj_z(ﬁ,.a‘) is monic. Thus kernel(? :“I/fga(c,z) —»-923_2

kernel(pd : W7, (€,2) — g, 5(6,2)) = 207f;,(8,2),00). Ir 2§ = &b,

. 85U i
one has 9 .“pi/ed(c,e) —-»nej_z epic, while p : 023_2 . 2J_2(c,2) has

kernel isomorphic to H2J-h(m & sz (5. Thus (kernelpd/kerneld )2'1 Y HQJ (mn

SU
and o8, =B(14gj(c.2),pa). »»

Corollary: Let 3' : n‘,{ — nH be the homomorphism sending M 1into the
submanifold K C_ M dual to detty. The forgetful homomorphism
Fy @ n,s,"—a- nH has imege containing 1image(3'). There exist SU manifolds
W k> 1, such thet (image Py)/(imsge 3') = zz[w&‘]. Bvery torsion
element of nf” is uniquely expressible in the form Van'e or an.ez where

8k

Vel:l is a polynomial in the W with coefficients 0 or 1.

Proof: Dualizing det'l.‘M gives a subnmanifold admitting an SU structure,
so image 3' (C imege F,. Then image F, = pﬂEU CWo(e,2) is descrided in
the theorem as Z(m (or B(LM it aim= b (8)) while {mage 3' = B(M'
Tous (image F,)/(tmege 3') =B (WJ 1f n# b (8) end s zero if n= b (8),
which proves the polynomial structure. The torsion group ngll:ﬂ is _tng::,
end t annihilates image 3, while tzﬂsag = Torsion(ng:+2) glving the

structure of the torsion, #*

In order to examine the structure of nf" more closely, it seems necessary
to consider KO-theory characteristic numbers. Briefly, there is a
multiplicative cohomology theory x" indexed by the integers (positive amnd
negative) for which m°(x) is the Grothendieck group of isomorphism .classes
of real vector bundles over *, and m"‘(x) is the Grothendieck group of

{somorphiem classes of quaternionic vector bundles over X (denoted KSp(X)).
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e i e

" This cohamology thebry is periodic of period 8, the periodicity iaomorphiam

1

7 : X0'(x) — gOI" (x) being given by multiplication by a generator
51) e 8pe) = @P(s?) =

In order to describe elements in KO (x) geometrically, it is convenien

i R kR

to consider a complex vector bundle V over X together with an automorphis
J:V—>V puch that Ji = -4 (J is ‘conjugate linear). Then (V,J) 1s .
1) Bymplectic 1if J° = -1,
2) Real £ 2=

"

R A o nized

(That this is Justifiable follows from the fact that if J‘2 =1, then
V= ('1_2,1.)‘, @ (%’I-)V, decomposing as the +1 and -i eigenspaces of J,
the summands are interchanged under multiplication by 1. Thus V is
isomorphic to the complexification of (l—;‘l)v.) %%
Being given two such pairs (Vl,Jl) and (Ve,Jz), the tensor product %
. 5

'(V:L B¢ V2) admits & conjugate linear automorphism 'jl 9J, and

(v B V0 I, 8 Jz) i8¢

1) Real if J, and J, are both either real or symplectic;
2) BSymplectic if one -is symplectic and the other is real.

This describes the product which relates XD(X) and KSp{X) 4n KO%{(X),

(Note: 1If (Vl,Jl) and (Ve,Jz) ere symplectic, J, @ J, acts an V) o,

thought of as complex vector bundles, and the real eigenbundle is Vl II'H v

where Vl is made a right vector bundle over E by means of conjugation

Lemma: KOW(EP(n)) is a free ‘KO%(pt) module with base 1,3,...;a"
vhere a e %hCBP(n)) is represented as $1(1-2), A being the canonic

quaternionic line bundle.

Proof: Fr_om the change of fields section of Chapter V one has quotie_; i

meps 8'°*3 —+ gp(2nt1) Ie EP(n) with £*(A) =A@ X, end EP(n) has ’ﬂ
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proper integral cohamology, with H#(EP(n);2) = z[a]/a™ 120 ana &) = ~a?
in H%(CP(2n+1);Z). In particuler, under the collapse
BP(n) & EP(n)/EP(-1) = 8%, a#(j) = (-4)°.

Assuming the result true for HP(n-1), one has the exact sequence

0 — m'(s'“‘) & ko#(EP(n)) - xo*@EP(n-1)) — 0

arising from the cofibration HP(n-1) —i'-:EIP(n) 4 Shn, i* being epic by

the assumption. Bince &° 4is trivial over the bn-l skeleton, i*" = 0,

and &% = a%(w) for some v € {K‘[’)hn(shn). To prove the result for EP(n) by

induction, {t suffices to show that w is a generator of Kolm(shn)
Considering A as a complex bundle, one has t‘ch(lH-l) = chf‘(lﬂ-k) =

ch(2-2 0 X) = 2-e%e % a -’ + higher terms, so ch(&) = & + higher terms.

For n odd, & s represented as an Bp 'bundle'., and thought of as

complex, chd® = +a° = d“.(-f,), go ch(vw) = -7 and v isa generator. For

n even, " is a real 'bundle’ and ch(a" 8 ¢) = a® = d"E,, so c¢h(w 8 C) =£.

and w {s a generstor., **

From this it is clear that & satisfies all the conditions to give HP(n)

hn(s

proper cohamology, with w e X0 lm) being the standard orientation class

L, chosen so that for n odd ch(i)=i and for n even ch(Z 8 C) =2 .

lm(s 32) 1is the standard generator.

where U e §
Since the operation (V,J) —* V obtalned by taking the underlying

bundle maps the generator of E;(Sh) onto that of fc(sl‘), -this operation is

compatible with suspension and one may define a ring homomorphism

¥ : KOW(X) —~ K¥(X) represented geometrically by (V,J) — V in degrees

congruent to zero mod b,

It is now reasonsble to describe KO*(pt). Briefly, KO®pt) contains a

subring consisting of Laurent series on the class p(l) e Ko'e(pt) and is o
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module over this subring with base 1,8,b,z, a € KO X(pt), b e KO 2(pt),

ze€ Ko'l'(pt) with relations 2a = 2b = 0, e2=b end 22 = bp(1).

Note: z € KO-h(pt) is represented by the trivial symplectic line bundlej:
or ¢(z) by the 2 dimensional complex bundle. Thus w(z)° 1s represented
by the imege under periodiecity of the trivial complex U4 plane bundle, which

is hw(i(l)). _
Under ¥ : KO*(pt) —~ K*(pt) ome hes y(a) = ¥(b) = 0, ¥(z) = 2p(1)2.

v(32)) = ().
Being given a U(n) bundle £ over a space B, with couplex inner

e & AR G i St

et

product < , >, one has defined & bundle map

¢ ¢ 1*(aV(E)) — n#(1°%(e))

where 7 1is the projection of D(g) omto B (Lemms 7, Chapter IX makes thi
meaningful) and over 8(£), this is em isomorphism (Corollary to Lemma 6). :
s 1*(A%V(£)) - 7#(a°%(£)) € K(D(E)) 1s trivialized over S(£) by ¢,
defining e class a(v#a®V(), °%(£),6) e K(D(E), S(E)). ILet

B(g) = p™%a(r" (£),1°%(E),0) € BPR(2(E)).

Proposition: O(g) = (-1)°0(g), where {(f) is the orientation defing

by K-theory Chern classes.

this for line bundles. If V is a 1 dimensional vector space, A(V)

base {l,v}, v a unit vectoer in V, and
F (1) = x, : Flv) =

F;(‘v) =< v,x >, F;(l) =

80

¢x(l) = x, ¢x(v) = < V,X >
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and ¢ defines the standard trivialization over S(£) by sending ze ¢ n'(e)e
into z. Thus U(E) = p-l(l—E) for the conjugate of the canonical bundle over

¢P(n-1). Bince U(f) = p-l(E-l), this gives the result. %

If £ is an SU(2n) bundle over B with o : B —-v-B(Aan(E)) defining
the orientation, then by Lemma b (Chapter IX) one has defined em operator
u: A(g) —> A(E), enticommuting with i (Lemme 3). Since

an-k(ey,

ot AS(E) —> A 4 preserves the even/odd decomposition, and by

)2n(2n-l)/2

Lemma 8, u commutes with ¢. Since u2 = (=1 one hes:

Proposition: If £ is an 5U(2n) bundle, the class

a(r®v(g), »°%e), ¢) e K(T(E))

admits a conjJugate linear operator u. Since u2 = (-l)n, this defines a class

u(€) € B (2(8)).

Proof: If n 1s odd, d = a(r*ASV(£), »°%(£), ¢) 1s glven an Sp
structure, while for n even & has a real structure. Applying real
a2 bn
periodicity this gives an element in KO = (T(E)).
By Lemma 5, Chapter IX, ¥ {s multiplicative for SU(2n) bundles and so

u(€) 1is a multiplicative Thom class.
Assertion: u(f) {1s an orientation.

Proof: Letting & be the trivial complex 2n plane bundle over a point,
®4(shn)

€ is given an SU structure by the trivialization. Thus u(E) €

is defined. Applying ¥ to u(f) gives U(E) ¢ #0(s") ihich 1s the

standard orientation, so u(£) {s the generator of %hn(shn). L
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Note: This shows that SU bundles are KO* orienteble. For £ an

SU(2k-1) bundle, u(f ® 1) € RO"E(T¢ @ 1)) = RO“E(zPr(£)) = RO“E~2(2(¢))

is an orientation. The difficulty in doing this case geometrically is that
one has no nice way to describe Icohk+2.

Having an orientation for B8U bundles, it would be desireable to have
charecteristic classes also. For e symplectic bundle £ over X one has
KO®-characteristic c¢lasses, ﬂ;(ﬁ) € xo“i(x), defined by the general theory.

For £ a complex bundle over X, £ & C=¢ @ € has a symplectic

structure and thus one has KO* charecteristic classes T, (E 8¢C)e KDM(X). et

Leme: W72 8 €)) = (-1)1p(1)7Pni(e) wmere l(E) & K(X) 1s

the K-theory Pontrjegin class defined by the underlying real bundle of §.

(See Chepter IX).

Proof: Clearly ¥(r3(£ ®¢)) = p(1)"%8, with B e K(X) end to
evaluate 8 it suffices to apply the splitting principle., Then for £ = A

i=1, over ¢P(n), onehas 8=2-210X= -ﬂl(k), giving the result,

It is also convenient to reexamine the classes ﬂi(E) as follows:

For eny real vector bundle § over X, one defines

Af(.s) =] I\;(E)ti e Ko(x)[{t]],
i=0

so that X(§ @ n) = Af(g)-xf(n), permitting extension to KO(X). Thus

I Akt

( dim€

Ao(E - aimg) =
1+t)

depends only on the steble class of &. Letting u = t/(l+t)2, so that

u= t(l—t+t2 3 +...)2 is a power series over Z with leeding term t and

t 18 & power series over Z in u with leading term u, one defines clasi
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i
TTR(E) e Ko(X) vy
I ulegp(e) = 3(6) = AF(e - aimp)
and calls ﬂ;(i) the i1-th KO theory Pontrjegin class of &.

Note: A;(E 8¢C)= A;(E) 8¢, so uivé(e) 8¢ =1.(c0¢ - amy).

Replacing t by t/(1-t) gives

i
Me/(1-t)(E 8 € = ainEg) = ] [__Eﬂ&.] (né(z) o),

(1+6/{1-t))?

= ] [t-t) I (g (6) 0 @),
=7 si(n;;(ﬁ). X))

where s = t-t2, Thus the complexification of n;;(E) is the class ﬂi(E)
previously referred to as the K-theory Pontrjegin class.

This gives the somevhet curious phenomenon tha* for i odd, ni(a)
comes from both KSp(X), as -p(1)2N(r2(£ @ ¢)), mma K(X), e wi(s) e,

provided £ is & complex bundle. This gives:

Theorem: Let M be a stably almost complex manifold, with 'sm(e IP)'

J € H%(M;Q) the classes given by the 5, symmetric function of the variables
x -x x
ed+e J .2 andthe product of the classes xJ/(e J_ 1), vhen c(M)

is expressed formally as Il(l+x,d.).
Then (sm(e@)J)[M] is an integer and is an even integer if M is an

SU manifold and either:

1) dm M = 4 (mod 8), or

2) aim M =0 (mod 8) end w is not of the form (uw', w').
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Proof: 'Since ch(ﬂ"(r)) is the J-th elementery symmetric function in

X

the e*+e .2, sm(e ) = ch(su(ﬂ)) is the Chern character of the 5,

& 3
symmetric function class for the K theory Pontrjagin cless. Thus, up to &

periodicity, (sw(ezy ) A)[M] is the value of the K-theory characteristic
number sw(ﬂ)[M], and hence is an integer.

1t " s an 8U manifold, imbed M in & sphere 85X with SU norms

bundle v, and let ¢ : S8k —» T(v) be the collapse, P : v —» M being thj

i

projection. Then
(sm(eﬂ),a)[ﬁl - anch(pts, (1)-0)) (8%,
If aim M £ 4(8), this is given by
chves(p%s, (ng) u(v)) (8%,

but c'(p!su(ﬂn)u(v)) € §58k'hr(88k), with B8k-Ur = 4(8), and hence this .
Chern character has even value.

If am M=z 0(8) and w # (w',w'), then s, belongs to the ideal
generated by 2 and the odd order elementary symmetric functions. [To se
this consider H'(BO;Zz) as symmetric clesses mod 2, The 1dea.'l.. generate:
the odd classes is the kernel of the homomorphism sending v, to Z wai_ 4

induced by classifying v @ y. Under this homomorphism, s , &ces to zero

2

if v (0',0') end if o = ('w'), s maps to Byt

o ] Thus one may wx

(") = - 42041,
% J-‘EJ "
with a.ud, b, & Z. Then (sm(ea)/J)[M] is given by

<:h\lr<:'(p'.1 E ﬂ;J+l-aszmJ_(ﬂR)u(v))[Sek] + 2che*(] bxsx(ﬂ)ﬁ(v))[s
|

’uj‘"’ +2] b, (),
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The last term is even, being twice & K theory characteristic number, while
the first is a sum of terms of the form ch'll(x)[sek] with x ¢ %8P+h(sak),

and so is even., W%

From this, one may complete the argument for 93 =0 in Lemma 3, by

noting:

Corollaxy: The integer )A[M] for M e L dimensional SU manifold is
always even.
Next, one should_. note that for M ean SU manifold of dimension Uur,

one has
8, (1°(r 8 ¢))[M] = Bo

where 0 € KO%(pt) is the standard gemerator z'p(1)™°, e = 0,1, of

dimension Un(w)-Ur = 8s-lbe, and B ¢ Z. Applying chy gives
8 = (10,0 ) nl/E

Next, it should be noted in the above that only SU manifolds of
dimension congruent to zero mod 4 were considered. The classes s‘”(e@)
heve nonzero components only in dimensions congruent to zero mod 4 and one has

: -e1/2 . .
Propogition: The ,J class 18 given by e A, 80 the classes

/Jh“]+2 are divisible by 'el. In particular, the /d class colncides with

the A class in B8U manifolds.

Proof: x/e*1) .=--e--.x/2x'/(ex/2 - e-x/2) = e'xlz-((xlz)/sinh(x/Z)) so

)J = e-el 22\. hd
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‘To make use of KO® theoretic characteristic numbers, one must know their

values. For this define
p(ﬂ) : n —D Z[G ] [M] —_—> Z (sm(e@)J)[M].a‘ﬂ’
with pz(n) denoting the mod 2 reduction. One has:

Proposition: pz(ﬂ)(zé) =1 and 92(")(zl'm)’ n > 2, has largest

monomiel given by:

1) e, if n is not a power of 2,

2) (cxas...l)2 i n=2% s> 0.

Al e Se

Proof: First, zj = [€P(1)] so thet sm(ep) is zero if n{u) > O,

giving 0(1)(z}) =f (ep(1)] = -1.

If n is not & power of 2, zl'm is the class of the submanifold of

¢p(1) "ICP(2P) x Gf;(2p+1q) vhere 2n = 2P(2¢+1) duel to -
al + (2p+1)52 + $2P+lq+1)53. .Tl_:en sn(ea))j[zl‘m] = gn(d;)[zl'm] = s&(c)[z;‘m_}
and this s-number was lmoyn to be nonzero in the choice of zl'm.

If n= 28,. s >0, zl'm is the class of the submanifold of
6p{1) * oP(2°) * ¢P(2°) dual to & + (2°41)(3, + &), and it was noted th
2l = [6P(2°)]% + ¢, where ‘¢ belongs to the ideal generated by 2 end .

generators b of RH 8 Z2.. Since p -(ﬂ)(d:P(2s)) = a + lower terms !
o ot 2 2 81 .8

by s~classes, with p,.(7)(2) = 0, o, (")(b )= 0 for t> 1 since b
. Brclas 2 2 oty "t

mey be taken to be an SU manifold of dimension nonzero mod 8, end bl =
gives _Dz(ﬂ)(bl) =1, vhich decreases the degree of the terms involving buj

ane has the asserted monomial., W#*

Lemma: {(Conner and Landweber [42]) The homomorphism pz(ﬂ) sends the:»'"-

image of p3 : W(c,z) —»-11’(0 2) into zero. K
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Proof: Since imp?d consists of SU manifolds, it suffices to consider
the case [M] = pd[N] with dim M = 8k. Then since [M] ¢ QESU,
pd3[M x ¢p(1)] = 2[M] es in Lemms 1, so a = 2[N] - [M x €P(1)] is in the _
kernel of pd eand has dimension 8k+2. As noted, the component of sm(eﬁ)_}g

of dimension B8k+2 is divisible by ¢ so this number vanishes for a. Thus

l!
—p(m)[M] = p(m)[M x 6P(1L)] = 2p(n)[N]
and pz(n)[M] =0,

Since clearly 92(") sends 27/*(6:,2) to zero, this shows thet one has

induced a homemorphism
po(m) ¢ By (W 2,) — 2,0, 1.

= R 2
Then pz(ﬂ)(hz) =1 and p2(1r)(h8n) has largest monomial o if n 1is not
a power of 2, or (a s-l)h if n = 25, s > 0. [Note:
_ 2 - : = .
th = (zhn) + 2,2 oZus but 92(")(zhn-—2) = 0 since azhn =2 o3 thus
pz(ﬂ)(hsn) = 02(")(zhn)2]' Since these classes have distinct largest

monomials, one has:

Proposition: o € Hn(‘Z-f/S 2'2) is zero if and only if pz(n)(a) = 0.
[Note the analogy with oriented cobordism in which the mod 2 numbers

sm(@;) detected kerd/imd, while here the numbers sw(ﬂ) detect. ]

Theorem: All relations among the Chern numbers of n dimensional SU
manifolds are given by the relations

a) c,c [M] =0 for all w,

b) s (e)d[M] € 2 for all w, and

e} If n =L (mod 8), (sw(eﬁ)g)[M] € 22 for all w.
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Proof: These relations have been shown to hold for SU menifolds. If

A

wal

s ¢ B (BUiQ) with e la] =0, sm(e)J[s,] €2 and for n = W(8);.

(e@))}[a] € 22, then from the knowledge of RH, e is represented by e

@
G
o e Sl e

o

complex manifold having all numbers divisible by c¢, zero. Thus e € ™0,

1
For n # 4(8), this suffices to prove a ¢ TQSU I# n = 4(8), then the

5

class of & in H (WW'® Z,) 1s zero since s (e )J[a] o(2) for ell sy

80 the class of a in H ('14/) is zero. Hence a belongs to B(W(C a),pa)‘i}

end a is in TDSU L d

Lemna: The KO® theory cheracteristic numbers of 0 € ﬂiu

a) sm(ns(r 8 ¢))oel =0 if n(w) > 0, end

b) 1[e]#0 in KO Y(pt) & Z,.

Proof: Let u : TBSU, ~— BSp be a map defining the orientation elaﬁ

Lr+2
- ‘V
uly), o) € ('masu,mz), r large. Letting b € BSU, .,

8r+l

_ u
£:85 = Tb S TBSUhﬁa-—rBSp

8r+h(88r+h ). Br+l

represents the generator of 7 h(BSp) = KO Since S
8r+3 connected, this map lifts to the comnective cover BSp(8r+k,...,=)

giving

£ : g8 I pan(8red,. .. @) —I> BSp.

Considering SBr-O-h as the 8r-fold suspension of Sh gives

8r .
gt —Ls nB’BSp(Bﬁh,....-) £ 1, nBrBSp —&» Bsp

wvhere g is given by the r-fold epplication of periodicity. Both
ﬂerﬂ' induce isomorphisms on homotopy in positive dimensions, so h repress

the generator of nh(BSp). Thus h* : Hh(BSp;Z) —*—H"(s";z) is an isomo:
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end h®* : H¥(BSp;Z) —> H*(Sh;Z) is an isomorphism in dimensions less thamn 8,
so hy, : ﬂ.(sh) — 1,(BSp) is en iscmorphism in @imensicns less then T. Thus
£' induces an isomorphism on homotopy in this range and being in the stable
renge, f induces an isomorphism-on homotopy in dimensions less than 8r+7.
Thus £y @ n“(sar"h) —> n,(BSp) is an isomorphism in dimensioms 8r+h

through 8r+6.

-
Thus, the composite nfr RLN QEU i) KO~ (pt) is eplc in degrees O

through 2. 8ince 6 is the nonzero elements of ni”, this shows that
1[e]) # o.
Further 6 comes from framed cobordism and sm(ns(r 8¢C)) =0 for

n{w) > 0 ip e fremed manifold, so these pumbers must vanish on 6. %%

Theorem: (Anderson, Brown, and Peterson [ & ]): Two SU menifolds are
cobordant if and only if they have the same integral cohomology and KO* theory

cheracteristic numbers.

Proof: Buppose M' is en 8U ﬁmifold for which all such characteristic
numbers are zero. Since all integral cheracteristic numbers vanish on M, M
is & torsion cless, and [M] = 0N] where ¢ 1,2 and N s en SU manifold
of dimension 8k for some k. Tﬁen for all w,

in{w)-8k-¢

s, (7°(t 8 €))[M] € KO (pt) is zero, but
) o

8,("(x 8 €))[u] = 5 (1°(x 8 €))[K]-&°

since 1[0] = & and all other numbers venish. Thus for w ¢ w(2t),

8, (1°(r 8 €©)[N] = m 51" vitn m even, giving sw(ed,)_j[n] £ 0(2) for
n(w) = 0(2). Thus (sm(eﬂ)ﬁ)[n] 2 0(2) for all w, the other cases being
immediate since N 1s en SU manifold. Thus  [N] represents zero in

Hy(W'e Z,) end also in Ho(Y), @iving [¥] ¢ imsged. Since multiplicetion
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by 0 annihilates imaged, this gives [M] = 0.

being obvious, this gives the result. #*

A

The remaining part of the structure of QEU which is desireable is the 3
. . ~f

multiplicative structure mbd torsion. Ci T. C. Wall [136] hes noted that

this may be obteined out of what has already been proved. To begin this

3
¥

enalysis, first consider ‘M(G,E). 3
3
A

As e subset of 99, “WH(€,2) 1s not e ring, as has previously been

o

noted. One may define a product in "h{(tﬂ) by the composite ’fé{?‘

» :‘M(c,a) ) 14{({:,2)'—'»- nB ] 02 — ng _—°’“’h((e,2)

and in QH, ash = ab + 2[.Vh.]35-a'b. In particular,
(a#b)#c = abe + 2[§h](aabac +baade + cdadb - f&P(l)]aaabac)
sincé
B(a.nb) = 3(ab) = adb + bda - [€P(1)]3adb.

With this product, ‘14((0,2) becomes a commutative ring with unit.
if %a =0 then a# = a‘b and in perticular, the usua._l map from ﬂiu in
‘M(Cﬂ) is @ ring homomorphism. Further,

3(asb) = a%dd + b#da - [EP(1)]udandb.

Theorem: Using the product «, ‘ﬂ/*(c,z) is the integral polynomial

on classes X and the

i° i 1-1

142, dnx, =2i, wvith s,(c)lx;]=mm
operation 3 is given by ' '

3x1_<= 2, l ~

WMoy =Xy 121
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with
Aa¥b) = awzb + besa - X, waandh.

Note: m; =p if i+l=psJ for some prime p, s > 0; m1=1

otherwise.

Proof: First noting that an element of WG#) which 1s decomposeble
)]

under * 18 decomposable under ¢ in Q,, 1t is immediate that the s-number
detects indecomposables.

One hes sl(e)[cP(l)] =2 with m = 2, my =1, end so one may .l.et
x = [er(1)).

From the enalysis of fg° 6 Z[1/2], one hes SU menifolds M, e nSU,

J(i)
2 mym

J(1) > 0) which give polynomial generators of nﬁu 8 2[1/2]. Note: QEBU A

i>1, with si(c)[Mi] (multiplying by 2's one may assume’

with generator x = 9t\:P(l)2 ~ 8¢pP(2), having cf

number 1. Since 2x = 3(¢P(1)3) generates the image of QEU, with

= 0, c2=12 a.nd)g

XX, = xl 2V-2 2 = x, one mey assume M2 = 2x *:Ll

One also has classes z), .e 1;4;(0.2), n > 2, with Bn(C)[zén] odd if

s 5 . v 1=
n#2, 2-1 and congruent to 2 mod 4 _pt.ggrwise. Now BZn(c)[zhn] = 0_(m2n)
being & complex cobordism class, and since (2n-1)+l = 2n, o, 1 or 2
as n 4is not or is & power of 2. Thus san(c)[zl'm] is en odd multiple of

: ] = ' 3 ' -
m, M, .- Bince z} , azlm is en SU class, s2n—1(°)[zhn-2] is divisible
by Do (which is odd), while m =1 or 2 a n is not or is a

2n-1

pover of 2, Thus 5, (c)[z' ] is an odd multiple of mm
One may find integers LI Bn, with o = 2a 41 (0@d) so that

xl'1=an'zén+28M has s number qnm . let

Ton * %ppZin * oMo, * (a'2n-l'a'2n)x ‘hn 2t an 1"1"2::-1’

Xone1 ™ % 1%in-2 * 282n1Mep1¢
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Then sn.(.c)[xn]f-'sn(c)[x;l] =om . since x ~differs from x!'1 by
decomposables. Since zf , xls:‘-’h’.(C.E) and zi . My, Men_lcnfsu

x, e Wiie,2). Further,

My, = ap iy o * ey geay el ot 2By My g =Xy .

There is then a homomorphism ¢ : R = Z[xili # 2] -—’-MC@). Under

the composite with

u u
v Wele,2) —>0a, —>0, 012,

one has a ring homomorphism (awb = ab mod 2), with x being sent to z\
plus decomposables., Thus ¢ is monic (R being torsion free) end im¢ haé
odd index.

For any © 5‘1‘/.(@,2), a(xlaa) = 2% so 2a-xlaa € kerd giving

2(20 - xléa) = 3(x, (20 ~ x;3a)) or
la = 2x,3 + 23(xya)
since B(xi) = 0. Thus
o = 1/2(3(xya)) + 1/2 xj2a

with 3(x,0) and 2a the images of BU classes. HNote: Any element of
form &+ xb, a, b€ ﬂeu clearly belongs to WU,Z)-
Then ¢ : R 8 2[1/2] — W(a,2) 8 z[1/2] =S’ @ 2[1/2){1,x,}, the

“latter being the free 0§U

vrite x, = 1/2 You * 1/2 x,x, | Vvhere Yy, € ﬂﬁ: and sh(c)[fh] = 2m2n
The elements y2n -.2x20-xlx2n_i, x2n-1' 212. in R map to acceptable

® z[1/2] module an 1 and x;,. One may then

generators for OEU 8 z[1/2], and thus

RO 2[1/2] = z[1/2][x§, S yéﬁ']{l.xll meps isomorphically to

kg
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oy’ 8 2[1/2]{1,x,}. Twus ¢ : R—>,(€,2) has 2 primary cokernel, and

so must be an iscmorphism.

Using this, one may describe all the rings of interest easily. First,
3 :W(c,2) —H.(¢,2) extends to TH,(0,2) 8 2[1/2] setisfying the
same formulae. If 3a = 0, then a = 1/2 B(xla), so kerd = im? in
“Wiie,2) o 2[1/2].

One may write 'i'((t@) 8 z[1/2] = Z[1/2][x1. X5 10 x2i-1/2 xlx2i_1] with
x; =2, 9xy 4 =0, a(xgi-1/2 xlx21-l) =0 and B(x?_) = 0. From this it is

clear that

imd = kerd = 2[1/2][x5, %y, 1, %py-1/2 X3, 1 1C W(6,2) @ 2(1/2].
Applying this to ‘M(C,Z) one has:

Theorem: Letting “W,(¢,2) = zlx,|1 # 2] as above, thought of s a
subring of “W(¢,2) @ z[1/2] = 2(1/2)[x,|1 # 2], 1let
A= 201/2)0x8, x5y 1, %py-1/2 Xy, ] end then:

a) kerneld = A N W,(€,2) 1s the set of Z[1/2] polynomials in - xf,

X5 10 Xpy=1/2 X%, , vhich have integral coefficients in the x's.

b) imaged = {uc A|1/2 xuc A+ H(€,2)} is the set of z[1/2]
polynomials in xi, Xpy.10 x21-1/2 xlx21;1 which when multiplied by 1/2 X,
cen be expressed as the sum of such a polynomial and an integral polynomial in

the x's.

T
Note: Since the image of 5V in "M{(c.z) 1e (kerd) 1if n # W(8)
and (1md) if n = b(B) this gives a fairly nice description of 6y /Torsion

as a subring of A.
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For example, one has bases given by

n (kera) (im3 )’_1 ‘ ﬂiU/Torsion
0 1 2 1
;
4
6 *3 *3 *3 i

8 xt . 2(xh-1./ 2 xlxs) ) 2x§ . 2(xh—1/ 2 xl’_‘S) x;'. . 2_xh-xlx3

2 2 2
10 X X3, Xg : X3 Xg X3, x_s . p

An intrinsic description of QEU/Toraion is extremely complicated, since the
square of the U dimensional generator' is divisible by 'h, while the product
of the 4 and 6 dimensional generators is divisible by 2,

One should note also that x: and

2 2 2.2 ‘ﬁ
XXXy 1%on = (x2n-1/2 x1x2n-1) =-1/4 NXo0 belong to kernely, and ?
are the classes ﬁreviously chosen to generate (kery/imy). ﬁ

Proof: a) If ueAﬂMeﬂ), then u e Jf(€,2) end u=0 so ;

u € kerd, while if ue“h{(c,2) end 3u=0 then u € A,

b) If u=23dv, then ue A since du = 0. Further v t:"M:(E,2) and
31/2xu-v) =0 s0 L/2xu-veA, giving 1/2xuch+ Wie,2).
It ued, Y2xu=p+q, peVh(e,2), qch, then ’

u= 3(1/2 xiu) = 3p, so u e imd., "
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Relation to Framed Cobordism

The relation of framed cobordism to SU cobordism was first explored by

Anderson, ﬁrovn. and Peterson [ & ], vho determined the image of

a fr SU

Fy ~— Q.. The proof given here is due to Conner and Floyd [41 ], The

hard part of the result is given by:
8 sU

Proposition: There is a class M ¢ 98

su

with /J [MB] = 1 and such that
[MB]’:l x § 1is in the imege of ngﬂ in Qg .-

To prove this a couple of lemmas are convenient:

Lemma 1: There is en element MB € ﬂgu with )J[MB] =1 and such that
%) = 2088] in ag **r.

Proof: One has the exact sequence

SU su,fr fr . SU
ﬂe -zcz——a—ﬂe' ——>-QT -Zaho——y-ﬂ.r s (

(using the fact that lim#___(S®) = 2_ ). Consider A, the canonical
~ n+7 210 :
e L

quaternionic line bundle over HP(n). Over § = HP{1), the tangent bundle

of D(A) is isomorphic to 7*(A) @ 7¥(r ) "and stebly w#%(t y) 1s trivial,
: 8 . 8

so D(A) has an 8p structure for which its tangent bundle is stably
isomorphic to 7#(A). The usual trivialization of w#A) over S(i) é:l.ves
(D(x), 8(*)) an (Sp,fr) structure.

Recalling thet HP(2) 1s the Thom space of X over EHP(1), with A
over HP(2) festr.{cting on D(A) to #*%(A) with the stenderd trivialization

over B(A), one has

J o), 801 =3 ()Ee(2) pe1 = J )R],
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To compute this number, one applies the splitting principle to A by

ot AW et Lt

pulling back to C€P(5) over which A &plits as the sum of the canonical

‘bundle and its conjugate, Ay ® xw. Then g
4
2 L
(A ® x ) = a R (-G) = <] Zl
: )J ¢ ¢ -1 (1)  tve%-2 é
but j
x, X o (-x)i &
efeia =] (A s lxly o K
1 41 Py
2 4 6
=21+ X+ 242X 4 Yo 2, %
21 bt 61
=x ¢ xu/12 + x6/360 + ...
80

2
a 1 6
- (a” =0)
e a2 1+a2/12+ul‘/360 ’

=1 - (a?/12 + a¥/360) + (2112)%,
=1 - o212 + 3%/720,

Since the cohomology mep is monic, B(A) = 1+ 8/12 + &2/2140 giving

$ID(), 8(A)] = 1/2k0.
Since J 1s integral on SU menifolds, the extension is completely -

a

nontrivial, giving ngU,:tr =276 2.
8

One may then take 8 = akoin(r), 8(2}} anda B = 120[D(2), 5(x)], =

2ho[D(2), 8(1)] belongs to the image of ng" and has )g number 1. **.

Lemma 2: Let [Vn] € ﬂir be an element of order 2, [Mk] € niu an

element divisible ty 2 in nlS‘U,fr. There is then a class (v ¢ ngk _'

order 2 with imege [MF][V'] in ﬂ:fk-
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Proof: Let B® be an (SU,fr) manifold with 2[B] = ] in aBSUsfr,

By the (8U,fr) exact sequence, 2[9B] = 0 in LT end there is a compact
fremed menifold C° with 3" = (3B), U (3B), being two disjoint coples of
3B. Let Dn+1 be a compact framed manifoid with 2D = V"; U V; being two
disjJoint copies of Ve,

Consider the product C° x D™, uhich is a framed manifold with boundary
forned by joining Wy = [(38, U 3B,) x 0™ ama W, = [(-1)"C" x (v, U V)]
slong their boundaries (-1)""1(aB, U 3B,) x (v, \UV,) end
(-1)%(38, \J 9B,) x (V, U V,). One may remove tubular meighborhoods of
3, x V; end 3B, xV, in C° x I""' and sew the introduced boundsry segments

together

.
b («1)7c x vy

%, %D, B, x D

to form a manifold X with two boundary components

(-1)kv';*“ = (3B, x D U (-1)%c x v,) / (-1)"'1331 xV, = (-1)“3131 xV, (at £)

2

(-1)""1331 xV, = (-1)“3132 x V, (Join

along a-e)
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and

(<253 « (2B, x D U(-1%C x V) [(-1)%am, x v, = (-1 am, x v

1 1

k-1 e k
(-1) |, x V, = (-1) B, x V) (

along d-b).

