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Introduction 

Our subject starts with homology, homomorphisms, and tensors. 
Homology provides an algebraic "picture" of topological spaces, 

assigning to each space X a family of abelian groups H,(X), . . . , H , ( X ) ,  
. . . , to each continuous map f : X+Y a family of group homomorphisms 
f,: H,(X) +H, (Y). Properties of the space or the map can often be 
effectively found from properties of the groups H, or the homomorphisms 
f,. A similar process associates homology groups to other Mathematical 
objects; for example, to a group n o r  to an associative algebra A. Homo- 
logy in all such cases is our concern. 

Complexes provide a means of calculating homology. Each %-dimen- 
sional "singular" simplex T in a topological space X has a boundary 
consistini of singular simplices of dimension .n- 1. If K, is the free 
abelian group generated by all these %-simplices, the function a assigning 
to each T the alternating sum aT of its boundary simplices determines a 
homomorphism a:K,+K,-,. This yields (Chap. 11) a "complex" which 
consists of abelian groups K, and boundary homomorphisms a, in the 
form 

a a a a O+K,+K,+K,+K,+.. .  . 

Moreover, aa= 0, so the kernel C, of a: K, +K,-, contains the image 
aK,,,. The factor group H, (K) = C,/aK,+, is the %-th homology 
group of the complex K or of the underlying space X. Often a smaller 
or simpler complex will suffice to compute the same homology groups for 
X. Given a group IT, there is a corresponding complex whose homology 
is that appropriate to the group. For example, the one dimensional 
homology of ll is its factor commutator group 17/[U, IT]. 

Homomorphisms of appropriate type are associated with each type 
of algebraic system; under composition of homomorphisms the systems 
and their homomorphisms constitute a "category0- (Chap.1). If C and 
A are abelian groups, the set Hom (C, A) of all group homomorphisms 
f : C -+A is also an abelian group. For C fixed, it is a covariant "functor" 
on the category of all abelian groups A; each homomorphism a:A+A1 
induces the map u, : Hom (C, A) -+Horn (C, A') which carries each f into 
its composite u f with u. For A fixed, Hom is contravariant: Each 
y:Cf-+C induces the map y* in the opposite direction, Hom(C,A) +- 
Hom (C', A), sending f to the composite f y. Thus Hom ( ?,A) applied 

Mac Lane, Homology 1 



2 Introduction 

to a complex K =  ? turns the arrows around to give a complex 

Here the factor group (Kernela*)/(Image a*) is the cohomology Hn (K, A) 
of K with coefficients A. According to the provenance of K, it yields 
the cohomology of a space X or of a group l7. 

An extension of a group A by a group C is a group B)A with BIA LZ C; 
in diagramatic language, an extension is just a sequence 

of abelian groups and homomorphisms which is exact in the sense that 
the kernel of each homomorphism is exactly the image of the preceding 
one. The set Extl (C, A) of all extensions of A by C turns out to be an 
abelian group and a functor of A and C, covariant in A and contra- 
variant in C. 

Question: Does the homology of a complex K determine its cohomo- 
logy ? The answer is almost yes, provided each Kn is a free abelian group. 
In this case Hn(K,A) is detehined "up to a group extension" by 
H,, (K), H,,-, (K), and A ; specifically, the "universal coefficient theorem" 
(Chap. 111) gives an exact sequence 

involving the functor Extl just introduced. If the K,, are not free groups, 
there is a more complex answer, involving the spectral sequences to be 
described in Chap. XI. 

Tensors arise from vector spaces U, V, and W and bilinear functions 
B (u, v) on UxV to W. Manufacture the vector space U @ V generated 
by symbols u@v which are bilinear in U E U  and veV and nothing 
more. Then u@v is a universal bilinear function; to any bilinear B 
there is a unique linear transformation T: U@ V+W with B (zl, v) = 
T(u @v). The elements of V@V turn out to be just the classical tensors 
(in two indices) associated with the vector space V. Two abelian groups 
A and G have a tensor product A @G generated by bilinear symbols 
a@g; it is an abelian group, and a functor covariant in A and G. In 
particular, if K is a complex, so is A @ K: A @K,t A @ Kl+. - . 

Question: Does the homology of K determine that of A @ K ?  
Answer: Almost yes; if each K is free, there is an exact sequence 

0 + A @ H,, (K) -t Hn (A @ K) -+ Tor,(A, Hn-, (K)) -+ 0. 

Here Tor, (A, G) is a new covariant functor of the abelian groups A and 
G, called the "torsion product"; it depends (Chap.V) on the elements 
of finite order in A and G and is generated, subject to suitable relations, 
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by pairs of elements aeA and geG for which there is an integer m with 
ma=O=mg. ' Take the cartesian product X x Y  of two spaces. Can we calculate 
its homology from that of X and Y ?  A study of complexes constructed 
from simplices (Chap.VII1) reduces this question to the calculation of 
the homology of a tensor product K @ L  of two complexes. This calcu- 
lation again involves the torsion product, via an exact sequence (the 
Kiinneth Thm, Chap. V) 

But woe, if A is a subgroup of B, A @G is not usually a subgroup 
of B @G; in other words, if E : 0 +A + B +C +O is exact, the sequence 
of tensor products 

is exact, exce$t possibly at A @G. Happily, the torsion product repairs 
the trouble; the given sequence E defines a homomorphism E,  :Torl (C, G) 
+A @G with image exactly the kernel of A @G+B @G, and the 
sequence 

is exact. Call E,  the connecting homomorphism for Tor, and @. 

But again woe, if A is a subgroup of B, a homomorphism f :  A -tG 
may not be extendable to a homomorphism B+G; in other words, 
the exact sequence 0 +A + B C - t O  induces a sequence (opposite 
direction by contravariance!) 

which may not be exact at Hom(A,G). Extl to the rescue: There is a 
"connecting" homomorphism E* which produces a longer exact sequence 

o - + H o r n ( ~ ,  G) + H O ~ ( B ,  G) + H O ~ ( A ,  G) 5 
E ' 
-+ Extl (C, G) + Extl (B, G) + Extl (A. G) + 0. 

Now generalize; replace abelian groups by modules over any com- 
mutative ring R. Then Extl(A,G) ist still defined as an R-module, but 
the longer sequence may now fail of exactness at Extl(A,G). There is 
a new functor Exta (A, G), a new connecting homomorphism E* : Extl (A, G) 
+Exta(C,G), and an exact sequence extending indefinitely to the right 
as 

. . . + Ext" (C, G) + Ext" (B, G) + Ext" (A, G) Ext"+l (C, G) +. . . . 
1 * 



4 Introduction 

The elements of Extm(C, G) are suitable equivalence classes of long 
exact sequences 

O+G+Bm-l+...-+B,+C+O 

running from G to C through n intermediate modules. Similarly for 
the tensor product; there are functors Tor, (A, G), described via suitable 
generators and relations, which enter into a long exact sequence 

+Tor,+, (C, G) 2 Tor, (A, G) +Tor, (B, G) +Tor, (C, G) + . . 
induced by each E: o +A + B -+C +O. They apply also if the ring is 
not commutative - and A, B, and C are right R-modules, G a left 
R-module. 

These functors Tor, and Ext" are the subject of homological algebra. 
They give the cohomology of various algebraic systems. If IT is a group, 
take R to be the group ring generated by 17 over the integers. Then the 
group Z of integers is (trivially) an R-module; if A is any other R-module, 
the groups Extg(Z, A) are the cohomology groups Hn(17, A) of the 
group 17 with coefficients in A. If 9~ = 2, Hz(17, A) turns out, as i t  
should, to be the group of all extensions B of the abelian group A by 
the (non-abelian) group 17, where the structure of A as a 17-module 
specifies how A is a normal subgroup of B. If n = 3 ,  HS (n, A) is a group 
whose elements are "obstructions" to an extension problem. Similarly, 
Tor, (2, A) gives the homology groups of 17. Again, if A is an algebra 
over the field F, construct Extn by long exact sequences of two-sided 
A-modules A. The algebra A is itself such a module, and ExtU(A, A) is 
the cohomology of A with coefficients A ; again Extz and Ext3 correspond 
to extension problems for algebras. 

A module P is projective if every homomorphism P -+ B/A lifts to a 
homomorphism P -+ B. Any free module is projective ; write any module 
in terms of generators; this expresses it as a quotient of a free module, 
and hence of a projective module. 

How can Tor, and Extn be calculated? Write A as a quotient of a 
projective module P,; that is, write an exact sequence O t A t P , .  The 
kernel of $-+A is again a quotient of a projective 4. This process con- 
tinues to give an exact sequence ~ t A t $ t P , t  . . . . The complex P 
is called a "projective resolution" of A. It is by no means unique; 
compare two such 

a O t A t P ,  tP, t P ,  t... 
11 i f .  i f ,  : 

a 
i 

o t A t Z $  +-q '+t t t . . .  . 
Since P, is projective, the map P, +A lifts to f,:P, +Pi. The composite 
map &-+Pi lifts in turn to an f,:P,-+P; with af,=f,,a, and so on by 
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recursion. The resulting comparison fn:P,+P,' of complexes induces a 
homomorphism H, ( P  @ G) + Hn (P' @I G) . Reversing the roles of P and P' 
and deforming P+P' -t P to the identity (deformations are called homo-. 
topies) shows this an isomorphism Hn (P @G) =Hn (P' @ G). Therefore 
the homology groups Hn(P@G) do not depend on the choice of the 
projective resolution P, but only on A and G. They turn out to be the 
groups Tor, ( A ,  G ) .  Similarly, the cohomology groups Hn (P, G) are the 
groups Extn(A, G), while the requisite connecting homomorphisms E* 
may be obtained from a basic exact homology sequence for complexes 
(Chap. 11). Thus Tor and Ext may be calculated from projective resolu- 
tions. For example, if ll is a group, the module Z has a standard "bar 
resolution" (Chap. IX) whose cohomology is that of ll. For particular 
groups, particular resolutions are more efficient. 

Qualitative considerations ask for the minimum length of a projective 
resolution of an R-module A. If there is a projective resolution of A 
stopping with P,,, =O, A is said to have homological dimension at  
most n. These dimensions enter into the arithmetic structure of the 
ring R; for example, if R is the ring 2 of integers, every module has 
dimension at most 1 ; again for example, the Hilbert Syzygy Theorem 
(Chap. VII) deals with dimensions of graded modules over a polynomial 
ring. 

Two exact sequences o +A + B +C +O and o+C +D +F -to may 
be "spliced" at C to give a longer exact sequence 

in other words, an element of Extl(C, A) and an element of Extl(F, C) 
determine a two-fold extension which is an element of Exta (F, A ) ,  called 
their product (Chap. 111). These and similar products for Tor can be 
computed from resolutions (Chap. VIII). 

Every R-module is also an abelian group; that is, a module over the 
ring Z of integers. Call an extension E: A + B +C of R-modules 2-split 
if the.middle module B, regarded just as an abelian group, is the direct 
sum of A and C. Construct the group Ext&)(C, A) using only such 
2-split extensions. This functor has connecting homomorphisms E* for 
those E which are 2-split. With the corresponding torsion functors and 
their connecting homomorphisms, it is the subject of relative homological 
algebra (Chap. IX). The cohomology of a group is such a relative functor. 
Again, if A is an algebra over the commutative ring K, all appropriate 
concepts are relative to K;  in particular, the cohomology of A arises 
from exact sequences of A-bimodules which are split as sequences of 
K-modules. 



6 Introduction 

Modules appear to be the essential object of study. But the exactness 
of a resolution and the definition of a projective are properties of homo- 
morphisms; all the arguments work if the modules and the homo- 
morphisms are replaced by any objects A, B, . . . with "morphisms" 
a:  A - tB  which can be added, compounded, and have suitable kernels, 
cokernels (BlaA), and images. Technically, this amounts to developing 
homological algebra in an abelian category (Chap. IX). From the functor 
T,  (A) =A @G we constructed a sequence of functors T, (A) =Tor, (A, G). 
More generally, let T,  be any covariant functor which is additive 
[T, (al+ a,) = T,  al+ T,ae] and which carries each exact sequence 
0 -+A -+ B +C +O into a right exact sequence T,  (A) -+& (B) +& (C) -+O. 
We again investigate the kernel of To (A) +T, (B) and construct new 
functors to describe it. If the category has "enough" projectives, each A 
has a projective resolution P, and H,,(T,(P)) is independent of the 
choice of P and defines a functor T, (A) which enters into a long exact 
sequence 

. . +  T,(A) -+T,(B)-+T,(c)~T,-~(A) -+... . 
Thus To determinesra whole sequence of derived functors T, and of 
connecting homomorphisms E,  : T, (C) -+T,-, (A). These "derived" 
functors can be characterized conceptually by three basic properties 
(Chap. XII) : 

(i) The long sequence above is exact, 
(ii) If P is projective and 12 > 0, T,(P) =0, 
(iii) If E+Er is a homomorphism of exact sequences, the diagram of 

connecting homomorphisms commutes (naturality!) : 

In particular, given T,  (A) =A @ G, these axioms characterize Tor, (A, G) 
as functors of A. There is a similar characterization of the functors 
ExtU(C,A) (Chap. 111). Alternatively, each derived functor T, can be 
characterized just in terms of the preceding T,-,: If E : S, (C) +S,-, (A) 
is another natural connecting homomorphism between additive functors, 
each "natural" map of S,-, into T,-, extends to a unique natural map 
of S, into T,. This "universal" property of T, describes it as the left 
satellite of T,-,; i t  may be used to construct products. 

Successive and interlocking layers of generalizations appear through- 
out homological algebra. We go from abelian groups to modules to 
bimodules to objects in an abelian category; from rings to groups to 
algebras to Hopf algebras (Chap. VI); from exact sequences to 2-split 
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exact sequences to a "proper" class of exact sequences characterized 
by axioms (Chap. XII). The subject is in process of rapid expansion; 
the most general formulation is yet to come. Hence this book will 
proceed from the special to the general, subsuming earlier results in 
the concluding treatment (Chap. XII) of additive functors in an abelian 
category relative to a proper class of exact sequences. 

As each concept is developed, we take time out to stress its applica- 
tions. Thus Chap. IV on the cohomology of groups includes the topo- 
logical interpretation of the cohomology groups of lI as the cohomology 
of an aspherical space with fundamental group 17, as well as SCHUR'S 
Theorem that every extension of a finite group by another finite group 
of relatively prime order must split. Chap. VII, on dimension, studies 
syzygies and separable algebras. Chap. X on the cohomology of alge- 
braic systems includes the Wedderburn principal theorem for algebras 
and the cohomology (at various levels) of abelian groups. Chap. XI 
includes the standard construction of the spectral sequences of a filtra- 
tion and of a bicomplex, used to construct the spectral sequence of a 
covering and of a group extension. (The latter is due to LYNDON and 
not, as often thought, to the subsequent work of HOCHSCHILD-SERRE). 
Much of the general development of homological algebra in the other 
chapters can be read independently of these results. 

For the expert we note a few special features. The basic functors 
Ext and Tor are described directly: Ext, following YONEDA, by long 
exact sequences, Tor by an improved set of generators and relations. 
Resolutions are relegated to their proper place as a means of computa- 
tion. All the varieties of algebras (coalgebras, Hopf Algebras, graded 
algebras, differential graded algebras) are described uniformly by com- 
mutative diagrams for the product maps. Relative homological algebra 
is treated at two levels of generality: First, by a "forgetful" functor, 
say one which regards an R-module just as an abelian group, later by 
a suitable proper class of short exact sequences in an abelian category. 
The cohomology of groups is defined functorially by the bar construction. 
This construction later appears in conceptual form: For a pair of cate- 
gories with a forgetful functor and a functor constructing relative pro- 
jective~ (Chap. IX, $7) .  The proper definition of connecting homo- 
morphisms by additive relations (correspondences) is indicated; these 
relations are used to describe the transgression in a spectral sequence. 
This gives a convenient treatment of the transgression in LYNDON'S 

spectral sequence. Diagram chasing works in an abelian category with 
subobjects or quotient objects replacing elements (XII.3). 

Notations are standard, with the following few exceptions. A com- 
plex is K (latin), a commutative ring is K (greek). A "graded" module M 
is a family M,, MI,  . . . of modules and .not their direct sum ZM,, while 
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a family . . . , M-, , M,, MI, . . . is said to be "Z-graded". A monomorphism 
is written x :  A - B ,  an epimorphism a:  B+ C,  while xlla states that 
0 + A  + B +C +O is exact. A dotted arrow A+ B is a homomorphism 
to be constructed, a dashed arrow A---* B is a group homomorphism 
between modules, a half arrow A- B is an additive relation. We 
distinguish between a bicomplex (XI.6) and a complex of complexes 
(X.9); we "augment" but do not "supplement" an algebra. The dual 
of a resolution is a "coresolution". If u is a cycle in the homology class h 
of Hn (X), U E  E Hn is short for uc hcH,, while h is written h = cls u. The 
coboundary of an n-cochain f is 6f = (-I)"+'/ 8, with a sign (11.3). 

A reference to Thm V.4.3 is to Theorem 3 of section 4 of Chap. V;  
if the chapter number is omitted, it is to a theorem in the chapter at 
hand. A reference such as BOURBAKI [I9991 is to that author's article, 
as listed in the bibliography at the back of our book and published in 
the year cited; [1999b] is to the second article by the same author, 
same year. The influential treatise by H. CARTAN and S. EILENBERG 

on Homological Algebra is honored by omitting its date. The bibliography 
makes no pretense at completeness, but is intended to provide a guide 
to further reading, as suggested in the notes at the ends of some chapters 
or sections. These notes also contain occasional historical comments 
which give positive-and perhaps prejudiced-views of the develop- 
ment of our subject. The exercises are designed both to give elementary 
practice in the concepts presented and to formulate additional results 
not included in the text. 

Chap te r  one 

Modules, Diagrams, and Functors 

Homology theory deals repeatedly with the formal properties of 
functions and their composites. The functions concerned are usually 
homomorphisms of modules or of related algebraic systems. The formal 
properties are subsumed in the statement that the homomorphisms 
constitute a category. This chapter will examine the notions of module 
and category. 

1. The Arrow Notation 

If X and Y are sets, the cartesian froduct X x Y  is the set of all 
ordered pairs ( x ,  y) for x E X and y E Y. 

The notation f :  X+Y states that f is a function on X to Y. Formally, 
such a function may be described as an ordered triple f =(X, F, Y), with 
F a subset of X x Y  containing for each x€X exactly one pair ( x ,  y). 
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Actually we write f (x) = y, as usual, for the value of f at the argument x. 
Notice that we normally write the function f to the left of its argument, 
as in f (x). Notice also that each function f carries with it a definite set X 
as domain and a definite set Y as range. 

If f :  X+Y and g: Y+Z are functions, the composite functiolz gf, 
sometimes written go f, is the function on X to Z with the value 
(g f)  (x) = g (f ( x ) )  for each x E X. Since functions are written on the left, g f 
means first apply f, then apply g. This composite is defined only when 
Range ( f )  =Domain (g); in particular, we do not define the composite 
when Range (f) is a proper subset of Domain (g). 

For any set X, the identity 1 or 1, is the function 1 : X+X with 
1 (x) = x for all x. If S is a subset of X the function j :  S-tX with values 
j(s) =s  for all scS is called the ("identity") injection of S into X. For 
any f :  X+Y the composite f j :  S+Y (sometimes written flS) is the 
function f "cut down" to the subset S of its domain. Similarly, when Y 
is a subset of W and k: Y+W is the injection (with k(y) =y), the com- 
posite k f :  X+W is the function f with its range expanded from Y to W. 
Notice that the functions f and kf have the same values for each argu- 
ment x, but they are different functions, since the range is different. 
This distinction, apparently pedantic, will pay off. (See Example 2 in 
11.1.). 

We use the usual notations of set theory, with X n Y  denoting the 
intersection of the sets X and Y and with 0 the empty set. 

2. Modules 
Let R be a ring with identity 1 =+ 0. A left R-module A is an additive 

abelian group together with a function #: RxA-tA, written p (r, a) =ra,  
such that always 

( r + r t ) a = r a + r ' a ,  ( r r f )a=r ( r ' a ) ,  

It follows that Oa = O  and (-1)a = -a. Some authors define an R- 
module without requiring that l a  =a, and call a module with this 
property unitary. In this book, every ring has an identity and every 
module is unitary. 

Our treatment of left R-modules will apply, mutatis mutandis, to 
right R-modzcles. They are abelian groups A with ar E A defined so as to 
satisfy the corresponding four identities; for example a (rr') = (ar) r'. 

Modules appear in many connections. In case R is a field or a skew 
field, a left R-module is a left vector space over R. If F is a field and 
R=F[x] the polynomial ring in one indeterminate x with coefficients 
in F, then an R-module is simply a vector space V over F together with 
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a fixed linear transformation T: V+V; namely, T is the transformation 
given by left multiplication by XER. Consider 2-modules, where Z 
denotes the ring of integers. For each positive integer m, ma = a  + . . . + a 
(m times); hence a 2-module A is just an abelian group, with the usual 
meaning for integral multiples ma, mc2. If Z, is the ring of integers 
modulo k, a 2,-module A is an abelian group in which every element has 
order a divisor of k. Finally, take R to be a commutative ring generated 
by I and by an element d with d2= 0, so that R consists of all m + n d for 
integer coefficients m and n;  an R-module is then an abelian group A 
together with a homomorphism d: A+A such that d2=0; such a pair 
(A, d)  is called a "differential group" (11. I). 

A subset S of an R-module A is a swbmodzcle (in symbols, S<A), if S 
is closed under addition and if r E R, s E S imply r s  E S; then S itself is an 
R-module. The ring R is itself a left R-module. A submodule of R is a 
subset L of R closed under addition and with each rL<L; such a subset 
is also called a left ideal in R. If L is a left ideal in R and A a left R- 
module, the set 

LA ={all finite sums li a,, for li E L, ai E A) 

is a submodule of A, called the firodwct of the ideal L by the module A. 
In particular, the product LL' of two left ideals is a left ideal, and 
(L L1)A =L(LIA). 

If A and B are both R-modules, the notation a:  A+B or A A B  
states that a is an R-module homomorfihism of A to B; that is, a function 
on A to B such that always 

When a:  A-tB, call A the domain and B the range of a. The image 
Im (a) =aA consists of all elements a a  for a E A ; i t  is a submodule of the 
range B; the kernel Ker(a) consists of all a in A with a a  =0; it is a 
submodule of the domain A. If aA = B, we say that a is an e$imor#hism 
and write a:  A +B, while if Kera = 0 we say that a is a monomorfihism 
and write a :  A * B. Finally, a is an isomorphism if and only if a is both a 
monomorphism and an epimorphism. For each module A, the identity 
function IA:  A-tA is an isomorphism. For any A and B, the zero or 
"trivial" function 0 with every O(a) = O  is a homomorphism 0: A-tB. 
A homomorphism w : A 4 A  with range and domain equal is called an 
endomorphism. 

If al, a, : A+B are homomorphisms with the same domain A and the 
same range B, their sum al f a2, defined by (al + a,) a = al a + a,a, is an 
R-module homomorphism al f a ,  : A+B. 

If a :  A-tB and /?: B+C are R-module homomorphisms, the com- 
posite function /fa is also an R-module homomorphism /fa: A-tC; but 
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note that this composite is defined only when Range a =Domain ,!I. 
The composition of homomorphisms is associative when defined. A 
(two-sided) inverse of a:  A-tB is a homomorphism a-l: B+A such that 
both aa-l=IB and a-la = I A .  Moreover, a has an inverse if and only if 
it is an isomorphism, and the inverse is then unique. We write a:  A B 
when a is an isomorphism. A left inverse of a is any homomorphism y: 
B-tA with ya =IA ; it need not exist or be unique. 

A pair of homomorphisms (a, B) with Range a =Domain B = B, 

is exact at B if KerB = Im a. A longer sequence of homomorphisms: 

is said to be exact if (q-,, a,) is exact at Ad, for each i =2, . . . , n -1. 

For each submodule T <  B the injection is a monomorphism j :  T+B. 
Foreachb~Btheset  b+Tofa l l sumsb+twi th t~Ti sacose to f  T i n  B;  
two cosets b1 + T and b, + T are either disjoint or equal (the latter when 
b l - b , ~  T). Recall that the quotient gro* (factor group or difference 
group) B/ T has as its elements the cosets of Tin B, with (bl + T) + (b, + T) 
= (b, + b,) + T as addition. Since T is a submodule, the abelian group 
BIT becomes an R-module when the product of any r E R with a coset is 
defined by r (b + T )  = r b + T; we call BIT a quotient module. The func- 
tion q which sends each element b EB into its coset q b = b + T is an epi- 
morphism q: B+B/T, called the canonical map or projection of B on 
B/ T. 

Proposition 2.1. If : B+Bf with T< Ker B, there is a unique module 
homomorphism B' : B/T-tBr with Prq =B ; that is, the diagram 

can be "filled in" by a unique B' so as to be commutative (B'q = B). 

Proof. Set B' (b + T) =Bb; since T< Ker B, this is well defined. In 
particular, if 8: B+Bf is an epimorphism with kernel T,Pf: BITEB'. 

This result may be worded: Each B with /3 (T) = 0 factors uniquely 
through the projection q. This property characterizes q: B+B/T up 
to an isomorphism of BIT, in the following sense: 

Proposition 2.2. If T < B  and 5 :  B+D is such that c(T)=O and 
each B : B 3  B' with P (T) = 0 factors uniquely through 5, there is an iso- 
morphism 0 :  B I T s D  withc=Bq. 
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Proof. Factor 5 through q and 7 through[, so C=['q, 7 =$C. Hence 
(= (c'q') [= I[. But factors uniqzcely through 5, so ['ql= 1. Symmetri- 
cally, qf[' = 1. Hence q' = ((')-I and [' is the desired isomorphism 13. 

For any T<B the injection j and the projection q yield an exact 
sequence. 

O+TL B J B / T + O .  
Conversely, let 

(x, o): o+-AABLC+O 

be any short exact sequence; that is, an exact sequence of five R-modules 
with the two outside modules zero (and hence the two outside maps 
trivial). Exactness at  A means that x is a monomorphism, at  B means 
that xA = Kera, at C that o is an epimorphism. Thus the short exact 
sequence may be written as A-B+C, with exactness at  B. Now x 
induces an isomorphism x' : A x A and a an isomorphism a' : B/x A e C ; 
together these provide an isomorphism of short exact sequences, in the 
form of a commutative diagram 

In brief, a short exact sequence is but another name for a submodule 
and its quotient. 