Since _the framings induced from C * D along the portions sewn together are ;"
compatible, X is given a framing, wi_u.:' 3a(-1)%x « v‘l“"_k U v’z“’k and clearly. s
Ve . v‘;?‘k is isomorphic ss & framed manifold with vg*“.,

This gives a framed manifold’ V‘n+k vhose class has order 2 in ngk. 5y
(Note: v depends on a cholce of ® ana Dm'l, but any cholce gives-

such & class).

Since [M] = 2[B], there is a framed manifold C° with aC® = LIAVE:

so that

MU (-Bl) U (-32) Jyc/ a(-nl) = 3B, a(-na) t 3B, .

Bow 3(W % V1) conteins & copy of (-B)) x V) \) (-B,) x V, while

1
3((-1)%B-x D) = B x (v, Uvy) U (-1)%3B x D joined slong their common .

boundary so one may form an B8U manifold by sewing (-1)%B x D to Wx V&%
by identifying ("Bi) x Vl to B X Vi. The boundary of the resulting man:
hes two components, one of which is M X V; and the other being formed

¢ x Vi U (-1)%3 x D by tdentifying B x VI to -2B XV, and

3, % V® to -3B X V,, which is jJust & copy of V°'K. Thus this cholce

2* N 2r
¢ will give [V™*] e [][V%] 10 o5, we -

n+k’
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Proof of the Proposition: Let M8 be a8 in Lemmea 1, and let Vl represent

the clas_s of order 2 in nf" vhich maps to 6 in nSU. Suppose inductively

1 1
8k+1 r S . k SU
€ ﬂBk+l has order 2 and represents LMBJ 6 in Qﬁk +1° Applying

lema 2 to V*! ana M® gives a framed manifold VOE*Y with order 2 in

that V

ﬂfr representing [MBJ [V8k+l] = [Me:lkﬂ-e in nsag_'_g This completes the
induction and gives the Proposition. #*

From the Proposition one may completely determine the image of er in

Qﬁu, which 18 given by:,

Theorem: The forgetful homomorphism F, : nfr —_— nSU is a isomorphism

in dimension zero, and in poéitiine dimensions the imege is zero except in
dimensions 8k+l and 8k+2 where it is Z, with generator x:k-ec,

=1 or 2.

Proof: Clearly Fo : ﬂgr ___’_ngU Z. For n> 0, ﬂir is finite, so

image(Fn) consists of torsion classes. Thus iﬁhge(Fn) =0 for n not of
the form Bk+l or Bk+2. If n= 8k+e, €=1 or 2 end o€ im(Fn), then
a has all KO® characteristic numbers of the form sm(n), n(w) > 0, zero
since these classes vanish in framed manifolds, end so @ # Q0 if and omly if
1fe] # 0. Tus im(F)) 1s either 0 or 3z,

From the proposition, [_Ma] x8e im(F&kﬂ) and since -6 ¢ in(F,),
|_MJ 6% ¢ in(F ). -Then

UpO e =l
= AP moa 2,
- (e mae,

=] mod 2

and thus im(Fn) # 0, so must be .'22 with generator [Ma]kw:
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e

Stnce O3 = Z @ Z with base xi and 2(x;x,), vhile 6 annihilates
imaged, one must have Me-e = xlhe and thus [Ma]k-ee = xlhkez is the nongero

class in m(F8k+e)‘ Lid

Note: In fact, for any MB with odd J number one has [M]7¢ = xy e

To see this, a(xlxh)e = 0 implies )3{3(1{111;)] z 0(2), so

Creodh AL e b MO T R i s B it it

M8 = (2P+1)x;‘ + qa(xlxh) giving Mee = x;‘e.

Turning to the exact sequence

fr Fs _SU SU,fr 3 fr Pa_ _SU
e 0 Tl ™ 0, £

e

sz i

T

)

one then knows the nature of F,, and the remeining question which 1s within

reach 1s the nature of the extension problem for ﬂ:‘_:iﬁ‘:

SU
n+l

SU,fr
/mPy —> 2 37 < xerF, —> 0.

0 —=Q
This was settled by Conner and Floyd [41 ].

It is immediate that the construction of a KO* orientation carries
through for an SU menifold V with framed boundary, giving U & KO*(Tv).
For n(ws) > 0, sw(vr) mey be formed in KO®(BSU,s), giving KO* theory
characteristic mumbers for (SU,fr) manifolds.

Since the torsion subgroup of ﬂ?,U is detected by KO* characteristic
numbers, with image(F,) detected by 1(w), the image of Torsion(ﬂifl)/im

in Q!Sll:ifr 1s detected by zg valued KO* numbers.  This defines a splift{

of the torsion part. : .
To stuéy the extension of the free part, the analysis of KO* theory

characteristic numbers gives immediately that en (SU,fr) manifold V has

the same Chern numbers &s a closed SU manifold if and only if
. -~

o(8)
4(8),

Swvavl ez aim v
22 dim V
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all other relations coming from KO* theory relations which are satisfied by
{v,av].

One may define & homomorphism ' : g7 —=Q by 3'[a] = sJ[o]
i1t dima £ W(B) end by oJ'[e] = 1/2,J[a] if dima = K(8). Hote: ,d 1s

divisible by ¢ in dimensions not congruent to zero mod 4, so ,g ' vanishes

1

in these dimensions. J' sends nSU

1 to Z and defines

J ' : kernel(F,) — Q/Z.

The homomorphism 3J ' ::ngi'ﬂ = kernel(Fg, o) —> Q/Z 1is Just the Adans

invariant e The prev:lous results concerning the invariant ,3 give:

The homomorphism ,3 i; S Q/Z maps precisely onto the integral

multiples of 1/a, where a  1is the denominator of Bk/hk,//

Relation to Complex Cobordism

Turning to the relationship with n‘,{, one has -the exact seguence

e a0 o, ) — %0 25 50

in which F, is completely known. Just as in the (0,80) sequence, this may

SU

be identified with the &.° bordism sequence of the cofibration

€P(1) — CP(w) —> ¢P(=)/EP(1)

or

—q su Fe nU ga,gz gt,o) U

n-1
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From this one knows the complete structure of 'ng’su. The interesting

part of the sequence 1is

U F.811'0-2 U,8U

F
U [n(n)| 8o+l U
8n+2 ? an+2 - Bgnez " fgpay = %o >R

=0

in which F8n+2 maps onto the direct summand of classes for which all number:

divisible by ¢, @are zero.

U,8U _ ,SU
From 08n+2 nan ® n&n 5 the extension must be completely nontrivial.

8n

Classes in 0 Su are all of the form 6:M  , with the characteristic mmbe:r_'

8n+l
!(m',m.)(ev))glnan]Es(m.'m.)(n)[e-Man-] (10 32,)

for ®' € n(n) detecting these classes.  Now 0 ¢ ni“ comes from [D
with D° being given the ususl freming of its boundary. [D
realized as the dlsc bundle of A -over GP(0), with 't(D2) being induced
from A over €P(1), glving the standard trivielization over Sl, which®
is the unususl fra.ming of sl. Over €P(1), JI(A) =1+ x& with
)J(f) = )A?(E)2 = )3(7\)-2 =1 - 2k@ and J[GP(I)] = -1 givese k =1/2 or
Win?] = 1/2.]

Since 8y 0 )(e@) has only nonzero components in dimensions a multi
of 4, while )‘

is aivisible by c,, the mumbers s( ., .. )(e ),J[V]

Ly 42 1°
are meaningful invarients of - 8k+2 dimensionel (U,SU) manifolds, a.nd

TRIRNCE L s EEVRRRICIOF IO [Pl g B
fn
" U2 (o) S

so that the numbers s( '’ ,)(e ),J map “gniz onto a subgroup of odd ind

in (1/2 Z)"'("")| while sending an+2 into & subgroup of odd index in,
Zl"(n”. Thus by means of the examples {D x M } one also gets complete

nontriviality of the extension.
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Conner and Floyd [41 ] have noted that the use of cobordism theory

proves the Adams result:

Iheorem: The homomorphism

e:ﬂfr
n

maps precisely onto the integral multiplés of

1 if n = Bk+5

1/2 if n = 8k+l. : /

8ince this gives a cobordism theoretic proof of a homotopy result on

fremed cobordism, thelr argument will be reproduced here.

Proof: Let M be a framed 8k+5 menifold. From ngg+5=o, M = 3V with
V an SU manifold. Then eglM] 1s the reduction mod 2 of
Jiv.u] = (,J)ek,fslv,ul but ,JBI_HG ie divisible by o, gna c)(V,M) = 0
since V is sn BU menifold. Thus 33 [v,MleZ ana ec[nl}-le Q/z.

su In(x)|

If M is a framed Ok+1 menifold,~ 2[M] =0 in Voa1 = Zo T
so 24 =3V with V an SU manifold. Thus 2ey(M] = eo[2u] 1s the reduction
mod % of )3 [v,2v], which is zero as above. This makes eg[M] e multiple

of 1/2.

Bk+1 8x+1

Fow let V be the framed menifold of the last section with V
i NN st _ 8.k

cobordant to (M')"+8 in fg .., endwith W=V |J (-(")" x 6), and

let W=w U (MB)k x 1)2/(3418)k x5, Then # is e U manifold vith boundary

v, so ec[vek”] -4 [w,v] mod Z. Since 2 is an invariant of (U,8U)

cobordism in dimension 8k+2, J[H,VJ = S[(Ma)k x D2] = 1/2{)7(!(8)}k = 1/2,

Thus e ¢ ng;_]_ —> Q/Z maps precisely onto the multiples of 1/2. *#
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Relation to Unoriented Cobordism

The nature of the forgetful homomorphism F, : HEU — 77. has been
studled by P. G. Anderson [ 9 ], Stong [//8,/2!], and Comner and Lendweber

[42]. One way to phrase the result is:

Theorem: One may choose generators xy of { ?., dim xi =1, 1# 23-1,.
so that:

1) T = 2,lx, 1,

2) “Ye®,2) = 2,(x,> 1232 | X not a power or 2],

3) There is a derivation 3, :‘(A/i'(:n.z) —>11(_'1(n.2).. with a';‘ =0,
2 {0 I
lezk = Xy _1» k not a pover of 2, 31(x23 ) = 0, and the image of Q, .
in 77, 1is edditively generated by image 3, and the 2, polynomials in the’
classes x2t2 (t any integer). ' :

k) The image of n‘.I in 7’(, is the squares of the classes in ‘77.;

s e, wiasl -

2
l.e. Z,0x].
S) The image of JV4(€,2) 1in n is the squares of the classes in

Wa(B,2). ' B
4

6) The image of nf” in s 18 the subring additively generated by

the squares of classes in image 31 and the 22 polynomials in the classes-_-;_i

4
2k

x (k not a power of 2) and the x2.16.-

Proof: The classes x; needed were defined in Chepter VIII and satistyf’
properties 1-5.- To verify property 6, éonsider a \'M(C,Z) manifold M, '3
with [M] = M*]2 1n J7,, M' belonging to W (R,2). The formulae for

computing the Chern numbers of 3M are the same as those for computing

Stiefel-Whitney numbers of 3.M' so (3] = [3,w')% in 77, mus inage

maps precisely onto the squares of classes in image al.

RRE I . U LRV TS
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Now kernel 3 is additively generated by image 3 and the polynomiels

in the classes
e, = #(er(1)%) = 9er(2)? - 6ep(2)

and

_ 2 ' 'K 2 h o 2 t oyt b o 2
Sen = H2y) = 2 p?(2p0n) = B + BV e, 5 = 2pmp g < W -
Since zé = [6P(1)] bounds in 77., the image of kernel 3 in [, is
edditively generated by the squares of classes in image 31 and the polynomisals
L
in the classes zhi. However, z,ln reduces to x2 if n is not a power of

2n
2 and to x: if n 1s a power of 2, In addition, the classes °8n contain

SU manifolds since kernel 3 = image O§U in dimensions congruent to zero

mod 8, so the images of nfu eand keérnel 3 in 77* cdincidé and are given

by (6). w#

The image of ﬂ.s,u in 77. may be described in a slightly different

fashion following Conner and Landweber [42], as:

Theorem: The image of nfU

in 74 consists of the unoriented cobordism
classes [M]g, vhere M is an oriented manifold for which all Pontrjagin

numbers with U’l as a factor are even.

Proof: Let A, ‘/' d be the cobordism classes of oriented manifolds for
which all Pontrjegin numbers with @1 as a factor ere even. |

Since Pontrjagin numbers venish on image 31 C image n§°, image al C A,.
Further z,'m is the class of a complex manifold for which all Chern numbers
divisible by ci are zero. But in mod 2 cohomology ¢y reduces to v,

" and 61 reduces to w2 so that since Pontrjagin numbers are given by Chern

-y
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3

numbers, or Stiefel-Whitney numbers (when reduced mod 2), one has zﬂn e A,
Thus the squares of classes in A, contains image QEU.

Letting B, {_ A, be the subring additively generated by image 3, and
the polynomiels in the z"m, one has the imsge of QEU given precisely by
the squares of classes in B,.

Row copsider the ring kerd/imd = 1m§91m3, whose dual 1is th_e space of
Pontrjegin numbers reduced mod 2. A,/imd then has dual space the space of
Pontrjegin numbers mod 2 which do not have 2391 es a fector, so A,/imd
has dimension equal to that of Zylyp, |1 > 1l. Simce B,/imy = Z,[z) |n > 2],

this gives B, = A, completing the proof. ## ) t

This characterizes 'ima'ge Q.S,U in ;Z" as those cobordism classes for o

which all Stiefel-Whitney numbers divisible by an odd w,, or by 'w2 are
zero and for which all Stiefel-Whitney numbers of the form wﬁwiu are zefo.
[Such being the squere {odd v, numbers zero) of a class with v numbers

. . 22 _ ;
zero (hence oriented) for which the numbers Voip, = ﬁl@m are gero mod 2.]

Relation to Oriented Cobordism

Having studied the 2 primary part of the relationship of nfu with

ﬂ-io, one may turn to the composite

£:aSU By, 80 1 080 norsion, -

Writing the universal Pontrjagin class . ¢ e H*(BSO;Q) sas n(1 +'x§),

dim x‘1 = 2, one defines classes sm(e U) as the 5, symmetric functions of
x -X

the varisbles e Jie -2 andlets A be the product of the classes

xJ/2 sinh('xJ/2). Let
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p : Ey(BS0;Q) —=qla,] : x —> ] s (e JAlx]'a

?

and let BSC = ={xe }%(BSO Q) e(x) € Z[u 1}, with BSo = o 8%°,
n non

~c t
Note: If xe¢ Bzo, end w e n(n/k), sw(eU).a[x] = sm(U)[x] e Z so
x is the reduction of an integral homology class. Since p(x) ¢ Z[l/2][ai],
x 1s in fact the image of the fundamental class of an oriented manifold, so
B.S.O C 'rﬂ%o
Since p(x) e Z[l/2][ai] for all x ¢ m.s,?, one also sees that
Blsloc mﬁo has 2 primary index. .

Lema: If M is a manifold with "P(¢2) structure”, then t[M] e BSO;

i.e. the imsage of ‘M(C,2) in 1-9?,0 is contained in BSO

Proof: If dim M # 0(k), sm'(ed,)ﬁ[M] = 0, while if dim M = 0(k),
_— O

[M],

(-
CISIED) 1

y 2'11
(e )8 [M],
¢

sm(eﬁ)ﬁ [M])

for every nonzero ccmponent of sm(e 0) )fx bas dimension congruent to zero
mod U and is a polynomiel in the Chern classes of M so is annihilated by
c?k, the velue being integral since sw(em)',g[ld] is the velue of & K theory
number, #¢
Lemma: Let P, CJ4(C,2) @ z[1/2] be the integral polynomie.l subring

Z[x R x21-1/2 X %py 1] Under the naturel hémomorphism of groups
: le,2) o z[1/2] — 850 o 2[1/2]

the subring P, maps into B;'o, and 1|P, 1s & ring homomorphism.
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s cog

Proofi Since P, (C kernel 3, the usual and unusuel products coincide

on P,, making th,t 8 ring homomorphism. Since x_,z.r:\mw,Z), r(xi) sB,s,m

. ' 50 E
while t(x21-l/2 xlei-l) = t(xgi) since tx; = 0, and t(xzi) € By  since i
Xy :“M(C,E). Since Bfo is a ring, the result 1s clear. W#¥# ;;’

:j‘
)

Proposition: B§° is an integral polynomial ring on classes yhi’ i>1

2SR

2
Proof:. Let y,, = t(x,,-1/2 x;x,; ,), ¥) = ©(x]). Then

o (P) =y y 38 1> 1, 8y(p)y,] = -Be, ()OR(2)] = 8.3 ana
230 ¢ 2{1/2] 1 genersted by these. Thus TP, is contained in B0 with

2 primary index.

One also notes that pz(yki), the mod 2 reduction of p(yhi) has
lergest monomial

a) ay ir 1.;42s for any s, %

%) (a 2 12 1= 2° for some s> 0, and
o5-1
c) 1 if 1=1"
as computed in the KO* analysis of the 2's. Thus 1P, is conteined in

with odd index, making T : Py —> B§° an isomorphism. #¥

Lemma: For aeny sequence (11,...,ir), kail"'yhir is the image of @

'SU manifold and y), ead yﬁi (for all 1) are the images of complex mani

for which all Chern numbers divisible by e, ere zero,

M, = 1/2 (Nhi - cP(l)NM_Q) where “23 is en SU manifold (N, = empty

For any seguence (il,. . ,Ir)
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a(ap(1) x M L |
_ h:ll 43,

=L
) = = a{uki XeooX By, % ¢P(1) + terms
r 2 1 r

e2(1)® x IN,, x mN,, o},

. S i
=3 Rhil XeooX Nhi + terms divisible by

2 r
an Nh3-2'
As orlented manifolds, the terms with Nh3-2 factors are zero, so
2yyg r++¥)yy 15 the class of the SU menifold 3(eP(1) x My, xee.x My, ).
1 r 1 r

Consider the classes in QH ® Q given by
A= /Ny, x N, =M x N, x B, )= 1/u8E, - [sep(1)2-8ep(2) N2, )
e by [ 4i-2 hi-2 by bi-2

and
B = M2, + CP(1)N - 2{ep(1)%-er(2) I8
i u1-2Mug 1-2°

2 2 2.2
= 1/hN,-1/2N, . CP(1)N,, ,+1/4GP(1) N;‘: +1/28), CP(1)N), ,-2/WCP(1)°N), ,

i-2

~1/M(8p(1)2 - 8ap(2) 2, .

From the expansion one clearly has A = B, with B being glven as the class of
& complex manifold and A having all Chern numbers divisible by ¢, zero.
Since Nhi—2 is zero In oriented cobordism mod torsion, B 18 clearly the

class yﬁi. hid

From the Conner and Landweber lemma that KO <theory numbers detect

H,('Z}/Q 22), one has pz(x) =0 if xe image 3, so T : kerd —#B%o takes

' imege 3 into 23?,0. Thus H.(M meps isomorphically into the algebra
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80 ,,80 2 SU . . U
By /23. with :Lmage. Zz[yh. yhili > 1], 8Since R, hes image in 0
coineiding with kerd in dimensions congruent to zero mod 8 and with

imaged in dimensions congruent to b4 mod 8, this gives:

Theorem: Under the forgetful homomorphism to ﬂfol’rorsion, Mc ,2)

maps onto 23%0, kerneld maps onto the span of ZB?,O and 2y, y§i|i >1¥

and O,S,U maps onto the span of EB,S,O and Z[yﬁi].
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Chepter XI

Spin, Spin® and Similer Nonsense

Among the (B,f) cobordism theories, the most interesting examples arise
from the classical groups. The most difficult of these which have been .
successfully enalyzed are the theories given by the groups Spin and B'pinc.

The group Spin arose classically in the study of Lle groups, being the simply
connected covering group of the special orthogonal group.

To Justify the study of these theories, another attack will be used here.
Briefly, one mey consider the cobordism classification problem'ror manifolds
which are orientable for the bundle cohomology theoriés KO* end KW,

Reference material for this is: Atiyeh, Bott, and Shapiro [16] for e
discussion of the groups, end Anderson, Brown, and Peterson [8] for celculation
of the cobordism theories.

To begin, one may return to the construction of K the_oretic orientation
classes for complex bundles, For this, one considered the vector space A(Ck).
treating this es s representation space for the unitary group U(k) in order
to construct bundles. Clearly one mey ask: Is it possible to find a larger
group, acting on both Ck and: A(ck) which will possess all of the properties

used in the comstruction?

Lemma 1: The ring of endomorphisms of A(n:k) is en algebra over € and

is genmerated by the endomorphisms F, and F% for ve .

Proof: A.(ck) has & base consisting of the elements e = ei aveen &
1 r

{; <e..< 1. Let I,J be any two sequences of this type, I = (il,...,ir),

1
= (Jl,...,,‘js). There is a sequence K formed from {1,...,k} ~ I and

® =10, 0=6 auiea ey and say e ~ 7 = (-1)%s. Consider the

Kk~ €1
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operation

t L]
T=(-1)F, ...F, FE..F'F ..F

3 3, ‘x 1 %k, k,

P A s e Rt i

where K = (k... ). Then Tey) =0 1f L#I and T(e;) = e;. Since

-

]
3
operations of this type form & base of End(A(Ck }), this completes the proof\i&

u

% &

ke

Lemme 2: The operations ¢ =F_+F¥, for ve ¢ satisfy the -
identities:

8) 200 °= P,

b) ¢'1v = i(FV-F:)’

c) If v,we tl.’k ere orthogonal, then ¢ ¢ + ¢ 4 = 0 and
t’v"iv * ¢iv’v = 0.

Proof: s) was verified in Chapter IX. For b) ome has F, = iF ,

<1P; ,z>=<y,1v.z>=-1<y,sz>=<-iF:y,z>

™ _iF*
so Fi = 1Fv. .F.or c) one has Sy = Oy T By 80

C 2 2
(94 ) (%) = | vf “ox,

= (424 00, + 0 8, + 0D,

= (M2 + 1 %0x + (oo, * 0 0)x
If v,¥ are orthogonal, ||vw|]2 = ||v||2 + ]M]a giving ¢.¢_ *+ ¢ ¢, = 0.

| 2 2 2
vetv, Jeel® = (1| ? = A5, vtae M7 =A%, so
Pty o0, = 0. L
Note: c) may be rephrased: If v and W are orthoéonal under the

inner product, Re < , >, then ¢v¢w + ¢w¢v =0,
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Definition: Let V be a real inmner produet space. The Clifford algebra
of V, Cliff(V), is a pair (A,f) where A 1is a real algebra with unit and
£:V-—>A s & linear transformation such that £(v)2 = [v]%:1 end such
that for any pair (B,g) with these properties there is a unique algebra

homomorphism A : A— B with g = Aof.

Note: Ciifr(v) 4is, of course, unique up to natural isomorphism. If
Vl'“"vp is an orthonormal base of V, the algebra A is the real algebra

with unit generated by vl,...,vp with relations v2 =)l end v,¥v, +v.v, =0

1 475 T V51
1f 1 # ). A has dimension 2P with base given by the moncmials IR
1 -]
with 1_<_11 €oenc i, <D0

Propositicn: The linear transformation ¢ : €° — End(A(€¥)) induces
an algebra homomorphism ¢ : curr(ck) — End(A(tl’k)) which extends to an
isomorphism

¢ ¢ Caee(c®) age 2 Ena(A(c®).

Proof: Clearly, ¢ : Clire(cX) g€ — Ena(A(C5)) 1s defined and is &

homomorphism of complex algebras. Both algebras have dimension 22k

over ¢,
so it suffices to showv ¢ 4s epia, Since ¢(v) = F_+F% and
¢(iv) = 1(?;1-*-;). imsge ¢ contalns F_= (¢(v)-1¢(iv))/2 and
F¥ = (¢(v)+1¢(1v))./2; By Lemme 1, these generate End(A(C®)) as algebra over

¢ as v runs over ck. Thus ¢ is an isomorphism. ¥**

Note: The eritical point of thié is simply that one has & very easy way

to express the endomorphisms. cnrr(ck) really enters through:

Proposition: ¢ identifies CIiff(ck ) with the real subalgebra of

End(A(u’k)) consisting of those operators which commute with u.
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T

Proof: Since uop = ¢v°u (Lemma 8, Chapter IX), cnff(ck) commtes

TR

with u. Since ui = ~ip (Lemma 3, Chapter IX), Cliff(ck) is precisely the

gsubset of Cl:lff(ck) 8 € consisting of operators which commute with u., #** -

It is now clear that one may perform most of the construction of an
orientation by considering the group G° (or G) comsisting of elements of
cliee(e®) 8 € (or Cliee(€%)) which are:

1) Invertible (i.e. are sutomorphisms of A(Ck));

bt B B 4 e, TNt e it

2) Satisfy x® = 1, where x* is the conjugate linear antiautomorphisi

of cur_f(c" ) 8 C defined by the adjoint. (Note: ¢(x) preserves the inner '

product on A(Ck) if and only if, for all y,z, one has 'j,‘,‘
i
<y,z > = < ¢(x)y,6(x)z > = < ¢(x)*(x)y,2 >

or if and only if ¢{(x)%(x) =1 or x*x =1, s dis then clearly a conjugatef
linear antiautomorphism and is the identity on & C_cnrr(ck) since A
(¢v)' =Fp+ Pt = ¢v.)

3) Preserve the even-odd decomposition of A(ck). (Note: cnrr(ck) ¢

is 22 graded; this takes the elements of even grading.)

Corresponding to any principal G° (or G) bundle one mey then form e

associated complex vector bundle with fiber I\(Ck ), decomposing into even-o

with fiver € or B°F, with each fiber acting on A(C") to define

¢ : 222V (€%)) — »#(2°4(c¥)). This 1s the anelogue of Lemma 7, Chapter IXE
in that one desires an action of G° (or 0) or a subgroup thereof on €. B
Letting g € Gc, one wishes to find for v ¢ Ba‘ an element gv € '.Bak,

)

so that go¢ = ¢gv°g. Now letting g = ¢(x),
v

$(x)os_(y) = ¢gv°¢(x)(y) ) . g

s e ok T A
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gives

by = $(x)20,08(x)7 = 9(xvx)

or
1

gV = X*V'X .

Note: The subgroup consisting of elements g = ¢(x) for vhich

ox e 1f veds clearly acts on ek, glving en associated bundle with

fiber Ck . The orientation construction may then be made for thig bundle.

Definition: Let Spin®(k) (or Spin(k)) denote the subgroup of

cnrr(nk) 8¢ (or Cliff(Rk)) consisting of invertible elements g for
which:

Lex forall veRS

1) gve
2) g%z = 1 vhere & is the conjugate linear antiautomorphism extending
the 1dent_1ty map on :Rk; and

3) the 32, grading is zero.

The ebove analysis shows that Sp'.l.nc and Spin bundles are K* end KO¥
orientable respectively. (Hote: Restricting t-o a fiber, the bundle.further
reduces to U or 8U, vhere it is known that this construction gives a
generator for the cohomology of the spbere). The orientation is clearly
multiplicative, for A= o ¢*) = A(F) ® A(@”') end all constructions are
compatible with this decomposition.

To relate this to the classical treatment, one may analyze the groups
Bpin®(k) end Bpin(k) in e group theoretic fashion.

Denote by I. the subgroup of invertible elements x in (!.'l.:li’i’(:Rk )ec

X
(or CULL(EY)) satisfying:

1) m"lenk for all yenk;



- 268 ~

2) x*x =1; and

3) x is s homogeneous element in the %, grading.

Define a representation of I‘k on :Rk by
pz I — Auf,(nk)

vitk o(x)(y) = (-1)““#:'1. vhere deg x is the integer mod 2 giving
the grading to which x belongs.

: . k b
Lemma 3: The homomorphism p : I' — Aut(R") has kernel precisely %L,ﬁ

scalar mltiples r.l where [rf = 1.

Proof: If x € ker p, xy-(kl)“gyx for all ytnk. Iet e ,..004

be the standard base of K- end write x'= 8 + e.b, where a,b do not

1

involve e and dega = degx, degb = degx + 1., Then
xe) = e
s0 b = 0. Similar enalysis with the other ey shows that x cannot invo

+ élbel = ae, + (-1)d‘8hb', and (-1)d°“elx = (_1)degxela + (=1)

ey e,, 8o x=pel, Since x¥xmyrs=1, [d =1. #
Lemme U: o(r,) 1s contained in the isametries of B,

Proof: Jo(x)y2 = (p(x)y)*(plx)y) = (-1)388%(x~L)uymxn.(-1)38  gyy"1

= yiy = |:r|2 so p(x) preserves norms and hence also imner products,

Lemma 5: p : T

g o(x) is epiec.

Proof: Let v e 851 C.F® be any unit vector, and extend to s

orthonormal base el=v. €nse 0098y Then elerk and

°(’1)(°1_) =-ejee, ® [-ey i=1,

e 141,

i
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Thus p(v) is the reflection in the hyperplane orthogomal to v. Bince O(k)

is generated by these reflections, p 1is epic. i

Lemma §: The homomorphism p Ty ~+ 0(k) maps the subgroup consisting
of elements of degree zero precisely omto 80(x).

Broof: Let xeT,. Then p(x) ® R°...°R  for some reflections R, '

ead letting x, € g%t witn o(x,) = By,

detp(x) = (1) and deg x = g, so p(x) ¢ 80(k) 1if and only 1f

one has x = r-xl_...xq. Then

deg x = 0, *®

Defipition: T, 1is denoted Pin®(k) in the case of ClLe(E*) 0 € and
1s dencted Pin(k) in the case of Cliff(R®).

Theorem: There are exact sequences

1~ U(1) =~ Pin®(k) — O(k) —= 1,
1 = U(1) = Bpin®(k) ~+ 80(k) ~ 1,
1 —» 2, — Pin(k) —> 0(k) —>1, and
1 — 7, — Spin(k) — 80(k) —> 1
and iscmorphisms
Pin®(k) & Pin(k) u‘a (1)
Spin®(k) & Spin(k) xp U(L)
, 2

vhere u(1),z2 denote the scalars of norm 1.

Proof: All has been proved except the isoworphisms. For these one has

inclusions Pin(k) —> Pin®(k) and U(1) —> Pin®(k) and as in Lemma 6,

Pin®(k) comsists of all TRy X, Xy :Sk.l-'. r e U(1l) and Pin(k) consists
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of all ¢ xl...xq. ' This gives the isomorphism for P:lnc(k), while that for .

Spin®(k) follows by taking the elements of degree zero, ¥

BT PRSSCE P

To complete the analysis of these groups, one has:

et T

Proposition: For k > 2, p : Spin(k) — S0(k) is the nontrivial double

PSRN
AR

cover,

Proof: It suffices to show that +1 and <1, the kernel of p, can be

i

connected by & path in Spin{k). One such path is

A [0,7] = Spin(k) : t = coa(t) + si_n(t)'elez. e

Corollary: For k > 2, Spin(k) is connected, and for k > 3, B8pin(k}

is simply connected.
Proof: 7, (50(k)) = 0; = (80(k)) = Z, for k2 3. **

Now one may form the classifying spaces for these groups.

First one notes that Spfgn is the simply connected cover of 80, so tha"
B8pin 1is the 2-comnective cover of B80. Thus one ma;r identify BSpin with
the total space of the fibration over BSO induced from the path fibration ;

(inducing an

over K(22,2) vie the map f : BSO —» K(22,2) realizing v,

isomorphism on 12). Thus one has

BSpin —— K( 2212)
L

BSO ——Ef— K(2,,2) . i

and the fiber of = is s K(Za,l) _
' One may compute the cohomology algebra H'(BSpin, J ) for any ring )X %
containing 1/2 eastly, since HMK(Z,,1);8) 1s trivisl, meking n* an

isomorphism.
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' ~
To compute H'(Bspin;za) is much more difficult, requiring some additionel
background.

Lemma 7: In H'(no;za), -Sqn'lvn = v, _, * decomposables.
Proof: From the Adem formulae,

87 35 = 521 4 121 0,8 1 5t, with s = [(n-2)/2],

%o in E*(T80;3,)

-1 -
8 Sqn.U =v, Ut 121 a,8¢q 2n-1 i(viu),
8 2ne)-1. e x :
= v, U+ ) 8 (Sqen'1°i"1wi)‘w U
=1 gm Y gm0 J

and the terms with J = 0 vanish, since for 2n-1-i{ > i, one has
2n-1-1 n-lsqnU ) .
8q w, =0, Thus Sq = (vzn-l + decompossbles)*U. Further
" "I5q% = 5¢° l(v )
= 8¢° lv U+ I (S p-1-dy )'GJU, ¥
= (8q 1\; + decanposables)~U.

Equating these expressions gives the result, **
Corollary: f* : x-(x(z,‘,.a);za) —> E%(BS0;Z,) 1s monic.
Proof: H%(K(Z,,2);2,) 1s the Z, polyncmisl ring on the classes
Sq,ILa, vhere I = (2!'.21'-1....,1) end by the Lemma, qu\r

“Ely

decomposablea. Thus £% is monic.,
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This gives:

Proposition: ¥ : H(BSO;Z,) —~ HY(BSpin;Z,) is epic, with kernel the .
1deal generated by w, over d,‘,. Thus z,‘,[wili $1, 2°42; r> 0] maps-

isomorphically onto H¥*(BSpin; za) .

Proof: Let E® denote the spectral sequence of the fibration =, E'®
that of the path fibration of x(zz.z). with £® the induced map. Sim_:e.

BE* i5 an B'CBBO;ZQ) module, one bas induced & map of spectral sequences
zolw |1 # 2, 2415 r > 0] @ E'® —> B0,

This is an isomorphism on the 1!2 level, hence also on the E level. Thun._ e

4

LI Zalwili #1, 2r+1;.r._>_ 0] 4—»3‘(38911&;22) is an iscmorphism. %*

To form the elassifying space BSpinc. one considers the map ‘%
2

g : BSO x K(2,2) —=K(%,,2) vith g*({,) =w,01+18 . and denotes by &

c

ESpin~ the total space of the fibration induced vie g from the path

fibretion over x(za,a). ‘This gives a diagrem -

B0 e PE(7,,2)

ya |

BSO x K(2,2) wmeefies K(2,.2).

BsO¥ "1

One then has the fibration w : BSpin® —» BSO with fiver K(%,2) = BU(1i),

correaponding to the exact sequence
1 — U(1) d Spinc — 80 = 1.

Koﬁu: 1) One has a homomorphism Spin(k) x U(1) — 80(k) « U(1):

(x,¥) == (p(x),y2) 1inducing 6 : BpinS(k) & Spia(k) xza u(1) —>80(k) x U
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and 8 gives en exact sequence
31—z, — 8pin°(k) —~ S0(k) * U(1) —=~ 1,

The construction given for BSpinc is the fibration associated with this
sequence.

2) An oriented bundle admits & Spin structure if and only 1£ 1ts
second Stiefel-Whitney class is zero; it edmits s 5p1n° structure if and
only if its second Stiefel-Whitney class is the reduction of an integral class.