Each homomorphism a :  A+B determines two quotient modules 

Coim a = AIKer a ,  Coker a = B/Im a ,  

called the coimage and the cokernel of a. This definition gives two short 
exact sequences 

Ker a - A+ Coim a, Im a -B+ Coker a ,  (2.2) 

an isomorphism Coim a g I m  a, and a longer exact sequence 

By Prop. 2.1, p a  = 0 implies that /l factors uniquely through q as /l =B1q. 
Dually, if some y: A1+A has ay  =0, then y factors through j as y =jyl 
for a unique y': Af+Ker a. This property characterizes j: Ker a+A up 
to an isomorphism of Ker a. Observe the dual statements: a is a mono- 
morphism if and only if Ker a =0, and is an epimorphism if and only if 
Coker a = 0. This duality will be discussed in $8. 

If a :  A+B and S<A, the set a s  of all elements a s  for SES is a sub- 
module of B called the image of S under a. Similarly, if T<B, the set 
a-I T of all s E A with a s  E T is a submodule of A, called the (complete) 
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inverse image of T. In  particular, Ker a = c lO,  where 0 denotes the sub- 
module of B consisting only of the zero element. 

For K<S<A the module S/K is called a subquotient of A ;  it is a 
quotient module of the submodule S of A,  and simultaneously a submo- 
dule of the quotient module A/K. Furthermore, if K<K1<S'<S<A, 
then K1/K is a submodule of S1/K and the composite projection St+ 
S1/K+ (S1/K)/(K'/K) has kernel Kt,  hence the familiar isomorphism 
(S1/K)/(K'/K) G S1/K'. This allows us to write each subquotient 
(S1/K)/(K'/K) of a subquotient S/K directly as a subquotient of A. 

Let S/K be a subquotient of A ,  S'IK' one of A'. If a:  A-tA' has 
a S < S' and a K < K', then as  + K' is a coset of S1/K' uniquely determined 
by the coset s+ K of S/K. Hence a,  (s+ K )  =as+ K' defines a homo- 
morphism 

a, : S/K -+ S1/K' (a S < S', a K < K') (2.4) 

called the homomorphism induced by a on the given subquotients. 
If S and T are submodules of A,  their intersection S n T  (as sets) 

is also a submodule, as is their union SU T ,  consisting of all sums s + t 
for scS,  ~ E T .  The Noether isomorfihism theorem asserts that 1, induces 
an isomorphism 

1.: S / ( S n T ) r ( S u T ) / T .  (2.5) 

3. Diagrams 

The diagram of R-modules and homomorphisms 

O+AAB$C+O 
1. .Is b (3.1) 

o +A'Z B I ~  cl+o 
is said to be commutative if x'cc = px: A+Bf (left square commutative!) 
and a'#l = yo: B+C1 (right square commutative!). In general, a dia- 
gram of homomorphisms is commutative if any two paths along directed 
arrows from one module to another module yield the same composite 
homomorphism. 

Lemma 3.1. (The Short Five Lemma.) If the commutative diagram 
(3.1) of R-modules has both rows exact, then 

(i) If a artd y are isomor~hisms, so is p ;  
(ii) If a and y are monomorphisms, so is /I; 

(iii) If a and y are epimorphisms, so is p. 
The same conclusions hold for a diagram of (not necessarily abelian) 
groups. 
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Proof. Clearly (ii) and (iii) together yield (i). To prove (ii), take 
b E Ker @. The right square is commutative, so y a b = a'p b = 0 ;  as y is a 
monomorphism, this means that a b = 0. Since the top row is exact, there 
is an element a with xa =b. Now the left square is commutative, so 
x'aa =pxa = @b =O. But the bottom row is exact at A', so aa = 0. Since 
a is a monomorphism, a = 0, and hence b =xa = 0. This proves @ a 
monomorphism. 

To prove (iii), consider any b' in B'. Since y is an epimorphism there 
is a C E C  with yc =arb'; since the top row is exact, there is a ~ E B  with 
a b = c. Then a' Gg b - b') = 0 in C'. The exactness of the bottom row 
yields an a' E A' with x'a' =@ b - b'. Since a is an epimorphism, there is 
an aEA with aa=af and hence with Bxa=xfaa=@b-b'. Then 
b' =@ (b -xu) is in the image of @, q. e. d. 

This type of proof is called "diagram chasing". Inspection shows 
that the chase succeeds just as well if the groups are non-abelian (multi- 
plicative) groups. 

By the same method, the reader should verify the following more 
general results (as formulated by J. LEICHT) : 

Lemma 3.2. (The Strong Four Lemma.) Let a commtative diagram 

have exact rows, z an efiimorfihism, and v a monomorfihism. Then 

Here the dots in the diagram stand for modules or for not necessarily 
abelian groups. 

A simpler version (the Weak Four Lemma) states, for the same com- 
mutative diagram with exact rows, that @ is a monomorphism if a and 
v are monomorphisms and z an epimorphism, while a is an epimorphism 
if 7 and @ are epimorphisms and v a monomorphism. A more frequently 
used consequence is 

Lemma 3.3. (The Five Lemma.) Let a commutative diagram 

have exact rows. If al, a,, a,, a, are isomorphims, so is Q. I n  more detail, 

(i) If al is an efiimorfihism and a, and a, monomor~hisms, then a, is a 
monomorfihism, 
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(ii) If a, i s  a monommphism and a,  and a,  epimorphisms, then or, i s  a n  
epimorphism. 

Proof. Chase the diagram, or apply Lemma 3.2 twice to the left- 
hand and right-hand portions. 

4. Direct Sums 

The external direct sum A,@A, of two R-modules A,  and A ,  is the 
R-module consisting of all ordered pairs (a,, a,), for aie A i ,  with module 
operations defined by 

The functions L and n defined by L, a, = (a,, 0 )  , &,a, = (0, a,), n, (a,, a,) = q , 
n, (a, , a,) = a, are homomorphisms 

11 

A,& A,BA,,C A, 
Zl 8 1  

(4.1) 

which satisfy the identities 

n l h = l ,  n l ~ , = O ,  
n 2 h z 0 ,  3 ~ 2 ~ 2 = 1 ~ , 1  I (4.2) 
h%t l+h%=1~, t~~~.  

Call 1, and r ,  the injections and q, n, the projections of the direct sum. 
The diagram (4.1) contains partial diagrams, to wit: 

Injective direct sum diagram : A -%.A,@ ~ , * f r -  A,. 
Projective direct sum diagram : A,Z A,@ A 2 2  A,, 
One-sided direct szcm diagram: A,@ A,= A,, 
Sequential direct sum diagram: A,-!$ A,@ A , Z  A ,  ; 

in particular, the last diagram is a short exact sequence. Instead of 
defining the direct sum via elements, we can characterize each of these 
diagrams by conceptual properties. With a view to later generalizations 
(Chap. IX), our proofs of these properties will be so cast as to use only the 
diagram (4.1), the identities (4.2), and formal properties of the addition 
and composition of homomorphisms; in particular, the distributive laws 
B(ai+aa)=Bai+Baa and ( a i + a z ) ~  = a i y + a 2 ~ .  

Proposition 4.1. For given modules A ,  and A ,  any diagram 

of the form (4.1) and satisfying the five iderttities like (4.2) i s  isomorphic to 
the direct s m  diagram. I n  more detail, there i s  exactly one isomorphism 
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8 : B-tA, @ A, such that 

nj8 =nip 84=ri, for i=1,2.  (4-3) 

Proof. Define 8 as 8 =c,n;+ ~,nj and the analogue 8': A,@A,+B by 
8'= tin,+ 1; n,. The identities (4.2) show that 8' is a two-sided inverse 
for 8 and thus that 8 is an isomorphism; the properties (4.3) follow 
directly from (4.2). Also if 8 satisfies (4.3), then 8 = (a1%+ r2n2) 8 = 
L,&+ r,n;, so 8 is indeed uniquely determined. 

Next we characterize the one-sided direct sum diagram. 
I" n" Proposition 4.2. Any diagram A,- B+A2 with n" L" = 1,4, i s  iso- 

morphic to a "one-sided" direct sum diagram A,@ A,=A, with A, = Kern". 
The proof requires an isomorphism 8: B+A,@A, with 8c"= r,, 

n, 8 =nu. Define 8 by 8 b = (b - run" b,n" b) and 8-1 by 8-I (4,  a,) - 
4+r1'a2. 

To prove this without using elements, consider the diagram 

with L' the injection. Since n" ( I  .- ~ " n " )  = O , f B -  r" n" factors through s' 
as I B -  ~"n"=r'n' for some n': B-tKern". Now n " s l = O  and s'n'r'=~' 
give n' L'= 1, SO we have identities like (4.2) and can apply Prop. 4.1. 

Now write the direct sum as a short exact sequence ( r , ,  n,). Here c, is 
a right inverse of n, , while n, =I shows n, a left inverse of I,. 

Proposition 4.3. The following properties of a short exact sequence 
(i', n") : A, - B + A,  are equivalent: 

(i) n" has a right inverse L" : A,-+B, with nu r" = 1 ; 
(ii) L' has a left inverse n' : B+A,, with n' c' = 1 ; 
(iii) The sequence i s  isomorphic (with identities on A, and A,) to 

A short exact sequence with one (and hence all) of these properties 
is said to split (some authors say instead that the sequence is inessential). 

Proof. We just observed that (iii) implies (i) and (ii). Conversely, 
exactness shows that L' gives the isomorphism Al=Kernu, so (i) implies 
(iii) by Prop. 4.2. Similarly, (ii) implies (iii). 

Now consider pairs of coterminal homomorphisms a,, a,, as in the 
diagram 

D:  A , ~ B ~ A , .  (4.4) 

Such a diagram is said to be universal with ends A, and A, if to every 
diagram D': A1+B1+-A, with the same ends there exists a unique 
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homomorphism of D to D' which is the identity on each Ai.  In other 
words, D is universal if to each rectangular diagram 

with D as first row and end maps the identities, there is a unique way 
of inserting the middle dotted arrow so that the whole diagram becomes 
commutative @%=a;, p a 2 = 4 ) .  

Proposition 4.4. The (injective) direct sum diagram A,-+A,@ A,+A, is 
universal with ends A, alzd A,.  Conversely, any diagram (4.4) which is 
universal with ends Aj  is isomor+hic to this direct sum diagram (with 
identities on A, and A,).  

Proof. To show A,@ A,  universal, define the homomorphism p needed 
for (4.5) as p(a, ,  a,)=a;a,+a;a, ; that is, as p =a;nl+a;n2; this is the 
only choice for p. To prove the converse, it will suffice to show that any 
two diagrams universal with ends A, andA, are isomorphic (with identities 
on Ai).  Suppose then that both rows in (4.5) are universal. Since the 
top row is universal, there is a p:  B+B1 with pa i=4 ;  since the bottom 
row is universal, there is a /?' : B1-+B with /?'a;.= a,.. Then (/?'p) a j=ai ,  
for j = 1 ,  2.  Since also I B a j = a j ,  the uniqueness property for the top row 
gives = I B .  Similarly the uniqueness for the bottom row gives 
1 =p/?'. Hence p and p' are mutually inverse isomorphisms, q. e. d 

Since the universal diagram is unique up to an isomorphism, it follows 
that the maps ai in any universal diagram with ends A, and A,  are 
always monomorphisms, since they are such for the external direct sum 
diagram. 

Notice that the proof of the converse part of the proposition did not 
use elements of the modules, but only formal arguments with homomor- 
phisms. This proof is thus valid in any category, in the sense soon 
(§  7) to be explained. 

Dually, a pair of coinitial maps forming a diagram D : A, t C-t A, is 
couniversal with ends A, and A,  if to each rectangular diagram 

with D as first row and with vertical maps 1 on each Ai, there is a unique 
way of inserting the middle dotted arrow to make the diagram commuta- 
tive. The reader should prove 

Mac Lane, Homology 2 
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Proposition 4.5. The (projective) direct sum diagram 

is couniversal with ends A, a d  A,.  Conversely, any diagram couniversal 
with ends A, and A, is isomor#hic (identities on each Aj )  to this diagram. 

Direct sums of more than two modules work similarly. For example, in 
a direct sum A,@A,@A, an element may be regarded as an ordered 
triple (%, a,, q) or as a function a on the set { 1 , 2 , 3 }  of indices with 
a ( i )  E A+ .  In general, given a family of modules {A,} indexed by an arbi- 
trary set T, the cartesian product n, At is the set of all those functions f 
on T to the union of the sets A, for which f (t) E A, for each t .  Define the 
module operations "termwise"; that is, define the functions f + f' and 
rf for r e R  by 

( f  + f ' )  (4 = f (4 + f' (4 , f ( 4  = f 4 )  s t T. 

Then n, A, is an R-module. The homomorphisms n,: 17, A, + A  
defined by n, f = f ( t)  are called the projections of the cartesian product. 

For given A, ,  let {y ,  : B+A,} be a diagram with one additional module 
B and one homomorphism y, for each t ET.  This diagram is couniversal 
with ends A, if to each diagram {y;: B1+ A, 1 t E T }  there exists a unique 
B : B1-+B such that y; = y, for all t .  The projections of the cartesian pro- 
duct n, A, yield such a couniversal diagram, and any two such diagrams 
are isomorphic, as before. 

The externd direct sum z, A, of the same modules A, is that submodule 
of 17, A, which consists of all those functions f with but a finite number 
of non-zero values. The homomorphisms 6,: At+z t  At are defined for 
each a €A,  by letting it (a) be the function on T with [it  (a)]  (t)  =a ,  
[4  (a)]  (s) = 0 for s +t .  These homomorphisms are called the injections of 
the direct sum. As in the case of two summands, the diagram 
{ i t :  A t+z t  A,} is universal for given ends A,,  and is determined up to 
isomorphism by this fact. 

For a finite number of summands the external direct sum is identical 
with the cartesian product. This implies that any finite universal 
diagram ai: A -+ B, for j = 1, . . . , n, yields a couniversal diagram 
{yi:  B+Aj}. More explicitly, each yi is that map which is uniquely 
determined (since B is universal) by the conditions yi aj = 1 A , ,  yi ak = 0 
for j + k. Dually, the reader should obtain a universal diagram from the 
couniversal one. 

Direct sums may be treated in terms of submodules. If S, is any 
family of submodules of B indexed by a set T, their union US, is the set 
of all finite sums s,+ . . . + s, with each sj in some St ; it is a submodule 
of B containing all the St and contained in any submodule which con- 
tains all the s,. Their intersection nS ,  is the intersection of the sets S, ; 
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it is a submodule of B  contained in all the S, which contains every sub- 
module contained in every St .  We also write S 1 u  S,  or Sl n S,  for the 
union or intersection of two submodules S l ,  S,. 

Proposition 4.6. For submodzlles St< B ,  t E T ,  the following conditions 
are equivalent : 

(i) The diagram {j,: St- tB} ,  jt the injection, is universal for ends S t ,  
(ii) B  = U S ,  a d ,  for each to ET,  St?( U St )  = 0. 

t*:. 
Proof. Given (i), B is isomorphic to 2 S t ,  which satisfies (ii). Conver- 

sely, given (ii), the condition B = U S t  states that each b+O can be 
written as a finite sum b = sl+ . + s, of elements si + 0 belonging to 
different submodules St,, i = I ,  . . . , n ;  the second condition of (ii) states 
that this representation is unique. For any other diagram {a,: St+B1} the 
homomorphism /I : B-tB' defined by /I (s,+ . . + s,) =at, s1 + . . . + ah s, 
is the unique homomorphism with /? j, =a ,  ; hence the universality. 

When these conditions hold, B  is called the internal direct sum of its 
submodules S t .  Therefore an internal direct sum is isomorphic to the 
external direct sum 2 S t .  In particular, B  is the internal direct sum of 
two submodules Sl and S,  if and only if S,n S ,  = 0 and S1u S,  = B  ; these 
conditions imply B  r S,@ S ,  . 

Exercises 
I .  Show that a diagram (4.1) with nl L, = I ,  n, I, = 1 ,  n, L, = 0, and ( L , ,  n,) exact 

is a direct sum diagram. 
2. If a:  A -+A satisfies aa= a, then A is the direct sum of Ker a  and Im a. 

3. Show that the diagram {at: At-tB, tET) is universal for given ends A ,  if and 
only if (i) B  is the union of its submodules atAt;  (ii) there are homomorphisms 
nt: B-+At for t ET with nt at = 1 and n, at = 0 for s * t. 

4. State and prove the dual of Prop. 4.6. (The dual of a submodule is a quotient 
module.) 

5.  If a;,: A ~ + A ;  for i ,  j = l ,  2, show that there is a unique w :  A ~ @ A , + A ; @ A ;  
with n ! w l ; = a . .  1 $1 for i, j = l ,  2. 

5. Free and Projective Modules 
The ring R, as a left R-module, has the following characteristic 

property. If a is any element of an R-module A ,  there is a unique 
R-module homomorphism pa: R-tA with pa(l) = a ;  namely, the function 
pa with pa(r) = r a. 

A free left R-module is any direct sum of isomorphic copies of the left 
R-module R. In view of the above property of R, we can say more 
explicitly that the left R-module F is free on a subset T of its elements if 
the homomorphisms p,: R-tF with pt(r) =rt  form a universal diagram 
with ends R (one for each t ) .  As each homomorphism v :  R-tA is uniquely 
determined by v (I) E A, this universal property can be restated as follows. 

2* 
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Proposition 5.1. The module F i s  free on a subset T < F  if and only if 
to each module A and each set function g on T to A there i s  a unique modde  
homomorphism p : F-tA with p ( t)  = g ( t )  for every t .  

The isomorphism of internal and external direct sums gives. 

Proposition 5.2. The module F i s  free on a subset T<F if and only if 
each element of F can be represented uniquely as a szcm rr, t with coeffi- 
cients r, E R which are almost all zero (i. e., all but a finite lzumber are zero). 

A module F free on T is determined up to isomorphism by T. Given R 
and any set T, we may construct an R-module free on T as F= z, Rt, 
where Rt is the set of all r t  for r € R ,  with the obvious module structure. 

The left module A is generated by a subset U of its elements if A is the 
only submodule of A containing all u EU; that is, if every element of A 
can be written as a finite sum 2 ri ui with each r,c R. A module free on T 
is generated by T. 

Proposition 5.3. Every R-module i s  isomorphic to a quotient of a 
free module. 

Proof. Given the module A, take a subset Ugenerating A (e. g., take 
U=A). Form afreemoduleFon Uandthemapp:F- tA with,u(u)= 
u6A. Since U generates A, p is an epimorphism, so A zF/(Kerp). 

A module A is finitely generated (or, of fiwite type) if it is generated by 
a finite subset; that is, if it is isomorphic to a quotient module of a finite 
direct sum RCB . . - CBR. A module C is cyclic (or monogenic) if it is gener- 
ated by one element; then CsRIL, where L is a submodule of R (i. e., 
L is a left ideal in R). The main theorem of elementary divisor theory 

' asserts that if R is a commutative integral domain in which every ideal 
is principal (i. e., monogenic), then any finitely generated R-module is 
isomorphic to a direct sum of cyclic modules. In particular (R=Z) any 
finitely generated abelian group is a direct sum of cyclic groups. 

A module P is called projective if in each diagram 

. P 
:' 1. (5.1) 

B*,  bC 

with a an epimorphism, the dotted arrow can be filled in to make the 
diagram commutative. In other words, given an epimorphism u: B+C, 
each map y: P- tC  can be lifted to a p: P-t B such that up =y. 

Lemma 5.4. Every free module i s  projective. 

Proof. Let F be free on generators t. Since a B = C, we can choose for 
each t an element b, E B such that a b, = y t. Then the unique @: F+B 
with Pt = b, for each t lifts y, as desired. 
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Projective modules will be repeatedly used. Note that a projective 
module need not be free. For example, take R =Z@Z, the direct sum 
of the ring Z of integers with itself (with product (m, n) (m', n')= 
(mm', nn')). Then the first summand 2 ,  as submodule of an R-module, 
is an R-module. I t  is clearly not free, but is projective according to 

Proposition 5.5. An R-module P is projective if and only if it is a direct 
summalzd of a free R-module. 

Proof. Suppose first that n :  F= P @  Q-tP with F free. Given any dia- 
gram ( 5 . 1 ) ,  yn:  F-tC lifts to /?: F+B with a/?=yn.  The injection 
1 :  P+P@ Q has a (/I r )  = y n  L = y, so y lifts to /? r and P is therefore pro- 
jective. 

Conversely, if P is projective, Prop. 5.3 gives an epimorphism 
e :  F+ P with F free. Lift I p :  P+ P to /?: P+F with e/? = 1. By Prop. 
4.2, F is the direct sum of /?P r P  and Kere. 

Any subgroup of a free abelian group is free; hence every projective 
2-module is free. 

Exercises 
1. Show that a direct summand of a projective module is projective. 
2. For m, n relatively prime, show 2, projective (but not free) over the ring 

2, , of integers modulo mn. 

3. Prove: Any direct sum of projective modules is projective. 

6. The Functor Horn 

Let A and B be R-modules. The set 

Hom,(A, B) = { f  I f :  A-tB) 

of all R-module homomorphisms f of A into B is an abelian group, under 
the addition defined for f ,  g :  A+B by ( f  + g )  a = fa  +ga.  If A= B, 
Hom, (A, A) is a ring under addition and composition of homomorphisms ; 
this ring is called the ring of R-endomorplzisms of A. In case the ring R 
is commutative, Hom, (A ,  B) may be regarded not just as a group but 
as an R-module, when t f :  A+B is defined for t cR and f :  A+B by 
(t f )  (a) = t ( f  a) for all a E A. That t f is still an R-module homomorphism 
follows from the calculation 

which uses the commutativity of R. 
This group Hom occurs frequently. If R is a field, Hom,(A, B) is 

the vector space of all linear transformations of the vector space A into 
the vector space B. If G is an abelian group, and P the additive group 
of real numbers, modulo 1 ,  both G and P can be regarded as 2-modules, 
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and HomZ(G, P) is the character group of G. If rp: R+Hom,(G, G) 
is any ring homomorphism, then the abelian group G becomes an R- 
module with left operators 7g =rp  (7)g. All left R-modules can be so 
obtained from such a G and rp. 

Consider the effect of a fixed module homomorphism /?: B+B' on 
HomR(A, B). Each f :  A-tB determines a composite /?f: A+B1, and 
/? (f + g) =/? f +/?g. Hence the correspondence f +/? f is a homomorphism 

/?* : Horn, (A, B) + HornR (A, B') (6.1) 

of abelian groups, called the homomorphism "induced" by /?. Explicitly, 
/?*f = /?o  f. If B is an identity, so is /?,; if B is a composite, so is /?,; in 
detail 

(IB)* = I H ~ ~ ( A , B )  9 (BPI)* =/?* 9 (6.2) 

the latter whenever the composite /?/?I is defined. We summarize (6.1) 
and (6.2) by the phrase: HomR(A, B) is a "covariant functor" of B 
(general definition in 9 8). 

For the first argument A a reverse in direction occurs. For a fixed 
module homomorphism a:  A+A1, each f ' :  A1+B determines a compo- 
site f'a: A+B with (f'+gl)a = f'a+gla. Hence a* f'= f'a defines an 
"induced" homomorphism 

a*: HomR(A1, B) +HomR(A, B) (6.3) 

of abelian groups. Again (I,)* is an identity map. If ct: A+A1 and 
a': A1+A", the composite a'a is defined, and the induced maps are 

a* HornR (A", B) d. .omR (A', B) - HornR (A, B) ; 

one shows that a*al* = (ala)*. This reversal of order generalizes the 
fact that the transpose of the product of two matrices is the product of 
their transposes in ofiposite order. Because of this reversal we shall say 
that HomR(A, B), for B fixed, is a co.ntravaria.nt functor of A. 

Now vary both A and B. Given a :  A+A1 and /?: B-tB', each 
f :  A'+B determinesa composite #I fa: A+B'; the correspondence f -+#I f a 
is a homomorphism 

Hom (a, /?) : Hom (A', B) + Hom (A, B') 

of abelian groups, with a*/?, = Hom(a, /?) =/?,a*. It has the properties 

Hom (I, 1 ') =the identity, 

Hom (aa', @/?I )  =Horn (a', /?) Hom (a, /?I) , 

whenever the composites aa' and /?/?I are defined. We say that Hom is a 
functor in two variables, contravariant in the first and covariant in the 
second, from R-modules to groups. 
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If a,, a, : A+A' are two homomorphisms one shows that 

Horn (a,+ a,, B) = Horn (al, B) + Horn (a,, B) . (6.4) 

Similarly, Horn (a, a+ B2) = Horn (a, /I,) + Horn (a, /I,). These two pro- 
perties state that Horn is an "additive" functor. 

For B fixed, apply Horn(--, B) to a direct sum diagram (4.1). The 
result 6: 

Horn (A,, B) 7 H o m  (A, @ A,, B) 5   om (A,, B) 
n~ r: 

changes injections to projections 6 7 ,  but by (6.4) still satisfies the iden- 
tities (4.2) for a direct sum diagram. Similarly, for A fixed, a direct sum 
diagram on modules B, and B, is carried by Horn ( A ,  -) to a direct sum 
diagram (injections to injections). Thus 

Hom(A,@A,, B)sHom(A,, B)@Hom(A,, B), 
Horn (A, Bl@ B,) r H o m  (A, B,) @ Horn (A, B,) . 

In particular, Horn (A, B,) - Horn (A, B, @ B,) + Horn (A, B,) is exact. 

Theorem 6.1. For any module D and any sequence 0 - A S B ~ L  exact 
at A and B the induced sequence 

of abelian groufis i s  exact. 

Proof. To show x, a monomorphism, consider any f :  D+A with 
x, f = 0. For each d E D, x, f d =x f d =O; since x is a monomorphism, each 
f d  = 0, so f = 0, and therefore x, is a monomorphism. Clearly, B*x* = 
(Bx), = O* =0, SO Im x, < Ker B,. For the converse inclusion, consider 
g: D+B with B,g =O. Then Bgd = O  for each d .  But KerB =%A, by the 
given exactness, so there is a unique a in A with x u  =gd .  Then fd = a  
defines a homomorphism f : D+A with x, f =g .  Thus Im x, > Kerp, , 
which completes the proof of exactness. 

By a corresponding argument, the reader should prove 

Theorem 6.2. If M 2 B Z C - t  0 i s  exact, and D i s  any  module, the 
induced sequence 

o -+HornR (C, D) 2 HornR (B, D) % H o ~ ,  (M, D) (6.7) 
i s  exact. 

A sequence M+B+C+O exact at B and C is called a short right 
exact sequence. This theorem states that the functor Horn,(-, D) for 
fixed D turns each short right exact sequence into a short left exact 
sequence ; by the previous theorem, Horn, (D, -) carries a short left exact 
sequence into a short left exact sequence. If A - B I C  is a short exact 
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sequence, we wish to have exact sequences 

o+Hom,(D, A)+Hom,(D, B)% Hom, (D, C)+?, (6.6') 

o-tHomR(C,D)-+HomR(B,D)+HornR(A,D)-+?. (6.7') 

By the two theorems above, each is exact except perhaps at the right 
end. With 0 for ? on the right, these would not usually be exact. For 
example, exactness of (6.6') at Hom, (D, C) would assert that each 
h: D-tC has the form h =crhlfor some h': D+B; i. e., that each map hinto 
the quotient C = B/xA could be lifted to a map h' into B (as would be 
possible were D projective). To see that this need not be so, take R=Z 
and D=Z, the cyclic group of order m. For the short exact sequence 
Z-Z+Z,, with first map x the operation of multiplication by m, the 
sequence (6.6') becomes 0 -to -+O +Horn (Z,, Z,)-tO, and is manifestly 
inexact. Similarly, (6.7') can be inexact with a zero at ?, since for A < B a 
homomorphism f : A+D cannot in general be extended to one of B into D. 
I t  will be possible to describe an object which is the "obstruction" to the 
problem of extending such an f. The group of these objects, placed at 
" ? "  in (6.7'), will restore exactness. This construction, done for both 
(6.6') and (6.7'), is one of the objectives of homological algebra. 

We now can formulate several characterizations of projective modules. 

Theorem 6.3. The following properties of a module D are equivalent: 
(i) D is projective, 
(ii) For each e+hwr+hism a: B+C, a, : Hom, (D, B)-+Hom, (D, C) 

is an epimorphism, 
(iii) If  A-BaC is a short exact sequence, so is O+Hom,(D, A) 

-tH0mR(D, B)+ Hom,(D, C)+O, 
(iv) Every short exact sequence A-B+D splits. 

Proof. In (ii) the statement that a, is an epimorphism means that 
each y : D+C can be factored as y =up; this is exactly the statement that 
D is projective. Given the exactness of (6.6), (ii) is equivalent to (5).  
Finally, if D is projective and a: B+D, the map ID: D+D lifts to a 
p: D+B withap =I, so the sequence of (iv) splits. Conversely, if every such 
sequence ending in D splits, write D as an image Q: F+D of some free 
module F. Since the sequence Ker Q -F+ D splits, D is a direct summand 
of F, by Prop. 4.2, hence is projective, by Prop. 5 . 5 .  

Exercises 
I .  Any left ideal L in the ring R is an R-module, and L-R+R/L is exact. 

Suppose La+ L. 
(i) The sequence (6.63 need not be exact with zero for ? on the right. Show this 

for D = R/L by proving that Hom, (RIL, R) + Hom, (RIL, R/L) is not an epimorphism 
(1 is not an image !). 



7. Categories 2 5 

(ii) The sequence (6.7') need not be exact with zero for ? on the right. Show this 
for D=L b y  proving that HomR(R, L) +HomR(L, L) is not an epimorphism ( I  not 
an image I ) .  

2. For any set T of  indices establish an isomorphism 

HornR (& At. B) snt HornR (At,  B) 

b y  mapping each f :  2 At+B into the collection of its restrictions ft  : At +B. 

3. For any set T of  indices establish an isomorphism 

H o m ~  (A, 17 Bt) 17 HornR (A,  Bt) . 
t t 

7. Categories 

A category consists of "objects" and "morphisms" which may 
sometimes be "composed". Formally, a category V is a class of objects 
A, B, C, . . . together with 

(i) A family of disjoint sets hom(A, B), one for each pair of objects; 

(ii) For each triple of objects A,  B, C a function which assigns to 
a E hom (A, B) and p E hom (B, C) an element pa  E hom (A, C) ; 

(iii) A function which assigns to each object A an element 
I ,~hom(A, A); 

all subject to the two axioms: 

Associativity : If a E hom (A, B), p E hom (B, C), and y E horn (C, D) , 
then y (Ba) = (yS) a ;  

Idedity. If a E hom (A, B), then al  A = a  = 1, a. 
Write a :  A+B for a ~ h o m ( A ,  B) and call a a morphism of V with 

domain A and ralzge B. By (ii), the composite pa  is defined if and only if 
range a =domain /?; the triple composite ypa is associative whenever it 
is defined. Call a morphism x an identity of V if both xa = a whenever xcr 
is defined and ,9x =p whenever px is defined. Each I, is an identity. 
Conversely, if x is an identity, then x: A+A for some object A, and 
x =XI  A = 1 A : Each identity of V has the form 1 A for a unique object A. 
In other words, the identities of V determine the objects of V. I t  is 
possible to describe a category simply as a class of morphisms, with a 
composite sometimes defined and subject to suitable axioms (Ex. 3 
below). 

A morphism 8: A+B is called an eqzlivalelzce in V if there is in V 
another morphism p,: B+ A such that p, 8 = 1 A and 8 p, = 1,. Then p, is 
unique,forif alsop,'8=lA, thenp,=fAp,=p,'8p,=y11B=p,'. Callp,the 
ilzverse p, = 8-1 of the equivalence 8. The composite of two equivalences, 
when defined, is an equivalence. 
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A (multiplicative) group G is a category with one object G; let 
hom (G, G) be all elements of G.  If a set M is closed under an associative 
multiplication with an identity, it is likewise a category with one object 
and composition given by multiplication. 

A more typical example of a category is the category # of (left) 
modules over a fixed ring R. The objects of this category are all 
R-modules A, B, C, . . . , the set hom(A, B) of morphisms is the set 
Hom,(A, B) of all R-module homomorphisms of A to B, while the 
composite is the usual composite of homomorphisms. The axioms of 
associativity and existence of identities are obviously fulfilled. This 
category uses the class of all R-modules. We cannot say the set of all 
R-modules because this set would be an illegitimate totality in the usual 
axioms for set theory. If one adopts the Godel-Bernays-von Neumann 
axioms for set theory [ G ~ D E L  19401, one has at hand larger totalities 
than sets, called classes, and one can legitimately speak of the class of all 
modules, or of all topological spaces. With this interpretation in view, we 
have defined a category to be a class of objects . . . . We call a category 
small if the class of its objects is a set. 

To give other examples of categories it will suffice to specify the 
objects and the morphisms of the category; in most cases the range and 
domain of the morphisms, the composite, and the identities will have 
their standard meanings. We list a number of examples of categories 
which we shall meet. 

The category of toPological spaces. Objects, all topological spaces; 
morphisms, all continuous maps f :  X-+Y of one space into a second one. 

The category of abelian growps. Objects, all abelian groups; morphisms, 
all homomorphisms of such. 

The category of growps. Objects, all (not necessarily abelian) groups; 
morphisms, all homomorphisms of groups. 

The category of sets. Objects, all sets; morphisms, all functions on a 
set to a set. 

In the next examples R denotes a fixed ring. 
The category of exact sequences of R-modules of length n. Objects, 

all exact sequences S : A,--+ A,+ - -. -+A,-, + A, ; morphisms r: S+ S', 
all n-tuples r= (y, , y,, . . . , y,) of module homomorphisms yi :Ai+ A: 
such that the diagram 

is commutative. If B = (Bl , . . . , P,) : S'-fS1', the composite 6 r is 
(Ply11 ...>P,Y,). 



7. Categories 

One may also have the category of exact sequences infinite to the 
right or infinite to the left, or both. Another example is the category of 
short exact sequences E : A-B+ C, with morphisms all triples (a, #?, y) of 
module homomorphisms for which the appropriate diagram (3.1) is 
commutative. I t  is by now amply clear how more examples can be 
constructed ad libitum - a category of sequences of exact sequences of.. . . 

I t  is also clear that a number of concepts applicable to modules will 
apply to the objects of any category - provided the definition of the 
concept makes reference not to the elements of the modules but only to 
modules and their homomorphisms. Thus, in any category V, a diagram 
consisting of morphisms a,: A, +C of V,  one for each t in a given set T ,  
is universal for the given objects A, (or, a direct sum diagram for the A,) 
if to each diagram {a; : A, -+ CfI t E T} on the same A, there exists a unique 
morphism #?: C+Ct of V with #?a, =a; for each ~ E T .  (For T ={I, 21, 
this is exactly the property formulated in (4.5)). The previous 
uniqueness proof for the direct sum of two modules carries over verbatim 
to give 

Proposition 7.1. In any  category %? let {a, : A,+C} and {or;: A, +Cf} 
be two direct sum diagrams for the same family {A,} of objects. There i s  
then a unique equivalence 8: C+Ct of %? with 8% =a; for every t. 

An analogous uniqueness theorem holds for a direct product diagram, 
defined as a diagram {y, : B+A, I t E T }  such that to each {y; : Bf-+ A,[ t E T }  
there exists a unique morphism #?: B'-+B with y; =y,#? for t E T .  

The definition of the direct product is exactly parallel to that for the 
direct sum, except that all the arrows are reversed. We say that the direct 
product is the "dual" of the direct sum. In general, the dual of any 
statement B (in the first order propositional calculus) about a category V 
is the statement B* obtained by reversing the direction of all morphisms, 
replacing each composite a#? of morphisms by #?a and interchanging 
"domain" and "range". One observes at  once that the dual of each axiom 
for a category is an axiom. I t  follows that the dual of a proof fromthese 
axioms of a statement B about categories is a proof of the dual statement 
B*. For example, the dual of Prop. 7.1 is the proposition which asserts 
the uniqueness (up to equivalence) of a direct product diagram with 
given ends. Since Prop. 7.1 has been proved from the axioms of a cate- 
gory, we have this dual proposition without further proof. However, a 
proposition B whose statement involves only objects and morphisms 
may happen to be true in a particular category although the dual state- 
ment is false. For example, in the category of all denumerable abelian 
groups there exists a direct sum diagram with summands any denumer- 
able list of denumerable groups A,, A,, . . ., A,, . . ., but there does not 
exist a direct product of the same groups (essentially because the direct 
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product which does exist in the category of all abelian groups is non- 
denumerable). 

To each category one may construct an opposite category WP. Take 
the objects of Vp to be a class in 1 -1 correspondence A*@A with the 
objects A of V.  Take the morphisms to be a class in 1 -1 correspondence 
a** a with the morphisms of W. Decree that a* : A*+B* if and only if 
a :  B+A, and that a*p* isdefined and is @a)*, exactly whenpais defined. 
Then V P  is a category, and any statement G* about the category V is 
the same as the original statement G about the category WP. This, 
again, shows the dual B* of a provable statement G provable. The 1 -1 
function T with T(A) =A* and T(a) =a* is an "anti-isomorphism" of 
Q to VP, since T@a) =T(a) TP). 

Subsequently, we shall define a special sort of category, called an 
"abelian categoryJ', by requiring essentially that hom (A, B) be an abelian 
group and that kernels and cokernels exist, as in the case of the category of 
modules. It turns out that many theorems about modules remain true 
when the modules and their homomorphisms are replaced by the objects 
and the morphisms of any abelian category. The interested reader may 
turn at once to Chaps. IX and XII. 

Exercises 
I. In the category of topological spaces, show that the disjoint union of two 

spaces provides a direct sum diagram, and that the cartesian product X x Y  of two 
spaces, with its usual topology and with the natural projections on X and Y, pro- 
vides a direct product diagram. 

2. Show that any two objects in the category of groups may be ends of a direct 
product diagram and of a direct sum diagram. (Note: The "direct sum" for not 
necessarily abelian groups is more often known as the "free product".) 

3. Consider a class A of elements a, p, y in which a product pa€.& is sometimes 
defined. Call x an identity of A if xp= /? whenever xp  is defined and ax=  a whenever 
a x  is defined. Then .& is called an abstract category if i t  satisfies the following 
axioms : 

(i) The product y (pa) is defined if and only if @/?)a is defined. When either is 
defined, they are equal. This triple product will be written y/?a. 

(ii) The triple product y/?a is defined whenever both products y/? and /?a are 
defined. 

(iii) For each a in .& there exist identities x, x' such that a x  and x'a are defined. 

Prove that the class of morphisms of a category is an abstract category, and 
conversely that the elements of any abstract category are the morphisms of a 
category 'i? which is determined uniquely up to an isomorphism of categories. 

8. Functors 

Let V and 9 be categories. A covariant fulzctor T on %? to 9 is a pair 
of functions (both denoted by the same letter T) : An "object function" 
which assigns to each object C E V an object T(C) E 9, and a "mapping 
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function" which assigns to each morphism y :  C+C' of V a morphism 
T ( y ) :  T(C)+T(Cf)  of 9. This pair of functions must satisfy the two 
following conditions : 

T v y )  =T@) T ( y )  , j3y defined in%. (8.2) 

A covariant functor T on V to 9 is thus a mapping of V to 9 which 
preserves range, domain, identities, and composites. 

For example, let R be a fixed ring. For any set T let F ( T )  =&Rt be 
the free module on the set T. Then F is a covariant functor on the 
category of sets to the category of R-modules. Again, for example, let 
B be the category of all groups, with G' = [G, GI the commutator sub- 
group of G ;  that is, the subgroup generated by all the "commutators" 
g,g,gilg;l for gi E G. Each homomorphism y : G +H clearly maps G' to H' 
by a homomorphism y'. The functions T ( G )  = G' and T ( y )  =y' make G' a 
covariant functor on B to $9. Similarly, the "factor-commutator" 
group G/[G, GI may be regarded as a covariant functor on 9 to the cate- 
gory of abelian groups. 

Let S and T be two covariant functors on 5? to 9. A lzatural trans- 
formation h :  S+T is a function which assigns to each object C E Q  a 
morphism h ( C ) :  S(C)+T(C) of 9 in such a fashion that for each mor- 
phism y :  C+C1 of V the diagram 

is commutative in 9. When h ( C )  satisfies this commutativity condition 
we say more briefly " h  is natural". If in addition each h (C) is an equi- 
valence, we say that h is a lzatural isomorphism. 

Intuitively, a "natural transformation" h is one which is defined in the 
same way or by the same formula for every object in the category in 
question. For instance, for each group G let h (G) : G+G/[G, GI be the 
homomorphism which assigns to each element g EG its coset g [G, GI in 
the factor-commutator group. The diagram like (8.3) is commutative, 
so h may be viewed as a natural transformation of the identity functor 
to the factor-commutator functor (both in the category of all groups). 
Other (and more incisive) examples of natural transformations will 
appear shortly (e. g., Prop. 11.4.2 for relative homology). 

A contravariant functor T on 'Z to 9 consists of an object fulzction T 
which assigns to each C a T ( C ) E B  and a mapping function T which 
assigns to each morphism y : C+C1 a morphism T ( y )  : T(C1)+T(C) of 9, 
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now in the opposite direction. This pair of functions must again 
satisfy two conditions : 

T v y )  = T(y) T@) , By defined in V .  (8.5) 

The reversed order of the factors in (8.5) is necessary to make sense, 
for By defined means y: C-+Cf, B :  C1+C", hence T(B) : T(C")-+T(Cf) 
and T(y ) :  T(C1)+T(C), so that T(y)  T@) is defined. 

For a fixed R-module B we noted in $ 6  that Hom, (A ,  B) is a contra- 
variant functor of A,  in the category of R-modules. The character group 
of an abelian group A is the group Ch A = Hornz (A ,  P) ,  where P is the 
additive group of real numbers modulo 1 .  With the mapping function 
Ch a =u* defined as in $ 6, Ch is a contravariant functor on the category 
of abelian groups to itself - or, with the standard topology on Ch A ,  a 
contravariant functor on discrete abelian groups to compact abelian 
groups. For any category 9 and its opposite goP, the pair of functions 
P with PD =D* and P6 =d* is a contravariant functor on 9 to gOP. 
Each contravariant functor T on V to 9 may be regarded as a covariant 
functor on V to 9 p ,  namely, as the composite P T.  

A natural transformation h: S+T between two contravariant functors 
on V to 9 is a function which assigns to every object C EV a morphism 
h (C) : S (C)-+T(C) of 9 such that for each y : C-+Cf in V the diagram 

is commutative. This diagram is just (8.3) upside down. 

If T is a functor on V to 9 and S a functor on 3 to a third category 8, 
the composite functions S o  T yield a functor on V to 8 with variance the 
product of the variances of S and T (covariant = + 1, contravariant, - 1 ) .  
For instance, let .AF be the category of vector spaces over a fixed field F, 
and let D be the functor o n A F  to .AF which assigns to each vector space 
V its dual D(V)=HomF(V, F) and to each linear transformation 
(= morphism of .AF) a:  V-+V1 its induced map a* : D(V

f

)-+D(V), defined 
as in (6.3). Then D is contravariant, while the composite Da =DoD is 
the covariant functor which assigns to each vector space V its double 
dual. There is a homomorphism 

which assigns to each vector v that function hv: D V+F with (hv) f = f (v) 
for f c D V .  For finite dimensional V ,  h (V)  is the familiar isomorphism 
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of V to its double dual. One verifies readily that h is a natural trans- 
formation h: I+Da (where I denotes the identity functor). 

There is a similar natural isomorphism of a finite abelian group to 
its double character group. 

As an example of a non-natural isomorphism, recall that there is an 
isomorphism k: VYD(V) for any finite dimensional vector space V. 
Specifically, for each such V choose a fixed basis v,, . . . , vn, construct in 
D(V) the dual basis vl, . . . , vn, with vi defined by the requirement that 
vi (vi) is 0 or 1 according as i + j or i = j, and set kvi = vi. This linear 
transformation k =k(V): V+D(V) is defined for each V; it maps the 
covariant identity functor I to the contravariant functor D. If we restrict 
attention to the category whose objects are finite dimensional vector 
spaces and whose morphisms are isomorphisms a of such, we may replace 
D by a covariant functor with B(V)=D(V), D(a)=D(a-l). But 
k(V): V--fD(V) is not natural. For example, if V is I-dimensional and 
a:  V+V is defined by avl = cvl for some scalar c E F with 0 + c / l  , then 
D(a) k (V) vl = (I/c) v1 ; however k (V)avl = cvl, SO (8.3) isnot commutative. 

Functors in several variables may be covariant in some of their 
arguments and contravariant in others. Two arguments, contra and co, 
suffice to illustrate. Let 8, V, and 9 be three categories. A bifunctor T 
on 8 x w  to 9, contravariant in and covariant in %', is a pair of func- 
tions: An object function which assigns to B E 99 and C E V an object 
T(B, C) €9, and a mapping function which assigns to morphisms 
j3: BJB' and y : C+C1 a morphism 

T(B, y) : T(B1, C)-+T(B, C') (8.7) 

of 9 (Note that the direction in B is reversed, that in C is preserved). 
These functions must satisfy the conditions 

the latter to hold whenever both composites p'j3 and y'y are defined. 
The composite on the right is then defined, for j3': B1+B" and 
y': C1+C" with (8.7) give 

T(5' T(B", C) -%T (B', C') %T(B, C") . 
I t  is convenient to set T(j3, 1,) = T v ,  C) and T(IB, y) = T(B, y). 

When B is fixed, T(B, C) and T(B, y) are object and mapping functions 
of a covariant functor on % to 9, while, for fixed C, T(B, C) and T(j3, C) 
provide a contravariant functor on to 9. These mapping functions 
T(B, y) and T(j3, C) determine all T@, y) for, by (8.9), T(j3, y)= 
T(BIB, yl,) = T(B, y) T v ,  C). We leave the reader to carry out the 
rest of the proof of 
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Proposition 8.1. For given categories W, V, a d  9 let T be a function 
assigning to each B and C an object T(B, C) €9. For each fixed B E  O, let 
T(B, C) be the object function of a covariant functor V + 9  with the mapping 
function T(B, y). For each fixed CEV, let T(B, C) be the object function of 
a contravariant functor W + 9  with mapping function T(B, C). Supfose 
that for each @: B+Bf and each y: C+Cf the diagram 

T(B' ) T(Bf, C ) 2 T ( B 1 ,  C') 
T(B.c)~ LT(B,c) (8.10) 
T(B, C) T(B,~!T(B, cl) 

is commutative. Then the diagonal map 

of this diagram makes T a bifunctor on W and V to 9 ,  contravariant in W 
and covariant in Q. Every such functor can be so obtained. 

If we write more simplyp* for T(B, C) and y, for T(B, y), the com- 
mutativity condition of this proposition can be put with less accuracy 
and more vigor as @*y, =y&*. This proposition usually provides the 
easiest verification that a given T is indeed a bifunctor. A typical 
example of such a bifunctor T is Hom,(A, B), covariant in B and 
contravariant in A. 

If S and T are two such bifunctors on 2 3 x 9  to 9 ,  a natural trans- 
formation f : S- t  T is a function which assigns to each pair of objects B, C 
amorphism f (B, C) : S (B, C)+T(B, C) in suchwise that for allmorphisms 
@: B+B1 and y: C 4 C 1  the diagram 

f ( P  C) S (B', C) ---i T(B1, C) 
S(t% Y)J 1 T(B, Y) (8.1 1) 

f (B C') S (B, C') - T(B, C') 

is commutative. In view of the decomposition of T@, y) above, it suffices 
to require this condition only for B and lc, and for IB  and y. In other 
words, it suffices to require that f (B, C) with either variable fixed be a 
natural transformation in the remaining variable. 

Direct products provide an example of a bifunctor covariant in two 
arguments. Let V be a category in which each pair of objects has a direct 
product diagram, and choose such a diagram (ni: AlxA2+AiJ i =I, 2) for 
each pair; this includes the choice of a direct product A,xA, for each A, 
and A,. Let ui: A,+ A: for i =I, 2 be morphisms of V ,  as in the diagram 
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a s c s d .  If S is a lattice, any two objects s, t  of 9 have a direct sum 
(given by s v t) and a direct product snt;  conversely, if Y has direct 
sums and products, S is a lattice. 

For any partly ordered S, a covariant functor T :  9'-+ is a family 
{T, 1 s E S) of R-modules together with homomorphisms T(s,  r)  : T, +- T, 
defined for each r l s  and such that T(t, s) T(s, r)=T(t ,  r) whenever 
r s s s t .  The "direct limit" of such a family may be described con- 
veniently in categorical terms [EILENBERG-MAC LANE 1945, Chap. IV ; 
KAN 19581. 

Exercises 
I. If q: A,+A; are module homomorphisms, show that the map B = a , x ~ :  

Al @A,+A; @A; characterized by nip= qni, j= 1, 2, is also characterized by the 
conditions BL,= tiC5.,  j= l ,  2. 

2. Show that the associative law for the (external) direct sum of modules can 
be expressed as a natural isomorphism (A @ B) @ C e s  A @ (B @ C). 

3. Prove that the isomorphisms (6.5) are natural. 

4. Let Q be a small category in which each set hom (A, B) of morphisms has a t  
most one element, and in which each equivalence is an identity. Prove that hP may 
be obtained from a partly ordered set. 

Notes. The idea of a module goes back a t  least to KRONECKER, who considered 
modules over polynomial rings; only in the last twenty years has this idea taken on 
its present central role in algebra. Projective modules were first used effectively in 
CARTAN-EILENBERG; now i t  is clear that they provide for linear algebra the appro- 
priate generalization of a vector space (which is always a free module). EMMY 
NOETHER, in lectures a t  Giittingen, emphasized the importance of homomorphisms. 
The initial restriction to homomorphisms a: A+B with a (A) = B, as in VAN DER 

WAERDEN'S influential Moderne Algebra, soon proved to be needlessly restrictive, 
and was dropped. By now i t  is expected that each definition of a type of Mathe- 
matical system be accompanied by a definition of the morphisms of this system. 
The arrow notation developed in topological investigations about 1940, probably 
starting with the use for correspondences and then for continous maps. Exact 
sequences were first noted in HUREWICZ [i940]. The functor "Hom" was long 
known, but apparently first appeared by this name in EILENBERG-MACLANE 
[1942]. Categories and functors were introduced by the same authors in 1945. 
They have proved useful in the formulation of axiomatic homology (Chap. I1 below), 
in the cohomology of a sheaf over a topological space [GODEMENT 19581, in differen- 
tial geometry [EHRESMANN 19581, and in algebraic geometry (GROTHENDIECK- 
DIEUDONN k [I 9601, cf. also the review by LANG [1961]). Foundational questions 
about the theory of categories, using sets and classes, are formulated in MAC LANE 

[19611. 

Chapter two 

Homology of Complexes 
Here we first meet the basic notions of homology in simple geometric 

cases where the homology group arises from a boundary operator. In 
general, an abelian group with a boundary operator is called a "differen- 
tial group" or, when provided with dimensions, a "chain complex". 
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This chapter considers the algebraic process of constructing homology 
and cohomology groups from chain complexes. Basic is the fact ( §  4) 
that a short exact sequence of complexes gives a long exact sequence of 
homology groups. As illustrative background, the last sections provide a 
brief description of the singular homology groups of a topological space. 

1. Differential Groups 
A differential grot@ C is an abelian group C together with an endo- 

morphism d: C+C such that dz= 0; call d the "differential" or "boundary 
operator" of C. Elements of C are often called chains, elements of Kerd, 
cycles, and elements of Imd, boundaries. The requirement that dZ=O is 
equivalent to the inclusion Imd<Kerd. The homology group of the 
differential group C is defined to be the factor group of cycles modulo 
boundaries, 

H(C) = Ker d/Im d = Ker d/d C . (1 -1) 

Its elements are the cosets c+ Imd of cycles c; we call them homology 
classes and write them as 

cls(c)=c+dC~H(C).  (1 4 
Two cycles c and c' in the same homology class are said to be homologous; 
in symbols c - c'. a 

As first examples we shall give a number 
of specific differential groups with their homo- 
logy. Most of these examples will be found 
by dissecting a simple geometric figure into 
cells and taking d to be the operator which q P 
assigns to each cell the sum of its boundary 
cells, each affected with a suitable sign. 

Exaqtle I .  Take two points p and q on 
a circle S1 which divide the circle into two 
semicircular arcs a and b. The "boundary" b 

Fig. I 
or "ends" of the arc a are the points q and p. 
Hence introduce the free abelian group C(S1) with the four free generators 
a, b, p, and q, and define an endomorphism d of C(S1) by setting 

Any element of C(S1) is represented uniquely as a linear combination 
%a +m2b +%p +m4q with integral coefficients q, m2, %, and m,, 
while 

d(~a+m2b+m,~+m4q)=%(q-p)+mz(~-q)=(%-mz) (q-P). 
Thus C(S1) is a differential group. Its cycles are all the integral linear 
combinations of p, q, and a+ b, while its boundaries are all the multiples 

3* 
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of q- p. Hence there is a homology p-q, and the homology group is the 
direct sum 

H(C ( 9 ) )  =Z, (cis (p)) G3 2, (cls (a+ b)) , (1.4) 

where Z,(cls(p)) denotes the infinite cyclic group generated by the 
homology class cls (p). Thus the circle S1 has two basic homology classes, 
the point p (dimension O), and the circumference a+ b (dimension I). 

In this example the same circle could have been subdivided otherwise, 
say into more arcs. The homology groups turn out to be independent of 
the subdivision chosen. For example, isomorphic homology groups 
arise when the circle is cut into three arcs so as to form a triangle! 