The cohomology of BSpinc _15 now readily computable. Since
n'(x(z,‘,.a);;ﬂ) 1e triviel it 1/2 ,,3,

7'% ; H*(BSO nu(l);,g) —»-n-(BSpm";,S) is an isomorphism. Using 2,

cohomology, g% is moniec, and using the same spectrel sequence argument, ='%
is epic with kernel the ideal generated by va +i, over da. In particular,
ne H'(BBO;_ZZ) —_— B‘(BBpinc;Za) is eplc, vith kernel the ideal generated by

v3(Sq1(w2 + L) = vy in He(BSO X BU(1):Z,)).

Hote: Let f : BSpin X BU(1) —~ BSO ‘classify the sum of the canonical
bundles over these spaces, Let k : BSpin x BU(1) — K(2,2) be projection on
the second factor. Then £ X k : BSpin % BU(1) — BSO x K(2,2) lifts to
BSpin®; say # : BSpin x BU(1) —~ BSpin® is the Tift, It is immediate that
t induces 1sm§rphism of hamotopy and benge is a hamotopy equivalence.
(Beware: The multiplication . BSpin® is not the pa-qdﬁct multiplication cn
BSpin x nu(i);) Thus the cohomology of BSpin.c follows from a knowledge of
that of BSpin. _

?‘ran the km,:;vledge of the z;a.tioul cohomology of Bépin and .néimf. one
may evaluate the Chern character of 't;he 'bumile theoretic orienta'ﬁi_on class

constructed above.
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Propomition: Let £ be a Spin (or Spin°®) bundle over a space X

let U(E) e?o’('l'ﬁ) (or K*™(TE)) be the orientation of £ constructed ab

Let 0;1 B#(7€;Q) ~—~ H#(X;Q) be the inverse of the Thom iscmorphism definc@

by the standard orientation uaocinted wvith the 80 structure of E. Then:

honomnrphism from KO® to Ke)

-1 cl(E) 2, R
b) & (ch(u(§))) = e ‘A(-£) if £ is a Spin° bundle, where
oy(E) & B2(X;2) 1s the integral class reducing to wo(E) vhich is defined.

by the Bpi.nc structure,

Proof: By stebility and naturality of the orientation class,
-";l(-eh(W(E))) and OEl(th(E)) come from H*(BSpin;Q) end H*(BSpin®;Q)
respectively. Corresponding to the inclusions U(k) — Spin®(2k) end

8U(k) — Bpin(2k) one hes maps ‘t : BY —~BSpin®, u : BSU — BSpin. w

l
The naturel mp BSU ¥~ BSO 1lifts to BSpin since BSU is 3 connecte&

bundle and whose proJection to BU(l) clesgifies the determinant bundle

end 8U b\mdiea one mey epply the previous computatiané.
For & U bundle, cne has °u 1ichu(g)) = 1(ehﬁ(a)) (Note: To form

U(E) one had to introduce a sign depending on dim £ in order to get an
orientation: This was given by U(g) = (-1)%KE) it £ 1s a complex n=
. R . . -c,(-£)/2, (E)/e ;
bundle. See Chepter X), and this is ,J(-E) e A(=E) = At
For an SU bundle, O;I(chW(C))_ -,8(-5), exactly as for a complex

¢ h

bundle. Since cl(E) = 0, this reduces to A(-f). ®*
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In the computations which will follow, it will be necessary to have the

following:

Propesition: Let BO(k,...,*), BU(k,...,») denote the (k-1) comnective

covers of BO end BU., Let

£ : BO(k,... @) ~= K(n (BO) k)
and

g : BU(k,...,») —> X(n, (BU),k)

be the maps realizing the least possibly nonzero homotopy group. Then:

a) If k= 0,1,2,4 (mod 8), f¥ : Hi(K(nk(BO),k);Zz) —rﬁi(BO(k,.-ew);Zg)

is epic for 1 < 2k, and in these dimensions H*(BO(k,...,m);Zz) is isomorphic

to
1) (42/((28q1 + QQqu)f*(é ©) k=0 (8),
2) A/ ABLIe L) k:z1(8), -
3) (L aBaIew(i ) kz2(8),
W (A G pdt + Usad)en ) kz b (8).

b) If k 18 even, g% : Hi(K(nk(BU),k);ZE) vni(nu(k,...,-);zz) is
eplc for 1 < 2k, and in these dimensions H"(BU(k,...,m)-.Zz) is iscmorphic
1 3 s
to (/80 + A8 )eM(E ).

Proof: The main step in the proof will be en induction on the statement:
P(j): With the given hypotheses, f¥ and g* are epic for i< 2k
and k + J, &and in these dimensions, the groups H*(BO(k,...,w);Zz) and

H"(BU(k,...,’);Z2) are as asserted.
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This is clearly true for J = 1, since f* and g* are isomorphisms in

dimension k. One may then suppose P(j) 1is true, and try to prove P(J+l).

Consider the fibrations

BO(k+1,...,®) = BO(k,...,*) BU(k+1,...,2) = BU(k,...,®)
X(, (BO) k) l{(wrk(BU),k).

The spectral sequences of these fibrations give exact sequences

i+l

= Xk, @) = EHRO (0 ) — B ROk, 2)) — L

coe == EN(X(41, 00 ,®)) = B (R( (X) k) — B2 H((k,. .. )

in vhich T : B (X(kel,...,®)) —= B *H(K(n (X) k) 1s the transgressicn.
By the inductive assumption H™(X(k+l,...,®)) = (4-2/@,_)‘:’_ in dimens

less then 2(k+l) end k + 1 + j, vhere x, € H"(x(k-o-l,...,w)) ig the .

%
nonzero class of lesst positive dimension and Jﬂ. is the appropriate ideal,

T is e homomorphism over dz and hence it suffices to prove that the

sequence of a 2 module homomorphisms
t
0 — Aphd, o B0(x(r, (0,10) =i, — 0

1s exact, where Tx, = (1) ik’ since then the exact sequence of the fibr
will prove the isomorphism, giving P(J+l).
Thus one muat determine t(1) and prove apyroprilfe exact sequences,

Lemma: 1 : H2!,+2(BU(2“1""’¢)) —932“3(1{(2,22)) sends Toi0
qui.a'l. ) "

Proof: Noting that e "+3(K(Z,2!-)) has & generstor sq3z'.2,,‘ 1t suff

0®*Ypy(2e41,... @) = BUCS,...,

to show that tx By periodicity,

2142 ¥ 0
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end by looping, 1t suffices to show ‘tx6 = quf_h in the ﬁ.ﬁration
BU(S,...,=) —> BSU = BU(k,...,=) —>K(Z,b). If wxg =0, Sqx, #0 in

H'(BSU), but cme knovs thet H'(BSU) = 0. Thus 1txg = 8g>3,. **

lemma:

8k+2

v+ 1% potae1,. 00 ,0)) — B E(K(2,8)) ¢ xg,, — 87 L4,

: nsk+2(Bo(8k+2,...,°°)) — le8k+3(x(za,81;+1)) f Xgean Sq2isk+1.
- nak"'l‘(no(ak+3,...,°=)) —_ Bak'+5(x(22’ak+2)) : xak-“‘ — qui 842

v+ B 8(m0(as5, .. 0)) — BEH(K(2,8000)) + xgy g 50 L g

Proof: Clearly one may write

2 2.

Tageyy © 852 & gyo Tgeen = P8 gy

T ., = 0Bg 3 + @8¢50 3 X o = 080° L
Bic+h TZ grep 2522 guyo® Br+8 2 gty

vith a,b,c,d,e ¢ Z,. Since xg,, 18 an integral class, 0 = qul"ak-»h =

) Sqlrxak_'_h = a8¢’sq’ t fusp 800 thus a =0, .

Looping 8k-U times and applying periodicity, BO(8k,...,=) becomes

BSp [The case k = 0 is trivial end may be ignored.] and one has:
t 1 B(Ep(5, . ..,m)) — BO(K(Z,M)) + x5 — 8871,
© : B5(B8P(6,.0. @) —> BT(K(Z,,5)) : xg —> 8%,
v+ B(B8p(8, ... o)) —-'n9(x(z2,6)) txg—> 8 i,
v 1 B2(88p(12,.0.,0)) — E(K(Z,8)) 1 x, —> e80° L 4.
Nov consider the fibraticn BSp(5,....) —= B8p > K(2,4). One has

" H°(BSp) = 0 &0 Txg #0 giving Txg = 8¢°1 b hemce a =1,
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One msy then campute u*(nsb(s,...,w)) from the spectral sequence.
Specificelly, H®(BSp(5,...,°)) is the polynomial algebra over Z, on the
clasaes 10(0:), 1> 2, end the classes Sqlxs with I given by:

8ol

] . .
I = (0) - giving x§ which transgresses to Sq2 5...Sq58q21 e

X 28
I= (Zk,....lb) - giving (Sq ...Sq x5 Y vhich transgresses to

-1, k+1 x+1 X
8q® (* M) 8 *lgg? .thSqazh,

2.3 _6. 3:

s
I= (1)~ giving (Sqlxs)a which transgresses to 8q -.482°8q L.

[Note: The given transgressions, together with ' i’h" form polynomial T
generators for H#(K(Z,4))].

How consider the fibration B8R(S,....) Lo B8p(5,...,=) T X(2,,5).
Then EO(BSp(S5,....»)) hes base Sqlxs end 1'*(Sq1x5) =0 so x4 #0,

glving txg = Sqais; hence b =1,

Assertion: !"(qusql' ) = 1"(0 o)

[1£ not © : BI(B8p(6,...,°)) —> ns(x(za,s)) =2,82Z isan 1aomrpn1g§§
since !"‘(SqZSqli_s) = !'*(quis) = 0, Thus the msp BSp(6,...,2) —> K(Za,
realizing xg 1s not epic on 7 dimensicnal cohemology, implying

HT(BSp) #0.]

r
Assertion: Sqa- ...Sq"(p; - 'G”r-l + decomposgables.
2 "+ )

[To see this ome mps a ; BO —~ BSp by quaternicnification so
2
u"(@i) = w Then a‘(Sq ...8q -0:2) = (sqzr- ...Sqlwa)h = (wzr_lﬂ +

decanposables) giving indecomposability of qur ...Sq"ty;.-]
One mey now compute H¥*(BSp(6,....®)). For later uses, it suffices to

know the snswer in dimensions < 13. Oné has ='* epic in dimensions less

ZESE 5

than 16 and in dimensions < 1k

b et B B
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BO(BSR(5, ... =) = 2,[8a"x5T = (0),(2),(2",.... ), (25, ..,2,0)]
and |
H¥(K(2,,5)) = zztsqli_slx admiseible, e(I) < 5]
with the kernel of ='® being generated by the classes

aim 1k: Sq68q3

aim 13: 8¢%8e%; 5" t(xi), 8q°80%8q & 5" t(s:;"‘_sq?xs)

i 5 = t(8esq'xg) o (86%4 5)Pa%eeaal 1 5 = (8a"sa%8qlxg)

aim 12: S¢°8¢°% 5= r(8q5x6)

dim 11: SQSSqli = +(8q78qxg), 8q's®: 5 = r(thxG)

dim 10: i: + quSq i,j = ‘rgsqasqlxs)
aim 9 : 3Sql L= t(Sq?xs)
dim 8 : quis = t(Sq_lxé)

aim 7 : Sqais = t(xs).

Thus in dimensicns <13, n*(ésP(s,...,w)) ®z [xé,Sqle,Sq_axs,Sq_aSqlxs,
Sq Xgs Sq3Sq Xgs Sq Xgs thSqaxs, qusqlxs, thSqasqlx 1.

Now consider the fibration BSp(8,...,») i, BEp(6,.00,™) LA K(z,,
Then HB(BSp(6 . )) has base Sq 16 and 1"’(Sq x6) =0 so txg # 0.
Thus 1:8 = Sq3;6 and hence c = 1,

One may now compute B‘(BSP(B,....')) in low dimensions;_ror ™* ig
epic in dimensions < 13 and below dimension 1k, the spectral sequence
reduces to an exact sequence. Thus ¥ @ Hj'(BB;(!(B,...."° ))w kern_el(l_"’)iu _

for 1< 12, Now kernel ="*® 1is given by
. 3. _
dim 9 : Sq7 . = 1xg

dim 10: O
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atm 11: 87§ + sa'8ql} 6= tSq2x8

aim 12: S%8q i = tSq3xB
dim 13: qusqzi 6" tthxa.'

k4
4
:;ﬁ
3]
-:‘nt!

r‘

L
Now consider the fibration BEp(12,...,e) 'i—LBBp(S....,“) 5 k(2,8).

Then K (BSp(B, «+s®)) hes base thxa and 1''! %(Sq xs) =0 80 1x, # 0.
Ss

NP

Thus 'l'xla-sq z_a end hence e = 1.

To complete the proof of the proposition, one has:

Lemms: The sequences

dyia 29‘11 4 /d 2 sa’ S9- /R4 23‘11'

5

i m\};’;’%‘; S

2

i 51
DT

and

d i dlﬁ'zsql

J & dald 8

are exact, where ﬁl(_a) = aosqi.

" Rote: These sequences are Gue to H. Toda: On exact sequences in Steen
elgebra mod 2, Mem. Coil. Sci. Univ. Kyoto. Ser. A, 31(1958), 33-64., The
proof given here is essentially that of C.T.C.Wall: Generators and relation
for the Steenrod aléebra, Annals of Math., Té (1960), L29-LLk.

Progf: lLet a é C ag be the s_ub-Hopf algebra generated by Sql and.

aé has eight elements:

1, Sql. Sqa, Sqasql. qu - BqlSqa'. Sq33ql'. qu + thsql. and qu-s'ql-
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Consider the gpequences
Ay —9—>4 7 —9—>d 760%
and

d -—'q‘-"ﬂél 'Sq
a2 T lf\(l

quﬂq 8q

&3
Ay <2 Ayqsd

It is trivial to verify that these sequences are exact. Since ﬂ é is a
sub-Hopf elgebra of ﬂz. A, is e right ({3 module and a coslgebrs, with
comultiplication being e homomorphism of right dé modules., S8ince

v dé —*da : x - 1x is monic, the Milnor-Moore theorem applies and
ae 3 ﬁezzdé as right a é modules. Tensoring the exact sequences above

with f@ gives the exact sequences of the lemma. %%

CLorollary: Let & be en n-dimensional vector bundle over X and suppose
u(g) e K2(TE) (or -l?lon(TE))_ is an orientation. Then stably £ admits &

Spin® (or Spin) structure.

Proof: Let n' be aulcl.t thet n+n' = 8k and let £' =& @ n'"), Then
£' hes an orlentation class. U(E) 8 £ ¢ o p() . g% = KEOS(TE")
(G=U or 0), Let £ : TE' —» BG represent t_his orientation. Since' TE'
is 8k-1 connected, one hes s lifting f : TE' —~ BG(8k,...,») and the
inclusion S_ak = T(fiber) &> TE" —> BG(8k,...,”) represents the generator
of ﬂak(BG). The class r"(x&) is an orientation class ﬁ' € ;I&(TE';Z), so
AE' is sn orientable bundle.

It G =0, ScU = f"(Sqexak) =0, s0 wy(§') =0 and E' admits s

Spin structure.
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If G =7U, one notes that ‘there is an integral class
v m‘*e(nu(ak.....w)) vith v reduclng to quxsk mod 2. To see this, the;
integrel spectral sequence of BU(8k+2,...,2) — BU(8k,...,») — K(Z,8k)
has Xgsn transgressing to the nonzero class of order 2 in Hak 3(K(Z Bk)z)%
giving H&("'E(BU(&:,...,O) 32) 5 2, with generntor v mspping to 2"8k+2 andf\"‘
with mod 2 reduction ' Se%xg,. Thus f"(v) = r8(x) U with x € B3(X;2) O

having mod 2 reduction w,('). Thus §' edmits a Spin® structure. ¥

Note: The orientation defined by the choice of & Spinc or Spin
structure mey differ from U(E), but clearly differs only by multiplicationm -
with an invertible elément in KU(X) or KO(X). Thus one knows precisely thﬁ

féshion in which a1l K or KO theox;y orientationa arise,

Definition: A class x & KO*(X) (or K"(X)) has filtration n if fo!
every finite comflex Y of dimension less than n end mep £ : Y —» X
one hes f£%(x) = Q. - .

If X 4is a complex of finite type, x has filtration n if and only sﬁ.
i%(x) = @, where 1 : X%} s ¥ 45 the inclusion of the (n-1)-skeleton /R:
X. Additionally, if f : X —>BG realizes x, then x hes flltration. né%ee

if and only if ¢ 1lifts to BG(n,...,~). Note: This assumes thet x ¢ KG(

has positive filtration, or more precisely, the restriction of x to each -

component of X hes virtual dimension zero.
Proposition: KG(X) is a filtered ring.

Proof: If x,y e KG(X), with filtration (x) =n end t:_lltz;a.tion (Y)._
one needs that x-y hes filtration ntm, Let Y be a finite complex of
dimension less than nem end f : Y —> X any mep. lLet g :'YQBGZ‘(B,.
h: Y -—'- BGs(.m,....,"'). be meps with g*(vrdim?r) = f*(x), b*(vs-'ﬂﬁ')
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Now f£%(xy) 4s given by k"((Yr-dim'yr) ] (y'-dimya)) vhere

k:yY-Syx Yﬁﬂuscr(n,...,w) x BG_(m,...,°).

Letting p cBGr(n....."'). q€ BG-s(m,..'.,") be bage points,
= (Yr-dim‘vr) 0 (Y'-d:l.lws) is trivial over BGr(n,...,w) v BGB(m,...,fA)
= BGr(n....."') xq Upx BGs(m....,ﬂ) for y, - dimy =0 over p and

Y - d.'!.m'y' =0 over q. Thus u = j¥(v) where
3+ 6 (n,... ) x BG_(m,...,8) —> V = BG_(n,...,®) . BG,(m,....»)

~ ' L
and ve KG(V). Now V is (nem-1) connected ([H¥(V;F) & H"(Bor(n,....a);!‘)ep
f!'(BGs(m.....ﬂ);F) for eny field F 8o the least nonzero clase hes dimension
at least n+m] 8o J°k : Y —> V is homotopie to zero, and thus

(dox)*(v) = £%(xy) = 0. Thus -xy has filtration n¢m. **

Pollowing Anderson, Brown and Peterson, the analysis of Spine or 8pin
cobordism depends centrally on the knowledge of the filtration of the K and

KO theory characteristic classes, The basic resuilt is:

Proposition: Let £ be an oriented real vector bundle over a space X,
and let 1ri(E) be the i-th KO-theory Pontrjegin class of £ (defined by
n(e) = x“(; aimz) vith u=t/(10)%). For 1w (ij,...s8,), let

I(t;) - 1r (E)...1r r(a) Then wR(z) has filtration

rel(e) = { ba(n 12 a0 =0 (2),

In(1)-2 1r n(1) =1 (2)
.vhere n(I) =4, +...+1, and._uI(E) 8 ¢ has filtration Un(I) in X(X).

l&n(I)(x

It @rle) = (j»i (5)“'5?1 () 1s nonzero in H iQ), end 1f

n(I) 1s 0dd the class o, (5) :la not divisible by 2 in pqnl‘“m(x z),
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then these are the precise filtrations of ni({) and ite complexification.

Further, the lifting £ : X —> so(r(ni(z)).....n) may be chosen with

2
f.(xhn(I)) = ﬁ)I(E) + 65q SqluI (8 being Bockstein, ay & polynomjel in

Stiefel-Whitney classes) if n(I) 1is even, or quf'("hn.(x)-a) = pz(m(t))

53 A E Tt

if n(I) 1s odd, and £ : X —> BU(Ln(I),...,») may be chosen so that
1.“'(:(1"1(1))~ =, ﬂI(E). (Note: x, generates Hi(BG(i,...,‘”);ﬂi(BG)).)

The proof of this given by Anderson, Brown, and Peterson makes use of
the KO®~theory spectral sequence. The proof given here is fairly involved
but will be jJust standard cbetructicn theory.

Let Y be a space with y ¢ K3(Y) & class having filtration n. Then i :
£ :Y—BG realizes y, there 1s a lifting £ : Y —» BG(n,...,=), and ‘
1fts to BG(n+l,...,®) 1f and only if £%(x) =0 in n“(y.nn(m)).
Denoting by [y] the subset of Hn(Y,nn(BG)) consisting of the classes
%"(xn) for all 1ifte #, y hes filtration n + 1 if and only 1f 0 e [yl

If G =0, there are four cases to be consldered, depending on the

class of n mod 8.

Case I: Suppose y € KO(Y) has filtration 8k, with
£ :Y—>B0(8k,...,») one lifting so that f%(y) = y where y 1is the

universel class. Letting g : g8k

~—> BO{8Kk,...,») generate nek(no)
one has g"(xak) =7 and gMy) = :L, vith g*(ch(y ® €)) = ch(ag® 8 ¢) =
so ch(y 8 @) = Xge * higher terms. Thus ch(y ® ¢) = *(ch(y ® €)) =;§"(x
higher terms. Further Sq2p2§'(x8k) = f'(qupzxek) = 0 from the analysis

the 7, cohomology of BO(8k,...,*). This gives: If a € [y], then

2
Sq2p2u =0 and p(a) + higher terns = ch(y 8 €). .

I¢ # : Y —> BO(8Kk,...,®) 1s one 11ft, then one has
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K(2,8k-5)
-
Y — Bo(&k,...,»)
|

BO(8k-4,...,=)

and 7 being a principal fibration, the 1lifts £' : Y — BO(8k,...,»)
covering 70% are classified by maps into K(2,8k-5) or clesses
8x-5,. : 5s
x¢H (¥;2). Bince pzi"(xak) L] i'(pzxak) = 8q 2 gg5r Oone has
L . ;
. R
1 (zak) = 8890, Bk-5 (p, bveing monic), where & is the integrel Bockstein

Thue [y] 1s & union of cosets of GSql'pZHBk-'j(Y;Z).

Case II: Suppose y € KO(Y) has filtrstion &k + 1, with
T:y —> BO(8k+1l,...,”) one lifting. From the Z, cchomology analysis, cne
24 I 2 R
has Bg f"(xak_'_l) = £#(3q’ x8k+1) = 0. This gives: If a ¢ [yl], then
Sq2¢! = 0,

If one considers

k(z,8k=1)

-

¥ 5> BO(8Kkt1,...,=)

|

BO(8k,...,»)

2.,
" . s sets
in vhich 1 (x8k+l) = 8q ige1® ©Be hes: {y] 1s & union of cosets of
2 o
8q 92118k Lix;2).
Case III: Suppose y hes filtration 8k +2 with

£ : Y — BO(8k+2,...,») one lifting. As sbove one has: If a e [y], themn

Sq3u = 0. Further, [y] 1s a union of cosets of quﬂak(Y;zz).
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o

Note: If y has filtration 8k + 2, one msy consider ch(y 8 €) = uw

higher terms. For BO(8k+2,...,°), the integral spectral sequence of the

fibration
BO( B, . .. @) == BO(8k+2,...,o) ~I> K(2,,8K+2)

glves txg ) = ‘quiauz and thus an integral cless vg ., Wwith

"("8k+b) = 2xg ) Bince Eak+)‘(30(8k+2,.._.,~)_;22) & 2, with base s_qaxsk

Bx+h

one has oV eesl = Sqaxek*_z. Letting g : 8 —-_>Bo(8k+2,...,=°) be a

generstor for g . (BO) one hes 'g™y) = L so g*(ch(y 8 €)) = ch(2 @ )

&““. ch{y @ ¢) must pull back t

Bince xg ., pulls back to t in s
2xg. 4|, + higher terms in BO(8k+hyee.,®). Thus chi(y 8 ¢) = Vays) + higher

terms.

In particular, if a c [yl 1= f'(xmﬂ_z). then .quu is the reduction,

of the integral class ?'(vmﬁ_h) and ch(y 8 @) = pq(f'(vak+u)) + higher 4

Case IV: BSuppose y ¢ KO(Y) has filtration 8k + L4 with
?:Y—~BO(Bxth,...,”) one lifting. Them, 1f a ¢ [y], Sqop,e = 0 and
chiy @ ¢) = 2DQ(¢!) + higher terms. Further, [y] 18 a union of cosets of

258k+1

-68¢ (Y;Za).

Using these facts in looking at the Proposition, consider first the up)
bound condition on the filtration, If & 41s an oriented vector bundle ove ;

then ch(ﬂ;(E) 8 €) = g, (E) + higher terns. This gives
oh(n5(&) © €) = P;(E) + higher terms.

Thus 1f EI(E) $0 in n"nm(x;q) one must have filtration (WE(E)) < by

and filtration (1';(5) 8 ¢) < bn(I).
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If n(I) = 1mod 2 and filtration (ﬂ;({)) = Un(I) = 8k+h, there 18 a
lfting £ : X —~BO(Bk+h,...,») with P9(y) = 11(E). This gives em
integral class x' = 'f*(xak_m) such that ch(ﬂIR(i) 8 ¢) = 2pQ(x') + higher
terms. Thus @I(e) = 2pQ(x’). Thus, 1f @I(E) 1s not divisible by 2
in pqn"n(I)(x';z), ":1[3(5) hes filtration less than Ukn(I), 80 less than or
equal to kn(I)-2,

To prove that "%(E) has the asserted filtration, with the given classes
defined by the 1ift, one considers g : X —= BSO with g*(y) = £ - dimE,

Y Being the universal stsble bundle, Then ﬂ;({) = g*nIR(y),:{k and it suffices
to prove the remainder of’ the result in the speclal case in which X = BSO -

and & 1s the universsl bundle. . This may be accomplished by a careful study
of BSO. From the cbstruction analysis, it 1s clear that one is interested in

the action of Sq:L and Sq? in H%(B80;Z,).

. a2 i+3 142 141
Lemma: 8qw, = (7, )w1+2 + ( 1 )"1+1w1 + (% )wiwe-

Proof:
Sqavr1 = qu(le"'xi) = le...xi...xi...xi,
v, = (Ex..x ) (Exx),

= (1Pex...x,,

i, 2 2 2
+ ,(1)§x1...xa...xi+l + le...xJ...xk...xi.
Vi¥ig = (Exl...xi+l)(£xl)

_ 42 2
= 1 YIx RS P DX eeeXyeeoX

1 2 100Xy Xy
80
2 ~ . 142
87wy 4 ww, = (W)wwy g = (20w o]+ vy L0,
- fe2)an) | ee)en), Lo
2 2 142 17141’

= {142)(1-3 v + 1w

]
2 1+2 171+

giving the desired formula, #*
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Recell that one has operations Qo = Sql and Ql = SqlSq2 + Sq28q1 in

42 setisfying:

PERCE TR

WYy =49 f =0

i

and’

Q, (a+d) = Q,(a) b + a-q, (b).

St A e, e

Thus in eny space X one may form the homology groups H{H*(X;Z, )’Qi)
kemel(Qi)/image(Qi). One hes a natural map G : kerQy n kerq, —» kerqi/

(1 =0,1) and clearly 1mQ) N 1mQ, C kerg, (1 =0,1).

o B s é il

Definition: X has isomorphic hamologies if the homomorphisms o~ B

ker(Qo) (\ker(Ql ker(qQ,)
M o) A (e mlgy)

are iscmorphisms. The group keon N kele/ion N imQ,l will be denoted ﬁ

H(E™(X;Z,)).
Lemma: DBSO hes isomorphic homologles.

Proof: One has Quu, = (i#l)v,,, so H(H®(BS0);q)) @ zz[(w,‘,i)"‘]. Also

Sanq]'wi = (1+1)Sq2w1+1 = (\1+1)[(1;h')w1+3 + w1+1w2],\

and

S!].]'Sq?wi = sql[.(i+3)w + '1'2] = (1+3)(1;3)w1+3 + (1+1)w1+1v2 + '1 3»

1+2

giving

. 2 L) (i N
Qv = vy + [$1+3)§1;§2S1+ ), §1+12§1; M(i+3)) “rose
.wiw3+.(1_;3).[1_2+51+6+12+51+u] Vyege
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Vo + (143)(12 + 51 + S)w

=w 1+3?

i

=w,w, + (1+3)w

173 143°

In particular, Qlw21 = Voi43 + w21w3, Qlw3 = wg giving

H®*(BSO) = Z2[w21,Qlw21] ) 22[w3], 80 H(H'(BSO);Q]_) = 22[(w2i)2].
Then 22[(w21)2] C kerQ, N kerQ, eo Ai is epic for 1 = 0,l.
Suppose x € (kerq) M xerq;)" end Bo(x) =0. If n#0 (), then
Gl(x) =0 also, 80 XE j.onn:l.le Suppose n = 0 (4). Then .
x=Qy+ f((waj)a), where f 1s a polynomial over 2,. Bince x = QOZ'
this gives £ (_w23)2) =Qyz + Qy, but imQ, + imQ, is contalned in the

ideal genersted by the w Thus £( (wza )2) =0, glving

2k+1’
x=Qy = Q¢ Q) N 1m,. Thus ker ¢ = 1@ M\ img,.
Thus A, : kerQ, ) kerq,/imQy () imQ, —> H(n-(nso);qo) is en isomorphism.

Since A, 18 epic, with the two groups having the same rank over 2, 1in eech

1 3

dimension, Al is elso an isomorphism. ##

Proposition: Let M be a positively graded module over the exterior
algebra E generated by QO end Ql, and suppose M has isomorphiec
homologles. Them M is the direct sum of a free E module and g trivial E

module.

Proof: lLet # : M—> M/EM =« N. Then ﬂ(kerQo) = n(kerqo f\kerql) =
ﬂ(kerQl). [xe Qe = 0, there is an % ¢ kerQo('\ kerQ, wvith a+ 2 =Qpb,
and thus n(a) = n(2) ¢ 1r(kerqD N kerQl)]. let LC ker_nelqoﬂ kernelQ,
with 7 : L — ﬂ(kerQof\ ke:ql) an isomorphiem. Let TC M with =
mapping T isamorphically onto a complementary summand for #(L) in K. Then

£ :E8(LOT)—>M:e8 (L;t) — ef + et -is eplc, inducing an epimorphism

g:Lo(EOT)—>M.
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Assert: L C_kerQo f'\kerQl maps isomorphically onto H(M).

[If ac€ kerQor\ kerQl, there is an 2 € L with #(a) = n(2) so
a=2%+Qx+Qy. Then Qly=a+2+qoxekezQ0(\kerQ1, and Qv e inQ,.
Thus a + 2 + Qx € 1mQ,, and Go(a) = Go(l), and hence L maps onto
keon/ion. Hence ¢ : L —» H(M) 18 epic. Bince kerp C xersn,
¥ LS H(M).)

Now suppose %Qlt = 0. Then Ql(Qot) = 0 and Qo(Qot) =0, 8O
Qyt € kerq, Y kerQ, and Qut ¢ imQ,, giving Qyt = Q,s for some s
(dlm s + 3= ailm t + 1). Then QOQ]_': =Q0Q0t=0. If dimt < 2, then
dime <0, Bo B =0 and %t-o, glving an 2 e L with t + 2 -Qou
Suppose inductively that s = £ + QOS + Ql'b, with £ ¢ L. Then
Qyt = Q)8 = Q;Qp8, 80 Qp(t + Qa) = 0, giving t + Q& € kerQy so

t + Ql‘ = LY+ Qo'b', 2' ¢ L. This proves:

Assertion: If QOQlt =0, then t = ¢ + Qoa + le, for some tel, ¢

e,b € M.
: . . : 9 :

Kow suppose a-(z.1ot+qoot°+qlotl+qoqlot2)eLo(Eo'r)
with @#(a) = 0. Then 7@(a) =n(2) + n(t) =0 in =(L) @ 7(T), so “
m(2) = 7(t) =0, Since 7 ilemoniconboth L end T, £ =+t =0, Thus
0 = ¢la) = Qyby + Qb + Q@ t,. Thus Q,Q b, = Q,@(e) =0,
Qyty = Qoﬂ(a) = 0, end by the assertion, r(to) e n(L), ﬂ(tl) e (L), but’
n(?) N #(L) = 0. Thus n(t)) = n(t)) =0, giving t; =1, =0. Then
0= g(a) = Qoqlta and s:{mila.rly t, = 0.

Thus @ : L & (E6 T) —>M is an isomorphism. ¥*#

Note: ker(QQ,) =#(L e (Ee ™) ana kerq, M kerq, = #(% (QOQ;. 8 'rnk
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Lemma: Let w e KO(BSO) have filtration n, and suppose!

a) If n= 8k, ch(u® C) = pQ(d’) vhere P ¢ H®(BS0;Z) with
Sq292€ = 0;

b) If n=8+l, P e BY(BS0;Z,) with 8@ =

+2 .

¢) If ns= 82, ch(uec) = pq(ﬁ,), g, ¢ .H“ (BS0);Z) with
Sqapagz =0;

d) If n =8k, ch(uBe) = pq(eda), & c HY(BS0;2) with
Sq5°26> = 0,

Then, for n = 8k+2, p,‘,(Z,) € im(Bq ) and let P Ve &y cless in
81‘(Jsso 32 ) with Sqd; =pag/

Then for eny n, there is a lift ? : BSO — BO(n,...,») for u such

that i’-(xn) = {7 end such that for n = 82, vy )= ¢

Proof: Let £ : BSO —- BO(n,...,») be any 1lift for u and let
x ) =@'. _

a) n = B8k: Letting o =P-'s one has pq(u) =0 end Sqapa(u) =0,
Since pq(u) =0, a is a torsion cless and there is a 8 ¢ Hak.l(BSO;za)
vith o =88 or pp =8B, Further qupza = 8¢°3¢’s = 0.

- Thus SqaqoB =0 end QOQOB =0 so’ QDB € kerqo Q) kerQl. giving .
Qpf =%+ QQt B0 Qp = Qoqlt[ll € L and epplying 7 gives w=(g) = 0].
. 2 2 2 2

Thus QOQISqt=SqQOQlt-SqQOB =0 and Bgt =2 +Q°u+le
[diquzt = 8k-2, end L 18 zero in this dimension, so % = 0] or
Sq2t » Qou + Q 8

2 ls 2, 1

Then QOQ1t=Bqut-Sq (Q°u+q v) =Squu+Squ q v = Sq°Sqy

where Y ® u + 8q°v, Then O = QR = Q(8d 28qly) = Q,QY %0

Y=2+Q0P+Q1Q[dim1=8k-3. o £ =0] or Y =Qup + Q1.
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Thus P = Qf = QyQ;t = 8¢Sy = S¢°8q’(qp + Q0 = Ba’sq’q q =
BQ.SSqlq = DZ[Gthpzﬁq]. Since p, 1s monic on the torsion subgroup,
a= GthpatSq. The 1ift from BO(8k-%,...,#») may be modified using the class

8q, glving a lift f such that 'f'(xn) = U’ +a =@

b) n = 8k+l: Letting a = @-p' one has Sqau =0,

R

Thus qoqlu = Sqasqzu =0, Bo a =2 + Qox + Q,ly [dima = Bk+l 80 ¢ -ﬂ

or a =Q.x+ Qy = Qox + QOquy + quSqlv-

Letting o' = a+Sq29q1y = Qo(z + quy) one has Q@' =0 and

Sgau' =0, so a! =9-+Q0Q13 [@éma’' = &+l s0o & =0] or a' .Qoqle'

Then Q,Q,84°8 = 8¢%Q Q8 8%’ = 0 8o 8a%8 = £ + Qua + Qb
[dim B = 8k-1 s0 £ = 0] or qus = Qua + Q,b. Thus Qoq'ls = SqZSqas =
Sqasqla + Sqasqlsqab, giving a = qusql(y +a+ qub). Hence
as= SqepztS(y + 8+ 8qb) end modifying the 11£t from BO(8k,...,») by

6(y+a+8q%) gives a lift £ with ?'(xn)=@'+a=8.

c) n = 8k+2: Let ﬁ' = f‘(vak_m). 80 that Sqed' -92?' and

A

Palgp’) = el 9 6) = 0o(g). Then G- § =¢ewith 8 a torsion clu
Then Sqae' = pz(i,') = pa(z,- 68) = paz,+ SqlB.