Examjde 2. Take a triangle A with vertices 0, I ,  and 2, and edges 0 I, 
12, and 02. The corresponding differential group C(A) is the free abelian 
group on six generators (O), (I), (2), (0 I), (1 2), (02), with the differen- 
tial given by d(o)=d(i)=d(2)=0, d ( O I ) = ( 1 ) - ( O ) , d ( O 2 ) = ( 2 ) - ( O ) ,  
d (1 2) = (2) - (1) ; in other words, the boundary of each edge is the diffe- 
rence of its two end vertices. One finds 

H(C(A)) =Z, (cls (0)) G3Z, (cls [(I 2)- (02)+ (oI)]) . 
This group is indeed isomorphic to that found for the circle in Example 1 ; 
both are free abelian with two generators. An isomorphism may be given 
by first specifying a homomorphism f of the differential group C(S1) into 
C ( 4 ;  we set, say, f ($1 = 0 ,  f (d = (I), f (a) = @I), and f (6) = (1 2) - (02). 
Then d f (b) = f d (b), d f (a) = f d (a), and f carries the generating cycles p 
and a+ b of H(C(S1)) into the generating cycles (0) and (1 2) - (02) + (0 I) 
of H(C(A)). 

In general, let C and C' be two differential groups. A homomorphism 
f :  C+C' of differential groups is a group homomorphism with the added 
property that d'f= fd;  in other words, it is a function on C to C' which 
preserves the whole algebraic structure involved (addition and differen- 
tial). For a chain c of C this implies that f c is a cycle or a boundary 
whenever c is a cycle or boundary, respectively. Hence the function 
H(f) = f, , defined by f,(cls (c)) = cls (f c), is a group homomorphism 

H(f) : H(C)+H(C') (for f :  C+C1). (1.5) 

We call H(f) the homomorphism induced by f .  Since H(Ic) and 
H(f'f)=H(f')H(f), H is a covariant functor on differential groups to 
groups. 

Exavyble 3. The circular disc D is had by adding the inside c to the 
circle Sl; construct a corresponding differential group C(D) by adjoining 
to C(S1) one new free generator c with boundary dc=a+ b. Then 
H(C(D)) =Z, (clsp). The injection j :  C(S1) +C(D) thus induces a map 
H(j) : H(C(S1))-t H(C(D)) which maps the second summand of (1.4) onto 
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zero. In other words, the map H ( j )  induced by an injection need not be a 
monomorphism; that is, the homology group of a subspace need not be a 
subgroup of the homology of the original space. This is why the injection 
j has a label different from the identity. 

Exam$le 4. For the sphere S 2  with the equator S1, labelled as in 
Fig. 2, let u be the upper and 1 the lower hemisphere. Construct a differen- 
tial group C(S2)  by adjoining to C(S1) two new free generators u and 1, 
with boundaries d u = a+ b = - dl. Then 

H ( c ( s 2 ) )  ==&(CIS (9)) @ zm(cls (u+ 1)) ; (1.6) 

there is a cycle 9 in dimension 0 and one in 
dimension 2. 

Exaw$le 5. The real projective plane Pa, -----+----- ---*' 

regarded as a topological space, may be ob- 
tained from the sphere S 2  by identifying each 
point of S a  with the diametrically opposite 
point. hemisphere In particular, is identified each with point a in point the in upper the qup Fig. 2 

lower hemisphere. This suggests that we proceed algebraically by setting 
u = - 1, a  = b, and 9 = q in the differential group C(S2)  above. This will 
yield a new differential group C(Pa) ,  which is the free abelian group gener- 
ated by u ,  a, and with du=2a, da=O, d$=O. Then a is a cycle which 
is not a boundary, though 2a  is a boundary. Hence 

where Z2(cls(a)) designates the cyclic group of order 2 with generator 
cls (a).  

Example 6. Let f ( x ,  y) be a real valued function of class Cm (i.e., 
with continuous partial derivatives of all orders) defined in a connected 
open set D of points ( x ,  y) in the Cartesian plane. For fixed D, the set A 
of all such functions is an abelian group under the operation of addition 
of function values. Take C to be the direct sum A@ A@ A @  A ; an element 
of C is then a quadruple (f, g, h, k) of such functions, which we denote 
more suggestively as a formal "differential" : 

Define d :  C+ C by setting 

aa f -- That da= 0 is a consequence of the fact that - - bf . Any cycle in 
a x a y  a y a x  

C is a sum of the following three types: a constant f = a ;  an expression 
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g dx+ h d y with ag/ay=ah/ax (in other words, an exact differential); 
an expression k d x  dy. If the domain D of definition is, say, the interior 
of the square we can write the function k as ahlax for a suitable h, while 
any exact differential can be expressed (by suitable integration) as the 
differential of a function f. Hence, for this D the only homology classes 
are those yielded by the constant functions, and H(C) is the additive 
group of real numbers. The same conclusion holds if D is the interior of a 
circle, but fails if D is, say, the interior of a circle with the origin deleted. 
In this latter case an exact differential need not be the differential of a 
function f.  For example (- y dx+ x dy)/(x2+ ya) is not such. 

u 
bo 

Pig. 3 

Example 7. A circular cylinder may 
be regarded as the cartesian product 

]I 9x1 of a circle S1 and a unit interval I .  
We subdivide this as shown, so that the 
circle S1 at the base has vertices p,, q, 
and edges a, and b,, while those at the top 

p x I are given by the same letters with sub- 
script 1. The sides of the cylinder are the 
intervals fix I and q x  I above Po and q,, 
respectively, and the curved faces a x 1  
and b x  I above a, and b,. Introduce the 

'0 free abelian group C(S1xI) with the 
twelve free generators +I, q x I ,  a x I ,  
b x  I, and pi, qi, ai, b,, (i=O, 1). Define 
d: C+C on the base and top exactly 

as for a circle (dai=qi-pi, dbi=pi-q,, dpi=O= dqi). Also set 
d @x I )  = pl- Po and d (qx I) = ql - q, . Inspection of the geometric 
boundary of the curved surface a x 1  suggests that we set 

d(axI)=%- (qxI)-a,+ (+XI) and d(bxI)=bl- bo+ (qxI)-(#XI). 

This defines d so that d2=0. Inspection of the cycles and boundaries 
shows that 

H(C(S1x I)) = 2, (cls Po)) @ 2, (cls (a,+ b,)) . 
This homology group is isomorphic to the homology group H(S1) found 
for the circle in Example 1 above. The isomorphism can be written 
as H(f,): H(S1)rH(S1xI) if we take f, to be the homomorphism 
f,: C(S1)->C(S1xI) of differential groups defined by fop=$,, foq=qO, 
foa=ao, fob=  b,. One could equally well give the isomorphism as 
H(fl), where the homomorphism fl = C(S1)+C(S1x I )  is similarly defined. 
This equality H(f,) = H(f ,) holds because the cycles a,+ b, and %+ b1 
on the cylinder are homologous, for their difference is the boundary 



2. Complexes 39 

To explicitly compare fo and f,, let us define a function s by 

This determines a homomorphism s: C(S1)+C(S1xI) of abelian groups 
(not of differential groups) with the property that 

for all c in C(S1). This equation may be read: The boundary d (sc) of the 
cylinder sc over c consists of the top flc minus the bottom f0c minus the 
cylinder s(dc) over the boundary of c. This equation implies that the 
homomorphisms H(fl) and H(fo) are equal, for if c is any cycle (dc=O), 
then (1.7) gives f,c-f,,c=d(sc), whence flc-foe. 

Maps with the property (1.7) will appear frequently under the name 
of "chain homotopies". 

Exercises 
I .  Le t  C be  a differential group. The definition H(C)=  KerdlImd can be 

written as H(C)  =Coker (d': C+ Kerd) ,  where d'is induced b y  d .  UsingC/Kerd= Imd,  
show that H(C)  has a dual description as Ker (d": (Cokerd)-+C). 

2. For a family Ct ,  tET, o f  differential groups, define the direct sum Ct and 
the direct product 17 Ct and prove that H ( z  C t ) ~ x  H(Ct) ,  H ( n  C t ) s U  H(Ct) .  

2. Complexes 

In the usual differential groups C of § I we can assign integral 
dimensions to certain elements of C. The set C,  of all elements of 
dimension n is a group, C is the direct sum of the C,, and aC,< C,-, . I t  
is more effective to work directly with this collection of groups. The 
resulting object is called a "complex" of abelian groups. 

For any ring R, a chain com#lex K of R-modules is a family {K,, an} 
of R-modules K, and R-module homomorphisms 8, : K,+K,-, , defined 
for all integers n, - w < n< co, and such that a, a,+, = 0. This last 
condition is equivalent to the statement that Kera, > Ima,+,. A com- 
plex K thus appears as a doubly infinite sequence 

with each composite map zero. The homology H(K)  is the family of 
modules 

H, (K) =Kera,/Ima,+,= (Ker [K,-+Kn-l])/a,+lKn+l. (2.1) 

Thus H, (K) =O means that the sequence K is exact at  K,. An n-cycle 
of K is an element of the submodule C, (K) = Ker a,; an n-boundary is an 
element of a,+ , K,+ , . Then H, = C,/a K,+ , (cycles mod boundaries). 
The coset of a cycle c in H, is written as clsc= c+ aK,+, , or as {c}, in 
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much of the literature. Two n-cycles in the same homology class (clsc = 
clsc') are said to be homologous (c-c'); this is the case if and only if 
c - c ' E ~ K , + ~ .  

If K and K' are complexes, a chain transformation f :  K+Kf is a 
family of module homomorphisms f,: K,+KL, one for each n, such that 
a:f,= f,-,a, for all n. This last condition asserts the commutativity of 
the diagram (neglect the dotted arrows) 

a, a,+, K :  ...- K,-lc-- K,- K,+lt--... 

(Subsequently, we usually omit the subscript n on a, and the prime on 
a': KL-tKL-,.) The function H, (f) = f, defined by f, (c+ aK,,,) = 
f c + a K:+, is a homomorphism H, (f) : H, (K) +H, (K') . With this 
definition, each H, is a covariant functor on the category of chain com- 
plexes and chain transformations to the category of modules. 

A chain homotopy s between two chain transformations f, g: K+Kf is 
a family of module homomorphisms s,: K,+KL+,, one for each dimen- 
sion n, as in the dotted arrows of ( 2 4 ,  such that 

We write s : f N g. The geometric background of this relation is sketched 
in Example 7 of § I. Algebraically we have 

Theorem 2.1. If  s: fe g: K+Kf, then 

Proof. If cis acycleof K,, then a,c=0; hence, by (2.3), f,c-g,c= as,c. 
This states that f,c and g,c are homologous, hence that cls f,c = clsg,c in 
H, (K'), as required. 

A chain transformation f :  K+Kf is said to be a chain equivalence if 
there is another chain transformation h: Kf+K (backwards!) and 
homotopies s: h f e l K ,  t: f ~ N I , , .  Since H, (I,) =I, the theorem yields 

Corollary 2.2. If f :  K+Kf is a chain equivalence, the induced map 
H, (f) : H, (K) z H, (Kt) is an isomorphism for each dimension n. 

& 

Proposition 2.3. Chain homotopies s: f ~ g :  K+Kf and st: f'rr g': 
K'-+KU yield a composite chain homotopy 

f's+s'g: f ' f  g'g: K+K" 

Proof. Both as+sa=f-g and asf+s'a=f'-g' are given. Multiply 
the first by f', on the left, and the second by g on the right, and add. 
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Subcomplexes and quotient complexes have properties like those of 
submodules and quotient modules. A szcbcom#lex S of K is a family of 
submodules S,< K,, one for each n,  such that always as,< S,-,. 
Hence S itself is a complex with boundary induced by a= aK, and the 
injection j :  S+K is a chain transformation. If S < K ,  the quotient 
complex K / S  is the family (K/S),= K J S ,  of quotient modules with 
boundary a': K,/S,-+K,-,IS,-, induced by aK. The projection is a 
chain transformation K-tKIS, and the short sequence S, - K,+ (K/S) ,  
of modules is exact for each n. 

If f : K+K' is a chain transformation, then Kerf = {Kerf,} is a sub- 
complex of K ,  Imf={f,K,} a subcomplex of K', while K f / I m  f is the 
cokernel of f and KIKerf the coimage. A pair of chain transformations 
KL K'-% K" is exact at  K' if Imf = Kerg ; that is, if each sequence 
K,+Kk+Kj: of modules is exact at  KA. For any f :  K-tK', 

is an exact sequence of complexes. 
Instead of using lower indices, as in K,, it is often notationally 

convenient to write Kn for K-, and 6%: Kn+Kn+l in place of a_,: 
K-  ,+K- ,-,. This is simply a different "upper index" notation for the 
same complex. 

A complex K is positive (i. e., non-negative) if K,=O for n<O; its 
homology is then positive (H, ( K )  = 0 for n< 0).  A complex K is negative 
if K,=O for n > 0 ;  equivalently, it is positive in the upper indices and 
has the form 

do gt 8' 0- KO+ K 1 3  K'+-.. , dd=o, 

with homology H"(K) = Ker dn/d Kn-l positive in the upper indices. In 
this form, it is often called a "right complex" or a "cochain complex". 
By a "cochain" homotopy s: f .- g : K-tK' is meant a chain homotopy 
written with upper indices; that is, a family of maps sn:K"+K'"-I with 
as+ s 6 = f - g. The complexes arising in practice are usually positive or 
negative; the general notion of a chain complex is useful to provide 
common proofs of formal properties like those expressed in Thm. 2.1. 

Each module A may be regarded as a "trivial" positive complex, with 
A,  = A,  A, = 0 for n+ 0, and a= 0. A complex over A is a positive com- 
plex K together with a chain transformation e: K-tA; such an e is 
simply a module homomorphism e: K,+A such that e a= 0 :  Kl+A. A 
contracting homotopy for e: K-tA is a chain transformation f :  A+K such 
that ef = I A  together with a homotopy s: 1 e fe. In other words, a con- 
tracting homotopy consists of module homomorphisms f : A+ KO and 
s,: K,+K,+,,~=o, 1 ,  ... suchthat 

ef=1, a l ~ O + f ~ = I ~ e ,  an+l~n+~n-la,,=l (n>o).  (2.5) 
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Equivalently, extend the complex by setting K-, = A, a,= E: K,-tK-, 
and s-,= f.  Then (2.5) states simply that s: 1 0 for the maps 1 , 0  of the 
extended complex to itself. If E: K-tA has a contracting homotopy, its 
homology groups are E, : H, (K) A for n = 0 and H, (K) = 0 for n> 0. 

Complexes K of free abelian groups arise in topology. If each K, is 
finitely generated, then each H,, (K) is a finitely generated abelian group. 
The structure theorem for such groups presents H,(K) as a direct sum 
Z@ . . . @ Z@ Zm1 @ . . . G3 Z,, , where the number b, of infinite cyclic 
summands and the integers %, . . . , m, (each a divisor of the next) 
depend only on H, (K). The integer b, is called the n-th Betti number of K, 
and the {mi} the n-th torsion coefficients. 

Exercises 

1. Call a complex S q-seecia1 if Sn= 0 for n+ q, q+ 1 and 8: Sqtl+ Sq is a mono- 
morphism. Prove that any complex K of free abelian groups K, is a direct sum of 
q-special complexes (one for each q). 

2. Call a q-special complex S of abelian groups elementary if either Sq= Sq+,= Z 
or Sq=Z,  S4+1= O.  Prove that each special S with Sq, Sq+l finitely generated free 
groups is a direct sum of elementary complexes. (Hint: use row and column opera- 
tions on matrices of integers to choose new bases for Sq and Sq+,.) 

3. Prove that any complex with each K,, a finitely generated free abelian group 
is a direct sum of elementary complexes. 

3. Cohomology 

Let C be a differential group and G an abelian group. Form the abelian 
group C* = HornZ (C, G) ; its elements are the group homomorphisms 
f: C+G, called cochains of C with "coefficients" in G. The differential 
d: C+C induces a map d*: C*+C* definedbyd*f=fd: C+G;calld*f 
the coboundary of the cochain f ;  it is often written as df=d*f. Since 
d2=0, (d*)2=0. Hence C* with differential d* is a differential group. 
Its homology is called the cohomology of C with coefficients G and is 
written H* (C, G) = H(Hom (C, G)). 

Let K be a complex of R-modules and G an R-module. Form the 
abelian group HomR(Kn,G); its elements are the module homomor- 
phisms f :  K,+G, called ~z-cochains of K. The coboundary of f is the 
(n+ I)-cochain 

b f = (-I)"+' f a,,, : K,,, +G. (3.1) 

In other words, an+,: Kn+,+Km induces a,*+,: Hom(Km,G) + 
Hom (K,+, , G) and dm = (-I)"+' a,*+, (the sign will be explained 
below). Since dmdn-I = 0, the sequence 
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is a complex of abelian groups called Hom, (K,  G), usually written with 
upper indices as Hornn (K, G) =Hom (K,, G). If K is positive in lower 
indices, Horn (K,  G)  is positive in upper indices. 

The homology of this complex Hom (K,  G) is called the cohomology 
of K with coefficients in G .  With upper indices, it is the family of abelian 
groups 

H" (K, G) = H" (Horn (K,  G)) = Ker dn/8 Hom (K,-, , G) . (3-3) 
An element of 8 Hom (K, -, , G) is called an 12-coboundary and an element 
of Kerdn an n-cocycle. Thus a cocycle is a homomorphism f :  K,+G 
with fa= 0: K,+, +G. Any chain transformation h: K +Kt induces 
a chain transformation h* = Hom (h, I )  : Horn (Kt,  G) +Horn (K,  G). Thus 
Horn (K,  G) and Hn(K, G) are bifunctors, covariant in G and contra- 
variant in K. If s: h= g is a homotopy, then (2.3) implies that s,* a,*,, * +a,*s,*_,= h, - g,* . Hence in+'= (-l)"+'s,* is a homotopy t :  h*- g*. 

More generally, we may define a complex HomR(K, L) from any 
pair of complexes K and L of R-modules. With lower indices, set 

so that an element f of Hom, is a family of homomorphisms f p :  Kp+ 
Lp+n for - co<P<co. The boundary aHf is the family (aHf),: Kp+ 
Lp+,-, defined by 

(a~ f ) f i k=a~( fpk )+  ( - l ) " + l f p - l  (aKk) k ~ K p ,  f ~Homn,  (3.5) 

where a, and aK denote the boundary operators in K and L, respectively. 
That this definition yields a complex is proved by the calculation: 

since &aL = o = a, 8,. Clearly, HornR (K,  L) is a bifunctor covariant in 
L and contravariant in K. 

The signs in the definition (3.5) have been chosen so as to give the 
following two results. 

Proposition 3.1. When the ring R is regarded as a trivial com@lex, 
then Hom (R, L) GL under the natural homomor@hism which assigns to 
each f* : R +Lp its image f p  ( I )  E Lp. 

Proof. This correspondence gives an isomorphism Hom (R, Lp) r L p  
for each f .  In this case the boundary formula (3.5) has no terms with 8,; 
the remaining term with + a, f shows that this isomorphism commutes 
with boundaries. 
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Proposition 3.2. A 0-dimensional cycle of Hom (K,  L) is a chain 
transformation f :  K +L; it is the boundary of an element s in Hom, (K ,  L) 
exactly when s is a homotop y s : f N 0. 

Proof. The formula (4 .5 )  for the boundary (with signs) becomes 

( a ~ f ) p = a ~ f p - f ~ - i a ~ ~  n=O> 
(aH+,=aLsp+ sp-laK, n=i . 

Thus a, f = 0 asserts that f : K + L is a chain transformation and a, s = f 
asserts that f = aLs+ s a,, whence s: f TVO, as asserted. These conclusions 
may be reformulated as 

Corollary 3.3. The homology group H,(Hom(K, L ) )  is the abelian 
group of homotopy classes of chain transformations f :  K- tL.  

In particular, when L = G  is a trivial complex, the boundary aL is 
zero, an element f of Hom,(K,G) is a single homomorphism f :  K-,+G, 
and a,f = (--I)"+ l f a :  K-,+,+G. With upper indices, this states that 
an element of Hom" ( K ,  G) is a homomorphism f : K, +G with coboundary 
6 f = (-l)"+l f a. This agrees with the sign already used in (3.1), and 
explains the sign there. The reader should be warned, however, that 
most of the present literature on cohomology does not use this sign, 
and writes instead 6 f = f a. 

4. The Exact Homology Sequence 

Consider any short exact sequence 
E :  o+K--%L-%M+o (4.4) 

of chain complexes and chain transformations x, a. The first transforma- 
tion x has kernel zero, but the induced map Hn (x) : H,(K) +H,(L) on 
homology may have a non-trivial kernel, as in Example 1.3. To study 
when this can happen, identify K with the subcomplex x K  of L and 
consider a cycle c of K ,  whose homology class becomes zero in L. This 
means that c=aZ for some (n+ 1)-chain ZcL, and hence that the coset 
I +  K,,, is a cycle of the quotient complex L I K r M .  Conversely, any 
homology class of H,+, (LIK) consists of cycles I+ K,,, with a1 = C E  K,  , 
hence yields a homology class clsc in H, ( K )  which is in the kernel of 
H, (x). This correspondence of I+ K,+, to c is a homomorphism 
H,,, (LIK) +Hn ( K )  which we now describe systematically. 

In (4.1), let m be a cycle in Mn+,. Since o is an epimorphism, one 
can choose 1~ L,+, with ol=m. Since am=O, one has oal=O; since E 
is exact, there is a unique cycle C E K ,  with xc=al, as in 
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The homology class cls (c) E H, (K) is independent of the choice of 1 with 
ol=m, depends only on the homology class of m, and is additive in m. 
Hence 8, (clsm) = clsc defines a homomorphism 

called the invariant boundary or the connecting homomorphism for E. 
Specifically 

~,clsm=clsc when xc= 81, ol=m for some 1. (4.3) 

This suggests the notation c=x-lao-lm; or regard cls as a homomor- 
phism cls,: C,(K)-+H,(K); then aE is defined by a "switchback" 
formula a, = (cls,) x-la a-I (cls,) -l - even though the inverses cls-l, 
x-l, a-l are not strictly defined (but see $6 below). 

Theorem 4.1. (Exact homology sequence.) For each short exact 
sequence (4.1) of chain complexes the corresponding long sequence 

of homology groups, with maps the connecting homomorphism a,, x, = 
H,, (x), and a, = H, (o) , is exact. 

This sequence (4.4) is infinite in both directions, but is zero for n < 0  
when the complexes are positive. I t  gives the desired description of the 
kernel and cokernel of H, (x) : H,, (K) +H, (L) when x is a monomorphism ; 
namely the kernel is a,H,+,(M), and the cokernel is isomorphic to 
o* H, (4. 

Proof. By the definitions, the composite of any two successive 
homomorphisms in the sequence (4.4) is the zero homomorphism. I t  
remains to show for each dimension n that (i) Kerx, <aEH,,+l (M) ; 
(ii) Kero, ( x ,  H, (K) ; (iii) Ker a, <a, H, (L). Our preparatory discussion 
showed the first true. 

To prove the second inclusion, suppose that cls(c) is the homology 
class of a cycle c of L, such that a, cls (c) = 0. This means that uc = am 
for some  EM,+, . Since a is an epimorphism, there is a ,?EL,+, with 
ol=m. Hence o(c-al)=O, so that c-al=xk for some ~ E K ,  with 
a k = 0. This asserts that cls (c) = cls (c- 81) = x, cls (k) is in the image 
of x*. 

To prove the third inclusion, recall that a, cls (m) = clsc, where 
c€K,-, and ZEL, have xc= al, oZ=m, as in (4.3). If clsc=o, there is 
a k' in K, with akl=c. Then x8k1=al, hence a(1-xkl)=O. Thus 
1-xk' is a cycle of L, and o(1-xkl)=ol=m, so that cls(m)€Imo,, 
as asserted. This completes the proof. 
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Consider the category 8 of short exact sequences of chain complexes. 
A morphism E+Ef in this category is a triple (f,g,h) of chain trans- 
formations which render the diagram 

.If  .Ig .Ih 

E': o+K'+L'-+M'+o 

commutative. For each n,  H, ( K ) ,  H, (L) ,  and H, ( M )  are functors of E. 

Proposition 4.2. For each E E 8, the connecting homomorphism 
aE : H,+, ( M )  -+ H, ( K )  is natural. 

The statement that aE is natural means exactly that the diagram 

is commutative. The proof is an easy diagram chase in (4.5) with the 
definition of a,. The conclusion can be expressed in a bigger diagram: 

-. -+ H,,, (L) -% H,,, (M)  a&- H,  ( K )  -% H, (L)  -+ 

i g *  k* if* i g *  (4.7) 
. .  -+H,+,(L')% H,+,(M')% H,(K')% H,,(L') +... . 

Here the rows are the exact homology sequences of Thm.4.1 for E and 
E' and the whole diagram is commutative; for example, the left hand 
square because a: g,  = (a'g) , , h, a, = (ha), and a'g = ha by the com- 
mutativity of (4.5). The conclusion may be formulated thus: A morphism 
of E to E' induces a morphism of the exact homology sequence of E 
to that of E'. 

The mapping cone of a chain transformation f : K -+Kt gives an exam- 
ple of this exact sequence. The problem is that of fitting the induced 
maps f ,  : H,(K) -+H,(K1) on homology into an exact sequence. For 
this purpose, construct a complex M=M(f) ,  called the mapping cone 
of f (or sometimes, with less accuracy, the mappifig cylinder off),  with 

Then a: M,+M,-, satisfies aa=O, so M is a complex, and the injec- 
tion r :  K'+M is a chain transformation. The projection n: M+K+ 
with n ( k ,  k') =k is also a chain transformation, if by K C  we mean the 
complex K with the dimensions all raised by one and the sign of ,the 
boundary changed (i. e.,  (K+),= K,-,) . Moreover Et : K' w M a K+ is 
a short exact sequence of complexes. Hence 
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Proposition 4.3. A chain tramformation f :  K-tK' with ma$$ing 
cone M(f) determines an exact sequence 

Proof. This is the exact sequence of Ef ,  with H,(K+) z H , - , ( K )  ; 
moreover the connecting homomorphism a,,: H, (K+) +Hz-, (K') can 
be seen to be identical with the homomorphism induced by f .  

The mapping cone is the algebraic analogue of the following geo- 
metric construction. Let f :  X-+X1 be a continuous map of topological 
spaces. Form the cone over X by taking the cartesian product X x I  
with the unit interval I and identifying all points (x,O) for X E X .  Attach 
this cone to X' by identifying each point (x,  1) of X x I  with f (x)  EX'; 
the resulting space is the map- 
ping cone of f ,  and suggests C I I  X ' 
our boundary formula. DOLD 
[I9601 gives a further devel- 
opment of these ideas. 

We now consider exact co- 
homology sequences. A short I 
exact sequence E of complexes 
of R-modules is said to split 

Fig. 4 

as a sequence of modules if for each n the sequence K, - L, +M, 
splits; that is, if for each n, K, is a direct summand of L,. For ex- 
ample, if each M, is a projective module, then E of (4.1) splits as a 
sequence of modules, by Thm. 1.6.3. 

Theorem 4.4. If G is an R-module and E a short exact sequence (4.1) 
of complexes of R-modules which splits as a sequence of modules, then 
there is for each dimension n a natural connecting homomorphism 
dE : Hn (K, G) +HU+l (M, G) such that the sequence of cohomology groups 

is exact. 

Proof. To construct the cohomology of E, first apply the contra- 
variant functor Horn,(-,G) to E to get the reversed sequence of 
complexes 

E* : 0 +Hom (M, G) +Horn (L, G) +Hom (K, G) +O . 
Since the given sequence splits as a sequence of modules, E* is exact. The 
connecting homomorphism a,,: H-,+,(Horn (K, G)) + H-,(Horn (M, G)) 
for E*, when written with upper indices Hu-l=H-u+l, is the desired 
connecting homomorphism dE. By Prop.4.2 it follows that 6,  is na- 
tural when the arguments Hu(K,G) and Hn+l(AC,G) are regarded as 
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contravariant functors on the category of those short exact sequences 
of complexes which split as modules. For that matter, 6, is also natural 
when its arguments are regarded as covariant functors of the R-modu- 
le G. Finally, the exact homology sequence for E*, with indices shifted 
up, becomes the desired exact cohomology sequence (4.8). 

For reference we describe the action of 6, in terms of cochains. 
Since E* is exact, each n-cocycle of K, regarded as a homomorphism 
f :  K,+ G, can be written as f = g x  where g: L, -+ G is an n-cochain of L. 
Then gax=gxa= f a=0, so ga factors through a as ga= h a  for some 
h :  Mn+,-+G. Since haa=haa= g at3 = 0, and a is an epimorphism, it 
follows that ha=O: h is a cocycle of M. Then 

&CIS f = cls h defines 6, : Hn (K, G) -+Hn+l ( M ,  G) (4.9) 

by ha=ga, gx= f for some g. This is again a switchback rule: 6, = 
clsa* -lcls-l. 

Another exact sequence of cohomology groups arises from a short 
exact sequence 

S: o+G'>  ~ f +  G"+O (4.10) 

of "coefficient" modules. If K is any complex, the monomorphism 
A:  Gf+G induces homomorphisms A, : Hn (K, G') +Hn (K, G). The inquiry 
as to the kernel and the cokernel of A, is met by the following exact 
sequence (which is not a dual to that of Thm. 4.4): 

Theorem 4.5. If K i s  a c o M l e x  of R-modules with each module K, 
projective and if S i s  a short exact sequence of  R-modules, as in (4.10), 
there i s  for each dimension a connecting homomorphism ds : H" (K, G") + 
Hn+l (K, Gf) which i s  natural when its arguments are regarded as covariant 
functors of the exact sequence S or as contravariant functors of K and 
which yields the long exact sequence: 

Proof. Since each K, is projective, 

S, : o +Hom (K, Gf) +Hom (K, G) +Hom (K, G") +O 

is exact, and yields 6, as 8,. , with the usual shift to upper indices, and 
with (4.1 1) as a consequence of Thm. 4.1. 

Note the explicit rule for constructing ds. Let f :  K, +G" be a co- 
cycle. Since S, is exact, we may write f=zg for g: Kn+ G a cochain; 
since f is a cocycle, ga=ilh, where h :  Kn+,-+G1 is a cocycle. Then 

This is again a switchback rule : 6, = cls A-I 6 z-l CIS-'. 
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Exercises 

1. If f ,  g : K -+ K' are chain homotopic, show that the associated exact sequences 
for the mapping cones M(f)  and M(g) are isomorphic. 

2. (The BOCKSTEIN Operator.) Let K be a complex of free abelian groups, 
Z p  the additive group of integers modulo the prime p, and S= (A, r) : Z n Z  +Zg 
the short exact sequence with A multiplication by 9 .  Construct the corresponding 
exact sequence (4.1 1 )  and show that p= rt ds: Hn (K ,Zp)  +H"+'(K,Z,) can be 
described as follows. Lift each n-cocycle c :  K n + Z p  to an n-cochain a: K n + - 2 ;  
then Ga= pb for some b:  K,+l +Z ,  and p(cls c) = cls ( t b ) .  This p is known as 
the BOCKSTEIN cohomology operator [cf. BROWDER 19611. 

3. Let f :  K + K' have mapping cone M ,  kernel L,  and cokernel N ,  so that 
F : L H K  + f K ,  G : f K w K'+ N are short exact sequences of complexes. Construct 
chain transformations g: L++ M and h :  M + N  by g (1) = (1, O), h (k, k') = k'+ f K ,  
and show the sequence 

exact, where r ] =  is the composite of the connecting homomorphisms for F, G. 

4. Show that the exact sequence of Ex. 3, that of Prop. 4.3, and those for F 
and G all appear in a "braid" diagram 

. .  + Hn+,(X') -Hn+, (N)  - Hn-I (L)  + -. . 
H%+1 

/ "  /' \ /" 
(fq Hn+l(IM) Hn ( f  K )  

I 
/ "  I /" \ 

which is commutative except for a sign (- 1 )  in the middle diamond [MAC LANE 

1960 b]. 

5. Some Diagram Lemmas 

An application of the exact homology sequence is 

Lemma 5.1. (The 3x3 Lemma.) In the following commutative dia- 
gram of modules 

P P Y  

su##ose that all three columns and the first two rows (or the last two rows) 
are short exact sequences. Then the remaining row is exact. 

Mac Lane, Homology 4 
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Proof. Any sequence A,-tA2-tAl with maps a,, u1 such that 
u,u,= 0 may be regarded as a chain complex A with a,, ul as the bound- 
ary homomorphisms and with non-zero chains only in dimensions 1, 2, 
and 3. The homology of this complex will vanish (in dimensions 1, 2, 
and 3) precisely when it is a short exact sequence. 

Suppose now that the last two rows are exact. Then, for aeA,, 
v ~ ~ u ~ a = / $ ~ ~ A a = ~ ;  since v is a monomorphism, ulu2a=0. Thus the 
first row is indeed a complex. Since the columns are exact we may 
now regard the whole 3 x 3  diagram as a short exact sequence O+A+ 
B+C+O of three complexes. The relative homology sequence now 
reads 

+H,,+,(C)-+H,,(A)-tH,(B)+ . - a .  

But the exactness of rows B and C give H,+,(C) = O =  H, (B), so the 
exactness of the relative homology sequence makes H,(A)=O for 
%=I ,  2, and 3. 

The argument is similar, given that the first two rows are exact. 
The chief result of this chapter - the exactness of the homology, 

sequence (4.4) - can be proved in a different way from a lemma on 
short exact sequences of modules. 

A morphism of short exact sequences has the form of a commutative 
diagram 

O+A"-B- C+O 

.1. P .1y (5.1) 
O +  At-% B t - C f + ~  

with exact rows; the kernel and the cokernel of this morphism are short 
sequences, but need not be exact (example : map 0 -A = A  to A =A + 0 
with /?= I,). The horizontal maps of the diagram do induce maps which 
give exact sequences 

O+Keru+Ker/?-tKery 
and 

Cokeru -tCoker/? +Cokery +O . 
They can be combined in a long exact sequence: 

Lemma 5.2. For any commutative diagram 

with exact rows there is a map D,: Kery +Cokeru, lzatural for functors 
of the diagram D, such that the sequence 

is exact. We call (5.2) the Ker-Coker sequence. 
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Proof. Let L :  Kery -tC be the injection, 7 :  A1+A'/aA, the pro- 
jection. The switchback formula D, =7 %'-It9 a-, L then defines D, 
without ambiguity. To prove the exactness of (5.2), say at Cokera, 
suppose x i  (a' + a  A )  = O  for some a'. Then x1a'=,9b for some b and 
a'x'a = yab = 0, so a b c Kery has D, ab = a' + a A ,  which is the required 
exactness. The rest of the proof is similar. 

We call D, the connecting homomor~hism of the diagram D. 
Now we prove Thm.4.f for the short exact sequence E of complexes 

K - L  +M. Let C, ( K )  denote the module of n-cycles of K and form 
the diagram 

KnIaKs+l -tLn/aLn+l +MnIaM,+l + 0 
D (E)  : .la* .la* .la* 

0 -+ C,-l(K) + C,-l(L) + C,-l(M) 

with exact rows and vertical maps induced by a. The first kernel is 
C, (K)/aK,,,= H, (K) ,  and the first cokernel is Cn-, (K)/aK,= H,-l ( K ) ,  
so the Ker-Coker sequence (5.2) is 

H,(K) -+H,(L) +H,(M) ~ H , - , ( K )  -tH,-,(L) +H,-,(M). 

The middle map D(E),,  as defined by switchback, is identical with 
the connecting homomorphism 8, of Thm. 4.~1. 

Exercises 
1. Prove the 3 x 3  lemma by diagram chasing, without using the exact 

homology sequence. 

2. If in the hypotheses of the 3 x 3  lemma one assumes only the first and third 
rows exact, show that the second row need not be exact, but will be exact if PIP2= 0. 

3. Under the hypotheses of the 3 x 3  lemma, establish exact sequences 

4. In a commutative 3 x 3  diagram assume only that all three columns are 
"left exact" (i.e., exact a t  A and B) and that the last two rows are left exact. 
Prove that the first row is left exact. If, in addition 8, and E are epimorphisms, 
prove that the first row is exact. 

5. Prove the Ker-Coker sequence from the exact homology sequence. [Hint: 
Replace A by Coim(A+ B )  and dually for C'.] 

6. For any homomorphisms a: A - t B ,  p: B+C establish an exact sequence 

6. Additive Relations 

The "switchback" formulas can be justified in terms of "additive 
relations". They will appear later in the treatment of spectral sequences. 

An additive relation r : A- B is defined to be a submodule of the direct 
sum A@ B; in other words, r is a set of pairs (a, b) closed under addition 

4" 
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and subtraction. The converse of r is the additive relation r-1: B- A 
consisting of all pairs (b, a) with (a, b) ~ r .  If s: B- C is another additive 
relation, the corntosite sr: A-C is the set of all those pairs (a,c) such 
that there is a b E B with (a, b) Er and (b, c) E s. This composition is associa- 
tive, when defined. The p a t h  of a homomorphism a:  A-tB is the 
additive relation consisting of all pairs (a,aa) for aeA; since the com- 
posite of two graphs is the graph of the composite homomorphism, 
we may identify each homomorphism with its graph. The class with 
objects all modules and morphisms all additive relations r :  A-B is 
a category - but note that rr-l need not be the identity relation. 

For each additive relation r: A- B intioduce the submodules 

Defr=[aI(ab),(a,b)~r] Imr=Defr-l, 

Kerr= [a[ ( a ,o )~r ]  Indr = Kerr-l. } (6.1) 

Here Kerr < Def r < A and Indr < Imr < B. Def r is the domain of defini- 
tion of r, while Ind is the "indeterminancy" of r, and consists of all b 
with (0, b) ~ r .  Moreover, r is the graph of a homomorphism if and only 
if Defr= A and Indr=O. 

For example, the converse of a homomorphism p: B +A is an addi- 
tive relation P-l with Defp-l=Imp, Indp-l=Ker,!?. In a complex K 
the set of pairs (c, clsc) for C E  C, (K) is an additive relation cls: K,,- 
H, (K) with Def (cls) = C, (K). With these observations, the "switch- 
back" formula for the connecting homomorphism appears as the com- 
posite of additive relations. 

Any additive relation can be regarded as a "many-valued homo- 
morphism; more exactly, as a homomorphism of a submodule to a 
quotient module : 

Proposition 6.1. Each additive relation r : A - B determines a homo- 
morthism rO : Def r + B/(Indr) such that 

n j ,  j: Defr+A, n :  B+B/Indr, (6.2) 

where j is the injection and n the trajection. Conversely, given a submodule 
S < A, a quotient module BIL of B, and a homomorthism P: S -t B/L 
there is a unique additive relation r : A- B with P = p. 

Proof. Given a €  Def r, (a, b) Er and (a, b') cr  imply (0, b- b') cr, hence 
b- b ' ~  Indr. Then P (a) = b+ Indr defines a homomorphism P with the 
desired form (6.2). Conversely, given P, r is the set of all pairs (s,b) 
with b@(s). 

A similar argument shows that each additive relation r induces an 
isomorphism 13,: (Def r)/(Ker r) z (Imr)/(Indr) ; conversely, each iso- 
morphism of a subquotient of A to a subquotient of B arises in this 
way from a unique additive relation r. 
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Given subquotients S/K of A and Sf/K' of A', each homomorphism 
a : A+ A' induces an additive relation 

a#=a (S/K, Sf/K') : SIK- S'IK', (6-3 
defined to be the set of all pairs (s+K, sl+K') of cosets with scS, 
sf€ Sf, and sf= as. This includes the previous notion of induced homo- 
morphisms. 

For an equivalence one can detqmine the inverse of an induced 
relation. 

Proposition 6.2. (Equivalence principle.) If 8: A+ A' is an equi- 
valence, then 

(e,)-l= (e-y,: s~/K~-- SIK. 

Indeed, each of (O#)-l and (&I)# consists of the same pairs. 
In Chap.XI we will use the composite of two induced relations. 

This is not always the relation induced by the composite homomorphism. 
For example, in the direct sum A =  B e  B let B, be the submodule of 
all (b, O), B, the submodule of all (0, b) and A the submodule of all (b, b) 
(the "diagonal" submodule). Then 1 A induces isomorphisms B, r 
A/B, d, but the relation Bl- A induced by 1 A consists of (0,O) alone. 
Composition works reasonably well only under a restrictive hypothesis, 
as follows : 

Proposition 6.3. (Composition principle.) If homomorphisms a : A+ A' 
and p : A'+ A" induce the additive relations a#: S/K- Sf/K' and /?# : 
Sf/Kf- SU/K" on given subquotients, then 

@#a#= (/?a)#: S/K- S"/KU, 

provided (i) either a K > K' or /? K' < K" and (ii) either a S < S' or/?-lS"< Sf.  

Proof. Suppose first that (s+ K, s"+ K") E /I By definition of 
the composite of two relations, there are s; and s, m S' with s;+ Kt=  
s;+K1 and as=s;, Bs;=s1'. Thus s;-s;=kf~Kf, and pas=s"+/?kl. 
In case either /? Kt< K" or K f< a K this gives (s+ K, s"+ K") E (/?a)#, so 
hypothesis (i) gives /?# a#< @a)#. Similarly, (ii) gives the opposite in- 
clusion. 

Exercises 
1. For each additive relation v: A- B, prove vrlv=v. 
2. For additive relations v and s, prove (vs)-l= s-lrl. 
3. If u= A- A  is an additive relation with u-l= u= u2, prove that there are 

submodules K < S < A  with u = [(s, s + k) I s E S, k E K] . Establish the converse. 
4. For each additive relation v: A- B, describe v r l  and r l r .  
5. Under the hypotheses of the strong Four Lemma (Lemma I.3.2), prove 

E a-l= /I-'?. 



54 Chapter 11. Homology of Complexes 

7. Singular Homology 
The use of complexes may be illustrated by a brief description of 

the singular homology groups of a topological space. We first introduce 
affine simplices. 

Let E be an n-dimensional Euclidean space; that is, an n-dimensional 
vector space over the field of real numbers in which there is given a 
symmetric, bilinear, and positive definite inner product (u, v) for each 
pair of vectors u, v~ E. The usual distance function Q (u, v) = (u- v, u- v)h 
makes E a metric space and hence a topological space. In particular, 
E may be the space Em of all n-tuples u =  (a,, . . . , a,) of real numbers a,, 
with termwise addition and with the standard inner product (6, . . . , a,) 
(bl , . . . , b,) = 2 ai b, . 

The line segment joining two points u , v ~ E  is the set of all points 
tu+(l-- t)  v, for t real and O s t s l ;  that is, of all points xou+xlv, 
where x,, xl are real numbers with xo+ xl = 1, x, 2 0, x, 2 0. A subset 
C of E is convex if it contains the line segment joining any two of its 
points. If uO, . . . , u, are m+ 1 points of E, the set of all points 

is a convex set containing u,, . . . , urn and in fact the smallest convex 
set containing these points; it is called the convex huIl of u,, . . . , u, . 
The points u,, . . . , u, are said to be affine independent if every point 
of this convex hull has a unique representation in the form (7.1); the 
real numbers xi are then the barycentric coordinates of u relative to 
u,, . .., u,. I t  can be shown that the points u,, ..., u, are affine inde- 
pendent if and only if the vectors y - u,, . . . , ~ d , -  uo are linearly 
independent. 

An affine m-simplex is by definition the convex hull of m+ 1 affine 
independent points. These points are the vertices of the simplex. Thus 
a 1-simplex is a line segment, a 2-simplex is a triangle (with interior), 
a 3-simplex is a tetrahedron, etc. For each dimension n we will take a 
standard affine n-simplex An in the space En, and we will label the ver- 
tices of An as (0, 3 ,  . . . , n). (For example, take 0 to be the origin and 
1, . . . , n a basis of n orthogonal vectors in En.) 

For any topological space X, a singular n-simplex T in X is a con- 
tinuous map T: An+X. Thus a singular 0-simplex of X is just a point 
of X, or, more accurately, a map of the standard point AO into (a point 
of) X. We first construct certain singular simplices in convex subsets 
of E. 

Let E and E' be Euclidean spaces, L: E +E' a linear transformation 
and u; a fixed vector of E'. The function f (u) =a; + L(u) on E to E' 
is called an affine transformation f :  E+E'. As the composite of the 
linear transformation L with the translation by u;, f is continuous. 
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Proposition 7.1. I f  u,, . . . , un are n+ 1 affine inde+endent points 
in En, while v,, ..., v,EE', there is a unique affine transformation 
f :  E"-+E1 with f(u,)=v,, i=O, ..., n. 

Proof. The vectors u,-uO, i=1, .. . , n, are a basis of En. Let L 
be the unique linear transformation with L(u, - u,) = vi- v,; f (u) = 
v,- L(u,)+ L(u) is the required affine transformation: I t  may also be 
written in barycentric coordinates as 

In particular, let v,, . . . , v, be an ordered set of points in a convex 
subset C of E'. The unique affine transformation f :  En-+E' which 
carries the vertices 0, 1, . . . , n of the standard simplex A" in order into 
v,, . . . , v, thus gives a continuous map An+C which we write as 

(v,, ..., v,),: An+C. (7.2) 

This we call the affine singular n-simplex (with standard vertices 0, . . . , n 
mapped to v,, . . . , v,). For example, if the v, , . . . , v, are affine independent, 
it is a homeomorphism of the standard simplex A" to the affine simplex 
spanned by the v's. In particular J,= (0, 1, . . . , n),, is the identity map 
of An onto itself. If the v,, . . . , v, are dependent, the corresponding 
map (v,, . . . , v,), collapses the standard An onto a simplex of lower 
dimension. 

We may now describe the "boundary" of A" to consist of certain 
(n- 1)-dimensional singular simplices which are the "faces" of A". For 
example, the faces of the triangle A ~ = ( o ,  1,2) are the three edges 
represented by the segments (1 2), (0 2), and (0 1) ; in the notation (7.2) 
they are the three continuous maps (1, 2),r, (0, 2)Ar, and (0, I),' of 
A1 into Aa. In general A" has n+ 1 faces; its i-th face is the affine singular 
(n - 1 )-simplex 

where the notation 5 indicates that the vertex i is to be omitted. Any 
singular n-simplex T: An-+X has n+ 1 faces d,T defined by 

In other words, d,T is the map obtained by restricting T to the i-th 
face of An and regarding this restriction (via E,) as a map defined on 
A"-1 . Any singular simplex T can be written as the composite T = T Jn , 

where J,: A"-+An is the identity map of A", and hence a singular n- 
simplex of An. The faces of T are then given by the formula 
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The n-dimensional singular homology group H, ( X )  of the space X 
is now defined to be the n-th homology group H,(S ( X ) )  of the complex 
s ( X ) .  

Theorem 7.2. The homology group H, ( X )  is a covariant functor of X .  
Proof. If Y is a second topological space and f : X-+Y any continuous 

map, each singular simplex T :  An+X of X yields by composition a 
singular simplex f T: A*+Y of Y.  The correspondence T+f T on the 
free generators T of S ,  ( X )  yields a homomorphism S ,  ( f )  : Sn ( X )  +S, (Y) .  
Moreover, di ( f  T )  = f (diT) ; hence a S ( f )  = S ( f )  a, so S ( f )  is a chain trans- 
formation which induces homomorphisms H, ( S  ( f ) )  : H, ( X )  +H, (Y)  
on the homology groups in each dimension. With these homomorphisms, 
H, is a covariant functor on the category with objects all topological 
spaces, morphisms all continuous maps. 

If G is any abelian group, the cohomology groups Hn(S ( X ) ,  G) are 
the singular cohomology groups of X with coefficients G. They are bi- 
functors, contravariant in X and covariant in G. 

The homomorphism E: S o ( X )  +Z which carries each singular 0- 
simplex into 1 EZ is called the augmentation of S ( X ) .  Since E a = 0 : 
S,(X) -4, E: S ( X )  +Z is a complex over Z. Moreover, E induces an 
epimorphism E, : Ho(X)  +Z. A space X is called acyclic if H,(X) =O 
for n>0 and E* is an isomorphism H,(X) zZ. 

Proposition 7.3. A topological space with only one point is acyclic. 

Proof. Let X={x}  be the space. In each dimension n,  X has only 
one singular simplex, namely the map Tn: An-+{x} which collapses An 

to the point x. Hence each face d,T, is T ,-,, for i=O, . . . , n. Since aT 
is the alternating sum of faces, aT,,=T,,-, and a&,-,=O. Thus in 
even dimensions S ( X )  has no cycles except 0, while in odd dimensions 
all elements of S,,-,(X) are cycles and also boundaries. Therefore 
H, (X) = 0 for all n > 0 ; clearly Ho ( X )  Z.  

Exercises 
1. Let the  affine simplex r be the convex hull of the affine independent points 

u,, . . . , u,. Show that UEI '  is one of the points ui i f  and only i f  v,  w E l '  and u on 
the segment from v to w imply u= v or u= w. Conclude that the simplex I: as a 
convex set, determines its vertices. 

2. I f  X is pathwise connected, prove that e,: H , ( X )  CLZ. (Definition: Let 
I be the unit interval. X is Pathwise connected i f  to each pair of  points x,y EX 
there exists a continuous map f: I + X  with f (0) = x, f (I) = y.) 

8. Homotopy 
Two continuous maps of a space X into a space Y are said to be 

"homoto~ic" if it is possible to continuously deform the first map ihto 
the second. Consider the deformation as taking place in a unit interval 
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of time; then i t  can be regarded as a continuous map defined on the 
cartesian product X x I  of the space X and the unit interval I, O S t S  1 
on the real t-axis. Hence we make the 

Definition. Two continuous maps fo, fl: X-tY are homotopic if 
and only if there is a continuous map F :  X x I + Y  such that 

F(x,O)=fo(x), F(x,I)=f,(x). (8.1 

When this holds, we write F: foe f,: X-tY. 

The condition (8.1) states that the homotopy starts, for t=O, with 
the initial map fo and that it ends, for t=  1, with the final map f,. For 
example, a space X is called contractible if the identity map 1 : X + X  
is homotopic to a map which sends X into a single point. Any convex 
set C in a Euclidean space is contractible to any one of its points w,  via 
the homotopy D defined by 

This function is clearly continuous and takes values in C, because C 
is convex. 

This geometric notion is closely related to the algebraic notion of 
a chain homotopy. As a first example, we prove 

Proposition 8.1. Any convex set C in a Euclidean sflace is acyclic. 

The proof uses a chain homotopy s: S,(C) +S,+, (C). Since S, (C) 
is the free abelian group generated by the singular n-simplices T of C, 
it will suffice to define a singular (n+ 1)-simplex ST: An+l-+C for each T. 
In terms of the barycentric coordinates (x,, .. . , x,+,) of a point of 
An+l, set 

where w is a fixed point of C. To see that ST is continuous at xo=l,  
we rewrite the definition so that it resembles the geometric homotopy 
D of (8.2). Let vo=O be the initial vertex of Anfl; then 

can be viewed as the barycentric coordinates of some point u' on 
the opposite face. Each point of An+l can be written as a weighted, 
average xovo+ (1 - x,) u' for some u', unique except when xo= I .  The 
point zc' on the opposite face determines UEA" with ~Ou=u'. The 
definition (8.3) now reads, in all cases 
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In other words, the segment in An+' joining vo to each point u' of the 
opposite face is mapped by ST linearly onto the segment joining WEC 
to T(u) E C. In particular, since An is compact, TAn is compact and hence 
bounded, so ST: An+'-+C is continuous at xo=O. 

This s: Sn(C) +Sn+,(C) provides a contracting homotopy for the 
augmented complex 8: S (X) +Z. In the notation of (2.5), let f : Z +  
S(X) be the chain transformation which carries I EZ to  the singular 
0-simplex T,  at the chosen point w E C. The i-th face di (s T) is the singular 
n-simplex obtained from (8.3) by setting xi= 0. Hence do (ST) =T, 
while dj+,(sT)=sdiT if n>0 and dlsT=To if n=O. This gives a(sT)= 
T-s(aT) for n>O, asT=T-feT for n=0, and & f = l ,  all as in (2.5). 
Hence S (X) is acyclic, as required. 

More generally, consider any homotopy F: X x I  +Y. Regard X x I  
as a cylinder on the base X ;  the boundary of this cylinder is the top 
(where F= f,) minus the bottom (where F= fo) minus the sides (i.e., 
minus F on (3X)xI). The resulting schematic formula aF= fl- f,,-Fa 
suggests the definition as=fl-fo-sa of a chain homotopy. These 
indications can be made precise, as follows: 

Theorem 8.2. If f o r  fi: X - f Y  are homotopic continuous maps, the 
induced chain transformations S (f,), S (f,) : S (X) + S (Y) are chain homo- 
topic. 

We reduce this theorem to the special case of the cylinder X x I .  
By the base b and the top t of this cylinder we mean the continuous 
maps b, t : X + X x I  defined by b ( x )  = (x, 0) and t (x) = (x, I)  ; they are 
clearly homotopic. 

Lemma 8.3. For any cylinder there is a chain homotop y u : S (t) s~ S (b) . 
The lemma implies the theorem. For let F: X x I + Y  be any homo- 

topy F: fO=fl. Then F b =  fo, F t =  f,, and S(F) is a chain transformation. 
Define s as the composite 

S= Sn+, (F) U:  S, (X) Y Sn+l ( X x I )  +Sn+l (Y) . 
Then a s + s a = S ( F ) ( a ~ + u a ) = S ( F ) ( S ( t ) - S ( b ) ) = S ( f l ) - S ( f , ) .  