Then . QISqla = Q1°23’+ QISqaz,‘ = le'qav' é"Sanqlquo' =
Sq2Sq1(pag, +5¢°8) =0 and QBq’E =0, so Bg's ¢ kerqy \ kerq and
8q'B =1 + QA [# € L and spplying v, (e) =0].: Then
Sqao' - 92% + Sqla = 923/ + QOQly - 92?4- Sq28q2y. Thus
pz?a Sqa(@' + quy). Thus pag/e 1m(8q2).

Let g e Eak(BSO;Zz) be any class with qud = 0oy end let
a= 8'+Sqay +g- Te 8q% = 0. ,

Then QQF = qus{“; =0, s0 & =2 +Qx+Qy [ang = 82 5o 1
or a = QX + Q¥ = Qyx + QOSqay + Sqasqu.

Let o' =d +8¢°8q'y = Qyx + Qfa’y eiving Qp' =0 end Sqa' = 0,

B0 0' =% +Qod1! l[dima® = 8k+2, 8o ¢ = 0] or o' = Q@2
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Thus @= 0' + Sqa'y + Sqasqu + Sqesqaz =g'* qu(y + Squ + Sqaz).
By modifying the 1ift from BO(8k+l,...,») by y + Squ + Sqaz, one has a
£t £ with f‘(xn) =y, Then f"(vak‘_,‘) g =0 is & torsion cless and
92(0) = Sqaz? + 92? =0, but o, 1s monic on the torsion subgroup so ¢ = 0,
giving §"(vak+u) = gr
4) n = 8k+h: Letting a = P - ' one has pQ(u) =0 Bo a 18 &
torsion class, giving & = 68. Since 3‘1592(“) =0, Sq59q18 = SqZQDQlB =0,
Then Q)Q,8a°8 = 0 glves 5q°8 = £ + Quu + Qv [&im 8q28 = 8k+5 s0 £ = 0]

or quﬁ = Qgu + Ql . Thus QOQ]_B = SqZSqaﬁ = Sq2Sqlu + Sq28q18q2v = SqZSqu.

Then QQy = 8¢ 8qYy = Sqlqoqls =0 so y=Qp+Qq+t Tus
Q8 = Sqasqlv = SqZSqu]_q. Then QJ.(QOB + QOquq) =0 and
Q(ag8 *+ 4,830 = 0 80 QB + QeSa°a = 2 + QA t [epplying 7, w(2) = 0] or
Q.8 = 8q3q + 8asq’t = paﬂsqz(q + Sqlt)-

Since o, 1s monic on the torsion subgroup, o = Gqu(q + Sqlt) and by
modifying the 1ift from BO(8k+2,...,#) by (q + 8q't) one has & 1ift £ with

:'t"(xn) =@ ra=p.

To camplete the proof of the Proposition, one applies this lemma to the
class n;(v) ¢ KO(BSO), noting that ch('rr;(y) 8 €) = @P;(y) + higher terms.
Applying the lemma with ~f or gr both zero shows that ﬂi(v) hes filtration
at least F(ni(v)). If n(I) is odd, Sq3p,‘,(31) = Sq3(w212) is zero and
the 1ift may be chosen so that Sq2f"(x,m(1)_2) = p2((71). ¥or n(I) even,
Sq"‘pat?I #0, but £4(x (1)) = @+ 68 for any Ut f£. Then
QP88 = 8q'8¢'8 = 0 and Q,0,88 = Sq39268 = Sq3paf'(x,m(1)) + Sq392(?1 = 0,
Thus 0,68 = Q,Q @ for some a, or &p= GSqQSqlu. Thus f.(xhn(I)) is given
by 01 + GSqZSqlu where o 13 & polynomiel in the Stiefel Whitney clesses.

For the complex case, clearly filtration {» @ ¢) > tiltration (A). 1If

A € KO(X) has filtration 8k+2, let £ : X —> BO(8k+2,..,,#) classify A.
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Letting u : BO(8k+2,...,») —> BU(8k+2,,..,#) classify y 8 €, one has
Hak+2(BO(8k+2,...,°);Z) =0 (Sq1x8k+2 #0 8o Xgisn is not the reduction
an integral clsss) so u 1ifts to BU(Bk+k,.,.,»). Thus uof 1ifts to
BU(8k+h,...,») and filtration (A 8 ) > Bk+h, This gives filtration
(s5(y) @ @) 2 kn(1).

Being given & 1ift £ : BSO — BU(kn(I),...,®) for = (y) 8 €, one
eh(ﬂI(Y) 0¢) = pr"(xll (1)) + higher terms = p_( 2?1) + higher terms. Thus
f.(xhn(I)) = @ + 68 forsome B. Since Sq and Sq> both anninilate %
paf (xhn(I)) and 92&1’ P08 = Sq B & kerQ, N kerQ, and so belongs to
imege QOQ]_. Thus 6B = 63q2926a for some o. Since the 1lift from
BU(kn(I)=2,...,») mey be modified by any class in &Sq th(I) 3(BSO sZ),
there 18 & 1ift with f.(xhn(I)) =3,

This completes the proof of the proposition, ##

Turning to the casse of a Spin dbundie or Spin° dbundle, one has:

Prop ositioﬁ: Let y denote the universal dbundle over BSpin or
BSpin€. Then

a) ﬂlI‘(y) for I=(11,...,ir) with 1, > 1 for ell J, has filtrs

J
precisely

bn(I) 1f n(I) 4s even,

in(I)-2 12 n(I) 1s odd

in Ko(BSpin); and

b) ﬂ;(y) 8 ¢ for ell I hae filtration In(I) in xq(Bsmn").

Proof: Since the induced homomorphism from H®(BS03;Q) to H*(BSpin;Q]

or H‘(BSpinc;Q) is monic, this is clear fram the proposition, except for :
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filtration (ni(y)) with - n(I) odd, which 18 less than or equal to bkn(I).
One must check that @I(y) is not divisible by 2 in pQH"(BSpin;Z).

For this one has:

Letma: Let v , ¢ H*(BO;ZQ) be the Wu class. Then v is indecomposable,

2‘1

belongs to the ideal generated by vy

i

2
and Sqlv and V3 (over da).

21

Proof: Let A be the canonical bundle over RP(«), 8o

1 ot 2t '
w(2 A)=(1-_I-a) =1+ a

2t 1

1 + a° + higher terms. Thus v i(2 A) =«

2
classes of dimension 21 have value zero on 21A, meking v 5 indecomposable.

i

J
. Then v(zik) = (1+a+ ol L o? ‘0'...)2
. :

2 is nonzero, while all decomposable

1 2
To evaluate 8q'v ,, one considers a manifold M. For amy x ¢ H*(Mn;za)
2

(Sqlv N U x)[M])

[8a*(v ; U x) + v ,-sax]in],
2 2 2

2t 2
((vyv ; U x) + 8q" 8qx][M],
2

i i
[(vyv , U x) + (8¢%8a® % + sq’sa® )x]IM], (12 2)
2 .

2l 2!
[vlv21 Ux+ V8¢ x4 v,8q x][M],

i i [ §
27=2 1 272 2
[vlvai Uxe+ v,V 80" T°x # 8q°v,-8q° T x + v,8q x]M].

Now applying the relation
J
a.8¢b[M] = Sq¥(a'b)[M] + ) (Sqta'Sq‘j-tb)[M],
t=l

= (vy-a)enDM] + ] (8q%a-8¢7 %) [M]
t=1

one may "push Sq‘1 off of b" Bince in the right hand side .of this expression
vnly operators qub with k < J ocecur. Applying this to the above relation
" gives Sqlv i'x[M] = A+x[M] where A belongs to the ideal in H'(BO;Za)
-

2
generated by v, = v, and Sqlv-2 = Sql(w2 + wl) =Wy Wy [Note: If a
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belongs to this ideal, so do Sqta and vJe.].

S L ]

j'-l-l..

1 , 141,28

Thus Sq'v , - A maps to zero in all manifolds. Letting M = RP(2™ )
2214-1 +l‘ 2i+1 3

w(M) = (1 + aJ) = (1 + oy + o ). B0 wk(M) is the k-th
¥,

elementary symmetric function in the « 3 for k < ol 1, making H
: 3

i

.

™ H*(BO;Za) — H'(M;Za) monic in dimensions less than or equal to 2

o

Thus Sqlv 1 = A and belongs to the ideal generated by vy and Sqlv2 : uv'er":-;':_
o '

2 l K

42. [S8ince v, =W, Vv, =V, +w, and Sq AR AA N this trivially

s

2
holds for 1 < 2.,] ®#

2
Lemma.: H(H'(BSpin;Zz);Qo) Y Z,‘,[wz‘1 s vailj not & power of 2, i
Proof: 8ince v.i is indecompossble, H*(BSpin;Z,) is
. 2

Za[wad, °o"'25’ v21|,j not a power of 2, 1 > 1].

Then Qgv g = 0 end applying the Kinneth theorem gives the hamology. ##
2

Corollary: All torsion in H,(BSpin;Z) has order 2.

Now returning to the proof of the proposition, let I = (11""’11')‘

i‘1 >1, n{(I) =1 (2) and suppose pQ__(@I) = QpQ(x). Then 531 =2x + a,
where o 1s a torsion class, so o = §8. This gives ng = 92(6)1) =0,

SqlB. Since v 1=V mod decomposables, one may write
2" 2

v.sw +f(w2k)+ ) vyre,

ot Bt 3 odd
g<2t

vhere f 1s a polynomial in the even Vop s 2k < 2i. Then
v 2. w 12 * f(wgk) * 2 Sql(wd_lwdci).

2 2 J odd

g<t
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Thus z2[ |k # 1] maps monomorphically into H(’H'(BSpin;Za);Qo),

2
Yok
contradicting ng = SqlB. Thus 171:5(7) has filtration bLn(r)-2. **

Note: The sequences I involving 1's were elil/niJne.ted since vﬂl

reduces to wg which is zero in BSpin.
Lemma : ‘H(H!(BSpinc;za);Qo) = za["'a,ja' v21|3 not a power of 2, 1 > 1].
Y c, . =0 "
Proof: H*(BSpin .za) = 22["2.1‘-“0"23' vai] with qovai o.
Corollary: All toreiom in H.(Bspinc;z) has order 2.
2
Note: vg =v, =p,f and H(H*(BSpine;ZQ) ;QO) 322[92 '@L]'
One now has:

Lemma: Let € be an n dimensional vector bundle over a complex X end
U e RG°(TE) an orientation, Then & ¢ KG*(X) hes filtration k 1f end only

1f n%(a)U = ¢"(a) hes filtration n + k.

Proof: Since & is trivial over cells in X, T has a cellular
decomposition in which the n + r skeletor of T¢ 1s TE| ), ¥ being the
r skeleton of X. Further, U restricts to an orientation of 'I'(E| ) so
v . mﬁ(x’) -—E-b-ﬁn"(’l‘(ﬂ )). Thus ‘@ restricts to zero in KG*(X') if

and only if Qu(u) restricts to zero in KG° "((TE)Z'T), we

Note: Suppose f : X —» BG(k,...,») 1is & 1ifting for o and
0 : T —>Be(n,...,») isalift for U (n evenif G=VU, n=O0Omod § if

G = 0). Then
% :me S x . ome LoD pa(k,... 0} . BO(n,... =) < BO(nsK,... )

is a 1ift of ¢U(d) end ﬁ.(ka) = n'?'(xk)'u' where U' is the Thom class
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SRR

of E. This is imediate from the fact thet B%(x, )= x 8x . (If G =0,

n=258, k= 8ti, then B.(v8t+8£+h) = Vg, © Xg, for Vg .o, and E
Varsl ] Xq, &re bases, and evaluating the Chern character of the canonical
bundle over each side gives the result.). . g

letting y dencte the canonical Bn plane bundle over BSplnan, one ¥

has classes

*o(x1(y))-uly) ¢ RO (ToSping) & R(Te8ping )

!
PR

of filtration 8n + n(I) or &n + Un(I)-2 as n(I) 1s even or odd for ee.ch';

sequerce I having 1, > 1, and the choice of liftings defines a map oy

J

Tf:TBSpinan-—ﬁ- K BO(8n+hn(I)-2,...,°) x N BO(8n+bn(I),...,»)
n(I)odd n(I)even .

2 3..1 2 2
with °2Tf.(x8n+hn(1)) = (sz + 8q¢78q uI)-U, 8q Tf'(x8n+lm(1)-2) = Wars

thus & homomorphism

. 3 ; 1 2
(Te)® ’n(I?odd(daldasq )"anufn(r)-a 8 n(I)tven(de/aasq "'desq YXgnsin(z)

—> H¥(TBSping, 33,).
Note: Letting BQ(k,...,») be the spectrum with (BO(k,...,®))g, ™

BO(8n+k,...,») and with the intermediate spaces given by loop spaces, one ﬁ_

& map
T¢ : TBSpin — MBO(kn(I)-2,...,®) x MBO(Un(I),...,=)

defined by a careful choice of 1lifts for the Thom classes. Up to any glven:
dimension, this mey be obtained just by teking n sufficlently large in the

above.
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In exactly the seme fashion, one has a mep

T : TBSpinZn — 1 BU(kn(I) + 2n,...,%)

inducing

. 1 3 - 2 C
(12)* : 0 (,/Q8q +({5a Yy (1)s0p — E*(TBSPing 37,).
The main result of Anderson, Brown, and Peterson is:

Theorem: The homomorphisms

) 3 : -
e n(;)(dé/ﬂasq Pun(z)-2 ® n.(I)(dalﬂasqlﬂasqa)xhn(l) * E*(TBSpin;Z,)
odd even

for I with id> l, and

(Te)* : @ (42/425‘11"%23‘13)"%(1) —‘-i*(TBSpinc;Za)"

/
are monic and have cokernels which are free ﬂa modules. In particular, there

i
into products of K(2,) spectra, so that

exist clesses z, ¢ H*(TBSpin;Z.) and z! ¢ -H"('I_'BSpinc;Z ), defining maps g
i ——2 e 2

Trxg: TBSpin —= 0 BO(Mn(I)-2,...,@) x I BQ(4n(I),...,=) x I K(Z,,deg z,)
L a(r) > 1 2 .
odd : even

Tf x g : TBSpin® —-r{ BU(bn(1),...,») x ri K(Z,,deg 2)

are 2 primary homotopy equivalences.
The proof of this result requires a detailed analysis of the Steenrod

algebra and the cchamology of these spaces.
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Lemmga 1: The homomorphisms
e c
Vo dz —> H*(TBSpin ;Z2) : a = a(l)
end .

v o 42 —Pﬁ*(%;za) : a — a(U)

have kernels exactly aZSql -] daSq3 and aasql -] aasqa respectively.

Itroof: Since Squ = wiU, these are clearly contained in the kernels.-_r;':,’ﬁ

One then has
- 1 = :
S A 2/428(1 + dfv«zsqs H'(mj&lﬂc ;22)

which is clearly e homomorphism of coalgebras. Toc prove this monic, it s
to show it is monic on primitive elements. (Note: x is primitive if its
diagonal i8 x 8 1 + 1 8 x.)

Recall that the Steenrod algebra 4 is a Hopf algebra whose dual is '

2
a Hopf algebra a; Letting Ek € (ﬂg) K be the dual with respect to

2°-1
1 k-1 2k-2 2 1
the base Sq , I admissible, of the class 8g 8q «++8q°8q", one has
§:
dizl FA Za[Ek]. Dually, da has a unique nonzero primitive element in each .

dimension 2i+l-1

, which is the element Qi'
The Steenrod algebra dz ﬁso admits a "canonical antiautomorphism"
given by x(1) =1, end if Ax=x 8 1+.2 xi Ox; + 18 x, then
x(x) = x + 2 x(xi'_)-x;. In particular, 20 x(Sqi-d)Sq" 2 0. (Note: x(Qi.
sincé X 1is an isomorphism of Hopf a.lgeg;es and hence takes the nonzero
primitive into itself.) . ’

Now consider the exact seguence

aﬁ' 7A j'oil_’dz - 42/‘72% + &y —> 0.
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Applying the canonicel antisutomorphism gives
. LQO "
A2 A, i o — XUl Ryt ARy) — 0

or dually

(I.»Q[))"+(I»Ql)'l

0 — (! Aog* ) — 8 dse

where LQi is left multiplication by Qi'
. * =
Asgert: (ISQ)M(E) =& +E&, ..

Proof: Let X ¢ Hl(RP(w);Za). For I admissible, Sqix = 0 if
t ot 1 oWl
I4#(2°,...,1) for some t, end 8q° ...8q¢x = x . For I admissible of

ig I Za Sq with J admissible of degree 251, Then

degree 2k-l-1 Sq°8
(1sq Y*(g )(Sq )=¢ (sqt Sq )=a , but Sq'S¢ix = .
k k (251,...,1) Y%L,

i, I k-2

and Sq'Sqx =0 except for I = (2 k-1

seeisl)y, i=2 0, wa

Then (ISql)*(gk) =0 if k#2 (2k'1-1+1 = 2k-1) and

(180%8q)(g,) = (1sgH)M(1s®)*(g,) = 0 1r Kk #2, while (18¢1)%(g) =1,
(89%)%(g,) = g
Thus (LQ))*(g,) =0 if k#1, 1 if k=1, and (14)%,) =0 1if

8o (ISql)*(LSqa)*(Ea) =1. Now (ISq3)*(gk) =0 always.

k#2, 1 if k=2,

Since (1Q))* end (IQ,)* are derivations, ker(1Q))® Mker(IQ,)* is
clearly za[*;i"g’z-a" - Thus dalazs‘l + A5 = Bl + Qo bes
dual a polynomial algebra on claesses 51,52,53,... .

By duality, / Sql + Sq3 has nonzero primitive elements given by:
2" 62 2

542, qhsqa + 8q th, end Q ‘for 1 > 2,

(Note: The imege of Q:. is a nonzero primitive for i > 2, while the others

are primitive by a direct computation of the diagonsl). Then
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Lz

U(qu) = 5¢°U = vy U,

T e e

\'J(Sq Sq +Sq Sq ) = th(wal]) + Sqa(whl]) = (wswhwawg)u

v(Q) == (w)w, 13>2,

S

21+1_1

Hari

[To see the latter, v(Qi') = q'lU e E-I'('];E_Q;Za) end o is a nonzero primitive

of dimension 21+l-1. The only such class is 8

R S

NS e A R

(w).] Now 8 (w) 1is

21.+1_1 2k+1
indecomposable, and the map BSpinc —» B30 sends indecomposables to zero

only in dimensions of the form 2"+1, 8o these are nonzero classes. Thus ]

is monic,

[Fote: To see that 52k+1(w) is indecomposable one has the formula for

given by

[
Il =~
=]

+ (-1)",10 =0

B, =8, 0, +8, 0. =t (-1)471 3

B T T B B3 ®1%3-1

if 3 < n, where o
(-1)3*?

x 18 the k-th elementary symeetric function in the x .

Jo, mod decomposables (See: Ven der Waerden, vol. I, §26)

Thus 8
J

One may prove the result for Spin in the same wsy, or conelder the map
BSl:ui.n:i_2 — BSpinn classifying v ® &€, where £ is the complex line
quw -2 and thus,

bundle given by the Spin° structwre. f*(w ) =w v,

on the Thom space level f£#U = Sq°U'. Thus it suffices to show that
o2
8q
az — daldasq + dSq has kernel precisely a Sq + ﬂasq . Ir
ar Sq = be Sql + c* qu, then (e.+cSq )Bq = bSq but
1 1 2
aa -3—>42 -3-’- Qalaasq ie exact, so a + o8¢ = 459" glving

a= cSql + dSq_a € 425‘11 + aasqa, b

For later pﬁrposes, it 1s desirsble to have the forms for
qalﬂasql + 42.8"12 and 2/028‘1_3' First one has:
8314842 . 1 2
d, e 4, =~ 4 — G/ B4 + {5 —0
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and
&3
az M, — 42/02&13 —0
giving:
1 2
0— (x(42/425q1+425q2))¢ —qs (1Sq7)*+(15¢°)%, (78 ® (7%
and

' 2, 1
0 — (Wp/ BN * —y LELEL)E, 7w,

Then (LSql)"(Ek) =0 or 1 as k#1 or k=1; (Lqu)*(Ek) =0 or g
ss k#2 or k=2; ena (15q°)%(e2) = ((18g)%(g,)% =1 since
(15¢%)*(a*b) = (15q%)%a-b + (IS )*a-(LSqY)* + a:(LSq®)*>. It is then

, . 1 2 b o2

immediate thet (x(ﬂz/dzsq (@81 D 2,l6],85.65,...] = & end also

(x(dz/dzsq3))* D4 Y% is afree A module with base eigg for

0<ic3, 0<y<1, with (tsqh)(eled) = sl %) ana
2ywrpicdy L it L b, -2 3

(Lsq™)*(g165) = J&; ~ + ()&] "¢, elving
a (LSql)*a. (Lqu)*a. (Lqusql)*a
1 0 0 0
£ 1 0 0
2
£ 0 1 0
3 2
£ £ £ 1
£, 0 £ 1
£.€ g2 0
1%2 &2 1
2 3 2
£E, 0 £+, £
3 2 4
1% 1% £1%5%, &
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i T e e,

FL

Thus (ISql)' + (ISqa)' is monie, giving (x(aaldzsql-tdasqa))' = A, and
(x(daldzsqs))' is the free A module on 1, El,Ei, Ei + 52, and 5152.

9

Lemms 2: (Tf£)* induces isomorphisms on H( ;Qi), i=0,1.

Proof: This requires considerable work. Firat, one needs the homology
each of the cyclie aa modules. Applying x eand dualization, one needs
the action of ) and Q, in ({§, by right action [(asq*)(r) = a(asq)) i

for a ¢ 4‘2', A saa], given by (RQi_)’-

Sublemms 1: (RSq)’(Ek) =g+ 512;_1.

Proof': (RSqi)'(Ek)(SqI) = Ek(SqISqi) =a .4 : where
2 seassl
I

8q Sqi = Z uJSqJ but u( 2k-1 )’{2k - SqISqix which is zero éxcept for
: seeesl ;

1=1, I=(2%,.,.,2), vhere it 18 x"’k. Thus (RSqi)'(ek) =0 if 1> 3%
and (RSql)'(Ek)(SqI) = 0 except for I = (2k—1,...,2). Now
' oo
€2 _(sq’) = (Iﬁ"q:r')"(ﬁ2 )20 if I has any odd entry, and (182" y#(g2
k-1 k-1 x-1%%
1] -
18 ((18¢* )'ek_l)a. vhich vanishes 1f I' ¢ (2572,...,1). Thus

(rsql)e(s,) =62 . e
Bublemma 2: (RQy)*(£,) = Ei_l, (R, )®(g,) = 53_2.
| Proof: (Rq))* = (RSql)* gives the first. Sinc.:e' (Rqu)'(Ek) =0,
(Ra,)*(g,) = (Raq®)e(reqt)o(e,) = (RQD)o(62 ) = ((RSal)o, )% = gy .
Sublemms 3: H((x(42/425q1ﬂ23q3))'33%') = za[ﬁi]. ..
B o/ QB s N *:8e) = Byle3),
B o/ o50>))*:m8) = £2-2,[6 1.
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Proof: (x(Qp/Pa o7 82°))% = 2,[€3,62.,65,...1 ana

(RQQI®(ED) = (RQy)*(E3) = 0 while (RQy)®(5,) = &2, for k2 3. Thus

ker(RQo)* = zzfef,eg,eg,...] and m(nqo)' is the ideal generated by '
2.2
Z2[52IE3,"' ]-
1 2 4 2
Turning to (X o/ (1,80 +,50))* = 2,[6, 65,655+ 4],

ker(RQo)* = 22[5;‘.52,53;...] and im(RQ))*® 1is the ideal generated by

2,2
2,[62,65,... 1.

Bov (XTSI = 2ylEEaskgnnn] (1, £y, €5 B3 + £y, €165
vith (RQ,)™1) = 0, (RQy)®(5)) =1, (Ra,)™(E) =0, (m)*(edee,) =0,
(RQO)*(EJ_Ez) = Ei + £, Thenlet a=a+ 8g, + Ygi + 6(Ei+52) + e E\E,

(RQy)*(8) = (RQy)%a + [(RQy)®le, + [(RQy)*y1ES + [(Rag)*s1(3+e,)
+ [(RQy)%l(g)2,) + 5 + & (£348,),

giving a £ ker(RQy)* 1f and only if 8 = (RQy)*a, (RQ )% =0, (RQ )% =0,

(RQy)™ =, (RQ )% =0, but
(RQy)*[ak, +68,€,] = [(RQ ) *ale, + [(RQ,)*1(g,5,) + a + s(efﬂz).
3 .
=+ BE, + 8(EJ4E,) + € £.E,
if a e ker(RQ))*. Thus ker(RQ,)*/im(RQ,)* = (ker(RQO)‘?IA/im(RQo)'IA)'Ei- b

Thus H(42/025q1+425q3i°o) is isomorphic to Z, in each dimension of
the form 2k and is zero in odd dimensions. This glves a class

€ (42/425q1+4-28q3)2k with Qua, =0 and X(u2k) evaluates to 1 on

2k
1" )
- -~ ¢ )
It is clear that v(aek) ¢ H*(TBSpin ’ZE) belongs to kerQ,, so

£

: v . cn
v(uzk) = n'(qu) U, wwith Uy € HZk(BSpin ,22) and Qouzk = 0 sgince QOU =0,
{Since QOU = Q1U_ = 0, the Thom lsomorphism induces isomorphisms on Qi

homology. ]
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Assert: Unye is indecomposable if k = 29.

Proof: One maywrite x(a2k) =7 a.JSqJ with J admissible and (J

evaluates to 1 on E , but Eik(): aJSqJ)-x = (] aJ.Sq )(x ), and

Squzk =0 if J # (2k), since k 1is a power of two. Thus

, .
x(u ) = Sq + ): a‘.l,,SqJ = Sqak + decomposable operations, giving

o, = Sqak + decomposable operations.

2k

On the other hend, one msy consider the bundle 2°*%

A over RP(»). Tﬁi,‘ 9

S+l

1s a 8pin® bundle, of course. Then Squ = wi(2 A\)'U is zero for 1 # 2

but Sqasﬂu #0, 80 a,U=v,U in this bundle. Since all decomposeble
classes map to zero, this makes Uy indecomposable., %%

Thus slgl"('lasl:d.nc;za) = Z2[w2,j ’QO"EJ '“25“ not a power of 2, s > 1]
with Qu® =0, glving H(E%(B8pin®;2,)5Q)) = [waj,u 1. Bov p reailfsy
to w:i end as noted Zafﬁi] maps monomorphically into this homology
(sending "@23 into (“25 + decompoaa’blea)z) 8o H(H'(BSpinc;Zz);Qo) is b
free 22[2?1] module with base formed by monomials u s1...\.1 sn,

Al . o 2
1<s) <S8 (Such a monomial will be denoted us).

Partially order the base w¥*( (PIuS)'U of H(‘ﬁ*(%c;za);%) by 3
TH{@qug) U < TH@oug )V 1€ dim T < MmI'. [Note: UdimT is the |
dimension of the "squared" factor in quS.]

Recalling that (Tt)*(xhn(I)) = ".(Z?I).U' one has

Assertion: (If)*(a, ® xh (I)) = 1t (ppug) U+ ) "*((?I ug,)*U with

dm I' > Am I, where S = (2 1,...,2°%) ia the dysdic expansion of 2k .

. » * . * .
Proof: Clearly, (T£)%(ay, .0 Xn(1)) = P [T @)Ul and # (1)
both belong to kernelQo, with their difference being of _the form

) a'n'(ﬂ;l)-u"u with dege' > 0, and each term u'w'(yI)'a"U has a.'lar'l



- 327 -

squared factor, when expressed as an element of I-i*(TBSpinc;Za). Thus one
TN

may write
Z u'w'(@I)'u"U = Z W'(‘ﬂlnusll)'u + QyV-U.

Now QOV belongs to the ideel generated by odd Wi» SO every term 31'..
occuring must have larger "squared" term.

Thus it suffices to consider o, U, and since for degree 2k, every

2k
term m¥( 61'“5')U has squared term larger than w'(us)'U, it suffices to
prove the coefficient of w'(us)°U is nonzero.
v : 1 3 H* ¢,
For this one notes that the map v : aalqzsq + QZSq —> H*(TBSpin '22)
is a map of coalgebras, inducing a map of coalgebras on H( ;QO). The
product rule Eik-e? = E§k+2£ translates to the dual statement

A( ) = 2 o,, 8 a,,. Thus An(a.ak) has a term a 0...0us or

21 23

a
P 21 o

-n _ D= . n
VA (azk) = A v(uzk) hes a term u 51U 8...8u an. On the other hand A (dbi)

2 2
always contalns a squared term in at least one factor, since
An(l?i) = An(wgi) = [An(wﬁ)]a. Thus An(n*(ﬂl,us,)‘U) never contains a term

* ] S
u_U®...0u U, shoving that the coefficient of ! (uS)U in. v(uak) is

21 2B

nonzero, ¥*

This proves that (Tf)¥ induces an iscmorphism on H( ;Qo) for the

Spin® case. For the Spin case one may cheat slightly.

Sublemma 4: H(E*(BSpin;Z,);Q.) = 2 [wa su _|s>1, § not & power of 2]
Sublemma 3 2) 3% 2!¥25* ¥

and the homomorphism given by inclusioh

A e, " .
H (%ﬂ ,Zz) —*Hf(!ﬁﬂpin,za)
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induces an epimorphism on H( ;QO). Further, H(fi*('l'BSEin;za);Qo) and
H(ﬁ'(}g;zz);%) have the same rank in each dimensiom, where BQ denotes

the product of truncated BO spectra corresponding to Tf.

Proof: Noting that H’(BSpinc;Zz) meps onto H*(BSpin;Zz) with u,

% . { =
sent to zero, H (BSpin,Zz) = Z2[w2‘1 ,Q0w2J ,uzs]s > 1] with Qouzs 0.

This gives the homology and epimorphism easily. A dimension count gives the

asserted equality easily. ®#

Now let BO(8n+kn(I),...,®) -5 BU(Bo+4n(I),...,») and

Tf for TBSpinc and B0 the spectrum used in realizing Tf for TBSpin
P4 ~ e

one has a diagram

?
where h 1s obtained by the product of the above maps h and polnt maps to

the factors Qy(hn(I),...,m) if I contains a 1. This diegram does not,

of course, commute, but

Sublemma 5: After applying the functor H(H*( ;22);%) the above

diagrem commutes.

Proof: It suffices to coneider the sumuands (&2/425q1+azsq3)xhn(1)_'
ﬁl(]}y;zz) individually. There are three cases.
1) I contains a 1. Then (Ti)*(Tf)’(xhn(I)) = Y, but P aivid

Pr =4 (9, is zeroin H‘(BSp:ln;Zz). Since h is a point map to this }

3 ~
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factor, one also has h*(xhn(I)) = 0.

2) I contains no 1's and n(I) is odd. Then h'*(x,m(I)) = Via(1)
which is qu"hn(x)-z mod 2. Thus (T2)M*(x ) = PU. This colncides
with (Ti)*(Tr)'(xhn(I)).

3) I contains no 1's and n(I) 1is even. Then (Tf)'h'(xlm(I)) =
(22)%(x,,. (1)) = (ﬁI+Sq3SqluI)-U. Now in H*(TBSpin®;Z,), one has for any
s e (/5" + 425‘13 such that Qe = 0, a(Sq%8q™a U) ¢ kerq,. Tnis class

belongs to the ideal generated by the odd w, (Simee Sq'a, belongs to this

1
3.1 = C.p oy,
ideal) and thus a(B8q~Sq uIU) is zero in H(H*(m’@ ,z2),oo). Thus

(T£)"h®* and (T1)%(Tf)* induce the same homomorphism on homology with respect
to Qo kd
This establishes that (Tf)* induces an isomorphism on H( ;QO) for

the Bpin case.

Note: If desired one may be more specifie in the choice of a represen-

2k-2
tative Gy e Bince QISq

Sov x(8ql)u = (v, )U, vhere v, ‘is the Wu class. Thus one may teke

= %quk + SqZkQO one mey let a, = x(SqQk).

u, if desired, coinciding with the choice in the first calculation of

2k - Vex
[
H(H*(BSpin ;Zz);QO).
It is interesting and cruciel to note that one did not need to find a
specific ay in the sebove.

Sublemns 6:  H((x({,icf,Sa"+ {8a>))*:Ra8) = B[eF|1 > 1],
B((X(] of QB +f8°))*Rat) = E[ef[1 > 1], ana
B,/ @,500))*:5a8) = E5-EIES |1 > 1],

where E denotes the exterior e;lge'bre. over Zz.
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, 7

Proof: By Sublemma 2, (RQl)'(Ek) = E:_a' Bince x(a'2/425g1+425q3)- ;

2 g2 2.2 .2 ¥

= 2,[67,60,65,-0 1, Ker(RQ)® = 2,(65,62,62,...] and 1im(RQ)¥ is the }
1deal generated by za[sll‘,sg,eg,...]. Thus ker(RQ, )¥/im(RQ )* = E[Ei]. i

"

1 2 L 2 y 2 2
Since _x(azlﬂasq +dzsq &= 22[51.52.53,...], ker(RQl)* = 22[51,52.53....]

and :lm(RQl)' is generated by zz[ejl‘,e:,...]_.