To prove the lemma, we prove more : That u = u, : S (X) + S ( X x  I) 
can be chosen simultaneously for all topological spaces X so as to be 
natural. For each continuous map g: X+X f of spaces, naturality 
requires that the diagram 

S , ( X ) Z S  ( X x I )  
(g) n+[s ( g x  1) (8.4) 

sn (Xf) % s,, +l (X'x I) 
I 

be commutative. Observe that b, t: X + X x I  are already natural. We 
construct such a u by induction on n. For n=0, a singular 0-simplex 
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is just a point T(0) of X. Take uoT to be that singular I-simplex of 
X x I  defined by (uoT) (x,, x,) = (T(o) ,  x,), so that uoT is the segment 
vertically above T(0) in the cylinder X x I .  Then do(uOT)=t,(T(0)), 
4 (u,,T) = b (T(o) ) ,  so a (u,T) is indeed S (t) T-  S (b)  T. Moreover u0 is 
clearly natural. 

For n>O, suppose urn has been defined for all m<n, in particular, 
aun_,+u,-,a= S(t)- S(b); if a=1, an-, is zero here. Let J,: An+A" 
be the identity map of the standard simplex. We first define uJ,e 
Sn+, (An) ; its boundary ought to be 

auL=s(t)J,- s(b)L-un-1aA- (8.5) 

Now the expression c on the right is a chain of S, (A"XI) ; its boundary is 

ac=as(t)L- s ( b )  a~,-a~,-,aj,= ( s ( t ) -  s (b) -a~ , - , )  aj,, 

which is zero by the induction assumption. Hence c is an n-cycle of 
A 5 I .  But A nxI  is a convex subset of a Euclidean space, hence is 
acyclic by Prop. 8.1. Therefore c is a boundary, say c= aa for some 
a€ Sn+, ( A k I ) .  We set uJ,= a; then (8.5) holds. 

If T :  An+X is now a singular simplex of any space X, T =TJn= 
S(T)J,  and T x I :  A n x I + X x I .  Define uT=S(Tx I )uJn=S(Tx l )a .  
This definition immediately satisfies the naturality requirement. To 
show that it gives the required homotopy, calculate 

auT=S(Tx I )  a a = S ( T x l )  [S( t )  Jn- S(B) J,-21,-,aJ,], 

where t and b are top and base for AnxI .  But t, b, and us-, are all 
natural, hence (8.5) gives auT= S (t) T-  S (b) T-  un-,aT, as desired. 

This type of proof consists in first constructing the desired object 
(here, the desired chain homotopy) on a model chain such as J, by 
observing that the space AnxI  in which the model lies is acyclic, and 
in then carrying the object around to other spaces by the maps T.  
It is an old method in topology; it will reappear later (Chap.VII1) as 
the method of acyclic models. Here it has the merit of avoiding an 
explicit formula for the homotopy u. 

Corollary 8.4. If the continuous maps f o ,  f ,  : X +Y are homotopic, 
the induced homomorphisms H(fo), H(fl) : H, ( X )  -t H,(Y) are equal. 

Exercises 
1 .  Show that any contractible space is acyclic. 
2. In the prism A n x I  let 0, i ,  . . . , n denote the vertices of the base, d', i f ,  

. . . , n', those of the top. Show that an explicit homotopy u forX= AninLemma 8.3 
is given, in the notation for affine singular simplices, by 
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3. For n= I ,  2 as in Ex.2, show that the terms of uJ, correspond to a "tri- 
angulation" of the prism A n x  I (Draw a figure). 

4. Show that A n x I  can be "triangulated" as  follows. Partly order the vertices 
of A n x { O )  and A"X{I)  by the rule that (i,.s)$(j,v) for s.q=O, 1 ,  if i l j  and 
e s v .  Take as simplices of the triangulation all those formed by a linearly ordered 
subset of the whole set of vertices, and show that the resulting n-simplices are 
those appearing in u  J, in Ex. 2. 

9. Axioms for Homology 

Let A  be a subspace of X .  Identify each singular simplex T: An+A 
of A  with the composite map An+A+X; then T  become^ a singular 
simplex of X  and the singular complex S  (A)  a subcomplex of S  ( X ) .  
The homology groups of the quotient complex, 

are called the relative homology groups of the pair ( X , A )  of spaces. 
They are subquotient groups of the quotient S ( X ) / S ( A ) ,  hence can be 
rewritten as subquotients 

H,(X,A)  =C , (X ,A) /B , (X ,A)  (9.2) 

of S  ( X ) .  Specifically C, ( X ,  A )  consists of those elements c E S, ( X )  
with ace S,-, ( A ) ,  while B, ( X ,  A)  = S, (A )  " a  S,+l ( X )  ; the elements c 
of C, ( X ,  A )  are known as relative cycles ; those of B, ( X ,  A )  as relative 
boundaries. A single space X  may be regarded as a pair of spaces ( X ,  a), 
with 0 the empty set; then H, ( X ,  0) = H, ( X ) .  

A map f : ( X ,  A )  + ( Y ,  B)  of pairs of spaces is by definition a con- 
tinuous map f :  X + Y  with f ( A )  < B.  With these maps as morphisms, 
the pairs of spaces constitute a category, and H,(X,  A )  is a covariant 
functor on this category to abelian groups. 

Each pair ( X ,  A )  gives a short exact sequence of complexes S  ( A )  - 
S  ( X )  + S  ( X ) / S  (A) .  The connecting homomorphism a, for this sequence 
is called the invariant boundary of the pair ( X ,  A ) ;  the exact homology 
sequence (Thm. 4.1) gives 

Theorem 9.1. If ( X ,  A)  i s  a pair of s#aces, the long sequence 

...+ H,(A).% H,(x)~'-  H,(x,A)-%H,-,(A)+ ..., (9.3) 

ending i n  -+ Ho ( X )  + Ho ( X ,  A )  +O, i s  exact. 

Specifically, i :  (A ,  0) -+ ( X ,  0) and j :  ( X ,  0) + ( X ,  A) are maps 
of pairs induced by the identity function, while a,  is given for each - 
relative cycle c as 8, (clsc) =CIS (ac).  We have already noted (Example 
(1 .3))  that i ,  : H,(A) +H,(X)  need not be a monomorphism; this 
exact sequence describes the kernel and the image of i,. 
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Two maps f,, f,: (X, A) +(Y, B) of pairs are homotopic if there is 
a homotopy F: f o e  f,: X+Y with F(AxI )  < B; this last condition 
means that F cut down to A x 1  is a homotopy between fo and f, cut 
down to maps of A into B. An extension of the argument for Thm. 8.2 
shows that homotopic maps f,, f, of pairs have Hn (f,) = Hn (f,) : Hn (X, A) 
+Hn (Y, B). 

The singular homology theory for pairs of spaces thus gives: 
1. Functors Hn(X,A) of pairs of spaces to abelian groups, n=0, 

1, ... . 
2. Natural homomorphisms a, : Hn (X, A) +Hn-, (A), lz = 1, 2, . . . . 
These data satisfy the following additional conditions: 
3. If X consists of a single point, H,(X) s.2 and Hn(X) = O  for 

%>O. 

4. For any pair (X, A) the relative homology sequence (9.3) is exact. 
5. Homotopic maps of pairs induce equal homomorphisms on each H, . 
6. (Excision.) If X>A>M are spaces such that the closure of M 

is contained in the interior of A, let X- M>A- M denote the sub- 
spaces obtained by removing all points of M from X and from A, 
respectively. Then the injection k of X- M into X induces isomorphisms 
on the relative homology groups 

H,(k) : Hn (X- M, A- M) r H n ( X ,  A). (9.4) 

Our discussion has indicated the proofs of all except the sixth 
property; a proof of this uses "barycentric subdivisions"; it may be 
found in EILENBERG-STEENROD [1952], WALLACE [195 71, or HILTON- 
WYLIE [ I  9601. 

These six properties may be taken as axioms for homology. I t  can 
be proved that when the pair (X, A) can be "triangulated" by a finite 
number of affine simplices, any relative homology groups satisfying 
the axioms must agree with the singular homology groups. Moreover, 
from the axioms alone one can calculate the singular homology groups 
of elementary spaces to agree with those calculated from "naive" 
subdivisions in $1. In particular, if Sn is the %-sphere, one deduces 
that Hn(Sn) GZ, H, (Sn) SZ and Hi(Sn) = O  for O+ i+%. This, and 
other striking geometric properties (Brouwer fixed point theorem, etc.) 
are presented in EILENBERG-STEENROD [1952], Chap. XI. 

We have now completed our too brief indication of the use of homo- 
logy theory in topology. 

Notes. "Complex" originally meant simplicia1 complex; in topology "complex" 
has various geometric meanings, such as "cell complex" or "CW-complex". ~ h k  
chain complex in our purely algebraic sense was introduced by MAYER [1929, 
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19381 The formulation of exact homology sequences, as codified in KELLEY-PITCHER 

[1947], allowed a systematic treatment of simple facts which previously were done 
"by hand" in each case. POINCAR* introduced homology, via Betti numbers; 
i t  was Emmy NOETHER who emphasized that the homology of a space deals with 
a homology group rather than just with Betti numbers and torsion coefficients. 
Singular homology in its present form is due to EILENBERG; the axioms for homo- 
logy theory, with application to other homology theories (CECH theory) appear 
in the influential book by EILENBERG-STEENROD. Additive relations have been 
explicitly recognized only recently [LUBKIN 1960, MAC LANE 1961, PUPPE 19621. 
The corresponding notion for multiplicative groups occurs in WEDDERBURN [1941], 
ZASSENHAUS [1958], and for general algebraic structures in LORENZEN [I9541 and 
LAMBEK [1958]. 

Chapter  th ree  

Extensions and Resolutions 

A long exact sequence of R-modules 

running from A to C through lz intermediate modules is called an 
"a-fold extension" of A by C. These extensions, suitably classified by 
a congruence relation, are the elements of a group Ext" (C, A ) .  To cal- 
culate this group, we present C as the quotient C =&/So of a free module 
F,;  this process can be iterated as So=F,/S,, Sl= F2/S2, . . . to give 
an exact sequence 

... + F , + F , - ~ + . . .  +F,+F,+c+o 

called a "free resolution" of C. The complex Hom (F,  , A) has cohomology 
Ext" (C, A) .  Alternatively, one may imbed A in an injective module Jo 
($7) and then Jo/A in an injective module J,; this process iterates to 
give an exact sequence 

O-+A+Jo+ J,+ ... + Jn-l+ Jn+ ... 

called an "injective coresolution" of A. The complex Hom(C, J,) has 
cohomology Ext" (C, A ) .  In particular, Extl (C, A)  isoftencalled Ext (C, A ) .  

The chapter starts with the definition of Extl, which is at once 
applied ($4) to calculate the cohomology of a complex of free abelian 
groups from its homology. The chapter ends with a canonical process 
for imbedding any module in a "minimal" injective. 

1. Extensions of Modules 

Let A and C be modules over a fixed ring R. An extelzsion of A 
b y  C is a short exact sequence E = (x,  a) : A * B +C of R-modules and 
R-module homomorphisms. A morfihism r: E+Ef of extensions is a 
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triple r = ( a ,  8, y) of module homomorphisms such that the diagram 

is commutative. In particular, take A'= A and C'= C; two extensions 
E and E' of A by C are congruent (E= E') if there is a morphism 
(lA, /I, lC): E +El. When this is the case, the short Five Lemma shows 
that the middle homomorphism 8 is an isomorphism; hence congruence 
of extensions is a reflexive, symmetric, and transitive relation. Let 
ExtR(C,A) denote the set of all congruence classes of extensions of A 
by C. 

An extension of A by C is sometimes described as a pair (B, 8) where 
A is a submodule of B, and 8 is an isomorphism BIArC.  Each such 
pair determines a short exact sequence A n  B + BIA and every exten- 
sion of A by C is congruent to one so obtained. 

One extension of A by C is the direct sum AHA@ C+C. An ex- 
tension E = (%,a) is said to be @it if it is congruent to this direct sum 
extension; as in Prop.I.4.3, this is the case if and only if a has a right 
inverse p:  C+- B (or, equivalently, x has a left inverse). Any extension 
by a projective module P is split, so ExtR(P, A) has but one element. 
To illustrate a non-trivial case, take R=Z. Then, for example, the addi- 
tive group 2 2  of even integers has two extensions by a cyclic group 2, 
of order 2: (The direct sum 22d.32, and the group 2) 22. This is a 
special case of the following fact: 

Proposition 1.1. For any abelian group A and for Zm(c) the cyclic 
group of order m and generator c there is a I - 1 corresfiondence 

where mA is the subgroup of A consisting of all ma for acA. 

Proof. Take any extension E of A by 2,; in the middle group B 
choose an element u with a u = c  to serve as a sort of "representative" 
of the generator c. Each element of B can be written uniquely as b=xa 
+ hu for some a €  A and some integer h, h=O, . . . , m- 1. Since mc=O, 
a (mu) = 0, so mu = xg for a unique g~ A. This g determines the "addition 
table" for B, because 

The element g is not invariant; the representative u may be replaced 
by any d = u + x f  for f c A ,  thus replacing g by gl=g+mf. The coset 
g+ m A in AIm A is uniquely determined by the extension E. Set 7 (E) = 



1. Extensions of Modules 65 

g+ m A. If E = E', 7 (E) =q (E'). If g is any element of A, take for B 
the set of all pairs (a, h) with a €  A, h= 0, . . . , m- 1 and define addition 
of pairs, using g, as in the table above. This addition is associative, 
makes B a group, and gives an extension E with 7 (E) =g+ mA. Hence 
1;1 is 1 - 1 onto AImA. 

Now 7 is a correspondence between a set Ext, and an abelian group 
A/mA; this suggests that ExtR(C,A) is always an abelian group. We 
shall shortly show this to be so. First we show that Ext is a functor, 
on the category of modules to that of sets. 

Let A be fixed. To show ExtR(C, A) a contravariant functor of C 
requires for each E€ExtR(C, A) and each y: C'+C a suitable extension 
E' = y* E~Ext,(c ' ,  A). This E' may be denoted by Ey, and is described 
by the following lemma, which shows E' unique and which hence easily 
implies the congruences 

E l c  = E ,  E(y y') = (Ey) y'. 

They state that E depends contravariantly upon C; note, in particular, 
that the notation Ey, with y behind, gives the good order for multi- 
plication of y's in the second equation (1.2). 

Lemma 1.2. I f  E is an extension of an R-module A by an R-moduZe C 
and if y: C1+C is a modzcle homomorfihism, there exists an extension E' 
of A by C' and a morphism r = ( I A ,  g, y): E1+E. The #air (r, E') is 
unique up to a congruence of E'. 

Existence proof: In the diagram 

the sides and the bottom are given; we wish to fill in the module at 
" ? "  and the dotted arrows so as to make the diagram commutative 
and the top row exact. To do so, put at ? that subgroup B'< B e  C' 
which consists of the pairs (b, c') with a b = y c'; define a' and #I as 
ul(b, c') = c', g (b, c') = b. This choice insures commutativity in the right- 
hand square of (1.3). With the definition %'a= (xu, 0) the diagram is 
completed; the remaining conditions may be verified. 

Uniqueness proof: Take any other such E" with a morphism r"= 
(IA, g", y) : EU--+E. If B" is the middle module ' E", defineg': B"+ B' 
by g'b" = (/Y"'", a"bU) ; then G= (IA, B', jC,) : x "+E' is a congruence 
and the composite Eu-+E'+E is r", so tb t  the diagram r: E'+E 
is unique up to a congruence 4 of El, as asserted. 

We call El= E y  the composite of the extension E and the homomor- 
phism y; the type of construction involved occurs repeatedly, for 

Mac Lane, Homology 5 
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instance, in the study of induced fiber spaces (where y is a fiber map!). 
Algebraically, E' has the following "couniversal" property: 

Lemma 1.3. Under the hypotheses of Lemma 1.2 each morphism 
T;= (al, /Il ,  y,) : El +E of extensions with yl = y can be written uniquely 
as a composite 

(a B',l) (1 B ) E,-E~LE. (1 -4) 

More briefly, T; can be "factored through" r: E y  +E. 

Proof. Here El= (q, 0,) has the form A, - Bl +C'. (Draw the 
diagram!) Define /?' : B, -t B' as p'b, = (~9, b, , q b,) . This is the only way 
of defining j?' so that A=/? /?' and SO that the diagram (a,, /?', 1) : El +E' 
will be commutative. The verification that this p' yields the desired 
factorization (1.4) is routine. 

Incidentally, this factorization includes the uniqueness assertion of 
Lemma 1.2, in as much as P= ( IA,  p", y): E"+E has by (1.4) the fac- 
torization (1, P", y) = (1, /?, y)  ( I ,  p', 1) with the factor (1, /?I, I )  : E1'+E' 
a congruence. 

Next we show Ext (C, A)  to be a covariant functor of A, for fixed C, 
by constructing for each E and for each a:  A+A' a "composite" ex- 
tension E'= ci E, characterized as follows: 

Lemma 1.4. For E ~ E x t  (C, A)  and a :  A+A' there is an extension 
E' of A' by C and a mor$hism r= (a, 8, I c )  : E +El. The $air (I: E') 
is unique up to a congruence of E'. 

Proof. We are required to fill in the diagram 

at the question mark and the dot'ted arrows so as to make the diagram 
commutative and the bottom row exact. To do so, take in A'@ B 
the subgroup N of all elements (- ua, xu) for agA. At " ? "  in the 
diagram put the quotient group (A'@ B)/N, and write elements of this 
quotient group as cosets (a', b) + N. Then the equations x'al= (a', 0) + N, 
u'[(al, b) + N ]  =ub and pb= (0, b) + N define m s which satisfy the 
required conditions. That the E' so constructed is T nique may be proved 
directly or deduced from the following "univers~l" property of E'. 

Lemma 1.5. Under the hy$otheses of Lemwa 1.4, any morpkism 
I;= (al, p,, 7,) : E +El of extensions with a, = ci c@n be writtelz ulziquely 

El.  
More briefly, T; can be "factored througlz" E+aE. 
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Proof. If El= (3, al) with middle module Bl,  a homomorphism 
p': ( A f @  B)/N+ Bl may be defined by /?'[(a

f

, b) + N ]  =%af + &b. One 
then verifies that A= /?'p, that (IA, ,  p', yl) is a morphism of extensions, 
and that this p' is uniquely determined, completing the proof. 

The uniqueness properties of aE yield congruences 

Hence Ext (C,A) is a covariant functor of A. The fact that it is a bi- 
functor (of A and C) is demonstrated by the following result: 

Lemma 1.6. For a, y, and E as in Lemmas 1.2 and 1.4 there is a 
congr~ence of extensions a (E y) r (a E)  y. 

Proof. By the definitions of E y  and a E  there are morphisms 
(1 &,Y)  (a B 1) E y - E G a E  

with composite (a, /?Z a, y) : E y +a E. By Lemma 1 .3, the extension 
(a E)  y is couniversal for such maps ; that is, (a, /?, /?,, y) has a factoriza- 
tion 

(a,P', 1) (18 ) Ey-(aE) A a E .  

Now the left hand map is exactly the sort of morphism of extensions 
used in Lemma 1.4 to define a (E y) from E y. Hence, by the uniqueness 
assertion of that lemma, a (E y) = (a E)  y, q. e. d. 

To illustrate one use of these lemmas, we prove: 

Proposition 1.7. For arty extension E= (%,a) the com$osite extensions 
x E  and Ea are sfilit. 

Proof. The diagram 

with v defined by v b= (b, ab), is commutative. Hence the definition 
of x E  in Lemma 1.4 shows that x E  is given by the bottom row, hence 
is split. Let the reader display the dual diagram which splits Ea. 

Proposition 1.8. Any mor#hism I;= (a, /?, y) : E +Ef of extensions 
imfilies a congruence a E = E 'y. 

Proof. By the universal property of a E (Lemma 1.5), the map I; 
can be factored through r: E +aE as I;=GI', where G= ( I  A,, /?I ,  y) : 
a E +El. This last map characterizes a E as E'y, by Lemma 1.2. 

2. Addition of Extensions 
The direct sum A @ C of two modules may be regarded as a covariant 

bifunctor of A and C, since there is for any two homomorphisms 

i.-II/ s* 
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a : A+ A' and y : C +C' a homomorphism 
# 

a $ y :  A$C+At@C' 

with the usual properties (a  @ y) (a1@ Y' )  =a a' $ y y' and 1 A $ lc= 
I A e C .  This homomorphism may be defined by setting ( a @ y )  (a,c) = 
(aa,  yc)  or as the unique homomorphism in the middle which renders 
the diagram 

A t A @ C - t C  
J.. i a e .  i. 

A f t A ' @ C ' + C '  

commutative. Here each row consists of projections of the direct sum, 
as in (1.8.12). 

The diagonal homomorphism for a module C is 

It may also be described as that map which renders 

commutati% The codiagonal map for a module A is 

, V = V A : A $ A + A ,  V(%,a2)=%+a2; (2.47 

it has a dual diagrammatic description by V = I A  =V 12: A+ A .  The 
maps A and V may be used to rewrite the usual definition of the sum 
f + g of two homomorphisms f ,  g : C -+A as 

the reader should verify that (f+g)c is still fc+gc under this formula. 

Given two extensions E,  = (xi, a,) : A ,  - B,  -a C, for i = 1 ,2 ,  we 
define their direct sum to be the extension 

We now m k e  Ext (C, A) a group under an addition which utilizes (2.3). 

Theorem 2.1. For given R-modules A and C the set ExtR(C, A )  of 
all congruence classes of extensions of A by C i s  an abelian grou$ under 
the binary o$eration which assigns to the congruence classes of extensions 
El and E, the congruence class of the extension 
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The class of the sfilit extension A -A@ C+C is  the zero element of this 
groufi, while the inverse of any E is  the extension (-1,)E. For homo- 
mmfihisms a :  A+A1 and y : C'+C one hus 

a(El+E2)=aEl+aE2, (El+E2)y=Ely+E,y, (2.5) 

(al+ad E=a1E+a2E, E(y1+y2)= Eyl+Ey2. (2.6) 

The composition (2.4) is known as the Baer sum; the rules (2.5) 
state that the maps a, : Ext (C. A )  +Ext (C, A') and y* : Ext (C, A )  + 
Ext (C', A )  are group homomorphisms. 

We give two different proofs. The first is "computational"; it is 
like the calculation made in 3 I to show that Extz(Z,, A )  is the group 
A/m A. 

Take any extension E = (x, a) of A by C, with a :  B + C. To each c 
in C choose a representative u(c)  ; that is, an element u(c) E B with 
au(c)  =c. For each ~ E R ,  the exactness of E gives r u ( c ) - u ( r c ) ~  x A ;  
similarly, c, d~ C have u (c+ 4 - u (c) - u ( d ) ~  xA. Hence there are ele- 
ments f (c, d) and g (r, c) E A with 

21 (c)  +>d).==xf . (4 + u (c+ a) , c, d € C ,  (2.7a) 
, ru(c)=xg(r,c)+u(rc), ~ E R ,  C E C .  (2.7b) 

Call the pair of functions (f,g) a factor system for E. Let FR(C, A )  denote, 
during this proof, the set of all pairs (f,g) of functions f on C x C  to A 
and g on R x C  to A.  Each factor system is an element of FR(C,A), 
and FR is a group under termwise addition; that is, with (f l+ f,) (c,d) = 

f1(c,d)+fs(cJ). 
The factor system for E is not unique. For any different choice 

of representatives ul(c) we must have ul(c) =x  h (c) + u (c) for some 
function h on C to A. One calculates that 

~ ' ( 4  + ~ ' ( 4  =x  [h (4 +h (4 - h (c+ a) + f (c, 41 +ul(c+ 4 , 
rul (c )=x[rh(c) -h(rc)+g(r ,c ) ]+d(rc) .  

The new factor system f'(c,d), gl(r,c) for the representatives u' is 
then given by the expressions in brackets in these equations. We may 
express this fact differently: To each function h on C to A there is an 
element (dc h, 6, h) E FR (C, A )  defined by 

(dch)(c ,a)=h(c)+h(d)-h(c+d) ,  (dRh)(r,c)=rh(c)-h(rc). 

The factor system f ' ,  g' for representatives u' then has the form (f', g') = 
( f ,  g)  + (dc h, dR h) . Conversely, any such function h can be used to change 
representatives in an extension. Thus, if we denote by SR(C,A) the 
subgroup of all those pairs of functions in FR(C,A) of the form (dch, 
dR h),  the factor system ( f ,  g) of E is uniquely defined modulo SR (C, A ) .  
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Use the factor group FR(C, A)/SR(C, A) ; to each extension E assign 
the coset o (E) of any one of its factor systems (f,g) in this group FR/SR. 
Then u, (E) is uniquely determined by E. 

A congruence of extensions maps representatives to representat&@; 
hence congruent extensions have the same factor systems. It follbws 
that o is a 1 - 1 mapping of the congruence classes of extensions to a 
subset of the abelian group FR (C,A)/SR(C,A). To show Ext (C,A) an 
abelian group under the Baer sum it now suffices to show that 

The first follows by calculating a factor system for El@ E,, and thence 
for El+ E,. The second follows by observing (draw the diagram!) that 
(-1,) E is obtained from E just by changing the si'sjd%f the map 
x :  A n B and hence by changing the signs off a n d g i n t h ~ k t o r  system. 
Finally, the split extension E, has (0,O) as one of its factor systems, 
hence is the zero of this addition. 

It is also possible (see the exercises) to characterize directly those 
pairs of functions (f,g) which can occur as factor systems for an exten- 
sion, and hence to show that ExtR(C, A) is an abelian group without 
using the Baer sum at all. "r (2.5) is easy; FR(C,A)/SR(C,A) is a bifunctor, and o 
is a n ural homomorphism. The proof of (2.6) is similar. 

We now turn to the second (conceptual) proof of the theorem. For 
the direct sum (2.3) of two extensions Ed the congruences 

may be proved by the lemmas of $1 which characterize the composite 
extensions Ei yi and adEi. For a :  A+A' one calculates easily that 

and similarly for y : C'+C that 

Now we can prove the assertion (2.5) of the theorem by the string of 
congruences 

a(El+E2)=aV(El@E,) A=V(u@a) (El@ E,)A 
rV(aEl@aE,)A=aEl+aE2; 

the second half is similar. The proof of (2.6) is parallel to this once we 
know that 

AE=(E@E)A, EV=V(E@E). (2.11) 
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Since (A, , A,, Ac) : E +E @ E is a morphism of extensions, the first 
of these identities follows from Prop. 1.8. Similarly, (E V, V )  : E @ E +E 
gives the second. 