Letting a = a + BEl + 'YEIzL + 6(52+E§) + ¢ 5152 with a,...,¢ in A,

G s ¢ N

(RQ,)*a = RQ¥a + RQYB-E, + RQPY'£> + RQY6+(E,+53) + Rase £,
+6 + ¢ El,
and-ker(qu)*/im(RQl)* is the E[E?Ii > 1] module on zf ]

_ 5 t, t, :
If p=(27-2)+ (2 °-2) +...4 (2 "-2) with 2 < t) < ty <iou< b, thed
t +1 a0
p<2 B _2. Thus if 2k-2 <p< 2k+1-2, one must have tn =k, and p h N
a unique expression in this form.. Let P be the set of integers which are
s0 expressible. ) )

Thus H(d /-a 8 1+d Sq3' ) 1s isomorphic to 2, 1in each dimension

ol Y P +USTY 2 ! &
belonging to P and is zero in other dimensions. There is then a claas
: 1./7 a-3\D - .

sp £ (tdz/aas‘l +02iq )P with qlsp 0 and such that writing > ]

1

p=(2"=2) +...+ (2 2-2) one has Xx(8_) evaluating to 1 on 52 ...5-2 ;
p tl—l tn

One then defines :lp € HP(BSpinc;Za) by w'(ﬁp)-U = S(Bp) and then

Qlup = 0,

Assert: U, for t2 2 1is indecompossble.
2t b

. E ;‘_]

Broof: Writing X(B) =] 85" with J edmissible, p =2°-2, one e A

ZBJSQJ evaluating to 1 on Ei—l'- Now (_Ei_l)(BqJ) #0 1if and only if

t -
I’ vhere J' = (2%2,...,

t
A(SqJ) = Z SqU 8 qu contains the term BqJ 88
which holds if and only 1f B8q°(x2) # 0 (dim x = 1) which holds if and only ¥
-1 21 o I i
3=(277,...,2). Thus x(8)) =8q° ...8q +1 a8 .
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Letting J be admissible of degree 2t-2, J = (jl,...,Js) cannot have

excess 1, so e(J) = (31-232) L (Js_l—2js) g = 2Jl-deg J >2, giving

> 2% or 32 2*1 ana i = 2%1 if and only if J = I where

t-1

2Jl

I=(2 ye++32). Now suppose SqJU = aU where a is indecomposable. Letting

J=(3,7"), J' #4¢, SqJU = SqJ(SqJ'U) = SqJ(a'U) so a= Sqda' mod

decomposebles, but j > 2%t ana deg a' < 21l ¢ J so San' = 0. Thus
SqJU = aU with a indecomposable if and only if J = (2%-2). Thus it surfices
t
to show that the coefficient of Sq2 “2 in Bp is nonzero.
Let y ¢ H2(eP(2%-1);Zp) be the generator, with J admissible of degree
t-1 t-1

2t—2 and consider Squz —l. Writing J = (J,J'), suppose Squ2 1 # 0.

2%t 2anyse 32ty _ 2teayse, 2%z
Then 8q° ¥ =y [being nonzero] or Sq'y = ( /2 )y ,

r
but (2 f X) 0 (2) implies k = 25-1, J =225 2%1 ana 3 =2%o2.

t-1

2

Thus it suffices to show Bp(y “1) # o.

Sublemma T: If a,b € H¥(eP(2%-1);2,) end 6 ¢ 52; with

degd + dima + aimb = 2*1.2, then [x(8)al-b = a-8(b).

Proof: It suffices to prove this by induction on i = degree 8} the case

i = 0 being trivial. Suppose the result true for degrees less than i. Since
t t

wiep(2b-1)) = (l+y)2 =1+ y2 =1, v(CP(Et—l)) =1 and all operations into

the top degree are zero. Letting A(8) =08 1+ ) 8' @ 8" + 188,

8{a‘b) = 8(a)b + ] 8'(a)-8"(b) + a-8(b),

(=)
1]

8(a) + ) [x(8")e'(a)]-b + a.8(b),

[x(8)ald + a.6(n), ==

-1

Thus Bp(y2 “1y 40 if and enly if x(8,)y # 0. Since
2t-1 2 J a ot-1

x(8 ) =8a° ...5q +J 2550 and s¢"y =0, x(B)y=y # 0, which

completes the proof. *¥



- 332 -

Thus H*(BSpin®;Z,) = Z,lw [§ #2°%1, t > 2] with Qlfz .

Q.W,, .1
YR
25771724 21}_2 AR

[Note: Ql 25 = Y2343’ 80 these are generators. ]

e

From this point onward, the case Q,l is formally identicel with the QO

case, showing that (Tf)* induces iscmorphisms on homology with respect to

it 7 B AR

Q, for both the Bpin® and Spin cases.

i

This eompletes the proof of Lemma 2, ##

Lemme 3: Let M be & connected coalgebra over Z, with counit 1l e Mo

2
and a left module over az such that the diagonel mep is a map of d2

5

=AY

modules. Let £ : N —> M be & map 42 modules with either:
1

(aalqzsq +Z_,Bq3) 8X and ker v = 6725111 +Qasq3, or
1 2 3

(A A5 HTB) 8 X + ({507 81 end

ker v = azsql + ﬁEqu, and such that f induces isomorphisms on homology

s

1)' N

2) N

with respeet to QO and Ql. Then f 1s monic end cokernmel (f) is a free

42 module.

Proof: Let m : M —» M/&zm be the projection and let T (CM be &
subspace mapped by 7 isomorphically omto a complementary summand for wf(N)
in M/.c'zzu. et e:N®({,8T) —=M: (n,a0t)—t(a) +alt). Then,
e 1s eplc and induces isomorphisms on H( ;Qi). ‘1 =0,1. :

For any Qz module B, let Bn denote the n-th degree part of B
B(n) the d 2 submodule generated by the elements of degree less than or
equal to n. [Note: £ : B—>C epic implies r(“) : B(n) —*-C(n) epic.

Clearly e('l) : (N @ (ga 8 ‘1‘))(_1) —>M(-1) is an isomorphism, both |
being zero. Suppose then that e(n -1) i1 (N e (ﬁ ] T))(n'l) —>M(n -1) !-.s

isomorphism.

)(n) and suppose e(y) = 0. One may then write

Let ye(No (01
;- JOyJ+de0t +z where'b eﬂalkerv,
cy € d /C(Sq (zero in case 1)), a.nd 4 € 42 xi, yd, t? being line

b ex +§c

.
P
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independent elements of Xn, Yn’ and ']3’1 respectively, and
(n-1)
€
z¢ (Ko (({,sm)" .
1
Now aa is a free right module over C( @= E in case 1), 42

in cese 2)) and let a, be a base of dz over C One mey then write

= P+l n
y=1u. ® xX;+le V30 8 V3 * Lo, @ty s

' 123 ? _ o s
vith u, e 2.2, Vya € da/qzsq "V € C. Let m = supideg aa| the coefficient

of a in this expression is nongero}.

(n-

Let ¢ : M Aoyeu—n 8 (M/M J')) where A is the diagonal and the

(n-1)

last map is the obvious quotient. If me M then A(m) =¥ m' 8 m" and

(n-1)

gach n" € M so Y(m) = 0. Bimilarly, if deg q =n, then ¥(q) =18 q.

If be (O, then w(bg) =bil(q) =b{(1 8q) =10bg, for (_ is = subHopt

algebra annihilating 1, and thus W(ahbq) 8, (180q) = au(l) ® bg + terms
in which the first factor has lesser degree.

Composing with T : M 8 -1y L ™) one bas
0= 7'ye(y) = Z a,(1) ® {E u; o Xy +'§ vﬂuy? + Z W bt

the sum being over those a such that deg(aa) =m, Since kernel v 1is the
ideal 42@ » these classes aa(l) are linearly independent, and the right

hand factors must all be zero,
(n-1)

Thus e : X, 8 (({ o/ 50°) 8 1 @ ((f 8T ) — M1 must have
nontrivial kermel. Now
Ne 42 eT) : M
(e (g, PRI e
(n-1)

. 1s eplc and induces isomorphisms om H( ;Qi) (since both e and e

so).
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Case lz: Thus
e jo [(azleSqlﬂQSqE’) 9 X, + (da ® TJ)] —+M/M(n'1)
2n

induces isomorphisms on H( ;Qi), i=o0,1.

a) & ismonicon X @T. If a(x+t ) =0, then m(x +t ) =0 for’
n n n n n n

LN M—‘-M/QZM factors through M/M(n-l), and so ﬁ(tn) e nf(¥), making

t, = 0. Thus E(x ) =0, but x, is & Q; cycle and represents zero in

(n-1)

H(M/M Qo) so x € imQ,. Thus x =0.

b) € is monic on Q 87T, If e(Qit ) =0, then E(tn) represents ""-“Wb:‘*

(nfl)

a class in H(M/M ;Qi) and there must be an x, with

E(xn) = E(tn) + Qu = E(tn). Applying sa), t, = 0.

¢) e is monic on Qe 8T, If E(Qoqltn) = 0, then qla(qotn) =

8o e(Qot ) represents a class in H(M/M(n-l);Ql). Thus for some x ., &
e(QOtn) + e(xn_'_l) € (im Ql)n-l-l =0. Then x . isa Q) cycle and
e(xn+l) = Qoe(tn), which by monicity on H( ;QO) makes x . € im Q.
X, =0, 80 e-(qotn) =0 and by b) t, = 0.

Case 2): Thus

=, 1 2 3 : {n-
g J:n (7N +423q )e X, e (dzldzsq yey, oda 81,1 —> MM
induces isamorphisms on H( ;Qi), i=0,1.

8) e is monic on X oY 6T. If E(xntvnﬂ'.n) = 0, then

w(xn-byn-i-tn) 0 so 1r(t ) e rP(X) and t, = 0. Thus é'(xn*'yn) =0, so ;
) ) 2 R o

C =8q (e(xnﬂ'n)) = e(Sq xn) + &(8q yn) = (8¢ 8 yn). Since 8q° 8y,

represents a nonzero class in H( ;Ql). this gives y = 0. Then E(xn)

but X represents & nonzero class in H( ;Qo), so x =0.

b) e is monic on Q, 8y 0Q,87. If ;(Qoyn+qotn) = 0, then

E(yn-l-tn) represents a class in H(M/H(n'l);Qo). 80 E(yn+tn) = 5(xn) tor
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some x , and by a), X =y, =t =0

¢) e is monic on Sq_2 8y @ qu 8T . If E(quyn-v‘c";qetn) =0, then
= qué(Sqayn-quztn) = QlQOE(yn+tn) 80 E(Qoyn+qot ) represents a class in
(n'l);Ql) and there is an X4 Wirh e(x 1 a0t )

in H( ;Qo) is triviael, so x4 =0 giving

0. Thus the

H(M/M

class represented by xn+1-

E(Qoyn-!-Qotn) =0, and by b), Yy=t, =0

a) & is monic on 8q°Sqt oY o 8¢°8q ® T esieT. Ir

E(qusqun-l-quSqlt +8q 1:') = 0, epply Sql to get quoé(yn+tn) =0 and as
- —re 3., i a2eny
in ¢}, ¥, =%, = 0. Then &(sq tn) =0 so e(q;8q tl'!) =
E((Sq3Sq2+Sq Sq3)t') = 0. Thus E(Sqett'l) is & @, cycle and
- 2
L L t
e(Sq tn) = e(Sq yn+xn+2) for some y! and X .. Applying Sq° to this
E(QOQItI'I+QQQ1y!'1) =0 andaes in ¢), t; =y =0.

e) & 4is monic on Q, ®Y 6QQ, ® T, precisely as in c).
QOl n 1 n

f) e is monic on (Sq_5+Sq_hSq_1) ® T . Note that q15q2 = qu-l-thSql.

(n-1)

Thus 1if E(Q15q2t ) =0, E(Sc;zt ) represents a class in H(M/M ;Ql-) go

E(qutn) e(qu X, 2) for some y , X .. Applying. sql' gives

E(Sq3tn) =0 andby a), t =0
-, 5.1 - 2 . - 2
g) e ie monic on 8q’Sq” ® T . Ir e(qQ QISq t ) =0 then e(QOSq tn)
is & Q cycle giving e(QOSq t ) = e(x +Sq y +1+Q1(y'+t’)) Applying Qy
gives Qoale(y;z-lft":) =0 and by e), y"1 = tl; = 0. Thus the Q; homology class
2 . a2 - o2
of x . o+80Yy ., dis sent to zero, 86 x 4= 8y ,, =0 and e(QOSq tn) =0
By d) this gives €, = 0.
These computations then contradict the existence of =, and thus, ane
.has y=32¢ (N ® (q ® T))(n_l), but ely) = e(n-l)(y) = 0 gives y =0.

Thus e(n) is monic, hence an isomorphism. By induction on n, e is then an

isomorphism, ®#*
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Combining Lemmas 1 through 3 completes the proof of the main Anderson-

Brown-Peterson theorem. ##

o
As might be expected after this much effort, the cobordism computation ;;3
is now a triviality. One has, of course, :’f,
Spin
2’ " xlin " e (TB8pin @)
e

and

[+
Spin s . e
nn * lim nn+r(€['BSp1nr,u).
b

Spinc

Spin
n n

and @ are finitely generated.

Proposition: The groups @

Further, tﬁe maps
n : BSpin —- BSO
and
w' : Bspin® — BSO * K(Z,2)

are odd primary homotopy equivalences, and induce odd primary homotopy-

equivalences on the Thom space level, Thus one has isonorphisms

SPi2 g g11/2] = 080 # z[1/2]

c
aSPin” o z[1/2] = 250(x(2,2)) © 2l1/2].
: c
In particular, all torsion in nfpin and ‘.Epin is two primary.

Proof: Since Spin and Sp.m‘= bundles are naturally oriented for integ
cohamology, this all follows from the Thaom isomorphism and the fact that w‘ !

and ™ ® gre jsomorphisms rational and Zp (p odd) cohomology. **
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Turning to the 2-primary structure, one has the 2-primary homotopy

equivalences
Tf x g : TBSpin —- BQ x m_{(Zz,dim zi)
end

c
Tf x g : TBSpin —- BUY x ng(zz,dim zi).

Now ﬂi(BO) = KO_i(pt) is given by

1 mod 8 ‘ 0 { 1 ’ 2 ’ 3 ‘ L \ 5 ‘ 6 ‘ T
=, (B0) | Z z, ‘ z, ‘ 0 ‘ Z | 0 ' 0 ‘ 0
and ﬂai(BU) 27, "2i+1(BU) = 0, 80 one has easily:
. . Spin Sp:l.nc
Theorem: All torsion in Q and Qg has order 2.

The main structure theorem is:

Theorem: Two Spin menifolds are cobordant if and only if they have the

same KO theory and Z_, cohomology characteristic numbers. Two Spinc

2
menifolds are cobordant if and only if they have the same rational and 22

cohomology characteristic numbers.

Proof: Let o e Qipin with a1l KO and 22 numbers zero. Then

(Tf * g)y(2) =0 in =,(BO x NK(Z,,dim z,)). SBince (Tf x g), is an

isomorphism mod odd torsion, o 1is & torsion class of odd order and since

all torsion in Q,S,pin is two primary, o = 0.
inC
If ae¢ nfpm hss all rational and 22 characteristic numbers zero,

then a is a torsion class. Further, the homotopy homomorphism induced by
g : TBSpin® —> NK(2,_,dim z'!) sends a to zero. Since g, is an isomorphism
o~ -2 i

on the torsion, this makes o = 0, #¥
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Proposition: If M and M' are two Spin msnifolds with n';[M] a w';[M'-
for all sequences J having no 1's, then M and M' have the same XO

characteristic numbers.

end then (T£),[M -M']1=0 so [M-M']=1i,0g] for some g e m,(G). Let
D T}_S£51 — BO be a map realizing some KO cha.racterisfic class. Then
pi : G —~BO, with p,i,lg] being the value of the characteristic numb'er'~
defined by p on M - M',

Thern G has mod 2 cochomology & free dz module (hence & free E
with homology zero) and trivial rational cohomology since (_:— hes the 2 I.
primary hamotopy tyi)e of a product of 1_((22) spectra. Thus in the steble
range, Gn satisfies all the conditions used to analyze filtration on BSO,'
so that any class in %‘(Gn) has filtration at least 2n. Thus p,i,lz]

giving the result. *%

In order to tell more about the structure of nipin’
the hamotopy of BQ x m_((zz.dim zi). From the knowledge of w,(BO) ocne has

For each sequence J containing no 1's and having n(J) even, there

0

Spin manifold MJ of dimension u4n(J), of infinite order in niﬁ%g), su
that w';[MJ] is odd (as & multiple of the KD¥(pt) generator), with all ok}
KO theory numbers being zero (and the pumbers zi[MJ] being zero).0 Apply
complexification and the Chern character gilves ch(ng[MJ] ec)=
ch(ng ] C)K.[MJ] = ﬁJ[MJ], and the mod 2 characteristic number 'UDJ[MJI_
odd. '

For each sequence J containing no 1's and heve n(J) odd there are

menifolds Ky of dimension kn(J)-2 and M; of dimension kn(J), By bel

of order 2 and M, heving infinite order, such that N;IKJ] and ";[MJ]
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odd (as multiples of the KO%(pt) generator) and having the other KO theory

and Z_ cohomology numbers zero.

2
One also has classes o € nipin & ZE’ TE Qipin &7 and we ﬂgpin

for which 1[a], 1[tr], and 1[w] are all odd multiples of the KO%(pt)

=781z

generator (end with ni[m] = 0). [Note: Applying x and dualization to

az/aE,Sql + aZSqal glves a polynomial algebra on classes of dimension

4, 6, 7, 15,...; end the genersting class for BO(ln(2),...,) gives another
8 dimensional class. Thus Tf induces isomorphisms on 22 cohomology through
dimension 9, so no z, appear in this rangs. ]

Finally one mey find menifolds R, of dimension equal to dim ;s having

i
order 2, for which all KO numbers vanish and with zi'[Ri] =0 or 1 as
it#$di or i'=1i,

One then has the result of Anderson, Brown, and Peterson [7]:

Theorem: A basis for ﬂfpin ] 22 is given by

i

1_) [MJ.]kaxa . k10,0_<_15_2,n(.]')_even,

2) [Mg]x T x Wk, k> 0, n(J) even,
3) [y1,

k) [m;], n(3) oad,

5) [M;) w®, x>0, n(3) oda, ena

6) (([M;]x «)/b) x wExal, Xx>0,0<1<2,n(3) oad

Proof: This is immediate from the structure of wu,(BO x ng((ze, aim zi)),
with the classes in ceses 1), 2), or 4) through 6) heving the number n‘;
- (for the ssme J) ean odd multiple of the KO¥*(pt) generator. One need only
note that w,(BO(k,...,»)) is a w,(B0) module (using the tensor product)
and that the image of wh(BO) 9 n&+h(30(ﬂls+h,...,~)) in nek+8(30(81!+h.---.~))

is the multiples of L. w®
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SO N
Theorem: Let B~ = {x € Hn(BSO-,Q)lsu(ee)A[x] €2 for all w}, and

0 s i
B =an°C H,(BS0;Q). Then T : 9oPY® — ¥ (BS0;Q) maps 9

,s,pin/Torsion @

are given by the KO theoretic relations:

sm(eé,)fx[M] €Z or 22

if ddm M =0 or 4 mod 8, respectively.

Proof: Let M" be imbedded in SaN for some large N, with Spin normaly

bundle v. Then

s, (e 5 )AlM] = cn(s (n2) 8 €) - $= (e (¥u(v))) (M),

ag

o7 (ch(s,(75) ® G)eh(yU(v)))[m],

en(yer(n¥ls, (v) Ju(v) s,

but c*(ﬂ*[sw(ﬂR)]'U(v)) £ ~K68N—n(SBN) and this Chern character is integral i

and is even if n = 4 (8). ‘En

Thus <t : nipin — BEO. From the enalysis of B,S,o in the study of Slﬁ,,”l:
cobordism, one has BEO = Z[xhi] and clearly image <t is contained in the
esserted subring A, C Bf? Ag = Bsag and Ag ) = 2Bg§+h.

Clearly imege T C A, has 2 primary index in each dimension, for ‘

Spin S0
»

imt C B,s,0 C in 0 with o ~— Q" being an isomorphism mod odd toréj,dpq

S0
Also from the study of Q,S,[,J one has Qgg+h = im 38k+h mapped onto 258k+h’

and this factors through t, so (im T)8k+h = Agal

For (im T)Bk’ one has sw(ea)fx[Mak]-i(l)k = sw(ﬂR)[Mak] and for any

sequence I belonging to w(2k), write I ={,1,1,...,1), J having no 1's¢™¥
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with p 1's. Let M. = M, X w?’? ge p 1is even, (M‘.'r x t)/h x w(p'l)/z ir

p 1is odd.: Then the oumbers ng[ui] are 0 if K#J andodd if K= J.
Thus the free &roup on the 'TM]': is contained in ng with odd index. Combined

with the two primary index property, this gives ng = (im T)Bk‘ L
In order to understand a bit more of the structure of ngpin' Buppose

1 denote the circle with the unusual
framing/Spin structure which represents the nonzero class a e nipm L Zz. All

M 1s a Spin 8k + 2 manifold, and let §

Stiefel-Whitney anumbers of Bl are zero, eo the same is true of the numbers

of Bl xm, Further, all KO numbers of 8l x M are zero since the dimension

1 1

is 8k + 3. Thus 8 x M bounds, end let U have boundary 35 x M., Then

231 x M = 3(2U) = 3(V x M) where aV = 2§1, and one may form

(M) = 20 U [-(v x M)]/3(2U) = 3(V x M) giving & closed Spin manifcld of
dimension 8k + L.
A different cholce of cobordism U' of Bl x M to zero changes T(M) to

(M), U 2[0' U (-U)/a0’ = 3U] in ngﬁ’," while a different choice of cobordiem

1 zero replaces T(M) by T(M) \J [V' VU (~v)/ov' = aV] x ¥

V' of 28
=T(M) UXxM, but X is & 2 dimensionsl Spin menifold so X°M = a-a=eM
vith &€ 2,, and since’ a*M = O this is also zero. Thus T(M) gives a well
defined class in QGPL. @ Z,.

This comstruction clearly depends only on the cobordism class of M and

using disjoint unions is clearly additive, and thus defines & homomorphism

. o8pin Spin
T “81:+2 _"nﬁkﬂl 8 Z,.

If § is an 8 dimensional Spin manifold, 3(U x N) = Bl x Mx N and so
T(M x N) is represented by 2U x § U [~(V x M x N)]/a(2U x N) = 3(V x M x N)

=7(M) X N. Tous T is e agpin

module homomorphism,
_ Spin ‘.
If one considers ﬂn as ﬂn+k('I'BSpink) for some large k, this may

be realized as the following cdnstruction:
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Let f: SMk — 'I'BSpi.r.\k represent M, h : Sn+k+1

sn+k+1 n+k+1

— 505 ihe

—_— G

suspension of the Hopf mep, and 2 : e degree 2 map. One
mey deform 2 and h +to be transverse regular on every point other than the '_,"
base point, the inverse image of any regular value in gitk being 8l 1r ¢

is also transverse regular on BSpink.- then foho2 18 transverse regular on

BSpi. and defines the Spin manifold 251 x M. Coneildering the cobordisms U ..
Ty i

n+k4Q n+k

and V es given by meps u : —> TBSpin,  end vi DR gt (v

being & framed cobordism of 2§1 t0 zero) extending foh and Ho2

respectively, uc2 and fov fit together along their boundary to define a map;
of the n + k + 2 srphere into TBSpin, vhich represents T(M).
Being given any space X, with B8 ¢ qn(x) such that Bon ¢ nn;'_l(x) is

n+l —E’- sn.'l)’? X with b representi

zero, where Bon is defined by boh : 8
B, h beling the suspension of the Hopf map, one mey deform boh +to zero and
ho2 to zero (if n > 3) and joining these together define & class b
<2,n,8> in "n+2(x)' A different cholice of homotopy for boh changes th
by a multiple of 2, while a different homotopy for he2 adds a composition
Bonon which is zero. Thus the Toda bracket ) .
< 2,n, > : kernel(on) —» coktarnel(2),_,‘.,_2 is well defined. This is just
operation T in the speciel case of TBSpin.

Congidering the space Y formed from g® by attaching an n + 2 cell
by means of h, Y = SnUhema, themap b : 8 —> X extends to b : Y
and clearly the mep i : g2~y glves 1on = 0. By naturality of the
construction, one has f:-’.({ 2,n,4 >) = < 2,n,8 >. Considering the space Y

more closely, it is clear that the cofibration S° —2» ¥ ~Ta §7%2 gyves

Hn(!;z) .. En_’a(y;z) ® Z and all other positive dimensionel groups are zem’.\‘»??’rl"

and the obvious universal construction of < 2,n,1 > makee the composite
mo < 2,n,i > of degree 2, Now Y is just the n + 2 skeleton of the two

stege Postnikov eystem K(Z,n+2) — 2 -~ K(Z,n) with t't.n = Gqui._n.

+2

bl
Es



- 343 -

< 2,n,1 > represents a generator of 'wn+2(Y) = 7 vhich has Hurewicz image
equal to twice a generator of Hn+2(Y;Z).
Applying this to' BO, with y ¢ 1r8k+2(30) the nonzero element

(yon E 1r8k+3(BO) = 0) one has

BO(Bk+2,... ,») —» BO
c

Y -2 Bo('eul’,auu )

with BO(8k+2,8k+*4) being the two stage Postnikov system
: 2
x(z,&:ﬂ) — BO(8Kk+2,8r+k) —- K(Z,,8042) with tig ) = 88¢ {'8k+2’ . with
b, ¢, and d being isomorphisms on LI and epic Toe® Naturality
of < 2,n, > then shows that < 2,n,y > 18 the nongzerc element in -
"Bk-l-h(m) 8 Z,.
This gives: -

Proposition: If M is an 8k + 2 dimensional Spin manifold, then

w;[T(M)] reduced mod 2 is the same as tg[M].

881:+2+&2

Proof: lLet a : — T_BSpina" represent M and

J.
R

n‘;[-r(u)] md 2 15 pyl< 2,n,0a] >) = < 2,n,pyle] > € ng g0\ (B0) @ Z,, but

P : TBSping, — BO represent 7 'U. Then -wg[M] =p,lal ¢ "8k+8£+2(BO) and

<2,m, > Mg g ao(BO) ® T, —wg e0,,(B0) 8 2, 2, is an isoworphism, ¥*

Now let I, C 05P® e the set of classes ([M] for which all KO theory
characteristic numbers are zero. Since wi(M x K) = ] xd(M)ni(N), I, is
R U
en ideal. Letting G be the fiber of TIf : TBSpin —-»2’0, I, 1s precisely

tnege(ny(G) —= aSP1%), wnich is & 2z, vector space detected by 2

2 2

cohomology characteristic numbere.
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i
4
8 |1 >1, 32 1] modulo the rela.tion‘

b

Let R, be the ring Z[xhi' !8,14'2’

i

= = = - 3 = = )
20) =2, = XY = O, =8y =0, Yg.X "sJ+u°1' YgseoXeeh = "ez+z‘s,1+u'

£y

Theorem: nﬁpin/I, is isomorphic as ring with the subring A, of R,

L]
generated by the Y's, 61, the RBk and 2R8k+h'.
Proof: Clearly I, is the kernel of the homotopy map induced by

8
Tf : TBSpin —> BO, identifying MSP"

/I, with image((Tf),). Now

Spin

1, C Torsion(@P!®) &0 one has p : aSP1%/1, — a3P!%/roreion C 85O = zlx;

which completely annihilates the groups of dimension not a multiple of 4,

which are 2, vector spaces, and since n,w(§9) is torsion free,

Spin . o8pin Spin
I, = Torsion(m) ™) and thus p : 8, /Iy, 8y /Torsiom.
Spin
*

Now (Tf)y @ /T4 ® Z, — 7,(B0) 8 2, 1is an iscmorphism and in fack

2
coincides with the isomorphism (Tf), : (ﬂspin/I“) —_— ni(y) in dimensions

¢ nSPi"/I . n?"i“ with ei

1 #0(4). Thus one has ; class 6 = 201

1
end the Toda bracket T =< 2,1, > : n&+2(30) > Tas(B9) 8 2, is an

isomorphism, so T : s'lsmnllak,._2 — n&+h/18k+h 8 2, is an isomorphism.
mey choose a unique element Yo .. E'08k+2/18k+2' k> 1, so that T(Yak+2)
is the mod 2 reduction of the cless which maps by p into 2"81:+h' Cles

2Y, =0, = 0 being a class of dimension 8k + 3, snd Y.Y =0 be g

t 1 t t ,{’5
a torsion element in the free group nSP n/Ih. 3

nssgin/l&-el maps onto ngii?./lﬂtq-l’ for applying (Tf),, compositi

with n sends nsk(BAQ) onto "8k+l(E) with kernel precisely the multipli

sl’1“/1&,' . Applying T to
Spin
o’ Tor-ox exe2 Bam C %rn

3p1n SPin i
of n&t-ﬁh/l&b-ﬂ-h 0 Z spanned by the 9 /I&. multiples of classes mapped

of 2, making ag‘xt,il;./:[ﬂt-ﬁl

ARl r, 62 4 { agte /Tg 4o Bives the sub

under p into 2x, and the axak“‘, and thus Bﬂt+2 spans 08t+2/18t+2
The kermel of the map nSpin/I ® § RSP Bk/IBt-Bk_*BBk-PZ is precisely_l‘
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the kernel of the composite with T which is precisely the multiples of 2

and the relations given by

¥ ge 4o gish®aoeh) = 2Xgeiaceloset (200 2) = Mgy oxg ) 20,,,)

1f k, 2> 1,8 +k+ L+ 1=¢, or

2,
T aa2®i®8e4h) = 2XU%e1cr 2004, (0 2) = (07 xgy,2g.)

1f k>1, s+k+1=t.

It is then immediate that ﬂﬁpinll. is isomorphic to the subring A,

of R,.
Returning to the Spi.nc case one has
4
BU -t~ Bgpin® - B8O x BU(1)

with 7'* an isomorphism on rational cohomology and t* being monic. One
then hes Pontrjagin classes @, € Hhi(BSpinc;Q) and a class c; € H2(BSpin°;Q)
with q‘(BSpinc;Q) = Q[cl’i?i]' One r;gv then form the classes

sw,J(e) = su(ep)ek’l and J s e_cl A in B%(BSpin®;Q).

. c
Let BP'® = {x e H (88pin®;Q)ls, J(e),}[x] €2 for all w,j} and

c e ’ )
Bﬁpin =@ ngin C H,(Bspin®;Q).

n
' )

ﬂﬁpi-n is a ring since BSpi.nc admits an H-space structure, with both

t and 7' being H-maps. This ring structure gives a diagonal map in

H*(BSpin®;q) given by b= 1 g1 ® Py o4 Ble)) =c,®81418c,.

+k=i
Thus  A(s,(eg)) = Z" Bu'(eaJ) Y sm..(ee). A(A) =A 0 A and
ve, vey o iy .
Ale ) me 8e l(v £ Q).

let H= z[ail U, i21, where U is the free abelian group on elements

u, neZ(-»<pn<®) Define a sum and product in H by
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(I py(a)u) + (f g 0)ru)) = ] (mlo) + q(e))-u.

For any x € nginc, let Olx) =} (sm’d(e))’)[x]'am-u‘1 e H. Using the
wltiplication in n,(nsp;n";a) induced by the H-structure, the diagonal
formulee shov thet BSPIE 15 a subring of H,(Bpin®iQ) sad O Bﬁl’i“f’ :
is a ring homomorphism.

Letting T : nﬁpmc — H'(BSpinciQ), one has image(t) C Bﬁpinc £

2m

12 M® is a Spin® manifold imbedded in 8™ with Spin® normsl bundle

then

(v)/2,
oy, 5(e ] = chls (r) 8.0 8¢ £ a7} A-))N,
= che*{n®(s () 8.8 0 £9)-U(v)}(s®™),

€2

where £ 1s the complex line (hvﬂdle over M with cl(E) = cl(‘rM).
If M is an almost complex menifold, then M has a Sp:l.nc structure

induced by t, with cl(TM) being the first Chern cless of M. 'his de

(] (]
a ring homomorphism 89 —» aoP1® —» BSPIRT 1 particular, 1f M is

manifold,

0,y (A 1) = 8 (e ) J1N),

.since c,(M) = 0, end hence M) =o' (1M)- Zui, vhere
p'(x) =} su(ea))’ [x]am is the homomorphism defined in the.study of 8U

cobordism.

- e N .
et &, Spin” 2,[a,;] be the composition of (¥ end the

homomorphism H —> Zelai] vhich sends u

s into zero if J # 0 or into..

if 3§ =0, and which reduces mod 2.
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Proposition: (¥,(T(GP(1))) hes largest moncmial

1) a i? 4 {is even, and

1/2
2) 1 if is=s1,

Broof: If 1 =2j, onme needs cnly s(d)’o,f[ap(za)] = 5(4y(e g) I eP(2))
BJ(Q)[@(%)] 22]+1%0mod2. PFor €P(1), the total Pontrjagin class

is 1, so s(ed,) is zero if w ¥ (0) and 1 if w = (0), and A=1.

Jey+l/2ey
Then () J,b[ep(l)] =e [oP(1)]) = 23 + 1, which completes the
proof, W«
c
Corollary: (ﬂ?,pi':l [Torsion) ® 2, 'ls a polynomial algebra over 2, on

U Sp:l.z:c
classes y,, with i =2 or Lk. In addition, the image of Q, in By

has odd index in each dimension.

[+
Nov let p be an odd prime. Define (% : gipin

—>H ® Zp to be the
mod p reduction of (9‘ For any integer k and eny w ¢ n{2k) a partition
of 2k into integers 2 and Ui, w = (2,...,2,h11,...,h1r) with J 2's,

8
write J-X0+le LIRS xsp . 0_<_x1< p, eand define
A0 8\A8 '
8D = op(1)"" x...x ep(p®) ® x Mgil X...x ugir,

where MP, denote the SU manifolds whose existence was asserted in Chapter X.
i

Proposition: The elements 01; (-rll‘f) €H®Z, for u belonging to the

set of partitions of 2k into 2's and bUi's, are linearly independent.

Proof: BSuppose one has ) R, 0’(11@1’) =0, n e 2, vith some n, $0

(w € 7(2) of the given form). Write each o = (21 Jw), where I.‘l hes
J 1's. 'men among all w with n, # 0, let m denote the largest value of
J inauy\!d, (1.e., n, ¥ 0 for some w-(2I ,40) and for any
W' = (21'1,!;? ) with W $0, }<m.
/

/
J
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o
of

Define ¢ : 82 —-z[a] by olu)= (';‘)'(-1)""i if 0<i<nm and

o

gero otherwise. Then for any M, the coefficient of a- in ¢0; (M) 1is
m s P T
L D™y legle S = sylag e 1m0,

= sa(ee))y-c'l"[ul + terms with ¢, to -

a higher power.

Since e is zero fo':;' an SU manifold, this gives
#1 n, O, (<K)) = E E R CPRP J:7 L LA T

n
the latter sum being over w = (ZIm,luT)_), and Vnp1 being €P(1) 0 .. ux
for m= Yo +eeet usps, 0 < By < P Then

s s s

p ¥ L wp  up ¥
5 e OLep(2) 1. (% )e® [eP(p®) B,

usp

Bt
MroD 0
e vyl =« "

and
r r T
P [er(p")] = w1+ (e} [e(p")])" = u1GeT41)'P,

80 cT[Vi] 7 0 modulo p.
Hence gg' n(ZIm,h&)Eu'(eG))j[Mgm]“u' = Z n(ZIm,ua)"l'w“Hg“’) is zero..
As wes noted in the B8U cese, the polynomials °1':(mgﬁ) for & ¢ n((2k-2m)

are linearly independent, and thus all n(2I %) are zero, contradicting
m’

the choice of m., #**

|

c
Spin
o) in BZk is not .

This shows that the index of the image of

divisible by p for eny odd prime p, or:

Theorem: All relations among the Pontrjagin-Chern numbers of slﬁ.nc

c [+
menifolds are given by K theory; i.e. TASP® = BSPI® | purther, the

¢
forgetful homomorphism QU —=~ a5P1% /forsion is epic.
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Note: Another proof of this may be given by relating n?pinc to
n?.O(GP‘("‘))- Since 7' 1is an odd primary homotopy equivalence, one may apply
the result that for torsion free spaces all odd primary relations in oriented
bordiem come from K theory.

For p an od prime, the generator of mgpinc (-] z is the image of
¢P(1), with 0’(:@(1)) = § (2141)u,, so0 O’(Tcp(l)") 0’(«@(1)). An
indecomposeble generator of mgf;'_‘l) 8 Z is the image of Mg 1 for which
Pl"(rug_l) =t #0mdp, so O’(rup l) -tiui and letting u-t = 1 (mod p
O,y(rwf (1)) = mmu)) Toen t(wf )) - 7(eR(1)") ena

t(€P(1)) are nonzero in mSp:Ln ] Zp, but their product is zero. Thus:

e
Proposition: (s'l?,l’:"n /Torsion) @ Zp, P & prime, is a polynomial algebra

\,

over zp 1f and only if p = 2. )

8ince for each prime p (odd) and each integer m, c?[Vﬁ] # 0 mod p,

nsmn

there exist manifolds V ¢ , with cm[.V] being a power of 2, hence

Sp:ln

classes u, € 0, 8 Z[1/2] with e (uan) = 1, By the 8U-Spin results,

m‘S.pin ® 2[1/2] is a polynomial algebra on classes X (xhi being the
[+
cobordism class of en SU manifold). Then 0SP® g 2[1/2] 1s & free module

over 03P1% 9 2[1/2] = 2(1/2]{x,,]1 on the classes u, , and

oy Uy = By yWa(14g) +1 B, 1, 3%io Yok

e 2{1/2], by the module structure,
1+J)

ol + 2k = 2(143), || > 0, 8, ,37 Bud,g
mso 8, 4= e u,- “24) = (Yd)etuy Jedluy,) = (
This describes (n?,Pm /Torsion) ® 2[1/2] and completes the 8pin® case.

“
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Relation to Framed Cobordism

Theorem: The forgetful homqmorphism Fn : ﬂ:r —>n§pm is en
isomorphism in dimension 0, end for n > 0, image(Fn) =0 for n# 8 + 1,
b +2, image(Fg . ) & image(Pg ) 2 2,. .

The forgetful homomorphism Fn : ﬂ:r — ngpin is an iscmorphism in

dimension zero and is zero if n > 0.

Progf: One may factor F_  through ﬂSU or nU respectively, showing
n n n

manifolds of dimensions 8k + 1 end 8k + 2 with the KO theory
characteristic number 1 being nonzero. Since KO theory numbers are Spin

cobordism invarients, these menifolds have nontrivial imege in ﬂ‘S,P in' bl

Relation to Unoriented Cobordism

Theorem: The images of the .f.orgetrul homomoxphisms
[
Spin in
Fy : " —T7], ema F,: ﬂﬁp —"'7?:.

are precisely the set of cobordism classes for which all Stiefel-Whitney num
: ’ It

with a factor vy or "2' and vl or "3 respectively, are zero.

Proof: Since a 'Spin manifold has v and v, 2ero, wvhile a Spinc

manifold has vy and w3 zero, these sets of cobordism classes contain the!
images.
Now suppose V € Hn(BO;Za) is zero on all Spin (resp. Spin®) manifo .
of dimension n, and let M be any manifold for which all numbers dlvisiblé
S - . - € ey
by w; and w, (resp. w3) are zero. Then p* : n*(';g_g;za_) + H*(TBSpin ;ZfF

M

7]

is epic and a class 1in i‘(TBSp:LnE;Zz-) vanishes on all of the homotopy of ia
e im‘
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TBSpin® 1f end only if it belongs to (] ,H%(TBSpin®;Z,). Thus, letting ¢
be the Thom isomorphism, #(v) = #(x) mod (f ,H*(1BO;2,) with

x € ker(p® : H%(B0;2,))— H*(BSpin®;2,). Since ¢ ,A%(180:3,)) vanishes
on all manifolds, this gives v[M] = x[M], where x = E ai°pi(w1) +

1 B J("z (resp. ) ai'pi(wl) + 1 ad-cd(ws)') with p,, o sdé;

LI B.1 € H* (Bo;zz). Consider a number u'p(wl)[M]. Since p(wl) = Aw? with
A€ Z5s a'p.(wl)[M] ao v [M] 0 since all numbers of M divisible by w,
are zero. Tﬁen consider a number B'a(wa)[M]; (resp. B‘c(w3)[M]). If
degree(c) = 0, this vanishes since all numbers of M divisible by vy
(or w3) are gero. Suppose 3"0'(wd)[M] = 0 whenever degree(c') < degree(c),

andlet AC=0@®1+)0'8c"+180c. Then

B'O("J)[M] = G(ﬁ'wd)[M] +1 (U'B'c"wd)[M] + OB'VJ[M],

= a(s-wd)[ml

since the last terms vanish by the inductive assumption. Now

is a "Wu class" defined by ¢ in

a(B'wJ)[M] -vc'B'wJ[M] where va.

H"(BO;ZZ), end this vanishes on M being divisible by Wy Thus v vanishes
on M also.
Since lany'mnnber which vanishes on 1mage(1".) also vanishes on M, one

must have [M] € image(F,). Thus, image(¥,) 1s as asserted. **

Open question: Can one describe these images nicely as subrings of 7?.',?

Relation to Oriented Cobordism

Theorem: The forgetful homcmorphism F, : nipin —_ n§° has kernel the

Spin

ideel generated by o € 2, In particular, kernel(Fn) =0 if n¢# 8k + 1,

1 Spin
8k + 2, with kemel(Fg, ), 1=1,2, being Ug-a' where Uy C qZP

Spin

is a subgroup mapping isomorphicelly onto 981: /Torsion.
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80
1

If x € kerF,, then x mst be a torsion element, F, being a rational
Spin

Proof: Since 0 =0, kernel(F,) conteins the ideel generated by o

isomorphism. Thus kerF, (C Torsionly
ﬂ‘S'p:l.n

napping monomorphically into

82 Since the manifolds MJ. T, and w® all bave infinite order, a :

2

besis for Torsionn.s,pinc ﬂapin 8 Z, is given by the classes [MJ] x oF x g3

1>0; (4] = 1)/4) " xa’, 1>0; [R) ena [N;). (These are tne

images of torsion classes and modulo these one gets the same rank as
nﬁpin/Torsion 9 22, so this must be the image of the torsion subgroup.) NawM
' s

the classes [R;] and [RJ] are detected by 2, cchomology, and hence
kernel(F,) is the vector space spenned by the given multiples of a. The

classes [M ] x o* and (([MJ] x 1)/4) x o are, of course, a base for

SI’:m/'.l'.‘ors ion © 22

kerrﬂkﬂ. = Uek'a y 1=1,2, #

and hence, cizoosins a subspace Uﬁk as in the theorem,:‘;”'

Hote: The 1mases or o512 5y %0 morgion (recall BEC) and in

- have been descirbed, essentially giving image(F,).
Spin
Theorem: The forgetful homomorphism G, : O,

Spin® 50 :
: ﬂ,p — Q" has torsion free kernel. Further, the composite

—»-n. (BU(].)) is v

Spin Eny. nfo —"-P- ngol'roreion 1s epic.

Proof: G, is induced by #' and is a rational isomorphism, so kerG

consists of torsion. Since the ?:qrsion is detec_ted by 22 cohomology

characteristic numbers, sll .of which come from H'(BO;ZQ), the torsion of
n?,pinc maps monomorphically into 77, Hence kerGy = 0. Similarly, kes
must be torsion. free. S8ince 92 - neo /Torsion 1is epic and factors throi

c
nfpin » WF, 1s epic., **
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Note: kerF, may also be described as the ideal generated by the odd
projective spaces G€P(2k+l). Certainly all Pontrjagin numbers and Stiefel-
Whitney numbers of €P{2k+l) are zero, so F, sends this ideel to zero. Let
Ry = Z[yhi] C nipinc be a subring mapped isomorphically to Q,S,O/Torsion.
Then the class ¥),; mey be used to replace GP(2i) or Mgi in the mod p

c
Spif” iporsion 1s generated by R, and the CP(2k+1)

Spinc
»

calculations proving that
Let S, be the subring of generated by the CP(2k+l) and R,. S,
can contain no torsion classes, for a torsion class in S, must belong to the
ideal generated by the CP(2k+l) (being in the kernel of =oF,), hence is in
the kernel of F,, but kerF, has no torsion. Thus

Spinc

(3
nfpin = 8, & Torsion () ) end so kerF, = kerF,| is the ideal generated
g

by the CP(2k+l).

Relation to Complex Cobordism

The only reasonable result here is:

c
Proposition: 92 meps onta nﬁpi" /Torsion under the forgetful
homomorphism.

This has, of course, already been proved.

Relation to Special Unitary Cobordism

The interesting result here is:

nﬁu Spin is monic

Proposition: The forgetful homomorphism F, : — Q,

on the torsion subgroup.
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st f

Proof: If M 1s en 8k + ¢ dimensionsl SU manifold, M 1is cobordant

Bk ot

to N for same Nek. Then for w e w(2k)

s, (v%(r & @)[v] = su(ﬂs(f ® €))[N] moa 2,

su(eu,),x[n] mod 2,

su(er)[N] mod 2,

s, (np) ]

and thesé numbers detect [M] 1in the two cases. #*#

q

8

Relation of Spin and Spin®

It 1s readily verified that the mep g : BSpin x BU(1) —> BSpin®

classifying the sum of the canonicel bundles is a homotopy equivalence. Since

TBU(1) = @P(»), one has

. [
. oSpin ~Spin .
Proposition: R 0 (6p(=)). A
One mey relate the pair (Spin, Sp':l'nc') through exact sequences in
precisely the seme wey as (Sy, U) are related (or as (SO, 0) are related).

Computationally this 1s not of much use since one has no wey .to nicely describ

¢
the torsion in n.s'pin .

oo
¥



Appendix 1

Advanced Calculusg
/

This appendix collects the results from standard advanced calculus vwhich
are needed for gecmetric arguments in cobordism theory. These results are
lifted bodily from the following sources:

1. Milnor, J.: Lectures om Characteristic Classes, mimeographed,

Princeton University, Princeton, N. J., 1957T.

2. Mlnor, J.: Topology from the Differentiable Viewpoint, The

University Press of Virgmia, Charlottesville,
Ya., 1965.

3. Spivak, M.: Calculus on Manifolds, W. A. Benjamin, Inc., New
York, New York, 1965.

b, Steenrod, N.: -The Topology of Fibre Bundles, Princeton Uhiversity
Press, Princeton, N. J. 1951.

5. Bternmberg, S.: Lectures on Differential Geometry, Prentice-Hall,
: - New York, 196k. .

Definition: A fumction f : R® —> K is differentisble at & ¢ R* if
there is & linear transformstion A : Rn —— R‘ll such that
f(a+th)-£({a)-r(h

0 - |n]

Progaition: If f: Rn. — l\"‘l is differentiable at a € Rn, there is a

unique linear transformation A 4 Rn —» B® for which the above holds.

Proof: If u : R — R is another such linear transformation, x € R

and t ¢ R, then



FYSEN

P (eu()] g, A x)-u(ex)]
| x| 0 | tx| !

- lin Ia(tx)-f(a+ttx)+r(a)+f(a+tx)-f(a)-pltx)|

t+0 [tx]
- 1im [£(attx)-£(a)-2(tx)] , lim |f£(attx)=f(a)-ultx)]
£+0 | tx| £+0 |tx] !

0+0

80 A(x) = u(x) for all x. ¥
2
i

Definition: The linear transformation ) satisfying the above conditieff
o

is denoted Df(a) and is called the derivative of f at a. e

i

Letma: If T : R° — B is a linear transformation, there is & numbezg}’f'

4

BN

M such that |T(h)| < M|n| for all h e R.

Proof: Let ei, ei be the ususal bases of E® and Rm respectively

: 1
define tiJ € R by T(ei)

2 _ 1
ZtiJ ey If h=]h e, then

|T(n)|

’Z(Eht 2_<_§ DERTN

; 1%1g)

1A

LT Ity

Ji

h,| <m sup |t,.]|*|n|.
! 1,3 1

Thus it suffices to take M = mm sup [t »

i,]
S
Proposition: If f : R® —» K® is differentiable at a ¢ R*, then ﬁ

iJl'

is continuous at a.

Proof: Let ¢ > 0. Since 1lim |f(x)-f(a.)—Df(a)(x-a.)| =
x+a |x-a]

there is a &, > 0 so that |x-a| < &, implies
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|£(x) - £(a) - Df(a)(x-8)| < (£/2)]|x-g]|.

By the lemma, there is an M such that |Df(a)(h)| < M|h|. Let

6 = minimum of (61, €/2M, 1). Then |x-a| < § dimplies
[£(x) - £(a)| < |£(x) - £(a) - Df(a)(x-2)| + |DE(a)(x-a}|
< (e/2)]|x-a| + M|x~a|

< (e/2) + M{e/2M)

Hence f 1is continuous at a. *

Theorem: (Chain Rule) If £ : R® —= R is differentiable et a e R",
and g : R° —~ RP 1s differentisble st f£(a) = b ¢ R°, then the composition

gof : R® —= RP 1is differentiable at a, and
D(gof)(a) = Dg(£(a)) o Df(a).
Proof: Define

8(x) = £(x) - £(a) - A(x-a)

¥(y) = &ly) - g(b) = u(y-b).
where X = Df(a), u = Dg(f(a)). Then

g(f(x)) - g(d) - vra(x-a) = g(£(x)) - g(b) - u(f(x) - £(a) - ¢(x))

[e(£(x)) - g(b) - u(£(x) - b)] + u(e(x))

= $(£(0)) + ule(x)).
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By the leuma, there is an M, such thet Iu(r)] _<_Ml|h|, so

oilmLm_uL(M 1imM_LL

xa  |x-a x+a |x-~a|

Now let € > O end choose an M, so that [A(h)] < Mylb|. since i
. i

lim-l—‘-p—(l)-]- =0, there is a §, >0 so that Iw(f(x)jl < (e/M,)|£(x) - v] 4
b |y -b] . i

it |£(x) - v < 61. Since differentiebility implies continuity, there is &

& 8,>0 sothat |x-af <4 implies |£(x) - b| < ¢&,. Thus if [x-s < Gag'

[e(£(x))] < (e/l ) £(x) - v
= (e/M,)[¢(x) + A(x=a)]
< (en)|o(x)| + e]x-e|

and so

0< lmM—ﬂ-&M< (-—) limm——-l-v{-gse'

w»a  |x-a] %' e |x - &}

and since this holds for all ¢ > O

lim [g(£(x))-g(b)-u(r{x-2))| _ .

| x-a|

Proposition: 1) If f : R® —> K" is a constant function, ther
Df{a) =

2) If £ : R® ~—>F" is a linear transformation, then Df(e) =

3) It £: B =R x —= (£9(x),...,%(x)), then f 1s
differentiable at a ¢ B® if and only if each fi is differentisble at g%
ena De(a) = (DFM(s),...,0P%a)). '

4 If f,g: B —» Rm are differentisble at & ¢ R, then

f+g Rn—D-Rm is differentisble at a, and

D(f+g)(a) = pf(a) + Dgla).
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5)- If f,g : B —~ R are differentlesble at ac R°, then

fg E® —>R 1is differentiadle at a, and
D(f-g)(a) = f(a.)-Dg(a.) + g(a)-Df(a).
Proof: 1) If f£(x) =y for all x, . then

lim.l_f.(ﬂk.ﬁy;gl.. 11mJ.tY'_°L=o,

0 |n| "m0 |nj

2)  1ip Lfeth)-tla)-e)] _ . I£(a)et(n)-tla)-2(n)] 4
0 [n] 0 |n]|

3) If each f' 1is differentisble amd A = (p£*(a),...,De™a)), then
£(ath)-2(a)A(n) = (£X(ash)-2} (a)-DEL(a) (B) . .., a+h)-£%(a)-DE a) (b))

80

yin Le(atteA ) g yy [ em)zealns (@] | g,
0

w0 |n| [ B

Conversely, fi is the composition of f and the projection = i which
15 linear, so Dfi(e) = D(ﬂi"f)(a)_ =7 ,Df(a).

b) Let s: R°x R —=F': (xy) —>=x+7y, and et
(f,;) i BB —>Rx % : a —+ (£(a),g(a)). Then s is linear, so Ds = s

and by 3), D(f,g) = (Df,Dg). By the chain rule,

D(e+g)(a) = Ds(£(a),s(a)) © D(£,g)(a)
= s(p£(a),D(g)(a))

= pf(a) + Dgla).
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P
ki

2 "
5) Let p: R° —=R : (x,y) —> xy. By the chain rule, it suffices ]

to show thet Dp(a,b)(x,y) = bx + sy. Letting A(x,y) = bx + ay, "

lin {p(ethbti)-pleb)-A(n)| ., _ [mk] :
(b,k )0 | (a,k)| (b,x}»0 |(h,x)|

stnce |nk| < sup(|n|Z, [x|?) < |n|2 + |k|?, one has

2
0< 1lim el lim JTCH] lim [(b,k)| =0, *

~ (b,k}0 [(b,k)] T (h,k)}0 |(h,k)|  (B,k)+0

Proposition: If f : R —»=R 1is differentisble et & € R and has eithe"j;
3
a relative maximum or relative minimum at a, then Dr(a) = 0. ]

:fa;

Proof: Let Df(a)(h) = th with t € R. If & 1s & relative maximum, .}

then f(a+h) - f(a) < 0 and so 1f th > O,

0= 1im Lﬁiﬂﬁ(&lﬂz_lmm.hL
] jn| b+0 | b
th+0

If a is e relative minimum, then f(e+h) - £(a) 2 0 so if th < O,

0 = 14p Jf{eth)-f(a)-thl ., |th|_'lt|_ . *
b0 [n} w0 | n|

th0

e
Theorem: (Rolle) Let [a,b] C R end £ : [a,b] — R & coutinuous
function with f£(a) = £f(b) = O end such that Df(c) exists for all a < c <H

Then Df(c) = O for some c¢ with a <c < b. _ 1

Proof: If f is not identically zero, in which case Df(c) = 0 for
ce (ay,b), then f has a positive max:lmm or a negative minimum which mus
occur at some c ¢ (a,b). Thus ¢ is either a reia.t:lve maximum or relative. .

minimum and so Df{c) = O by the proposition. *
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Theorem: (Mean Value) lLet [a,b] C R and f : [a,b] — R a continuous
function which is differentieble at &ll points c € (a,b). Then there is a

point c € (a,b) so that
£(b) - £(a) = Df(c)(b-a)

Proof: Let F(x) = £f(x) - £(a) - [(£(b) - £(a))/(b~a))(x~a). Then ¥
satisfies the conditions of Rolle's theorem, so for some ¢ ¢ (a,b),
0 = DF{¢) = Df(c) - [(£(b) - £(a))/(b-a))*1l where 1 : R —>R is the identity

function, *

Definition: If £ : R®—~R and & ¢ R°, then the limit

1 i-1 1 i+l n 1
1im P8, .es, 8 aa th,a ye..ga )=f(a,. .. 8")

0 h

is called the i-th partisl derivative of f at a, denoted Dif(a.), when

it exists.

Theorem: If f : R® —> R™ has the property that all of the partial
derivatives D J1’1(x) exist in an open set containing a and are continuous
at a, then Df(a) exists.

Proof: It suffices to show Dfl(a) exists, 80 one may assume m = 1.

Then

f{a+h)-f(a) i+h:l‘,ts.:l‘+]', ves ,a.n)-f(al+hl, ves ,a1-1+h1-l,a.1 S |

n
) [f(al+hl,. S
i=1

’z‘ i
h'D,f{c,)
i1=1 1 1

a:"_l+hi"l,‘s.:l‘+91h1 ,ai+l, vessa’) vwhere

for some point c; = (al+hl,...,

0 < Gi < 1, by the mean value theorem. Hence



Y

If(a+h)-f(a)-):hionif(a)| - |Eh1[D1f(c1)-Dif(a)]|

0 [n| 0 [n|

ul
< nm{ |D £(e,)-D;2(a)| - -I—IL
h

e

“

<1 D,f(c, )-D,f(a)
Un ] [p2(c;)-0;2(a)]

=0
by contimuity of D;f at & Thus Df(e)(n) = § D f(a)n’. ¢

Definition: For f : R® — R, the function D, .
l:"‘l

f defined by

D £=D, (D f) 1s called an r-th order partial derivative of
11..-.,11_ il 12,...,11_ I

f. The function f 1s seaid to be of class C if all partial derivatives

(of all orders) exist.

Theorem: If f : R® —>~R and D, Jf and ):).1 f exist and are contin

in an open set conteining & € -Rn. then
Di,Jf(a) = DJ,if(a')'

Proof: It suffices to consider the case n =2, Let a = (¢,d) and l

(h,k) ¢ R° be small enough so that both D, ,f and D, I axe defined:on
. » » }

{(x,y)||x-c| <h, |y-4] < k}. Let

£(x,a+k) - £(x,d)

¢(x)

y(y) = £(e+h,y) - £(e,y).

Then
a = f(cth,atk) - £{c,d+k) ~ f(cth,d) + £(c,d) = ¢(c+h) - ¢(c)

= y(a+k) - y(a)



There is & ¢' € (c,c+h) with

¢(c+h) - ¢(e) = Dé{c')h

R
n

[le(c',d+k) - le(c',d)]h

= ' 1
Dz'lf(c ,d" )hk

for some &' e (d,d+k).

There is & a" € (d,d+tk) with

p(a+k) - p(d) = pp(a")x

Q
n

[sz(e+h,d") - D2f(e,d")]k

= " fn
= Dl’ef(c ,a" Jhk.

for scme c" e (e,cth).
Thus every open set U containing a contains points p',p" with
')y = "). thi 1
Dl,zf(P ) D2,1f(P ). By continuity of the Di,Jf s glves

Dl,zf(a) = Dz'lf(a).

Proposition: If f : R —R is & Cw function and x0 € Rn, there
exist C  functions g : R* —R, 1=1,...,n, with g (xy) = %:- (x4)
i

such that
f(x) = f(x ) + (x‘x ) * 8 (x).
i=1

Proof: Define hx(t) = f(x0+t(x-x0)). Then hx(t) is & C  funetion

of t and

e )
X X

£(x) - £(x,).
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By the chain rule,
dh
b’ 3f
T g: W (xo+t(x-xo)) . (x—xo)‘1
80

o 1
2x) = 2lxg) + ) Gexg)y [ g (xgrblaxg)at
= 3

1
and one may let gi(x) = o ;Tf (xo+t(x-xo))dt. Then
i

_ st ot _af 1 o :
8y (xg) = [ 55 (xp)at = 52= (xp) fo dt = 35 (%) ;
0°% i i )

Lemma: Let A C R™ be a rectangle and f : A —> R® continuously :;(g

?
differentiable (i.e. each Ddfi(x) exists and is continuous on A). If ther,’i

S

is a number M such that |Din(x)| <M for all x in the interior of A,

]
K

then

[ £(x) - £(3)| < n2M|x—y|
for all x,y € A.

Proof: One has

n
fi(}') - fi(x) = Z [fi(yl,...,y",x‘j+l,....xn) - fi(yl,....y"‘l,x‘j,...,xn)] k

J=1

Gigs

n i N
le |y"-x"| * D,f (zij) for some z,, ¢ interior A

n
Z ~|y.1_ J| M

A

A

M| y-x|
80O

n
ley) - 20 < T |£) = £2x)] < nM|y-x|. *
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Theorem: (Inverse Function) Let f : B — " be continuously
differentieble in en open set containing a, with Df(a) non-singular.
Then there is an open set V containing a and an open set W containing

-1

f(a) such thet £ : V—>W has a contimious inverse f ~ : W —> V which

is differentisble and Dr'l(y) = [l)f(:f'l(;r))]':L for all y s W.

Proof: Let A = Df(s) end then D(A"Yor)(a) = D(A"Y)(£(a)) o De(a)

-l opr(a) =1. I g is an inverse for At of, then go At is an

= A
inverse for f, and hence one mgy essume A = 1, Hence, if f(a+h) = £(a)

one hasg

|£(atn)=p(a)-A(n)| _ ol .,

| sl - [nl
but since
t(eth)-f(a)-A(n
w0 1]

this means that £(x) + £(a) 1f x 4s close to but not equal to a.

Thus there is an closed rectangle U containing a in its interior with

1. #(x) ¢ f(a) if xgU, x¢a. ‘

Since. .£ is continupusly differentiable in an open set containing =,
one may also assume '

2. Df(x) is non-singular for all xc U ]

3.. lndri(x) - n'ari(q)] <1/20% for ald 1,] and xe U.

Since (Ddfi(a)) is the Kronecker delta &, the lemma applies to

J’
g(x) = £(x) - x giviog that for x,,x, € U.

2(x)) - x) - (£(x)) - x)| <2/2 |x) -
8o

le - le - ]t(xl) - f(xa)| < If(xl) -x - (2(x) - x,)| < 1/2 le - 12].
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Hence - -

b |xy - x| c2l2(x)) - 2x,)] if x.x, € U

Since f is continuous, f{3U) is compact and by 1 cannot contain
£(a), so there iz 2 a > 0 such thet |£(x) - £(e)| > a4 if x e U, Let

W= {ylly-r(a)l <df2l. If yeW and x e 3U them

SRR AR YL L s e

5. ly-£(a)| < |y-£(x)|
for az |e(x) - 2(a)] < [y - 2(x)] + |y - £(a)] < |y - 2(x)] + a/2.
Now let y e W a.n@let g: U—R by P
n : ' ﬁ!’.:
gx) = Iy - £(0l® = ] G- £Ha? %

i=1 _
Then g is continuou# go hes e mintmum on U, dbut by 5. gle) < g(x) =4
for x & 3U, 80 the minimm of g must occur at an interior point of U, i
_i.e. is a relative minimum. Thus there is 2 point 2 ¢ interior U with:
Ddg(z) =0 for all j, or
. .
2 1 ! ot =0
i=] :
Since by 2., Df(z) iﬁ.no'n-.aingular,' this glives yi -'fi(z)' =0 or y=
for some ¢z € interior U. By k. this = is unique.

Letting V = (interior U) (\ £71(W), the functicn' £ : V —>¥W has m
fnverse f' : W —»>V, and revriting b s 1t ) - £y ) < 2lyy o]

for y,.y, e W proves continuity of £

To show that £ 1- i6 differntieble; let y = Df(x) and y = £(x)

for xlev, letusd‘efix_ze ¢ by

2(x)) = £(x) + u(x,-x) + ¢(x;-x)

8o that '
[#(x)=x)| ' E
% +x |x -x] o '- f -
. . i
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Then
uHe(x) - #x) = x, - x4 0 (00 x))
and since every y, € W 1is of the for;t f(xl) witl; same x, € V, one has
£yy) = ) + wlyy ) - Hete ) - ).

Since u~! is linesr, there is an M with

L o i 2 M IR T O i P9 ]
< M

vy =¥l - ly, - ¥l
LG i 00 IO P e)
[£7 ) )-e"H)| ly, - ¥l
oty )-£72 )|

£y - (y)

by equation L4, As ¥y =y, continuity of ¢! gives t-l(yl) —--f'l(y),

and by definition of ¢, this term goes to zero. Thus vl is e lineer

transformation of the form required to show £l aifrerentisble at y. *

Theorem: (Implicit Function Theorem) Let f: R" x K —+ R* be
continuously differentisble in an open set contaihing. (a,b) with f£(a,b) = 0
Let M be the mx m matrix (Dn_._dti(_a)) 1<1i, .1_<_m.... Ir M 1is -
nonsinguler, there is an open set A C 7 containing = and an open set
B CC B® containing b, so that for each x ¢ A there is & unique .g(x) e B

such that f(x,g{x)) = 0. The function g is differentieble.

Proof: Let F : B x Rm—’-'Rﬁ x Rm vy F(x,y) = (x.,t(x.,y)). .Then
DF(a,b) 1is non-@ingul_ar._ There are then open sets W C_Rn x R® containing
F(a,b) = (a,0) ena VCE® x K" containing (a,b), which may be taken to be
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of the form A x B, such that F : V—> W has a differentisble inverse

h:W——eV=AxB. Clearly h(x,y) = (x,k(x,y)) since F has this form, .

where k is some differentieble function. Let ' i

" iR x K=K : (x,y) =y be the projection. Then

f(x,k(x,y)) = £ o h(x,y) = 7 o F o h(x,y)

= 7(x,y) =y

g0 £(x,k(x,0)) = 0 end one ney 26t glx) = k(x,0). *

Theorem: Let f : R® —= R’ be continuously differentisble in an open i

set containing &, where p<n. If f(e) =0 and Df(e) is an epimorphisily
: o JHEY

A%

there is an open set A R® and a differentiable function h : A —R'

with ditterentﬁble inverse so that

£ 0 Blxyseeeam) = (g seeeamy)

Proof: Since Df(a) has rank p, there are integers

1514) <1 S such that the mstrix (0yr9(a))y 1 ep 1=y,

1
is non-ginguler. lLet g : R® — R permute the coordinates so that ]
i i . s
g(xl,....xn) = (euyx 1....,: P), Ten fog: R =R P x g —rf has;
43
th
e ma.t.'.r:l.x (Dn- -

(fog)d(g'l(a)))_ non-singular 1< i, J < p. As above,
there iz an h : 4 — R°, AC R an open set with '
(fog) o h(xl,....xn) = (xn-wl,...,xn). The function g © b satisfies th:_‘

conditions of the theorem. *

lepma: ILet f : K > B be continuously differentisble in an open ' 4
containing e, where p > n. If Df(a) ie monie, there is an open set
vC containing f(a) and a differentiable function h : U — P owi

differentiable inverse so that
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h o f(xl,...,xn) = (xl,...,xn,o,...,o)
on some neighborhood of a.
Proof: Since (afi/BxJ) has rank n, one may, by reordering coordinates
in RP, assume (3f,/3x,) is non-singular. Let P : R® x RP® —» RP

17 1,540
by

F(xl,...,xp) = f(xl,...,xn) + (0,...,0,xn+1,...,xp).

Since F(xl,...,xn,o,...,o)=f(xl,...,xn), P extends f. DF(a,0) has

(Bfi/BxJ) 0
» I

as matrix so is non-singular. Hence F has an inverse h on a neighborhood

of (a,0), =0

hf(xl,... ,xn) = hF(xl,...,xn,O,... ,0)

= (xl,...,xn,O,...,O).

n
Definition: A rectangle in R" is a set of the form I la;,b;] with
. i=1
n
a, <b,, a,,b, € R. The volume of the rectangle S = N [a,,b,] is
i —- J.n 1271 —— =1 i
v(s)= B |b, - a].
y=1 1 i

Definition: A subset A C R" has (n-dimensional) measure zero if for
every € > 0 there is a countable collection Bi of rectangles with

A C UsB ana I v(B)«e.

Theorem: A countable union of sets of measure zero is itself of measure

zZero.
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Proof: If A= U Ay, with each A; of measure zero, let e > 0 and

choose femilies B, of rectangles with AiC k:jl B ) v(Bi J) < e/21.
* *

1,3’

and ) (B, J) <Jesptae, »
1,J * i

J

Then AC. U 35,3
i3

Proposition: Let U ve an open cover of the interval [a,b] by
intervals of length at most ¢. Then there is a finite subcover Z(O of Z(
so that J  v(I ) < 2(|b-a] +¢).

o’ S
IeY
1 ]

Proof: Let 1(1 be a finite cover by elements of Z( and let \l(o be
e minimal femily of elements of L{, vhich cover. Order (A, by writing
the elements of 1(0' as IJ = (aJ.bJ.) where 1 < § if 8 <8, Then one-
nas U, = {I,}, J=1,...,r end by minimality of the cover

8, <b

{ < a1
of the overlaps is at most

< bi+1 for each i and 8, <eac<a, 'br-l <b < bi-' The s

* (a —al) + (bl-az) +o..t (bi-ai+1) +o00t (br-l'ax) + (br'—b) <2 + |b-_a|_
since

gl<a<a.2<b1<33<b2<ah<b3<...<ar_1<br_2<ar<br_l<b<b

and this glives the result. *

;

Theorem: (Fubini) Let A C E® be a compact set such that each Qetl :
AN (¢x Rn'l) has (n~1)-dimensional measure zero. Then A has

n-dimensional measure zero.

Proof: ‘Since A is compact A C [a,b] x 1 for some a,b ¢ R. Let;

€ >0 and choose e, > 0 so thet 2(|b-a| + 1) €, <€, Foreach te [a,b i

1
n Rn-l . . v
A (t x ) has measure O so there is a countable collection of rect
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=1 n-l 0 .
By s C R such thet & M\ (¢ xB*) C \3 t x B , end E v(B, ;) <e,

where Bo is the interior of B Now A - R x U B0 is a compact set

t,1 t,1i° i t,1
containing no point of the plane t x K° % and hence there is a 1/2 > 6, >0
so that A {1 (t-8 S48, ) x Rn-lc (t=8, 648, ) x \J B .. The sets
P 12840 7 bt

(t-8,,t+5.) cover [a,b] end by the proposition there is a finite femily

tl""’tr 8o that the intervals cover ta,b] and have total length at most

ti,)
covers A and has the sum of volumes at most 2([b-a| + 1) g <. *

2(|b-a| + 1). The countable femily of all (t,-8, sb,48, 1 x B then
3 1

Definition: Let £ : U— R be a smooth (C') msp, U open in R°.
A point x €U is e criticel point if Df(x) is not epic; it is a regular
point if Df(x) is epic. The critical values of f are the images under f
of critical points; those points of Rp which are not the image of critical

.

points are called regular values.

Theorem: (Sard) Let f : U— R’ bea C map, U open in R°, and
let C be the set of critical points of f. Then f£(C) (C RP has measure

zZero.

Proof: The statement makes sense for n > 0, p > 1, with R(J being a
single point. The proof is by inductiomn on n, being obvious for n = 0.
Let G (. C .denote the set of x e U such that all pertial derivatives

of t of order < i are zero at x. For example, c, = {x ¢ U]pe(x) = 0}.

Step 1: The image r(c-cl) has measure zero.

One may sssume p>2 for C=C, if p=1.