Now let us show that the Baer sum (2.4) makes Ext a group. The 
associative law follows from the definition (2.4) once we know that the 
diagonal and codiagonal satisfy the identities 

These follow directly from the definition of A or V, provided we identify 
(C @ C) @ C with C @ (C @ C) by the obvious isomorphism. To prove 
the commutative law for the Baer sum, use the isomorphism zA : A, @ A ,  
+ A,@ A, given by z, ( 4 ,  a,) = (a,, 4) (or, if you wish, by univer- 
sality and a suitable diagram !). The morphism (z, , z,, zC) : (El @ E,) + 
E,@ El shows that z, (El@ E,) r (E,@ El) zc; a calculation or a dia- 
gram proves that VA zA = VA and that Ac= zcAc. Hence we get the 
commutative law by 

To show that the split extension E, acts as the zero for the Baer sum, 
first observe that for any E ~ E x t  (C, A )  there is a commutative diagram 

E :  o+A-B-%C+O 

P .1Y II 
E,: o+A+A@C+C+O, 

where v is the map v b = (0, o b) =bob. This diagram asserts that the 
split extension E, can be written as the composite E,=O, E,  with 0, : 
A+A the zero homomorphism. Now the distributive law gives E+ E,= 
l,E+OAE=(l,+OA) E=I,E=E. A similar argument shows that 
(-1,) E acts as the additive inverse of E under the Baer sum. Our 
second proof of the theorem is complete. 

The second distributive law (2.6) contained in this theorem may be 
expressed as follows. For each a : A+ A' let a, : Ext (C, A )  +Ext (C, A') 
be the induced homomorphism, and similarly set y*E=Ey. Then 
( y f  + yz) E=yf E+ y; E,  so (2.6) may now be written 

A bifunctor with this property is said to be additive. Exactly as in 
(1.6.5), this property gives natural isomorphisms 

Ext (C, A,@ A,) r E x t  (C,  A,) @ Ext (C, A,), 
Ext(C,@C,,A)~Ext(C,,A)@Ext(C,,A). 
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For R=Z and C a finitely generated abelian group, these formulas, 
with Prop. 1 .1 and Ext, (2, A) = 0, allow us to calculate Ext, (C, A) .  

Corollary 2.2. If the finite abelian grozl#s A and C have relatively 
prime orders, then every extension of  A by C splits. 

Proof. Let m and n be the orders of A and C, and let p,,,: C JC 
be the homomorphism ,u,,c=mc given by multiplication by m in C. 
Since m and n are relatively prime, there is an m' with m'm= 1 (mod n) ; 
hence p,,, is an automorphism, and every element of Ext (C, A) has the 
form E ,urn for some E. But ,u,= lc + . .- + l c ,  with m summands, so 

where v,: A+A is v,(a) =ma=O, q.e.d. 

f l  Exercises 
In the fdibwing exercises it is convenient to assume that all factor systems 

(f,g) satisfy the "normalization conditions" 

This can always be accomplished by using representatives u with u (0)  = 0. 

I. For abelian groups (i.e., with R = Z )  show that a "normalized" function 
on C x C  to A is a factor system for extensions of abelian groups if and only if 
it satisfies the identities 

which correspond respectively to the associative and commutative laws. 

2. If GZ(C,A) is the set of normalized functions f satisfying the identities of 
Ex. I, show that Ext, (C, A) a Gz(C, A) /Sz  (C, A ) .  

3. Do the analogue of Ex. 1 for any ring (identities on factor systems consisting 
of two functions f and g). 

3. Obstructions to the Extension of Homomorphisms 

We have already observed that the functor Horn does not preserve 
exact sequences, because a homomorphism u:  A-+G on a submodge 
A< B cannot always be extended to a homomorphism of B into G 
We can now describe a certain element uE of Ext (BIA, G) which 
presents the "obstruction" to this extension. 

Lemma 3.1. Let A be a szlbmddzlle of B, and E : A - B +C the 
corresponding exact sequence, with C = B/A . A homomorphism u : A +G 
can be extended to a homomorphism B+G if and only i f  the extension 
a E splits. 
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Proof. Suppose first that a is extendable to &: B+G. Form the 
diagram 

E :  o+A-BQ-C+O 

where E' is the external direct sum with injection tl, projection n,. 
Fill in the dotted arrow with the map b+(&b, ab )  =sldb+ r,ab. The 
resulting diagram is commutative, hence yields a morphism E +El. 
According to Lemma 1.4, E' = a E. Since E' splits, so does a E. 

Conversely, assume that a E  splits. The diagram 

used to define la^ yields a map q@: B+G which extends a. The lemma 
is proved. 

The assignment to each a :  A+G of its obstruction a E  is, by (2.6), 
a group homomorphism 

E*: Hom, (A, G) (C, G) . 
Call this the connecting homomorphism for the exact sequence E. 

Theorem 3.2. If E : A & B -% C is a short exact sequence of R-modules, 
the% the sequence 

0 --+HornR (C, G) +HornR (B, G) --+Horn, ( A ,  G) 
Z ~ x t ,  (c, G) S ~ x t ,  (B, G)   EX^^ (A, G ) .  

of abelian gro+s is exact for any R-modzlle G. 

Proof. We already know exactness at Hom (C, G) and Hom (B, G) 
by (1.6.7). Lemma 3.1 gives exactness at Hom (A, G). By Prop. 1.7, 
o*E*= (Ea)*=O. Conversely, to show kernel contained in image at 
Ext (C, G) we must take an E1eExt (C, G) such that Ela splits and show 
El the obstruction for some map A-tG. The fact that Ela splits gives 
a commutative diagram 

A 

The splitting map p followed by @ yields h=Bp: B+B1 (dotted 
arrow above) which makes the right hand lower triangle commutative. 



74 Chapter III. Extensions and Resolutions 

Therefore o,Ax=ox=O. But El is exact, so Ax factors as %a1 for 
some a,: A-tG. Then (a,, a, I)  : E+E, is a morphism of exact sequences 
which states El r a, E. 

An analogous argument yields exactness of the sequence at ExtR (B, G) 
and hence completes the proof of the theorem. 

This theorem asserts that the functor Ext repairs the inexactitude 
of Hom on the right. At the same time Ext presents a new inexactitude: 
On the right in (3 .I), ExtR (B, G) +ExtR (A, G) is not always an epi- 
morphism (see exercise). To describe the cokernel we need a new functor 
Exta. 

Turn now to the problem: When can a homomorphism y : G-+ B/A 
be "lifted" to B; that is, when is there a j: G+B such that y is the 
composite G -+ B -+ B/A ? This yields a dual to the previous lemma. 

Lemma 3.3. Let C= BIA be a quotient module, E the corresfionding 
exact sequence. A homomorphism y : G -t B/A can be lifted to a homomor- 
fihism j :  G +B if and only if the extension E y splits. 

The proof is exactly dual to that of Lemma 3.1, in the sense that 
all arrows are reversed and that direct sums are replaced by direct 
products. Again, call EycExt(G, A) the obstruction to lifting y. The 
assignment to each y: G-tC of its obstruction E y  is a group homo- 
morphism 

E, : Hom (G, C) +Ext (G, A) 

called the connecting homomorphism for E. 

Theorem 3.4. If E: A H B -+C i s  a short exact seque.nce of R-modules, 
then the sequence 

0 +Horn, (G, A) +HornR (G, B) -+Horn, (G, C) 
I E x t ,  (G, A) +ExtR (G, B) +ExtR (G, C) } (3-2) 

i s  exact for any  R-module G. 
The proof is dual to that of Thm.3.2. 

Theorem 3.5. An R-module P i s  projective if and only if ExtR ( P ,  G) =O 
for every R-module G. 

By Thm.I.6.3, P is projective if and only if every extension by P 
splits. Thm. 3.2 provides the following way to calculate the group Ext. 

Theorem 3.6. If C and G are given modules and if F :  KG P+C 
i s  a n  exact sequence with P firojective, then 

ExtR (C, G) ~ H o m ,  (K, G)/x* Hom, ( P ,  G) . (3.3) 

In particular, the grouj on the right i s  indejendent ( u p  to isomorjhism) 
of the choice of the short exact sequence F. 
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Proof. In (3.1) replace E by F. Since P is projective, ExtR(P, G) =O, 
and the exactness of (3.1) gives the formula (3.3) for ExtR (C, G). 

Since any module C can be represented as a quotient of a free module, 
one may always calculate ExtR (C, G) by (3.3) with P free. For example, 
the exact sequence Z L Z  -aZ/mZ, with x  multiplication by the integer 
m, provides a representation of the cyclic group Zm as a quotient of Z. 
Since Hom (2, A) =A under the correspondence which maps each 
f : Z +A into f ( I ) ,  we obtain an isomorphism ExtZ (Z,, A)  A/mA. The 
correspondence is that already used in Prop. l .l . 

Proposition 3.7. For abelian grouf~s the sequences of Thms.3.2 and 
3.4 remain exact when a zero is added on the right. 

Proof. In the case of Thm. 3.2 we must show that x :  A - B a mono- 
morphism?mP%* : Ext (B,  G) +Ext (A,  G) an epimorphism. To this 
end, take a free abelian group F, an epimorphism g,: F+ B with kernelK, 
and let L be g,-I (xA) .  Then g, maps L onto x A  with the same kernel K, 
giving a commutative diagram 

I i ix  
E,: o-+K+F-+B+O 

with exact rows El,  E ,  and hence E p  E,  x .  This yields a commutative 
diagram 

Hom (K,  G) Et Ext (B ,  G) 

I I  b' 
Hom (K,  G) Ef Ext (A ,  G) -t Ext (L, G) ; 

the bottom row is exact by Thm. 3.2. But L, as a subgroup of the free 
abelian group F, is itself free. By Thm. 3.5, Ext (L,  G) =O, hence E: 
is an epimorphism in the diagram, and so is x*, q.e.d. 

In the case of Thm. 3.4 we are given E :  A - B -aC exact and we must 
show Ext (G, B) +Ext (G, C) an epimorphism. Represent any element of 
Ext (G, C) by an exact sequence S :  C - D +G. Since p : C +D is a mono- 
morphism, the case just treated shows that there is an exact sequence 
E': A -M+D with p*E1=E.  This states that we can fill out the 
following commutative diagram so that the first two rows and the last 
column will be exact 

E :  O+A+B+C+O 
11 : rp 

E': O+A .... > ? .... > D +O 
i + 
0 
G=G 
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A diagram chase then shows the middle column exact. This middle 
column provides an element of Ext (G, B) mapping on the last column 
S E Ext (G, C), as desired. 

Note that the diagram above is symmetric: Given exactness of the 
top row and the right column, exactness of the middle row is equivalent 
to exactness of the middle column. The case of Thm.3.2 asserts that 
the diagram can be filled out so that the middle row is exact, while the 
case of Thm. 3.4 asserts that the diagram can be filled out so the middle 
column is exact. The same fact can be stated in subgroup language as 
follows : 

Corollary 3.8. Given abdian grou#s D a& A< B a d  a monomor#hism 
p :  BIA -D, there exists arc abelian grou# M > B and an extension of p 
to an isomor#hism MIA G D. 

This amounts to the construction of a group M from a given sub- 
group B and an "overlapping" quotient group D. 

Exercises 
1. ( 1 n e & & a  Ext on the right.) Let R = K [x, y ]  be the polynomial ring 

in two indeterminates x and y with coefficients in a field K and (x,y) the ideal 
of all polynomials with constant term 0. The quotient module R/(x, y) is isomorphic 
to K, where K is regarded as an R-module with xk= O= y k, for all k € K, and 
E: (x, y) H R a K is an exact sequence of R-modules. Show that ExtR (R, G) + 
ExtR((x,y),G) is not an epimorphism for all G, by choosing an extension on 
the right in which (x,y) is represented as the quotient of a free module in two 
generators. 

2. Show similarly that the sequence of Thm. 3.4 cannot be completed with 
a zero on the right. 

3. Show that Cor.3.8 amounts to the following (self-dual) assertion: Any 
homomorphism a: B + D  of abelian groups can be written as a composite a= rv 
with v a monomorphism, t an epimorphism, and Ker r = v (Kera). 

4. Give a direct proof of the second half of Prop.3.7. (Write G as quotient 
of a free group.) 

5. Prove Prop.3.7 for modules over a principal ideal domain. 

6. For p a prime number and C an abelian group with PC= 0, prove 

ExtZ (C, G) HomZ(C, G/p G) [EILENBERG-MAC LANE 1954, Thm. 26.51 

7. For p a prime, P the additive group of all rational numbers of the form 
m/p6, m, e€Z, and ~ ( f ' )  the additive group of p-adic integers, prove 

ExtZ (P, Z) G z(~)/z [EILENBERG-MAC LANE 1942, Appendix B] . 

4. The Universal Coefficient Theorem for Cohomology 

As a first application of the functor Ext we give a method of "cal- 
culating" the cohomology groups of a complex for any coefficient group 
from the homology of that complex - provided we are dealing with 
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complexes of free abelian groups or of free modules over a principal 
ideal domain. 

Theorem 4.1. (Universal Coefficients.) Let K be a comfdex of free 
abelian grou#s K,  and let G be any abelian groqb. Then for each dimension 
n there i s  a n  exact sequence 

o+Ex~(H,-,(K),G) 5 Hn(K,G) 5   om (H,(K),G) +O (4.1) 
with homomor#hisms/l and a rtatuval in K and G. This  sequence splits, 
by  a homomorphism which i s  natural i~ G but not in K. 

The second ma# a i s  defined on a cohomology class, cls f ,  as follows. 
Each ~c.cocycLe of Hom (K ,  G) i s  a homomor#hism f : K, -+G which vanishes 
on aK,+, , so induces f ,  : H, (K)  +G. If f = 6g i s  a coboundary, i t  vanishes 
on cycles, so (Bg),=O. Define a(cls/)=f,. 

Proof. Write C, for the group of n-cycles of K ;  then D,= K,/C, 
is isomorphic to the group B,-, of (n- 1)-boundaries of K. The bound- 
ary homomorphism a: K,+K,-, factors as 

with i the ppo&tion, i the injection. The short sequences 
\ 

T,: C,nK,+D,, S,: D,+~~c,+H,,(K) (4.3) 

are exact, the second by the definition of I& as C,/aK, . The coboundary 
in the complex Hom (K ,  G) is 6= f a*, where a*: Hom (K,-,, G) + 
Hom (K,, G) is induced by a. This complex appears as the middle row 
in the diagram 

0 0 

T .1 
0 -+ l3x-n ( K ,  G) -+ Hom (C, , G) 2 Hom (D,,, , G) 

This diagram is commutative up to a sign (that involved in the defini- 
tion 6= f a*). In the diagram the fundamental exact sequence (Thm. 3.2) 
for Hom and Ext appears several times. The top row is the exact se- 
quence for S,,, the bottom that for S,-,, with the right-hand zero 
standing for Ext (C,-,, G) which vanishes because Cn-,< K,-, is free. 
The columns are (parts of) the exact sequences for T,-,, T,, and Tn+,; 
the zero at the middle top is Ext (D,, G), zero because D, is free. 
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The cohomology of the middle row is Ker 6/Im 6. Since j* is a mono- 
morphism and i* an epimorphism, it is Ker (al*i*)/Im (j* a'*), and is 
mapped by i* onto Ker a'*, isomorphic to Hom (H,, G) by exactness 
of the top row. The combined map is a. Its kernel is Im j*/Im (j* a' *) ; 
as j* is a monomorphism, this is Ext (H,-,, G), by exactness of the 
bottom row. This proves (4.1) exact, with /I described in "switchback" 
notation as j* (S,*_,)-l, hence natural. 

To split the sequence (4.1), observe that D n s  Bn-,< Kn-, is free, so 
the sequence T, of (4.3) splits by a homomorphism p: Dn+Kn with 
j p =  ID. Then p* j* = 1, so S2-1p* is a left inverse for /I= j* (S:-,)-l, 
as desired. This left inverse depends on the choice of the maps p splitting 
T,. Such a choice cannot be made uniformly for all free complexes K, 
hence p* is not natural in K (but is natural in G for K fixed). 

This proof uses several times the fact that subgroups of free abelian 
groups are free. analogous statement holds for free modules over a 
principal ideal -? domal ; hence the theorem holds for K a complex of 
free modules over such a domain D (and G a D-module). The most 
useful case is that for vector spaces over a field. Here Thm.4.1 gives 

Corollary 4.2. If K is a chain complex composed of vector spaces Kn 
over a field F,  and if V is any vector sfiace over thut field, there is a natural 
isomorfihism Hn (K, V) ~ H o m  (H, (K) , V) . 

In +articular, when V = F, Hn (K, F) is the vector space dual of Hn (K) .  
Thm. 4.1 is a special case of a more general result which "calculates" 

the homology of the complex Hom (K, L) formed from two complexesK 
and L. Recall (11.3.4) that Hom (K, L) is a complex with Hom, (K, L) = 

IT Hom (Kp,Lp+,) and with the boundary a =  8, of any n-chain 
P 

f = {fp5 : Kp -+&+ ,) given by 

The general theorem reads 

Theorem 4.3. (Homotopy Classification Theorem.) For K and L 
compZexes of abeliaa groups with each K, free as an abelian group, there 
is for each n a short exact sequence 

with homomorfihisms and a which are natural in K and L. This sequence 
splits by a homomorfihism which is natural in. L but lzot in K. 

Change lower indices here to upper indices by the usual convention 
H-,= Hn and assume L= Lo= G with boundary zero; then each of 



4. The Universal Coefficient Theorem for Cohomology 79 

the products has at most one non-zero term, and (4.5) becomes (4.1). 
In general, if we shift the indices of L by n (and change the sign of the 
boundaries in L by (-1)") we shift H, (Hom (K, L)) to H, (Hom (K, L)) ; 
hence it suffices to prove the theorem when n=0. Now a O-cycle of 
Hom (K, L) is by (4.4) just a chain transformation f :  K- tL;  as such 
it induces for each dimension + a homomorphism (f*), : Hp (K) +H# (L). 
The family of these homomorphisms is an element f,={(f*),)~ 
17 Hom (H* (K), H* (L)). Any f' homotopic to f induces the same homo- 
b 

morphism f, . Since an element of H, (Hom (K, L)) is just a homotopy 
class, cls f,  of such chain transformations (Prop. II.3.2), the assignment 
a (clsf) = f, determines the natural homomorphism a for the theorem. 
The definition of the homomorphism B is more subtle and will be given 
below. We first treat a special case of the theorem. 

Lemma 4.4. I f  the boundary in K is identically zero, then a = a, is 
an isomor+hism 

w 
a, : H, (Hom (K, L)) E 17 Hom (Kp, Hp (L)) . 

p=-w 
Proof. Since &=0, Hp(K) = Kp. Let Cp(L) denote the group of 

+-cycles of L, iyhil Bp(L) is that of +-boundaries. Any g= {gp) E 

17 Hom (K* , H* (L consists of homomorphisms g* : Kp +Hp (L) ; since 
K is free and &J (L) +Hp !L) is an epimorphism, each g+ can be lifted 
to gi: Kp+Cp(L). These gp with range extended to L*) C* (L) constitute 
a chain transformation f : K +L with a, (cls f)  =g. Thus a, is an epimor- 
phism. 

To show a, a monomorphism, suppose a, (cls f )  = 0 for some f .  For each 
+ this means that ffi (Kp) < Bp (L). Since a: L#+, -+ B* (L) and K* is free, 
the map f* can be lifted to s*: KP-+L++, with asp=/*. Since spVla= 
sp-,a,=O, this equation may be written f,,= asp+ 8. This states 
that f is chain homotopic to zero, hence clsf =0 in H,(Hom (K, L)). 
Thus Ker a, = 0, and the lemma is proved. 

Now consider the general case of Thm.4.3, using the notation (4.2) 
and (4.3) in K. The family of groups C,<K, can be regarded as a com- 
plex with boundary zero. A similar convention for D gives an exact 
sequence 

0 - C L K L D  -+o (4.6) 

of complexes. Apply the functor Horn(--,L) to get another exact 
sequences of complexes 

E: O.+H~~(D,L)~H~~(K,L)-%HO~(C,L)-+O, 

where the zero on the right stands for Ext (D, L), which vanishes because 
D, B,-,< K,-, is a subgroup of a free group, hence free. The exact 
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homology sequence of E reads 

with the connecting homomorphisms, for n = I and n = 0, 

a,,, : H, (Hom (C, L)) +H,-, (Hom (D, L)) . 
The middle portion of this sequence can be expressed in terms of 8, 
as a short exact sequence 

This is a short exact sequence with middle term Ho (Hom (K, L)), exactly 
as in our theorem; it remains only to identify the end terms by analys- 
ing a,. 

Now a': D +C induces maps a'*: Hom, (C, L) +Horn,,-, (D,L) anti- 
commuting with 8, and hence also induces maps on homology. These 
maps (up to sign) are t h w i n g  homomorphisms a,. Indeed, a, 
was defined on cycles by the "switchback" j*-laHi*-l. A cycle g of 
Hom, (C, L) is a family of maps {gP: CP3LP+,,) with aLgP=o; since 
Dp is free, K P s C p @  Dp , SO each gP can be extended to fP: KPJL,,+~ 
with aLfP=O. Since i* f = f i=g,  take i*-lg to be f. Since aLf =o, the 
formula (4.4) for the boundary a, in Hom (K, L) reduces to a,f =f a: f. 
Now aK=i a'j by (4.2), so a,/= & j* al*i* f and we may take j* -la,i* -lg 
to be f a '  * g : Thus a, is indeed induced by f a' *. But the isomorphism 
a, of Lemma 4.4 is natural, so we have commutativity up to a sign 
in the diagrams 

a,=ia'* 
Hn (Hom(C,L))-K-l (Hom(D,L)) 

4% l~ 
ITHom(Cp, Hp+n(L)) 2 II Hom(Dp+l> Hp+n(L)). 
P P 

We may thus read off the kernel of a, as isomorphic to that of a'* 
(lower line). 

Now apply Horn(-, HP+,(L)) to the exact sequence Sp of (4.3). 
According to the fundamental exact sequence (Thm. 3.2) for Hom and 
Ext, we get an exact sequence 

o+Hom (Hp (K) 2 Hp+ (L))  +Horn (Cp, Hp+n (L)) 
a'* 
+Hom(DP+lr H ~ + ~ ( L ) ) ~ E X ~ ( H ~ ( K ) ,  Hp+.(L))+o, } (4.8) 

where the last zero stands for Ext (Cp , Hp+, (L)), which vanishes because 
CP< KP is free. The direct product of these sequences over all P is still 
exact, and gives the kernels and cokernels of a'* as 

Coker a,,,~Coker 8' * = n Ext (Hp (K), HP+, (L)) . 
P 
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Substituting these values in (4.7) gives the desired exact sequence (4.5) 
of Thm.4.3. The homomorphism a thereby is the composite 

Ho (Hom (K. L)) 5 Ho (Hom (C, L)) -% 17 Hom (Cp , HP (L)) 
b 

here the last arrow stands for the additive relation which is the converse 
(or, the "inverse") of the first monomorphism of (4.8). This composite a 
assigns to each f :  K+L the family of induced maps of homology 
classes, so is the map already described. The homomorphism /? is the 
composite 

it is thus the composite -j*a;lS*-l, where S*-l is the "inverse" 
of the homomorphism S* \- f (4.8) obtained by composition with the 
short exact sequence S. As such a composite of natural maps, pis natural. 
To split (4.5) choose q~ with jqI= I D  as before; thus S*a,cp* is a left 
inverse for B = j* a;' S* -l, natural in L but not in K. 

In the homotopy classification theorem the terms in Ext vanish 
when Hn (K) is free. Hence 

Corollary 4.5. If K and L are complexes of abelian groups with each 
Kn and each Hn(K) free, then two chain transformations f ,  f ' :  K+L are 
chain homoto#ic if and only i f f ,  = f i : Hn (K) +Hn (L) for every dimension n. 

The proof depends on observing that frr f' means exactly that 
cls f = cls f' in Ho (Hom (K, L)). On the other hand, when some 
Ext (HP (K), HP+l (L)) $. 0, the condition f ,  = fi for all n is not sufficient 
to make f chain homotopic to f'. 

A useful application of the universal coefficient theorem is 

Corollary 4.6. If f :  K+Kf is a chain transformatiolz betwee* com- 
$exes K and K' of free abelian groups with f, : Hn (K) r H n  (Kt) for all n, 
then, for alzy coefficient group G, f * : Hn (Kt, G) -t Hn (K, G) is an isomor- 
phism. 

Proof. Since the maps a and p are natural in K, the diagram 

is commutative. Since the maps fn  : Hn (K) -t H,, (K') are isomorphisms, 
so are the outside vertical maps Ext (fn-, , I ,) and Hom ( f , ,  1 ,). By 
the short five lemma, the middle map is an isomorphism, q.e.d. 

Mac Lane, Homology 6 
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Exercises 
1.  Give a direct proof of Cor. 4.2. 
2. Show that Thms.4.1 and 4.3 hold for complexes of R-modules if the hypo- 

thesis that K,, is free is replaced by the assumption that C,,(K) and KJC,, (K) 
are projective modules for every n. 

3. If K and L are complexes of abelian groups with each K,, free, then to any 
family y,,: H,, (K) +H,,(L) of homomorphisms, one for each n, there is a chain 
transformation f : K + L with y,, = H,, (fi. 

5. Composition of Extensions 

Return now to the study of the extensions of modules. Two short 
exact sequences 

the first ending at the where the second starts, may be sfiliced 
together by the B,-tK+B, to give a longer exact 
sequence 

EoE': o+A+B,~B,+c+-o (5.1) 

called the Yoneda coqbosite of E and E'. Conversely, any exact sequence 
A w Bl-t B,+ C has such a factorization, with K = Ker (B, +C) = 
Im (Bl + B,). 

Longer exact sequences work similarly. Consider 

an n-fold exact sequence starting at  A and ending at  C. If T is any m-fold 
exact sequence, starting at the module C where Sends, a splice at  C gives 
the Yoneda composite SOT, which is an (n+m)-fold exact sequence 
starting where S starts and ending where T ends. This composition 
of sequences is clearly associative, but it need not be associative under 
the composition with homomorphisms. For example, for E and E' as 
in (5.1), let M be any module and n:  K @  M+K the projection of the 
direct sum. The commutative diagrams 

El: A - B l @ M + K @ M  E;: K@M-Bo@M-+C 

IJ 1 .1= .1= 4 11 
E:  A H  Bl + K ,  E': K H Bo +C 

and the definitions of composites show that El= E n  and E'= nE;; 
in the top row, the composite 

is not the same as (5.1) ; in other words (En) o E;+Eo (nE;), and the 
associative law fails. 
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For short exact sequences we have already defined congruence as 
isomorphism with end maps the identity. For long sequences we need 
a wider congruence relation "r" with the property that 

whenever the composites involved are all defined; that is, for E" ending 
at some module K, for /3: L+K for some L, and E' starting at L. Let us 
then define congruence as the weakest reflexive, symmetric, and tran- 
sitive relation including (5.2) and the previous congruence for short exact 
sequences. This definition can be restated as follows. Write any n-fold 
exact sequence S as the composite of n exact sequences Ei in the form 

the E, are unique up to isomorphism. A second n-fold sequence Sf 

with the same s t a r w d  end as S is congrued to S if S' can be obtained 
from S by a f d s e q u e n c e  of replacements of the following three types 

(i) Replace any one factor Ei by a congruent short exact sequence; 
(ii) If two successive factors have the form E"/30E1 for some E", 

PI and E', as in (5.2), replace them by E"o/3E1; 
(iii) If two successive factors have the form E"o/3E1, replace by 

E1'/3 0 E'. 
For example, the 2-fold sequences (5.1) and (5 .I1) are congruent. 
We also define the composite of a long exact sequence or its con- 

gruence class with a "matching" homomorphism. Specifically, if S is 
an n-fold exact sequence starting at A and ending at C, then we define 
a S whenever a is a homomorphism with domain A and S y whenever y 
has range C by the formulas (for S as in (5.3)): 

If S and Sf are n-fold exact sequences, a morfihism r: S + Sf is a 
family of homomorphisms (a, . . . , y)  forming a commutative diagram 

We say that F starts with the homomorphism a and ends with y. Now 
aE was defined by just such a diagram E+aE, so our definition of 
a S above yields a morphism S +a S starting with a and ending with 1, 
as well as Sy +S starting with 1 and ending with y. More generally 
we have, as in Prop. 1.8, 

6* 
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Proposition 5.1. Each mor#hism r: S + S 1  of n-fold exact sequences 
S and S' starting with a and endilzg with y yields a congruence a SG Sly. 