Iet XeC - c,. Since x ¢ C , there is some partial derivative, say
afl/axl, which is nonzero at %. Let h : U—~—R' by

nix) = (£Xx), 25,....).
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Since Dh(x) is non-singular, h maps some neighborhood V of X

aiffeomorphically onto an open set V' of E®, Then g= £ o b+

: v —-,-Rp.‘f(
The set of critical points of g,C', is precisely h(V (\cC), so '
g(c') = £(v N ¢c).

For each (t,xa,...,xn) e V', g(t,xa,...,xn) et x RP'lC. R’ or g

takes hyperplenes to hyperplanes. Let
gt : (tx Rp-l) NV ¢ x -

be the restriction of g. Since

1 0
(331/31‘1) =
R )
- 1 t R .
a point of tx R*™ is critical for g if and only if it is critical for * i

g By induction, the set of critical values of g° has meesure zero in

t x Rp':L and so g(C') intersects each plame t x Rp'l in a set of measure ;}
zero, o f(V [\ C) intersects each plane t x F'™> in a set of measure zergd!

Since C - C. is a countable union of sets of the form VAN C where

1
V 1is a compact neighborhood of X, V C v, Pubini's theorem shows that

r(c-cl) is a countaeble union of sets of measure zero, so has measure zero.

Step 2: The image r(ci-ciﬂ) bas measure gzero, for 1> 1.

3 = Ciaa there is some (i+l)-st derivative
a1+l

rr/axa edx, which is non-zero. Thus
1 k+1

For each x€ C

w(x) = akfr/axga. .ed x5k+1

vanishes at x but aw/axs does not. Suppose 8 = 1 for definiteness.
1 .
Let h: U—>F by

Blx) ® (w{x),x%,...,x%).
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Then h carries a neighborhood V of X diffeomorphically onto an open set

V'. Mlso b tekes ¢, (\V into 0 x R®®}, Consider

g-r°h.1:V'——¥-Rp

and let E be the restriction of g to (0 x B°1) /3 V'. By induction, the
set of critical values of g hes measure zero in RF, but each point of
h(ci (V Vv) is @ critical point of g (since all derivatives of order <1

vanish). Thus
(e, N V) = (¢, NV)

has measure zero. 8Since C, -

N °1+1 is covered by countebly many such sets

V, it follows that f(C ) has measure zero.

17C141

Step 3: The image r(ck) has measure 0 for k sufficiently large.
Let In C U be a cube of edge 6. By Teylor's theorem, the compactness

of I® and the definition of C,» one has
£(x+h) = £(x) + R(x,h)

where |R(x.h)| < c|h|k+1 for x € Ck n In. x+heI e being a2 constent
which depends only on f and 8,
Subdivide I into r~ cubes of edge 6/r, and let Il be a cube of

the subdivision which contains a point x e Ck. Then any point of Il is

x+b with |b] < /% (5/r). Bince |e£(x+h) - £(x)| < c|n|%*?

in a cube of edge a/::-k"':L

. r(Il) 1ies

g k+l
centered at f£(x), where a = 2¢(’n §) is
constant. Thus 1.’(!2k (\' In) is contained in a union of at moet. r® cubes
having total volume

Vv < Pa/cFL)P o oPo-(k+l)p

If k+1>n/p, then V=>0 a8 r—>®, so r(ck N\ 1®) has measure

zero. "
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Lemma: Let D,D' be two open rectangles in R° with D C D', Then

there is a real valued Ca function g on E® such that

a) 0<g(x)<1 forall x,
b) g(x) =1 for xeD, and

e) g(x)=0_ for x ¢ R® - D'.

R

Proof: One may write D = H(ai.bi). D' = n(a;_,bi) with -

' ' : ' ;
ai<a.i<bi<bi.

For eny interval [e,d] C R, let
1 1
exp(~ 5o+ 3739),  x e [e,d]

v (x) =
e, x ¢ [e,al.

Then ¥, , s € and ¥, a(x) 2 0. Let

X d
be,a(x) = fc “’c,d(")d"/fc ¥, q(X)ax. :
Then 9, 4 18 ¢, 04, 4(x) <1, ¢c.d(x) =0 if x<e, ¢, 4(x) =1 i#
L 1] 3 .
x> d. '
For a'<a<b<b', let %
°a| a(x) X _<_b y
(x) = ’ k|
1- ¢b’b,(§) x> b, o

hs' ,8,b,0

i e

. R
. z £
Then b, oy 18 €y 0 b e (X <2 By (x) =1 if xe [a,0]%
1Bt : 4
and ha',a,b,b'(x) =0 if x ¢ [a',b'].
n
et g(x)= 1 n {x,).

ge1 84084005005 L

(, .
A
Do et ShciadTR ARG
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Lemma: Let U be an open set in KF° with U compact, and let V be
an open set conteining U. ‘Then there is & real valued C  function
g: B — [0,1] such that g(x) =1 for xe U, g(x) =0 for

xeRn-V.

Proof: 8ince U is compact, there are a finite number of open rectangles

Dl""’Ds with 1-)1 C V covering ﬁ Let Di be an open rectangle containing
51 and conteined in V. Let 8 be given as in the previous lemma for the

peir Di’ Di. Then define g by
1-g= (l-g N1-g,)...(1-g ).

Then g s C, O<glx) <1l forall x. If xe UD, then gy(x) =1
for some j so 1 - g(x)=0. Thus g(x) =1 for erCUDi. ir
x¢ D! then g(x)=0 forall i so 1-g(x)=1. Thus g(x) =0 if
xeRn-VCRn-UDi. *

Le_Lm.: Let F:W—>R, W open in R® be a continuous function of
cless C inenopenset UC W. Let U', V' be open sets with
U CvCV Cw, U' and V' being compact. Let § > O. Then there
is a continuous function G : W —> R with |G(x) - F(x)| < & for all

xeW, suchthat G is C 4n U JU' and F(x) =G(x) if xe W - V',

Proof: By the Welerstrass approximation theorem there is a polynomial

H(x) eo that |H(x) - F(x)| < 8§ for xe V. Let g: B —=R be c,

0<gsl with gl.=1, gl ;, =0. Let
ur ROy

6(x) = g(x)-H(x) + (1-g(x))F(x)

forall x€W. Then G(x) = H(x) on U' and G(x) =F(x) on W-V'.On V',

la(x) - F(x)] = |e(x)||a(x) - F(x)| < 8.
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Also G{x) 18 C when F 18, henceon U, 80 G is C oo U\ U'. * .

k

Proposition: let £ : W—>R bes Cw function, W and open subset ::

of B, C a compact subset of W, V a neighborhood of C with VC W, &
i

and € > 0. Then there exists a differentiable g : W —o Rk such that 2
1) glchaaOeRk 83 a regular value. ’:;

2) g=f on W-V N"gv

3) |gi(x) - f,(x)| <, |agilaxJ(x) - afilaxd(x)l <e . ;?
forell xeW, l<i<k, 1<)<n. @
Proof: Let A : W-—=R be C with A|g=1, Al , =0 end ’j

-

0<A(x) £1 forall x. If y is any regular value of f then

g(x) = £(x) - A(x)y

satisfies conditions 1) and 2) above. By Sard's theorem, y may be choaa%

arbitrarily close to 0, and so 3) may be satisfied by taking y small

enough, *

Proposition: Let C be a compact subset of W, W open in R and
g:W—>B% a C” function such that g|c has 0 as regular value. Then g

there is an € > 0 such that if h : W —> Rk with
Iny (x) - g, (x)] < e, Ialhilax"(x) - agi/axj(x)l <eg (
for all x e C, then k|, also has 0 as regular value.

Proof: {x ¢ C|x is critical for g} is closed so compact and the set
of critical values of g is then closed. Thus there iz en €, > 0 g0 that
lei(x)l <€, implies x is regular for g. In particular Dg(x) is non~

singular and there is an €y(x) > 0 such that |A“ - agilaxd(x)l < ey(x)

i

1
1
¥
i
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implies (AiJ) is non-singular. On the set of x for which |81(1)| Sem
which is compact, there will be an €5 >0 80 that €5 < :2(::) for all these
x. Let e = min(t:llz, 53). Ir Ihi(x) - gi(x)l < ¢ and .

Iahili)m:‘j (x) - ag:‘./ax‘j (x)] <& then h(x) = 0 implies |gi(x)| <elE
so Dg(x) is non-singular end since |ahi/ax3 (x) - E)gi/ax‘1 (x)] <e < ea(x)

Dh(x) is non-singular. Thus O is a regular value for h., *



Appendix 2

Differentiable Manifolds

This eppendix covers the basic notions of differentiable manifolds, tangent
and normal bundles and proves the transverse regularity theorem which will bc; » 7
basic to the calculation of cobordism groups. In order to get this, one needs
basic structure theorems for menifolds such as tubular neighborhooda and
:Lmbedd.a.'bility and these are also proved. Basic references are:
l. Kelley, J. L.: General Topology, D. Van Nostrand Co., Inc..._,
Princeton, N. J., 1955.

2. Milnor, J.: Differential Topology, (mimeographed) Princeton
University, 1958.

3. Munkres, J. R.: Elementary Differential Topology, Princeton
: University Press, Princeton, N. J., 1966.

4, Nomizu, K.: Lie Groups and Differential Geometry, Mathematical
Society of Japan, 1956.

Definition: B C  is the half space {(xl,...,xn) € Rnlxn > 0}.

Definition: An n-dimensional differentiable manifold with boundary is

a pair (V, 7) where V 1is a Heusdorff space with a countable base and -,-y
i a family of real valued continuous functions on V satisfying:
713 local: if £ : V—> R and for all p € V there is an

open set UPC V, pe Up, and a function gp € ,7 such that flU = glup,
then f ¢ .'7 v ?

2) 7 is differentiably complete: if fl,...,fk e 4 .and F:R—R
is ¢, then Fo(fl Xo.uX fk) : V=2 R belongs to 7.

3) For each point p e lV there are n-functions fl,...,fn € :7 such
that £ x...x £, i V—> R® is & homeomorphism of an open neighborhood U
of p-* onto ean open subset of 1, Further, every function f ¢ 5’ agrees

on U with a function of the form Fo(f, x...x £ ) where F : R —~>R is ¢~
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The functions f € ¥ are called the differentiable functions on V,

A chart at pe V is a pair (U,h), where U 4is an open neighborhood of

and h: V—~—~F is a function fl X, 4% fn =h, with fi € ’,,7 mapping

homeomorphically onto an open subset of H° as in 3).
Proposition: V is paracompact.

Proof: Since H° is locally compact, So is V, and therel is a base

Ul'UE"" for V with Ui compact for each 1. There is a sequence

5 +1: Let .. )1.!.:

A = ﬁl and if A, 1s defined, there is a least integer k = k(i) so that.:

AlA,,... of compact sets with union V and A, C interior A

AiC Uy VeooU U, Thenlet A, =T V..U U

k' i+ k
Let (44 be any open cover of V. Cover the compact set

Ai+1 - Interior A; by a finite number of open sets vl,...,vr where VJ

is conteined in an élement of (7 and in the open set interior Ai+2 - Ai—

6> refines 0: covers V and since any compact set C is contained in

some A C cen intersect only finitely many elements of ﬂ Thus, for

iI

Proof: a) V 1is regular, If aeV, BC V, B closed and a ¢ B,

choose for each b € B open sets U}',, v with a e U.é, be V.b and

u{,.ﬂ_vb-¢. Let U =U (Y(V-B). Then acU, beV, ubr\vb-¢”
and U.bC_V-B. Then {V-a-B, U vb)'bsB is an open cover of V, so hag

Let J={aceIlc, (\B}4#4Y,

a locally finite refinane.nt. {Ca} ael’
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meéting only & finite number of the sets Cu. There is a finite set Jo Cs
sothat aeJ, N(Vc +¢ inmplies aeJy Foreach aedy, C,MB4}4,

So there is & b=d(a) e B with ¢, CV,. Let T=8 N\ Uy(q)* Them

T is open, a € T and T(‘WB@. GSJO-I
b) V is normal. Let A,BC V be closed, A ('\BB@. For each ac A

there are open sets U!,V! with a . ul, B C Vi emd UL MV =¢. Let

Ua = U; N (v-B), Va = V; N (X-A). Then {V-A-B’Ue.’va}a.eA is an open cover

of V so has a locally finite refinement {C }. let J = {a|Ca N At

For each b ¢ B, there is a neighborhood llb of b meeting only a finite

. pumber of the sets C,, a € J. Eech such ca is contained in some set Ua

and the intersection of Rb with the corresponding sets Va is a neighbérhood

T, of b not meeting any C, with aedJd. Let T=\J 7, W=V C_.
o beB aed @

Then 3C 7, ACW and ? Nus=p. ¢

Lemma: Let ﬂ be an open cover of V. Then there is a refinement v

of 2( 80 that for each X € ¥~ there 1s a set Y e?/ with X C 1.

Proof: Let Z(o be & locally finite refinement of Z{, Consider the

set 6C of all functions F whose domain is a subfamily of and for

o’
each U in the domein of F, F(U) is an open set with closure contained in
U, and such that U{F(U)|U ¢ domain F} \JWMW & L[V ¢ domein F} = V.

0T 18 non-empty by normality of V. Pertially order oc. by F <G if G
extends F. If Fu is a linearly ordered family, let F be defined on
\J{aomain F,} by F(U) = F (U) if Ue domain F,. Let x ¢ V and suppose
x ¥ W for any W ¢ domain F. Thus if xe U, Ue o> ‘then U ¢ domain P,
Since there are only a finite number of sets U € 2{0 with x € U, and each
such U € domain F, for some O, there is'a B such that x €U, UE Z’.(O

implies U € domain Fg. Thus x SU{FS(U)|U € domain Fg)} so
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x € \J{F(U)|U ¢ domain F}. Then O< has a maximal element F and by

normality of V, F must be defined on all of Z(o. Taus V= {F(u)|u EZ(Q

A

suffices. *

Proposition: Let Z( be any open cover of V. Then there is a
differentiable partition of unity on. V subordinate to u i.e. 3
collection ¢ C y such that:

1) ¢ ¢ implies ¢ : V—> [0,1]

2) The collection b = {U¢|¢'eo} is a locally finite refinement of

vhere U, = {xeV|¢{x) > 0}. _

3) Foreach xeV, )} ¢(x)=1. i
¢ed A

4

4
i

Proof: Let 2(1 be the collection of open sets U such that there is

3

chart _(U,h) and such thet U C U for some U'e Z,‘ By the lemma, ther:
is a locally finite refinement Z(E of 1 ®uch that for each U2 € zé :
there is a Ul € 2(1 with Gz C Ul’ and there is a refinement Z{3 of
Z(z such that for each U3 [ 2/3 there is a U2 e 2/2 with U3 C U2. In
particular there is a cover of V by sets U3 such that U3 € (e
U, CU, Uy ey U, CUL U eZ(l and the family of such sets Uy
is a locally finite refinement of Z( Let (Ul’h) be a chart and let
o0 - ! A
WU3 : h(U)) —~R be C, being 1 on h(U;) end O outside W(U,), ﬁ%

' - :_
Uajl. Let %3 be anoh en U, eand 0 on V U,. ’I.’henbe{ing

locally in 5/.' °1'13 € _’;z Finally let ¢U3(x) = ¢['13(x)/J %3(:) and ¥ :
3

0=

the collection of these ¢U B
3

Corollary: Let U and W be open subsets of V with U C W The¥

is an f ¢ ? vith £(v) C [0,1] so that fl_=1, g| = Q.
. U V=W

owatl -.ai*:.i:‘.'{k"-
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Proof: {W,V - U} is an open cover of V so there is a Qifferentisble
partition of unity ¢ subordinate to this cover. If ¢ ¢ ¢ and ¢(x) %0
for some x e U, then U¢C W. Let £ be the sum of those ¢ ¢ & which
are non-zero on U, *

The set of points of V may be divided into two classes as follows. For
each point peV, let (U,h) De a chart at p.. Then either
hip) € PLxo C H® or h(p) belongs to the interior of H'. If (U',h")

is another chart at p and h'(p) ¢ 1 x

0, then

mon'™ i p1 (U Nu) —nw NU') CF isa € function witha C
‘inverse, and by the inverse function theorem, hOh"l maps onto an open
neighborhood of h(p) in R, Thus. h(p) ¢Rn'1 x 0, Hence this property

is independent of the choice of (U,h).

Definition: The set of points p € V for which there is a chert (W,h)
with h(p) e L x 0 1s called the boundary of V, and denoted 3V. The

complement of 3V, V = 3V, is the interior of V.

Proposition: If (v,,.'}) is an n~dimemsional differentisble manifold
with boundery end .':Hav denotes the set of restrictions to 3V of
functione in 7, then (BV,?IW) is an (n-l)-dimensional differentisble

manifold (without boundary; i.e. 3(3V) - b).

Proof: Clearly 3V is Hausdorff and has a counteble base, and properties
2) and 3) are clear. Buppose f : 3V —> R is any function, and for each
p € 3 there is an open set Up C 3V eana g, ¢ ,g[av such that
fIU = 8p|U . There is then a function gI" € ? and an open neighborhood
ul pof P fn vV with U N av ='up and’ gl',lav = g, Then {v-av,u-l',} is
an open cover of V and there is a partition of unity ¢ subordinate to this

cover, For each ¢ € ¢ such that U¢ = {xev|¢{x) > 0} meets 23V, there is



-6 - s

a set U!" with U CU'. Let LR be one such. Then define f' : V—»R
by f£'(x) = Z ¢(x)gp (x) vhere ¢' = {oeolu N\ av ¢ d}. £' is locally a .
finite sum of elements ot .9' so belonge to ,’] If xedV and #(x) % 0. '
then x ¢ U' 80 gp (x) = £(x). Hence £'(x) = £(x)* ] ¢(x) = £(x). Thus

f=f'|3v or fe ‘?IBV b 4

Definition: If (V, F(V)) and (W,/2(W)) are differentieble manifolds’

with boundary, & function £ : V-~ W is called a differentisble map if for

all ge 7(W), gof e F(V). £ 1is & diffeomorphism if f has a airferentiﬁ'g'
inverse.
Proposition: If f : (V.77 (V) — (W, Z(W)) 1s a aifferentisble mep
and £(aV) C oW then £],, 5 (3V,2(V)] ) —> (W, F(W)] ) s a
differentisble mep. The inclusion map 1 : (3V,,7(V)|av) — (v,57) 18

differentiable.

Proposition: If (V.'?) is en n-dimensional manifold with boundary,
U is an open subset of V and §|U denotes the get of restrictions to U *
of functions in 7, then (U,?IU) is en n-dimensional manifold with
boundary, and the inclusion map is differentiable.

Let X be a set and suppose there is a countable collection
6= {(X ,b )} where X C X and\J X =X and h 1is a bijection of

o’ a o a o a .

1(‘l with an n-dimengional manifold with boundary Va such that for each (

pair a,B ha(xa N xﬂ)' is an open subset of V  end

by © h;l : b (X O xB) —_ hs(xa N xﬂ') .

is differentiable. Then X mey be given a topology and a differentiable
structure so that each set _xa will be open and each funetion ha is a

diffeomorphism. X 1s then an n-dimensional differentiable manifold with
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boundary, and is uniquely determined within diffeomorphism.

For example, let (V,?) and (W,g]) be n-dimensional and m-dimensional
menifolds with boundary (3W being empty). Let (U; ’hi) and (TJ'SJ) be
countable families of charts for V and W. Then the collection
{(u,
the product manifold, of dimension n + m. Then v xW) is diffeomorphic

x T.1 »hy X 8.1)} defines a differentiable structure on V x W, giving

to 3V x W,

Definition: If (v.']) is a differentiable manifold with boundary a
subset A C V is called a submanifold of V if for each point a € A there
is a chart (U,h) at a with h(U/MA) = h(U) () (0 x B¥). The collection
S" | A of restrictions to A of functions of ,I} is the family of differenti-

able functions on A.
Note: 3A = A (N 3V, is then & submanifold of aVv.

Definition: A (real) vector bundle £ = (E,B,m,+,*) is a 5-tuple where
1) E and B are topological spaves, called the total space and
base space of g, ..
2) w : E— B 1is a continuous mep, called the projection,
3) +:E+E={(e,e') ¢c Ex Ejne = ne'} —>E and
*: Rx E—» E are continuous maps such that wo+(e,e') = me = me',
noe(r,e) = ye and the restrictions to each fiber w-l(b) for be B make

2 1(b) 1into a real vector space.

Definition: A bundlemsp £ : E—> ¢' is a pair f£_,f. of continuous

E*"B
maps. fE : E—E', fB : B—>B' such that 1l'°fE = wa and .
fgot = -0-'0(1'E + fE), fgor = *'ofp, Where T+ fp 1s the restriction to
E+E of fE x fE' f is én isomorphism 1if there is a bundle map

g : §' —»t which is inverse to f.
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For example one has the product bundle (B x Rn,B,n,+,') vhere = 1s

the projJection of the product space.

Definition: The bundle £ = (E,B,n,+,-) 1is locelly trivisl if for each
point b e B there is an open set U in B containing b and a bundle =

isomorphism by : EIU —» (U x R®,U,n,+,") where £|U is the bundle

("-l(U) Rix1! _l(ui-l-,-) with induced operations with the induced map of base
™

spaces being the ldentity map of U.

Definition: A differentiasble vector bundle is a vector bundle § for

the open set U and map hU mey be chosen to give a diffeomorphism of tote.

spaces.

Lk
Note: + eand * are forced to be differentiable by the local trivialitm“;’j

Defipition: Let (V,}) be an n-dimensional manifold with boundary,
and v € V., A tangent vector X and v 1s & function X : ?-—*R such -
that:

1) If f,g¢€ ? and there 1s an open neighborhcod U of v with
£y = gly, then X(£) = X(g),

2) For f.g ¢ F. asbe R, X(af + bg) = aX(£) + bvX(g), [
3) 1f f,8c ‘7, then X(£:g) = X(£)'g(v) + £(v)-X(g).

The set of tangent vectors at v forms a vector space :I.n_duced from the

additive structure in R, called the tangent space to V at v and denot

T .
v

Denote by 7T(V) the union over all v e V of the sets T, and let

T : T(V) — V be the function which sends each subset T, into the point
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Proposition: Let ve V and let (U,h) be a chart at v, with

h= fl XoooX fn. Then

A 7 lU) = Ux B : X — (r (%), (x(£,)))

is a bijection. If (U',h') is another chart at Vv, then
xuoxa}: (UNUu)x R —(UNU)xE® is given by

Ay @ Agru,e) = (u,0(hen' 1) (0" () (w)). :

Proof: First note that if Xe T, then X annihilates constant functions
To see this, one has X{(c) = cX(1) = eX(1°1) = {1X(1) + X(1)-1} = 2eX(1).
Thus eX(1) = 2¢X(1) must be zero, so X(c) = 0.. Then let fe ? be
eny function. There i a C function F : R —= R with f = Foh and one

n
mey write PF(x) = F(n(v)) + ] (x-h(v)),g(x) with g being ¢ and
1=1

g;(h(v)) = 5% (a(v)).
/
! n
g=2(v)+ | (fi-fi(V))-(si°h)

i=l

80

n
X(£) = X(£(v)) + 121 {X(2,-2,(v)) g ob(v) + (£, (v)-£, (v))X(g,oh)}

. _
=) xe) - = (alv)).
1=1 i axJ

Thus A, 1s one-to-one, and letting X (£) =] a, 2F (n(v)) for ae R°
U ] axJ

one has A, onto. Thus A, is a bljection.

U U
Then A @ pr(ua) = (0,05 (wa)(z,))) end
-1 n 3 i°h°h' -1)
Agra,a(ey) = § o, (n'(+)),

=1 ax,
= [D(hen' M) (w' (v))a) . *
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Corollary: t = (t(V),V,m,+,°) may be given the structure of a

differentiable fiber bundle so that if (U,h) is a chart in V, AU is a

local trivialization of T and (w'l(U),(h x 1)°AU) is a chart of (V).

The boundary of <t(V) is u"l(av).

E
’!

6

Proposition: If ¢ : (V,?(V)_) — (w,!}(w)) is e differentisble map,

veV and Xert, let ¢,(X) be defined by
$u(X)(£) = X(£o¢)

if fe¢ ?(w). Then ¢, : T(V) ~ t(W) is a differentiable mep covering

¢ and (4,,4) 1is a differentisble bundle map.

Definition: Let M(p,n) denote the set of p x n matrices with
differentiable manjfold structure given by identification with an. Let

M(p,n;k) denote the subset consisting of matrices of rank k.

Lemma: M(p,n;k) 1is a differentisble manifold of dimension k(ptn-k)

k < min(p,n).

Proof: Let EO ¢ M(p,n;k) and by reordering coordinates write

U CM(p,n) consist of all

Em=
C D

with entries of A - Ao less then e.
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Then E e M(p,n;k) 1If and only if D = CA™IB. To see this, note that

A B I 0 A B

XA+c  XB+D X I cC D
p=k

has the same rank as B. If X = ~CA™Y, this is

, A B
: o -calpep

80 if D = CA™'B this hes rank k, while if any element of A5 +D is

non-zero the rank is greater than k.

Let W be the open set in R%, m = k{ptn-k) = po - (p-k)(n-k), consisting

of matrices

with all entires of A - Ao less than €. Then

A B A B
c o c cals

m..ps' W homeomorphically onto the melghborhood U ("\ M(p,n;k) of Ey,. *

Definition: A daifferentiable map ¢ : (V,?(V)) — (W, W) is an

immersion 1f ¢, is a monomorphism on each fiber of 1(V). It is an imbedding

if it 1s also a homeomorphism into.

Proposition: Let U be an open subset in R* and £:U—>RP &
differentisble mep with -p > 2n. Given ¢ > 0, there is & p xn matrix A

with all entries less than ¢ such that g(x) - £(x) + Ax is an immersion.
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¢

Proof: For any pXn matrix A, Dg =Df + A and one wants to choose 1
A, so that Dg has rank n at all points of U, or equivalently, A =Q - Dr{.
where Q has rank n.

Define F : M(p,n:k) x U — M(p,n) : (Q,x) —= Q - Df(x). Then F. is ’

differentisble and domein F, has dimension k{(ptn-k) + n < pn = dim M(n,p).

k

[Teking partials one has p+n-2k So the dimension is a monotone function of X
end for k < n this is at most (n-1)(p+tn~(n-1)) + n = (20-p} + pn - 1 < pn].
Thus for any chart (W,h) of M(p,n;k) x U, FkOh_l has no regular values.

oh—l(h(w)) has measure zero but image F, .is

By Sard's theorem, Fk(w) =F k

k
a countable union of such sets so has measure zero. Hence there is an A

arbitrarily near zero which is not in U image F This A suffices. "

k<n x°
Remark: If U were an open subset of i the same argument suffices

since f is the restriction of a differentiable map from R:l into Rp

Theorem: Given a differentisble map £ : (V,.?(V)) —» RP where pxan
and a continuous positive function &6 on V, there is an immersion
g: (V,7(v)) — R such that |g(v) - £(v)| < 8(v). If £, is monic on

'l’v for all v e N, N a closed subset of V, then one may let g|N = le' .

Proof: Since f,| ~ is monic for all v e N, it is monic for all ve Y
where U is an open neizh'borhood of N. One may then find a refinement of tﬁl‘
open cover {V - N,U} by a locally finite countable family of sets V, such "i.
that each set ‘-’i is compact and such that each \f:.L is the underlying set ot_
a chart (vi’hi)’ [There is & countable base consisting of sets W witljx W
compact and (W,h) a chart., The proof that V is paracompact shows that one
may find a countable locally finite refinement]. Index the sets Vi so that
the Vi contained in U have i < O, while the remainder have i > O, with®.
i € Z.° Applying the proof of the shrinking lemme twice constructs open sets 4

>
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Wi C wi C Ui - Ui C_vi with {wi} being a cover of V.

Let f, =f and suppose f : V—=RP is defined such that (fk—l)’lr

v

k-1

is monic for all v & For eny p *x n matrix A let

= U W .
N]z{—l i<k wJ
Fp : B (V) — R® be given by

Fy(x) = £, oncl(x) + ¢(x)-a(x)

where ¢ is a C  function from R° —> [0,1] with ¢|h W)= 1,
k' k
T -
o (R-U) = 0.

First, one wants DFA(x) to have rank n on K= h'k(Nk—l M Uk)'

[U, has e finite cover by open sets each meeting only finitely many W, 8o

k J
N, N T is compact] ama D(F,)(x) = D(£, " (x)) + A(x)'Dé(x) + ¢(x)-A

with D(fk_lcsh;l)(x) having renk n on K. This is & continuous function
from K x M(p,n) to M(p,n) sending K x O into M(p,n3n), so if A is
sufficiently small one has K x A mapped into M(p,n;n). Assume A is this
small.

Next, choose A smell enough so that [A(x)| < ek/2k where

€, = inf{6(x)|x ¢ Uk} for ell x e hk(vk)'

Finally, as above A mey be chosen arbitrarily small so that
-1

fk—lhlg (x) + A(x) has rank n on h.k(Uk).
Let A satisfy all these requirements.

Then define fk : V—RP by

fkfy).= £, + o (yDAM (¥)) if ye V

(¥) if yeV-U.

fk--:l. k

These agree on the overlap Vk - Uk so fk is differentiable. By the first

condition on A, DF, hes rank n on and by the third it has rank n

A Ne-1s
hence f’l-r is injective for each v & Nk. By the se“:W’ condition,
A's [ Ak

. k s :
£ isa §/2° eapproximation to L

on wk,
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i

Since the cover Vi is locally finite, the fk agree on any given cm;ﬁ

set if k is sufficiently large, so g(x) = lim £, (x) exists and g 1is R
) e

differentiable, G'I-r ig monic for all veV, and g isa ¢ approxmtlni
v -

to £. *

an open set T (C RP containing k(h(a)). and differentisble map g : T —bﬁ'
with differentisble inverse so thet gk(x) = (x,0) on a neighborhood S of

h(a). Then

-1

h ~omoglef(y) = h'l

onogroh™ (n(y)) = h~towogok(n(y)) = h™ron(n(y),0) = B h(y) »

the first n coordinates. *

Lemma: If p > 2n any immersion f : (v,g)—-v-Rp may be G-approxi.‘
by 2 1-1 immersion g. If £ is 1-1 m-ueighborhop_d U of the close

set N, one may choose g|y = f|y.

Proof: Choose a covering of. V by sets {Ua,} such that fIU _is an
imbedding for each o, refining the cover {U,V—N}._ Construct a cznntahle
locally finite fefinemenjb by sets V,, of the cover {Uu}’ indexed so that:
the V, C U have i< 07 Apply the shrinking lemms twice to get ' ‘!a
wiC ﬁi CUi C t-li Cvi end let' ¢, : V—>=R be a function of 7 ao..'j :

that 0<#é, <1, o, (W) =1, ¢,(v-u,) = 0.
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Let fo = £ and suppose the immersion fk ¢ v —>RP is defined.
Then fk is defined by
£.(x) = £, L (x) + ¢, (x)by
where bk € R° is yet to be chosen. As above, for small bk’ fk
may also be made smell enough

will be

an immersion, so let b, be this small. b

k

so that fk is a 6/2k approximation to fk—l'

Finally, let N be the open subset of V x V consisting of pairs

k

(x,x') with ¢, (x) 4 ¢, (x'), and let o : N—-F8° by

1y = _ - ' _ ' . .
o(x,x") [fk_l(x) fk_l(x )]/[¢k(x) ¢k(x )} N is the union of the manifolds
(v-3v) x (v-3v) MW, avx (v=3v) () N, (v-av) x av () N, anda 3V x av O\ N
on each of which ¢ is differentiable, and since each of these have dimension
at most 2n < p, o(N) has measure zero. Thus bk may be chosen arbitrarily
small and not in this image.

= ' 3 $ = t
Then fk(x) = fk(x ) if and only if ¢k(x) ¢k(x ) and

fk_l(x) = l(x‘) for k > 0.

fk-
Let g(x) = lim fk(x). If g(x) = g(xo) and x # X it follows that

oo
fk_l(x) = fk_l(xo) and ¢k(x) = ¢k(x0) for all k > 0. Thus f(x) = f(xo)

so x and Xq cannot belong to the same set Vi, and since ¢k(x) = ¢k(xo)

for k > 0 neither can belong to a set wi with i > 0. Thus x and X

must lie in U, contradicting the fact that f is 1-1 on U. *

‘Definition: Let £ : (V,}) — RP. The limit set L(f) of f is the
set of y € R’ such that y = lim f(xi) for some sequence {xl,xa,...} in

V which has no limit point in V.

Proposition: f£{V) is a closed subset of RP if and only if
u(g) C 2(v).
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Proof: Let y ¢ £{V). Then there 18 & sequence of points ¥y € £(V)

with limy, =y. Let x, eV with f(xi) =y, If the sequence x

1 1
limit point x ¢ V,. then f(x) =y by continuity of f£. If the sequence

has a

X, has no limit point in V, then y e L(£) so ye £(V)., Thus y e £(V),q

so f(V) 1is closed. .*

Pr b : £ 1s a topological imbedding if and only if f is 1-1

L(£) N £(V) 1is empty. -

Proof: Let T C V be closed and y € £(T) M\ £(V). Then there is &

sequence y; € £(T) with 1lim ¥, =y, Let = f‘l(yi) € T. If the seque

X
x, has no limit point then y ¢ L(£), but L(£) N£(V) = f. Thus there is
a limit point x of the sequence x,, and since T is closed, xe¢ T. By _
continuity of £, f£(x) is a limit point of the sequence y;» and .since v 3
is the limit of the sequence Y and R® is Heusdorff, y = f(x). Thus

(M (\ £(V) = £(T) so £(T) is closed in £(V). Hence £ 1 : £(V)—> vV

is continuous, or f 1s a topological imbedding. *
~ b
Lemmg: There 1s a differentisble map f : (V,.#) —=R with L(f) = . '}

Proof: Let V, ‘be a countable, locally finite cover of V by sets

i

V, with compact closure. Apply the shrinking lemma twice to give

1
w, Cw Cu CU €V, vwith {W} acoverof V, endlet. ¢ ¢ 7

vith 0%4¢, <1, ¢1(v':i) =1, ¢,(V-U;) = 0. Let f(x) =] J¢J(x). This s

.,,0. .
W,
5 is & sequence i\t:‘quv

3
W1
1

is finite for each x since V.i i8 locelly finite. I_f x
V 'having' ;1o'lim1t poiﬁt, then only finitel& many Xy can lie in any compact.
subset of V. Glven any intege m, there 18 aa im:eg.er. ﬁ(m) such that ok
i2 N(m) implies - x; ¢ v-tl V.oV V-Im. Thus 1f i > N(m), there isa J> m'\,;é?:l‘l}
with x; e ;IJ, s0 f(xi) > j > m.. Hence the sequence f(xi) can have no ;
limit point. *
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Corollary: Every n-dimensional differentiable menifold with boundary

can be imbedded in R°®'Y as a closed subset.

Proof: Let f : (V,F) —~R C B®®™! be a aifferentiable map with
L(f) = § constructed as above. Let 6(x) =1 for all x e V and let g
be & 1-1 imersion of (V,%) in E=™*1 sitn |g(x) - £(x)] < 6(x) for
all x ¢ V., Let x; be any sequence in V ha.viné no limit point. Given any
integer m there is an integer P(m) = N(m+l) so thet if i > P(m), then-
|g(xi)| >m, for |8(x1)| > |f(xi)| ~1>m+ 1-121. Thus the sequence s(xi)
cannot have & limit point. Hence L{g) = 4) and g is a topological imbedding

as 8 closed subset, *

Definition: Let vl,vz

an immersion. The normal bundle of £, Ve is defined as follu;rs. Let 7

and 1, denote the tangent bundles of V, and Vo Then £, : T, T,

be differentiable manifolds, f : Vl' — V2

induces a monomorphism into the bundle fl‘l.'z over Vl, Where fl‘l.'z is the
pull-back. The quotient bundle of fl‘l.'z by Ty is a differentisble vector
bundle over Vv, whichis v..

Nov let (V,’}) be & differentisble manifold and let 'g : V-~ R° be
an in&ﬁ:lng.' Since the tangent bundle of RP. 1s trivial, i.e. the total
space is RP = RP  one may-use the usual inner product in BR® to give an inner
product in each fiber of T(R’). and hence in gl(t(Rp)). The orthogonal
coxfplement of the image of each fiber of T(V) in each fiber of g!(t(RI_’ ))
15 a subsp\ace happed isomorphically to the fiber of vs. The orthogonal _
complements fit together to form thé total space of a differentiable vector
bundle T(V)'L over V isomorphic to Vg? via the quotient map
a: gl(T(RP)) —S'vg. The bundle map B: 'gi(f(Rp)) —= t(8P) '.then'g:-lves a

differentiable map Y = Bo(a| ).L) 1 mapping E(vg) ‘diffeomorphically omto
(v
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the submanifold of R° x RF = E(1(R®)) given by {(x,y) ¢ BP x RP|x = g(v)
and y-Lg'(‘l.'v), ve V).
Let e : BP x RP —= RP : (x,y) — (x#y).

Theorem: If (V,}) in an n-dimensional differentiable manifold with
W= and g: V—> B’ is an imbedding, then the differentiable fumciion

eoy E(v.g) — R® meps an open neighborhood of the zero section of va

o R R e .

2L

diffeomorphically onto an open neighborhood of g(V) in RF,

Proof: First eoy 1s differentieble end has rank p at all points of
the zero section. [To see this, let (U,h) be a chart on V so that Vg
is trivial over U. One then has & local trivialization
k : (U)X BP0 —- E(v ) with (v Hu),kY) & chart of E(v,). Then the
function 6 = eoyok :h(U) x RP " —» RP 1g given by
§(x,a) = gcth'l(x) +¥ uiyi(x) vhere for each x ¢ h(U), {y,(x)} form a base ¥
for the orthogonal complement to D(goh-l)(x)[Rn] = g'(th(x)). Then
D5 (x,a){y,8} = D(goh™)(x)(y) +18.y,(x) +] a,Dy, (x)(y) vhere
{y.8} e R x B2 2 RP, For a = 0, this gives
D6 (x,0){y,8} = D(gon™>)(x)(y) +7 B,¥,(x) which spans R’ as {y,s} runs

through B? because of the choice of yi]. Hence eoy has rank p 1in some

in RP.

To.complete the proof it suffices to show:

Lemma: Let X end Y be Hausdorff spece with countable bases and X

localiy compact. If £ : X—> Y 18 & local homeomorphism and the restriction:
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of f +to & closed subset A is & homeomorphism, then f 1s & homeomorphism

on some neighborhood V of“A.

Proof: 1) If A is compact, the lemma is true. If not, then every
neighborhood N of A contains a padr x,y of points for which f£(x) = £(y).
One may then find a countable family Ni of compact neighborhoods of A with

(o} _ . (o} _
N1+1C N, end ﬂni =A. Foreach 1, let x.,y, ¢ N with £(x;) = £(y,).
Since Nl is compact, the sequence Xy and ¥i have 1limit points x and y.

Since V-N contains only a finite number of points =x

1+1 J
have X,y ¢ N N, = A. But £(x) = lim f(xi) = lig f(yi) = £(y) contradicting

and yJ, one must

the fact that £} s 15 & homeomorphism.

2) Let AO be a compact subset of A. Then there is & neighborhood Uy

of AO such that U. 1s compact and f 1is & homéomorph:lsm on ﬁo Ja T

(]
see this, let Vo be & neighborhood of AO with Vo compact and 1’|_ 1-1,
: \'j
vwhich is possible by 1). If no neighborhood of Ao in Vo satisfiesothe

requirements for Uo, there is a sequence of points X, € X-A converging to
x € Ay with f(xn) € £(A). Let ¥, € A with f(yn) = r(xn). Since f 1is

continuous, f(yn) converges to f(x); and since f|A is a homeomorphism,

Y

p converges to x. Since x # Y this contradicts the assumption that ¢

is a local homeomorphism at x.

3) Express A as the union of an ascending sequence of compact sets
Al C.Aa C.... Suppose Vi is a nelghborhood of A:l with \-Ii compact

end f 1is a‘homeomorphism on ‘-’i \UJA. Then ‘-,i Va is a compact subset

1+1
of ‘71 U A onvhich £ is & homeomorphism and by 2) there is & neighborhood
v1+l 'of Vi U A:l+l with V1+»l cgmpact and £ a homeomo:_'pbism on Vi+1 U A.
let v=U Vi. The sets Vi are en ascending sequence of open sets so if
x,y € V with f(x) = £(y) then there is an- 1 with x,y € V,, but 1'|v

i
is 1-1 80 x=y. Thus f 1s 1-1 on V and being & local homecmorphism,

flv is a homeomorphism. *
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Lemma: Let (V,?) be a manifold with boundary. Then there is a

- differentisble function g : V — [0,2) such that g(3V) = 0 end 8.'
Ty

R e TR T,

'is noh-zero for each v &£ 3V,

Proof: Let (V. ,h } be & countable locally finite cover of V by ch

raaflo

g

and apply the shrinking lemma twice to get w C w C U. C U CV . Let
9, € 9" with 0% ¢, <1, ¢i(ﬁi) =1, ¢,(v=-U;) = 0. Let K be the set of .
1 such thet W, M3V # $. For each 1 ¢ K, h oz, —H i of the form
fix,,,x 1 and V, NV = '1(R '1xo)=(r1)'l( . Let

glx) = J N (x)-£ u(x). Then ge ? and g,: V— [0;®) with g(3v) =
iex
Let v e 3V. There is then an 1 ¢ K with ve W;. Let A : [0,°) —

B T

Aby At) =_h(v) + (0,._..,0,1‘.). Then there is an ¢ > 0 with
A([O,e))IC h(Vi). Thgz; nla ¢ [0,¢) —rv is & differentisble map and tb ;
show s.l, # 0 1t suffices to prove tha.t E‘i{ (goh-l°A) #0 at t =0, o
For the 1€ K used to define A, ve have ¢i°h'l°x(t) =1 for all
teA"H(W,) and ‘inh—lOA(t) =t for all te [O,c). Thus
= ((egoeh)on™lor) = 1.
For eny 1' fi, i'e K with ve Vi, ome hes

d : LS NI -1 - LTS SUNN L SR § -1
at (94008 Joh™70a) = (¢,0n7"a) - Fp (ri oh "oA) + £ OhT O * o (?i,Oh

) ’ st _ - g o ..
Now ¢,,0n770A(0) > 0, f-'en%eA(0) =0 and for t> 0 fi on~2ar(t) > 0

in & neighborhood of + = 0, and hence Ed{ (f; oh™"ox) > 0.

Adding these up, one has —— (goh~ o',\) : 1,

is an open neighborhood U of 3V. 'im V such that _(U,_9|U) is

diffeomorphic to 3V x [0,1).
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Proof: Let § : V— R’ be &n imbedding. Then glyy : oV —-8 1is
an fmbedding so there is an open neighborhcod N of 3V in. RF diffeomorphic

to & neighborhood of the zero section in E(v~; ), with a : N —EB(v-; )
. &lyy &,y

the diffeomorphism into. Then woaog : §'1(N) — 3V 1is & differentisble
retraction of the open neighborhood E.l(N) of 3 onto V. Let

g : V— [0,%) be as given previously. Then

r = (moaog) x g @ E'l(N) — 3V x [0,%) i a differentisble map. For any

v € 3V, the kernel of E*I'r contains the image of r(av)v, hence by
dimension this is precisely 11:11e kernel, (momog), maps the image of r(av)v
isomorphically. Thus r,lt is an 1somorphism. Thus r.It is monie for
all w 1n some open neighbgrhood W of 3V, and so is a lanl diffeocmorphism
of W with an open n-eigh'borhood of 3w x 0 in 3V x [0,®), end is &
homeémorphism on 9V. Thus there is an open neighborhocod Q of 3V in V
diffeomorphic to e.n open neighborhood of 3V in 3V x [0,%). By means of a
countable locally finite cover of 3V by charts, with compact closu::;e, one
may teke a nelghborhood of 3V of the form {(x,y) € v x [0,@)|y < B(x)} for
some B¢ ‘Z(3V) with B > 0, within this neighborhood. Sending

(x,y) — (x,y/B(x)) maps this diffeomorphically onto 3V x [0,1). *

Theorem: Let (V,f) end (w.oa) be differentiable manifolds with
boundary such that V is & submanifold of W with 1nc1u.s_:lon i : VeV
and suppose t\here is a neighborhood U of W in W and a diffeomorphism

. £ . )
£ (U,u N\ V) — (aW x [0,1),aV x [0,1)). Then there is an open neighborhood

of V  'in W diffeomorphic to an open neighborhood of the zero section in v 5

Proof: Let as= 11101’ : U—>3W, B= n2°1’ : U—> [0,1). There is &

function ue F(W) with 0 <u <1, u(8™([0,3/4))) =1, wu(W=U) =0 and

a function v ¢ Q(W) with 0<v <1, v(e'l([0,5/8])) =0,
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v(#=-8"2([0,3/4))) =1 and so o = u.B + v : W—> [0,®) is in (W) ena

0|U, = BIU, where U' = B-l([0,1/2)).

Let ¢ : [0,1/2) — [0,1] be the C  function with ¢[0,1/4] = 0,

e
- 1 . _l X

¢[3/8,1/2) = 1 given by ¢1/’4,3/8' Let q : W—>=W be £ “o(lxu)ef on U'%b
- !

where u(s) = ¢(s)'s and the identity on W - £ 1([0,3/8)). SE”
Let g : W—> RP ve any imbedding and define h = (goq) x 0 : W — H
1

h is easily seen to be an imbedding and hof ~ : aW x [0,1/2) — Hp+l agreet
with g'aw x 1.
The inner product on gL gives inner products on -r(W)w and -r(V)V

so that one may identify vy with
1xy) e B x B [x = Bi(v),x € Byr(i)y )0y Lhydyr (V)3

The evaluation map e sends this subset into Rp+1, and by the agreement of
- R
not™ with g|,ux 1 on W x [0,1/2) will send {(x,y)[x = h(u'),u' e U'}5

into Hp+1 (since y can have no compoment orthogonal to RP x 0)

sends a neighborhood of h(i(V)) x 0 into ", Since W is imbedded nice_]sﬁ

S

by h, there is a retraction of a neighborhood of W into W (as in the %}
tubular neighborhood theorem for closed manifolds in Euclidean space). The 5"

composite map of a neighborhood of the zero section in E(vi) into W is of,:% i

of 3V shows that this is a diffeomorphism of smaller neighborhoods. *

Note: Such a nice tubular neighborhood U seems to always exist if oneﬂ&

has sufficient regularity at the intersection of V and aW. In particular,:f@i

our definition of submanifold appears sufficiently restrictive to give this. ‘w 9

No simple proof seems possible, and hoping that we won't need this existence,

we will avoid the argument. w
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1
Definition: Let f : M® —= N* be & differentiable map, N X & closed
1]
submanifold of N. f is said to be transverse regular to N k gt x e M if°
L]
1) f(x) ¢, or

k

1
2) f{x)e N and the composite

fl-
00, —> Ty —> Wy )et)

is epic, where 1 : N'<—> N 4is the inclusion.

£ 1is said to be transverse regular on N' if f 1is transverse regular at

each polnt of M.

Proposition: The set of points x e M at vhich £ 1s transverse reguler

to H' 1is open.

Proof: f-l(N') is closed so the set of points of type 1 is open. Suppose
x 1s of the second type and choose & chart at f£(x), (U,h), with
n(U NN = n(U) N (0 x &), Let (V,k) be a chart at x with v C £7X(U).
With coordinates u, in h(U), v, in k(V), one has h°f°k'l : k(v) —= n(v)

i J
and the transversality condition at x 18 the assertion that

(3“1/3"3 Ja,... 0=k

3*l,...,m

has rank n - k at k(x), This metrix has rank n - k in a neighborhood of

k(x), so £ 1is transverse regular on & neighborhood of x. *
3

k

1]
Proposition:” If f : M® —> B is transverse regular to N and the

Kk then -1’-1(]!'-) is

- . R
restriction of f to 3M 1is also transverse regular to N
a submanifold of M of dimension m - (n-k). “Further, the normal bundle of

r"l(n') in M 1s induced from the normal bundle to K' in N.
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3
- %
Proof: Let £ be transverse regular at x e f l(N') and choose charts ..

(U,n) and (V,k) as above. By reordering coordinates in V, one may assume
(Bui/avJ) i,y = 1,...,n=k is non-singular at k(x). Hence by the inverse

function theorem the functions (ul""’un-k’vn-k+1""’vm) give a chart at

k({x) in k(V) and hence a chart at =z, (V',k') so that

- ~(n- bt

O el = e (v) A« ®8)) 1e x e M- am this is a charti

e

8

of the required type. If x e 8M, then the condition on f implies that

M
in the reordering the function Vo is not replaced by any Uy, and hence tha
k'(v') C . Thus, the chart (V',k') is as required. The normal bundle

condition is clear since the induced map is epic on fibers.

Theorem: Let f : M —> N be a differentiable map; let N' be a closed
differentiable submanifold of N'. Tet A be a closed subset of M such
that the transverse regularity condition for f on N' 1is satisfied at all
points of A N f_l(N'). There exists a differentiable map g : M —> N such
that

1) g is homotopic to f,

2) g 1is transverse regular on N'

3) g'A=f|A'

Proof: There is a neighborhood ﬁ of A in M such that f satisfie
the transverse regularity condition on U. Cover N by N - N' = YO and
coordinate systems (Yi,ki) for i > 0 with coordinate functions l""’ ﬂt
such that N' M\ Yi is mapped precisely to the set for which vy =...= Vi

The sets ‘1(Y) cover M, as do the sets U and M- A. Let (Vb))

so that J < 0 1if VJ C U and the others have J > 0. Apply the shrinking%t-,

G

lema twice to get W, C.ﬁJ C U, Cl-JJ C_v'j and let ¢, ¢ o,

v,
B

e
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Oifbj <, ¢J(§J) =1, ¢J(M-UJ) = 0. For each J choose an 1(j) > 0 with

r(vJ) Cri(J).

Let 1’0 = f and suppose rk—l has been defined, satisfies transverse
; U o = :
regularity on r Wd with fk—l(UJ) C Y:l(d) for each J. In particular,

letting 1 =1(k), £, (v ) ¥,.

Consider the function wk,f °h;l : hk(Uk) ~— % here ¥ projects

1 k-1
on the first n - k coordinates. By the approximation of regular values
theorem, there are arbitrarily small vectors y € Rn-k such that
-1 -1 -1
1rki fk—lohk -(45kohk )y has the origin as regular value, We then define fk by
_ -1 ] . - Lo
fk(x) =k, {kifk_l(x)-dbk(x)(y.o)} for x in a neighborhood of Uk
=fk-1 if xt-:M-Uk.
n-k .
vhere y ¢ R is yet to be chosen.

Pirst one needs y small enough that kifk_l-¢k(y.0) lies in ki(Yi)

; 18 @ peighborhood meeting 3N then (y,0) is

"parallel” to 23N and one is not translated out of k:l(Yi) across A3N. Hence

-1
i

for all x ¢ Uk' Ir Y

for small y this holds and thus k may be epplied. Next y is chosen

to give a 5/2k approximation to £ Also y 1is chosen small enough that

k=-1°
fk(ad) C’Yi(,j) for each J. This is possible since only a finite number of

k
§' at each point of f£LI(N') N W,.

\

sets UJ meet U . Under these conditions fk will be transverse regular on

Now is transverse regular on N' at each point of the compact set

- T2
Uk N (J\E)k wd) and since asmall chenges preserve regularity, for sufficiently

k
After all these limitations, we have such a y and hence an fk. Let

small y, £ will also be transverse regular on this set, hence on _1\<Jk 7.

k-1 k
and & limit of these homotopies defines a homotopy from f to g. o

g(x) = lim £,(x). A hemotopy from f to t, is given by contracting ‘y



10.

11.

12.

13.
1k,
15.
16.
17.

18,

19.

BIBLIOGRAPHY

J. F. Adams: On the non-existence of elements of Hopf invariant one,
Ann. of Math., T2 (1960), 20-10k4.

: hOn formulae of Thom and Wu, Proc. London Math. Soc., 11 (1961),
Th1-752,

On the groups J(X),II, Topology, 3 (1965), 137-173.
On the groups J(X),IV, Topology, 5 (1966), 21-T1.
D. W. Anderson: Thesis, Univ. of Calif. Berkeley (not yet published).

D, W. Anderson, E. H, Brown, Jr., and F. P. Peterson: SU cobordism,
KO-characteristic numbers, and the Kervaire invariant, Ann. of
Math., 83 (1966), 54-67.

<
: Spin cobordism, Bull. Amer. Math, Soc., T2 (1966), 256-260.
: The structure of the spin cobordism ring, Ann. of Math., 86 (1967T)

271-298.

P. G. Anderson: Cobordism classes of squares of orientable manifolds,
Ann. of Math., 83 (1966), L7-53.

Note on a problem of Conner and Floyd, (to appear).

S. Areki and H. Toda: Multiplicative structures in mod q cohomology
theories, I, Osaks J. Math., 2 (1965), T71-115.

M. F. Atiyeh: Immersions and embeddings of manifolds, Topology, 1 (1961),
125-132.

Bordism and cobordism, Proc. Camb. Phil. Soc., 57 (1961), 200-208.

Thom complexes, Proc. London Math. Soc., 11 (1961), 291-310.
: K-theory, mimeographed notes, Harvard University, Cambridge, Mass.
1964,

M. F. Atiyah, R, Bott, and A. Shapiro: Clifford modules, Topology, 3,
suppl. 1 (1964), 3-38.

M. F. Atiyah and F. Hirgzebruch: Riemann-Roch theorems for differentiseble
manifolds, Bull. Amer. Math. Soc., 65 (1959), 276-281.

Vector bundles and homogeneous spaces, Proc. Symp. Pure Math.

vol., III, Amer. Math. Soc., Providence, R. I., 1961, 7-38.

:  Cohomologie Operationen und charakteristische Klassen, Math. Zeit.
77 (1961), 1k9-187.



20.

22,

23.

2k,
25.
26.
27.

28.

30.
31.

32,
33.

3h.

36.
37.

39.

Ll

M. F. Atiysh and I. M. Singer: The index of elliptic operators on compa.cf
menifolds, Bull. Amer. Math. Soc., 69 (1963), L22-133, :

B. G. Averbuh: Algebralc structure of intrinsic homology groups, Dokl.
Akad. Nauk S8SR., 125 (1959), 1l-1bh.

J. M. Boardman: On manifolds with involution, Bull., Amer.. Math. Soc., T3: ‘i.
(1967), 136-138. w

:* Unorlented bordism and cobordism, (to appear).

R. Bott: Lectures on K(X), mimeographed notes, Harvard@ University,
Cambridge, Mass., 1962.

W. Browder: The Kervelre invariant of framed manifolds and its
generalization, (to appear).

W. Browder and J. Levine: Fibering manifolds over a circle, Comm. Math.
Helv. 40 (1966), 153-160. )

W. Browder, A. Liulevicjus, and F. P. Peterson: Cobordism theories, Ann :
of Math., B4 {1966), 91-101. i

E. H. Brown, Jr. and F. P. Peterson: Algebrelc bordism groups, Ann. of
Math., 79 (196h4), 616-622.

__ ¢ DBelations emong characteristic classes-I, Topology, 3, suppl. 1
(196k4), 39-52; -II, Ann. of Math., 81 (1965), 356-363.

A spectrum whose Z cohomology is the algebra of reduced pt

powers, Topology, 5 F (1966), 149-15k,

R. O. Burdick: Oriented menifolds fibered over the circle, Proc. Amer.
Math. Soc., 17 (1966), Lukg-h52.

J. M. Cohen: The Hurewicz homomorphism on MU, . (unpublished).

P. E. Conner: A bordism theory for actions of an abelian group, Bull.
Amer, Math. Soc., 69 (1963), 2hh-2h7,

P. E. Conner and E. E. Floyd: Fixed point free involutioms and
equivarient meps, Bull, Amer. Math. Soc., 66 (1960), L16-Li1.

: Cobordism theories, Seattle conference on Differential and
Algebraic Topology (mimeographed), 1963.

: "Differentisble Periodic Maps", Springer, Berlin, 196h.

: Periodic meps which preserve a complex structure, Bull. Amer.
Math. Boc., .70 (1964k), 5Th-5T9.

____: Fibring within a cobordism class, Michigan Me.th. J., 12 (1965),
3347, .

: Torsion in SU-bordism, Memoirs Amer. Math. Soc., no. 60, 1966.




h.
42,

43.
b,

ks,

46.

b7,

L8.

k9.

50.

51.

52,

53.

5h.

35.
56.

57.

58.

iii.

P. E. Conner and E. E. Floyd: Maps of ocdd period, Ann. of Math., 84 (1966),
132-156.

The relation of cobordism to K-theories, Springer, Berlin, 1966.

P. E. Conner and P. S. Landweber: The bordism class of an SU manifold,’
Topology, 6 (1967}, 415-h421,

A. Dold: FErzeugende du Thomschen Algebrs /(., Math. 2., 65 (1956), 25-35.
Vollsténdigkeit der Wuschen Relationen zwischen den Stlefel-

Whitneyschen Zehlen differenzierbsrer Mannigfaltigkeiten., Math, 2.,
65 (1956), 200-206.

: Démonstration elémentalre de deux résultats du cobordisme,
Ehresmann seminar notes, Paris, 1958~59. :
: Structure de 1'anneau de cobordisme £, Bourbaki seminar notes,
Paris, 1959-60. ’
: Relations between or_dina;'y and extraordinary cohomology, Notes,
Aarhus Colloquium on Algebraic Topology, Aarhus, 1962.

S. Eilenberg: On the problems of topology, Ann. of Math., 50 (1949),
247-260.

F. T. Farrell: The cbstruction to fibering a manifold over a circle,
(mimeographed) Yale University, New Haven, Conn., 1967.

8. Gitler and J. D. Stasheff: The first exotic class of BF, Topology,
4 (1965), 257-266. _

P. S. Green: A cchomology the'ory based upon self-conjugacles of complex
vector bundles, Bull., Amer. Math. Soc., 70 (196k4), 522-52k.

A. Hattorl: Integral characteristic numbers for weakly almost complex
manifolds, Topology, 5 (1966), 259-260.

M. Hirsch: Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959),
2422276,

i

. Hirzebruch: Komplexe Mannigfaltigkeiten, Proc. Int. Cong. Math.,
1958, 119~-136. :
1

: Topological Methods in Algebrslc Gecmetry, Springer, Berlin, 1966.

L. Hodgkin: K-=theory of ]g:ilenberg-MacLa.ne complexes I-IT, (multilithed
notes), Institute for Advenced Study, Princeton, N. J., (about 1965).

C. S. Hoo: Remarks on the bordism algebra of involutions, Proc. Amer,
Math. Soe., 17 (1966), 1083-1086.

W. C, Hslang and C. T. C. Wall: Orientebility of manifolds for
generalized homology theories, Trans. Amer. Math, Soe., 118 (1965),
352-359.



iv.

59. D. Husemgéler: "Fibre bundles", MeGraw-Hill Book Company, New York, N. Y,

1966, :
60. M. A. Kervalre: A menifold which does not admit any differentisble
structure, Comm. Math. Helv., 34 (1960), 257-270.

61. M. A. Kervaire end J. W. Milnor: Groups of homotopy spheres I, Ann. of
Math., TT (1963), 504-537.

62. V. ¥, Kraines: Topology of quaternionic manifolds, Trans. Amer. Math,
Soe., 122 (1966), 357-367.

63. P. 8. Len@weber: Cobordism operations, mimeographed, University of
Virginia (ebout 1965). /
6k, : Cobordism operations, Notices Amer. Meth. Soc., 12 (1965), 578.
65. __ _: Kinneth formulas for bordism theories, Trens. Amer. Math. Soc.,
121 (1966), 2k2-256, A5
66. : Bteenrod representebility of stable homology, Proc. Amer. Math. *%
Soc., 18 (1967), 523-529. ) -
eT. ! The bordism class of a quesi-symplectic manifold, (to appear).

68. : On the symplectic bordism groups of the spaces Sp(n). HP(n) and ;¥
88p(n), (to appear). i

¥

69. ____: Fixed point free conjugations on complex manifolds, Ann. of Math.,: §
86 (1967), b91-502. _ '%‘,'4,

0. ¢ Conjugations on complex menifolds and equivariant homotopy of MU, g
Bull. Amer. Math. Soc., T4 (1968), 271-2Th. E

4

Tl. R. Lashof: Polncaré duality and cobordism, Trans. Amer. Math. Soc., 109 L,.;
(1963), 257-277. 5

T2. A. Liulevicius: The factorization of cyclic reduced povers by secondary
cohomology operations, Memoirs of the Amer. Math. Soc., no. 42, 1962

73. : A proof of Thom's theorem, Comm. Math. Helv., 37 (1962), 121-131.

Ths : A theorem in homological elgebra end stable homotopy of projective
spaces, Trans. Amer. Math. Soc., 109 (1963), 540-552.

5. : Notes on homotopy of Thom spectra, Amer. J. Math., 86 (1964), 1-16,

76. A. Markov: The insolubility of the problem of homeomorphy, Dokl. Akad.
Nauk 88SR, 121 (1958), 218-220 (Russla.n)

7. J. W. Milnor: On manifolds homeomorphic to the T-sphere, Ann. of Ma.th., k
64 (1956), 399-405.

78. : Lectures on characteristic classes, mimeographed, Princeton i
University, Princeton, N. J., 1957T.



9.

8o,

83,

84,

85,

86.
87.

8s.

89.

S1.

93.

ok,

95.

96.

J. W. Milnor: The Steenrod algebrs and its dual, Ann. of Math., 67 (1958),
150-171.

: Differentiel topology, mimeographed, Princeton University, Princeton
N. J., 1958.

: On the cobordism ring 8®., Notices Amer. Math. Soc., 5 (1958),

k57,

: On the cobordism ring (% and a complex analogue, Pert I., Amer.
J. Math., 82 (1960), 505-521.

: A procedure for killing hamotopy groups of differentiable manifolds,
Proc. Symp. Pure Math. vol. III, Amer. Math. Soc., Providence, R. I.,
1961, 39-55.

: 6‘-\ survey of cobordism theory, Enseignement Methematique, 8 (1962),
16-23.

: gfin structures on manifolds, L'Enseignment Mathematique, 9 (1963),
198-203.

: ~ Microbundles I, Topology, 3, suppl. 1 (196k), 53-81.

: On the Stiefel-Whitney mumbers of complex manifolds and of spin
manifolds, Topology, 3 (1965), 223-230.

: Lectures on the h-cobordism theorem, Princeton University Press,

Princeton, N. J., 1965.

Characteristic classes for sphericel fibre spaces, (mimeographed),
Princeton University, 1965.

J. W, Milnor and J. C. Moore: On the structure of Hopf elgebras, Amnn. of
Math., 81 (1965), 211-26k.

J. R. Munkres: "Elementary Differential Topology", Princeton University
Press, Princeton, N. J., 1966.

8. P, Novikov: Some problems in the topology of menifolds connected with
the theory of Thom spaces, Dokl. Akad. Nauk SSSR, 132 (1960),
1031-1034, (Soviet Math Doklady 1, Ti7-T720).

: Homotopy properties of Thom complexes, Mat. Sb. (N.8.), 57 (1962),
. LOT-4k2, (Russien).

: The Topology Summer Institute, Seattle 1963, Russian Mathematical
Surveys, 20 (1965), 145-167.

: 'i‘opological inveriance of rational Pontrjagin classes, Dokl. Akad.
Nauk SS§R, 163 (1965), 298-300 (Soviet Math Doklady, 6 (1965),
921-923).

¢ Operation ri and spectral sequences of the Adams type in extra-
ordinary cchomology theories. U-ccbordisms and@ K-theory, Dokl, Akad,
Neuk SSSR, 172 (1967), 33-36 (Soviet Math Doklady, 8 {1967), 27-31).



91,
98,
9.
100.

101.

102,
103.

10k,

105.
106,
107.

108.

109.
110,

111,

113.
11k,

115.

R. 8. Palals: Seminar on the Atiyah-Singer index theorem, Princeton
University Press, Princeton, N. J., 1965.

F. P. Peterson: Relations among Stiefel-Whitney classes of manifolds,
Notes, Aarhus Colloguium on Algebraic Topology, Aarhus, 1962,

H. Poincaré: Analysis Situs, Journal de 1'Ecole Polytechnique, 1 (1895};%
1-121.

L. 8. Pontrjagin: Characteristic cycles on differentieble manifolds, Math
Sbor. (N.8.), 21 (63){(1947), 233-284 (AMS trenslations, no. 32)}.

: Smooth menifclds end thelr epplications in homotopy theory, Trudy !

Mat. Inst. im Steklov, no. 45, Izdat. Akad. Nauk SSSR, Moscow, ﬁj
1955 (AMS translations, series 2, vol. 11, 1959). %%
B. L. Reinhart: Cobordism and the Euler number, Topology, 2 (1963), if
173-178. f

V. A. Rohlin: A 3 dimensionel manifold is the boundary of a b dimensiona%
manifold, Dokl. Aked. Nauk SSSR, 81 (1951), 355. R

: Intrinsic hemologles, Dokl. Akad. Neuk SSSR, 89 (1953), 789-792. =

: Intrinsic homology theories, Uspekhi Mat. Nauk, 14 (1959), 3-20
(AMS translations, series 2, 30 (1963), 255-2T1).

V. A. Rohlin and A. 8. Svarc: Combinatorial invariance of the Pontr;]aginff’}%
classes, Dokl, Akad. Nauk 8SSR, 11k (1957), L490-k93.

1'4\

J. P. Berre: Groupes d'homotople et clasees de groupes ebeliens, Ann. of "
Math., 58 (1953), 258-29h.

L., Smith end R. E. Stong: The structure of BSC, (to appear).

: Exotic cobordism theories essoclated with classical groups,
(to appear).

E. H. Spanier: "Algebralc Topology”, McGraw-Hill Book Company, New !ork,q..\
1966. ;

M. Spivek: Speces satisfylng Poincare duelity, Topology, 6 (1967), 77-

J. Stasheff: A classification theorem for fiber spaces, Topology,
(1963), 239-2L6.

N. E. Steenrod: Cohamology invariants of ma.ppings, Ann. of Math., 50
(1949), 954-988.

N. E. Steenrod and D. B. A. Epstein: Cchomology operations, Princeton
University Press, Princeton, N. J., 1962. :

R. E. Stong: Determination-of H®(BO(k,.../=);Z) and E®(BU(k,...
Trans. Amer. Math. Soc., 107 (1963), 526-5 k, :



116. R. E. S:i.ong: Cobordism and Stiefel-Whitney numbers, Topology, 4 (1965),
241-256. . :

117. : Relations among characteristic numbers-I, Topology, 4 (1965), 267-
—  281; ~II, Topology, 5 (1966), 133-1k8.

118. - o’ On the squares of oriented msnifolds, Proc. Amer. Math. Soc.,
17 (1966), T06-T08.

1ng. : Cobordism of maps, Topology, 5 (1966), 2u5-258.

120. ___ : Involutions fixing projective spaces, Michigen Msth. J., 13 (1966),
bh5-Lh7,

121, : On complex-spin manifolds, Ann. of Math., 85 (1967), 526-536.

122, ___: Some remarks on symplectic cobordism, Ann. of Math., 86 {1967T),
425-433,

123, =~ __ : BStatlonary point free group actions, Proc. Amer. Meth. Soec., 18

(1967), 1089-1092.

124, J. C. S8u: A note on the bordism algebra of involutions, Michigen Math..
J., 12 (1965), 25-31.

125. D. Sullivan: The Hasuptvermutung for manifolds, Bull. Amer. Math. Soc.,
73 (1967), 598-600.

126. R. Thom: Espaces fibrés en spheres et carrés de Steenrod, hn. Sci.
Ecole Norm. Sup., 69 (1952), 109-181.

127. : Quelques propriétés globales des variétés differentiables, Comm.
Math, Helv., 28 (1954), 17-86.
128. : Les classes carectéristiques de Pontrjagin des variétés trianguleés
Symposium Internacional de Topologie Algebraica, Mexico, 1958.
129, : Travaux de Milnor sur le cobordisme, Semin.aire Bourbaki, 1958/59,
. Paris. _

130, C. T. C, Wall: Determination of the cobordism ring, Ann, of Math., T2
(1960)’ 292'

131. : Cobordism of pairs, Coom. Math. Helv., 35 (1961), 136-1L5.

132, : A characterization of simple modules over the Steenrod algebra
mod 2, Topology, 1 (1962), 249-25k4,

L]
133. : Cobordism exact sequences for combinatorial and differentieble
manifslds, Ann. of Math., T7 (1963), 1-15.

134, : Cobordism of combinatoriel n-menifolds for n < 8, Proc. Camb,
Phil. Soc., 60 (196k), 80T-811.-



135.
136.
137.

138.
139.

140,

1.

1k2.

viii.
C. T. C, Wall: Topology of smooth manifolds, Journal London Ma.th. Soc. 4
(1965), 1-20.

.t Addendun t¢ a paper of Conner and Floyd, Proc. Cam'b Phil. S C
62 (1986);, 171-175.

A. H. Wallace: Modifica.‘t;ions ﬂd, co‘pcmnding nanifolds, Cenadien J’ .
12 (1960), 503-525 :

R. Wells: Cobordism groups of immersions, Topplogy, 5 (1966), 281 5

G. W. Whitehead: Generalized homology theories, Trans. Amer. Math.
102 (1962), 227-283.

J. H. €. Whiteheed: On cl-eomplexea. Ann. of Math., W1 (19ho) 809-

R. E, Williamson, Jr.: Cobordism of combinatorial manifolds, Ann. of -
Math., 83 (1966), 1-33. -

Wu, Wen-Tstin: Classes earacteristiques et i-carrés &'une variété, C.
Aced. Sci. Paris, 230 (1950), 508-511.

912"\