Proof. For notational symmetry, set Bn= A and B-,=C. Write 
Ki=Im(Bi+Bi-l)=Ker(Bi-l+Bi-2) for i=n -4 ,  ..., I ;  thus S 
factors as En o...o E l ,  where Ei:  K i  - Bi-l+Ki-l  and K , = A ,  K O =  C. 
Factor S' similarly. The given morphism r: S + S 1  induces homo- 
morphisms /$ : K i  + Ki which form a commutative diagram 

By Prop.l.8 this diagram implies that / ? ; E ; r  E:/?i-l; at the ends, 
B,=a and Po = y. -by our definition of congruence, 

This result also gives an alternative definition of congruence, as follows. 

Proposition 5.2. A congruence S r  S' holds betweelz two n-fold exact 
sequences starting at A and ending at C if and only i f  there is an ilzteger 
k and 2 k  mor+hisms of n-fold exact sequences 

rulzning alternately to the left and to the right, all startifig with I A  and 
ending with 1 c.  

This proposition states that S r  S' is the weakest reflexive, sym- 
metric, and transitive relation such that r: S + S' with ends 1 implies 
S= S f .  

Proof. First suppose S= S f .  In the elementary congruence (5.2),  
the definition of E"/? yields a morphism E"B+EU, while the definition 
of BE' yields a morphism E1+/?E' of exact sequences. Placing these 
morphisms side by side yields a diagram 

Splicing these two diagrams together on the common map/? yields a 
morphism (Elf/?) o E1+E"o (/?El). Hence a string of congruences (5.2) 
yields a string of morphisms, as displayed. The converse is immediate, 
by Prop. 5.1. 

Let Ext; i (C,A) ,  for fixed R-modules C'and A ,  stand for the set 
of all congruence classes a=clsS of n-fold exact sequences S starting 
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at A and ending at C. Write sc~Ext"(C,A) for ScacExtU(C, A). If 
TE z~ Extm (D, C') the composite S o  T is defined when C= C' ; the class 
of S o  T is determined by a and z, and is an element of ExtU+"(D, A) 
which we denote as o z  (without the circle notation for composition). 
The "matching" condition needed to define a z  can be remembered if 
one regards a~Ext" (c ,A)  as a "morphism" from the end module C 
to the starting module A; then a z  is defined when the range of the 
morphism z equals the domain of a. This rule will include the matching 
conditions for the composition of a homomorphism a: A+A1 with an 
extension a ~ E x t "  (C, A). This rule will also include the composition of 
two ordinary homomorphisms if we interpret Ext0 (C, A) to be Hom (C, A). 
This we do. 

Each Extg (C, A) is a bifunctor on R-modules to sets, contravariant 
in C and covariant in A. It is also an abelian group, under addition by 
a Baer sum. Indeed, two n-fold exact sequences S€acExtU(C, A) and 
S'E G'E Ext" (C', A') have a direct sum S @ S'E E Ext" (C @ C', A@ A') 
found by taking direct sums of corresponding modules and maps in S 

he congruence class of S@ S' depends only on the classes a 
an a', and hence may be denoted as a@a'; to see this, note that the f c ngruence (E1'@)oE'=E"o @?El) of (5.2) will carry over to a con- 
gruence on the direct sum as in 

(E"@@ F") 0 (El@ F') = (E"@ F") (@@ l ) o  (El@ F') 

E (El1@ F1')o W E ' $  F'). 

Finally, the Baer sum is defined for a,, a2~Extn(C,A),  i= l ,  2, by the 
familiar formula 

a1+a2=VA(a1@a3 4. (5.4) 

Theorem 5.3. Let Ext, be the collection of all congruence classes 
a, z, . . . of multi+le exact sequences of R-modules. Each a has a degree n 
(n=O, 1, 2, . . .), an R-module C as domain, and a module A as range; 
we then write a E Ext" (C, A), and Ext0 (C, A) = Hom (C, A). The com+osite 
a t  is defined when ranger= domaina, and 

degree (a z) = dega+ deg z,  rangea z = rangea, domaina z = domain z . 
The sum al+az is defined for al, a, in the same ExtU(C, A) and makes 
Ext" (C, A) an abelian grou+. The distributive laws 

and the associative law Q (a z) = (Q a) z all hold when the addition and 
com+osition involved are defined. 
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In brief, ExtR is like a ring, except that the sum a + z  and the 
product a z  are not always defined. 

This theorem clearly includes the previous Thm. 2.1 on Extl = Ext, 
and the proof is exactly like the "conceptual" proof of that theorem. 
That proof rested on certain rules for "direct sums". In the present 
case these rules (and their prior counterparts) are 

(a $a') (a 63 z') =at. $ a'z', (2.8) and (2.9) , (5.6) 

where o is the natural isomorphism o : A$ A ' -t A'$ A. It remains to 
prove these rules. 

First take (5.6). If a and z both have degree zero, they are ordinary 
homomorphisms, and (5.6) is the usual (functorial) rule for computing 
direct sums of homomorphisms. If a and z both have positive degree, 
(5.6) is an obvious rule about the composition of direct sums of exact 
sequences. If a has degree zero and z has positive degree, then a and a' 
actually operate just on the leftmost factor of z and z', hence (5.6) 
is reduced to the case where z and z' are short exact sequences; this 
case is (2.8). Similarly, when a has positive degree and z degree zero, 
(5.6) reduces to (2.9). 

Next take (5.7). When a has degree zero, (5.7) becomes (2.10) ; when 
o has degree 1 and is a short exact sequence, it is the second of (2.11). 
When a has degree 2, (2.11) gives the congruences 

(E, o El) V = E,o (El V )  V(El @ El) 
= E8 Vo (El $ El) = V(E,@ E,) o (El @ El), 

which is (5.7). Longer cases are similar. 
The proof of (5.8) is analogous, and (5.9) comes from the rule 

o (El$ Ed 2 (E,$ El) o ,  obtained by applying Prop. 1.8 to the mor- 
phism (a, o, a): El$E,+E,$El. 

It remains only to exhibit the zero and the inverse for the abelian 
group Extn (C, A). The inverse of cls S will be cls ((- 1,) S) . The zero 
element of Extn is for n = 0 the zero homomorphism, for n = 1 the direct 
sum extension, and for n>l  the congruence class of the n-fold exact 
sequence 

so: o+A.LA-+o+... +o+c-Lc-+o. 
Indeed, for each S E E  Ext" (C, A) there is a morphism (0, . . . , 1) : S -+ So, 
so, by Prop.5.1, S O s ~ A S  and clsS+clsSo=clsS. 



6. Resolutions 8 7 

The rules (5.5) show that Extn is additive, so we obtain, as for 
Extl, the isomorphisms Ext" (A @ B, G) s Extn (A, G) @ Ext" (B, G), 
Extn (A, G@ H) r Ext" (A, G) @ Ext" (A, H). Furthermore, any short 
extension by a projective module splits, hence 

Extn(P,G) =o, n>0, P projective. (5.10) 

Our construction of an element o E Extn (C, A) as a class of all (possible) 
n-fold sequences congruent to one given sequence S yields a "big" 
class, and the class Extn (C. A) of such classes is then not well defined 
in the usual axiomatics of set theory. This "wild" use of set theory can 
be repaired: It is intuitively clear that it suffices to limit the cardinal 
numbers of the sets used in constructing sequences S for given modules 
A and C. 

We turn now to find means of computing the groups Ext". 

6. Resolutions 

Any module C is a quotient C=F,/R, of some free module 4. The 
submodule R, is again a quotient Ro=F,/Rl of a suitable free module F, .  
Continuation of this process yields an exact sequence . ..+F,+F,-t 
C-tO which will be called a "free resolution" of C. We aim to compare 
any two such. 

In more detail, a c w l e x  (X,E) over the R-module C is a sequence 
of R-modules X and homomorphisms 

a a a -txn--xn-l-- ..- -txl--xoA c-to, (6.1 

such that the composite of any two successive homomorphisms is zero. 
In other words, X is a positive complex of R-modules, C is a trivial 
chain complex (C = C,, a= o), and E : X-tC is a chain transformation 
of the complex X to the complex C. A resolution of C is an exact sequence 
(6.1) ; that is, a complex (X, E) over C with the homology Hn (X) = 0, 
for n>0, and E: Ho (X) r C .  The complex X is free if each Xu is a free 
module and projective if each Xu is projective. We compare any pro- 
jective complex with any resolution. 

Theorem 6.1. (Comparison Theorem.) If  y: C+C1 is a homomor- 
phism of modules, while E: X-tC is a projective com,plex over C and 
E' : X1-t C' is a resolution of C', then there is a chain transformation f : X +X' 
with &'/=YE and any two such chain transformations are chain homo- 
topic. 

We say that such an f lifts y. 
The proof uses only categorical properties of projectives and of 

exactness. Since X, is projective and E' an epirnorphism, ye: X0+C1 
can be lifted to f,: X,-tX; with ~'f,=ys. By induction it then suffices 
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to construct f,, given f,-,, ..., f o  such that the diagram 

i t n  Jh-1 L t m - s  a;, &-I , J f e  JY x:,--tx;-,-x,-,+ ... -+x;-+cl 
is commutative. By this commutativity, a:-, f,-, a,= fn-,aa= o. 
Hence Im (f,-, a,) < Ker a:-, . By exactness of the bottom row, this 
kernel is aLX:. Since X ,  is projective, the map f,-,a, can be lifted 
to an f ,  with aif,=f,-,a,, q.e.d. 

The construction of the homotopy is similar; it may be obtained 
directly or by applying the following lemma, noting that the difference 
of any two chain transformations f :  X+X1  lifting the same y is a 
chain transformation Iifting 0 :  C+C'. 

Lemma 6.2. Under the hypotheses of Thm.6.1, let f :  X - t X '  be a 
chain transformation lifting y : C -4'. Suppose that t h re  i s  a t : C +Xi  
such that &It=?. Then there exist homomorphisms s,: X,+X;+, for 
n = 0, 1 ,  . . . such that, for all n ,  

Proof. First, &'(f0-te): X0-+C1 is zero. Hence fo-te maps the 
projective module Xo  into Kere1=Im(X;+X;); it can therefore be 
lifted to a map so: X,,+X; with a'so= fo- te .  Suppose by induction 
that we have t=s-,, so, ..., s,, as desired. We wish to find s,+, with 
a)s,+,=f,,+,- s,a. NOW al(f,+,- s,a) =/,a- (f,- ~,-,a) a=o by the 
induction assumption, so f,+,- s,a maps X,,, into Ker a'= alX:+,; 
therefore it can be lifted to the desired s,+,: X,+,+X;+,. 

Let A be a fixed module; apply the functor Horn,(-, A )  to a reso- 
lution (6.1). Since the functor does not preserve exactness, the resulting 
complex Hom, ( X ,  A )  may have non-trivial cohomology 

Hn ( X ,  A )  = Hn (Hom, ( X ,  A ) ) .  

Corollary 6.3. If X and X' are two firojective resolutions of C, while 
A i s  any module, then H U ( X ,  A )  s H n ( X ' ,  A)  depeds only on C and A .  

Proof. By the first part of Thm.6.1, there are maps f :  X+X1  
and g: X1+X lifting l c ;  by the second half of the theorem, gf is homo- 
topic to 1 : X +X. Hence f* : H" (X',  A) + Hn ( X ,  A )  and g* have g* f * = 

1 = f*g*, so both are isomorphisms, q. e. d. 
We now show that this function H n ( X ,  A )  of A and C is exactly 

Extn (C, A ) .  For n= 0.  X,  +Xo +C +O is right exact, so 

is left exact. This states that E*: Hom(C, A )  g H O ( X ,  A ) .  For n>O, 
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each n-fold exact sequence S may be regarded as a resolution of C, 
zero beyond the term A of degree a,  as in the diagram 

Theorem 6.4. I f  C and A are R-modules and E :  X+C a firojective 
resolution of C, there is an isomorfihism 

t: Extn(C,A)sHn(X,A),  n=O,l ,  ..., (6.3) 

defined for n>O as follows. Regard SEEEX~"(C, A) as a resolution of C, 
and lift lc to g : X -+ S. Then g,: X, -+A is a cocycle of X. Define 

5 (cls S) = cls g, E Hn (X, A) . (6.4) 
This isomor#hism 5 is natzlral in A. I t  is also natural in C in the following 
sense: I f  y : C1-+C, E' : X1-+C' is a #rejective resolution of C', and f : X1+X 
lifts y, then 

cy*= f* 5: Extn (C, A) +Hn (X', A). (6.5) 

Proof. First observe that 5 is well defined. Since g,a= 0, g, is an 
n-cocycle, as stated. Replace g by any other chain transformation g' 
lifting lc, as in (6.2). By Thm.6.1, there is a chain homotopy s such 
that gL-g,= as,+~,-~t3. But s,: Xn+O, so s,=O, gA-g,=s,-,a= 
( - -1 ) "6~ , -~ ,  this by the definition (11.3.1) of the coboundary in 
Hom (X, A). This states that the cocycles g,' and g, are cohomologous, so 
cls gL= cls g,. Next replace S by any congruent exact sequence S'. 
According to the description of the congruence relation S =  S' given 
in Prop. 5.2, it  will suffice to consider the case when there is a morphism 
r: S -+ S' starting and ending with 1. In this case any g : X -+ S yields 
r g  : X -+ S' with the same cocycle g, = (I&; hence cls g, is well defined 
as a function of clsS. Thus 5 is defined; its naturality properties as 
asserted follow at once, using suitable compositions of chain transfor- 
mations. 

Rather than proving directly that 5 is an isomorphism we construct 
a. its inverse. Given a resolution X, factor a: X,-+X,-, as X,+ BX, 

AX,-,, with x the injection; this yields an n-fold exact sequence 

Any n-cocycle X,+A vanishes on aXn+,=Kera1, hence may be 
written uniquely in the form ha' for some h: aX,-+A. Construct the 



g0 Chapter 111. Extensions and Resolutions 

composite hS, of h with the n-fold exact sequence S,; this fills in the 
bottom row of this diagram. Define 7: H" (X, A) +Extn (C, A) by setting 

By the distributive law for the composition in Ext, the right hand 
side is additive in h. Hence to show 7 well defined it suffices to show 
that 7 (cls h a') vanishes when ha' is the coboundary of some cochain 
k: Xu-,+A. But ha'=dk=(-I)"ka=(-1)"kx 8' means that L=f  kx 
and hence that h S, = f kx S, , where x S, r 0 by Prop. 1.7. Hence 17 is 
well defined and is a homomorphism. Comparison of the diagrams (6.2) 
and (6.6) now shows that 7 =C-l. 

This theorem states that the groups ExtU(C,A) may be computed 
from any projective resolution E :  X+C; in particular, (6.5) shows how 
to compute induced homomorphisms y* : Extn (C, A) +ExtU (C', A) from 
resolutions. 

Alternatively, many authors define the functor Ext" without using 
long exact sequences, setting Extn (C, A) = H" (X, A) = HU(Hom (X, A)). 
This gives a covariant functor of A, while for y: C'+C the induced 
maps y* : Extn (C, A) +Extn (C', A) are defined by lifting y to a compari- 
son X1+X. 

Another consequence is a "canonical form" for sequences under 
congruence : 

Corollary 6.5. If  SEE EX^" (C, A) with n>l ,  then t k e  i s  a T s  S 
of the form T: O+A +B,-,+B,-,+... + Bo+C+O in which the 
modules B,-,, . . . , Bo are free. 

Proof. Take T= h Sn (C, X) for a suitable h: -+A, and X any 
free resolution of C. 

Corollary 6.6. For abelian grozlps A and C, Ext; (C, A) = O  if %>I. 

Proof. Write C=F/R for F free abelian. Since the subgroup R of 
the free abelian group F is free, O+R+F+C+O is a free resolution 
which vanishes (with its cohomology) in dimensions above 1. 

Consider now the effect of a ring homomorphism e: R1+R (with 
e 1 =i) .  Any left R-module A becomes a left R'-module when the 
operators are defined by rla= ($)a; we say that A has been pulled 
back along e to become the R'-module ,A. Any R-module homomorphism 
a :  C + A  is also an R'-module homomorphism ,C-t, A. By the same 
token, any long exact sequence S of R-modules pulls back to a long 
exact sequence , S of R'-modules, and congruent sequences remain 
congruent. Hence e#a = a, e# (cls S) = cls ,S define homomorphisms . 

e#: ExtE (C, A) +Exti. (,C, ,A), n=o, I , . . . (6.8) 

called change of rings. For e fixed, they are natural in C and A. 
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These homomorphisms may be calculated from projective resolu- 
tions E: X+C and E': XI-+& by R and R'-modules, respectively. 
To exhibit the ring R, write (Hom, (X,A)) for Hu (X,A). 

Theorem 6.7. The change of rings Q#, via the isommphism 5 of 
Thm.6.4, is given by the composite map 

W" (HornR (X, A)) L'h ( H O ~ ~ ,  (,X, ,A)) L Hm (Home (XI, ,A)) 

where Q* is the cohomology map induced by the chain transformation 
e#: HomR+HomR, and f :  X1+,X is a chain transformation lifting the 
ide~t i ty  of ,C. 

,Proof. The case n=0 is left to the reader. For n>O take any 
SEE EX^; (C, A). As in (6.2), l c  lifts to g :  X+S. Since ,X+,C is a 
resolution of ,C, the comparison theorem lifts the identity of ,C to a 
chain transformation f :  X1-t,X. The diagram is 

Now read off the maps: The isomorphism c carries clsS to clsg,, Q# 

regards gn as a R'-module homomorphism, f* maps clsg, to cls(gufu), 
which is exactly c(cls,S) because gf lifts 1. Hence the result, which will 
be of use in the treatment of products. 

Exercises 

i .  If E :  Y+ C is a projective complex over C and e': X + C a resolution of C, 
construct natural homomorphisms 

5 :  E X ~ ~ ( C , A ) + H ~ ( Y , A ) ,  q : ~ ( ~ , ~ ) + ~ ~ t ; ( ~ , ~ ) .  

2. (Calculation of Yoneda product by resolutions.) If X + C and Y+A are 
projective resolutions, g~ Homu (X, A) and h € Homm(Y, D) are cocycles, write g 
as goa' for go: BXn+A, lift go to f as in the diagram 

show hf an (m+ n)-cocycle of Homm+"(X, D), and prove that the Yoneda product 
q (cls h) o q (cls g) is q (cls h f). 

3. Given E=(x,a): A-B+C exact and maps a :  A+A', t :  B+A1, show 
by a diagram that (a+ Ex)E=aE. 
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4. If S= E,o . . . o El, show that any morphism r: S + S' of n-fold exact 
sequences starting with a map a: A-tA'  can be factored as 

5. (Another formulation of the congruence relation on exact sequences.) If 
S, S'E EExt" (C, A ) ,  show that S= S' if and only if there is a TEEExtn(C, A)  
with morphisms r: T+ S, P :  T- t  S' starting and ending with 1's. (Use Exs. 3 
and 4 and T= hS,(C,X).) 

7. Injective Modules 

The description of Extn by resolutions reads: Resolve the first 
argument by projective modules and calculate Ext" by cohomology: 
Ext" (C, A) s H n  (Hom (X, A)). We wish a dual statement, using a suit- 
able resolution of the secolzd argument A. For this we need the dual 
of a projective module; it is called an injective module. 

A left R-module J is said to be injective if a homomorphism a with 
range J can always be extended; that is, if for each a :  A+ J and A< B 
there exists p: B-t J extending cr. Equivalently, J is injective if any 
diagram of the form 

o - A L B  

with horizontal row exact can be filled in (on the dotted arrow) so as 
to be commutative. The characterization of projective modules in 
Thm. 1.6.3 and Thm. 3.5 dualizes at once to give 

Theorem 7.1. The following #roperties of a module J are equivalent: 
(i) J is injective ; 

(ii) For each monomorphism x : A+ B, x* : Hom (B, J) -+Horn (A, J) 
is an e#imor#hism; 

(iii) Every short exact sequelzce J H  B + C sflits ; 
(iv) For every module C ,  Extl ( C ,  J) = 0. 

The latter characterization can be further specialized. 

Proposition 7.2. A left R-module J is ilzjective if alzd olzly if 
ExtR (R/L, J) = 0 for every left ideal L in R. 

Proof. This condition is necessary. Conversely, suppose each 
Ext (RIL, J) zero. Given A< B and a :  A+J we must, as in (7.1), con- 
struct an extension p: B+J of a. Consider all pairs (S, y) consisting 
of a submodule S with A< S < B and an extension y : S -+ J of the given 
cc: A+J. Partly order these pairs by the rule (S, y) 5 (S', y') when 
S< S' and y' is an extension of y. To any linearly ordered collection 
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(Si, yi) of these pairs there is an upper bound (T, z) with (Si, yi) 5 (T, z), 
for take T to be the union of the submodules Sd with z defined for each 
t by zt=y,t when Hence, by Zorn's lemma, there is a maximal 
such pair (S,, y,). We need only prove S,= B. If not, there is an ele- 
ment b~ B not in S,; take the submodule U of B generated by b and S,. 
Then r+rb+ S, is an epimorphism R+ U/S,, the kernel of the epi- 
morphism is a left ideal L in R, and R/L=U/S,. Since the sequence 
S,- U-9 U/Sw is exact, so is the sequence 

Hom(U, J) -+Hom(S, ,~+Ext  (U/S,, J). ( 7 . 4  

But Ext (U/S, , J) ~ E x t  (R/L, J) = 0 by hypothesis, so Hom ( U, J) + 
Hom(S,, J) is an epimorphism. In other words, each homomorphism 
S,+J can be extended to a homomorphism U+J; in particular, 
y,: S,+J can be so extended, a contradiction to the maximality of 
( S W  7,)- 

Consider now injective modules over special types of rings R. If 
R is a field, there are no proper left ideals L<R, while ExtR(R, -) 
is always zero. Hence every module (= vector space) over a field is 
injective. Take R=Z, the ring of integers. Call a Z-module (= abelian 
group) D divisible if and only if there exists to each integer m+O and 
each d c D a solution of the equation m x=d. 

Corollary 7.3. An abelian group is injective (as a 2-module) if and 
only if it is divisible. 

Proof. The only ideals in Z are the principal ideals (m), and Z/(m) 
is the cyclic group of order m. By Prop. 1 . I ,  Ext (Z/(m), A)zA/mA, 
while A/m A = 0 for all m + 0 precisely when A is divisible. 

The construction of projective resolutions rested on the fact that 
any module is a quotient of a free module, hence certainly a quotient 
of a projective module. To get injective resolutions we need 

Theorem 7.4. Every R-module is a submodule of an injective R-module. 

Proof. Suppose first that R=Z. The additive group Z is embedded 
in the additive group Q of rational numbers, and Q is divisible. Any 
free abelian group F is a direct sum of copies of 2 ;  it is embedded in 
the direct sum of corresponding copies of Q, and this direct sum D 
is divisible. Now represent the arbitrary abelian group as a quotient 
A =F/S with F free, and embed F in some divisible group D as above; 
this embeds A=F/S in DIS. An immediate argument.shows that any 
quotient D/S of a divisible group D is divisible, hence injective. The 
abelian group A is thus embedded in an injective group DIS. 

Return now to the case of an arbitrary ring R. For any abelian 
group G, the additive group HornZ (R,G) is a left R-module when the 
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product sf, for SER, f: R-tG, is defined as the homomorphism 
sf: R+G with 

If C is any left R-module we can define a homomorphism 

j: C +HornZ (R, C) (7.4) 

by letting jc, for CE C, be the homomorphism jc: R - tC given as 

To show this a homomorphism of R-modules, take s, YER, and compute 

This gives j (s c) = s (jc). Since 1 c = c, j is a monomorphism. 
Now embed the additive group of C in a divisible group D; this 

induces a monomorphism of R-modules 

The composite k j embeds C in Hom, (R, D). If we show that HomZ (R, D) 
= J is injective, we are done. By Thm. 7.1 (ii), i t  suffices to show that 
each monomorphism x: A+ B of R-modules induces an epimorphism 
x* = Hom, (x, 4 J). Here x* is the top row of the diagram 

Hom, (x, 1 j )  : Hom, (B, Hom, (R, D)) -+ Hom, (A, Hom, (R, D)) 
19. b 

Hom, (x, 1 D) : Homz (B, D) + HomZ(A, D) 

where the vertical maps are isomorphisms, to be established in a lemma 
below. These isomorphisms are natural, so the diagram commutes. The 
bottom row refers not to R, but only to 2; since D is a divisible group, 
this bottom map Hom, (x, ID) is an epimorphism. Since 7, and 7, are 
isomorphisms, the top map Horn,(%, lJ) is also an epimorphism. 

Lemma 7.5. If  G is an abelian grot@ and A an R-module, there is a 
lzatural isomor+hism 7~ : Hom,(A , Horn, (R, G)) ~ H o m ,  ( A ,  G)  . 

Proof. Take an fEHom,(A, Hom,(R,G)). For a€A, fa :  R+G; 
that is, (fa) (Y) E G. Now regard f as a function of two variables f (a, Y) E G. 
The fact that f a  is a 2-homomorphism means that f ( a , ~ )  is additive 
in the argument Y. The fact that f :  A+Hom,(R,G) is an R-homo- 
morphism means that f (a,r) is additive in a and that s (f a) = f (sa) for 
each SER. By the definition (7.3) of the multiplication by s, this means 
that always 

rs (fa)] (4  = V 4  (ys) = w (sa)I(y) ; 
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in other words, that f (a, rs) = f (sa, r) always. In particular, f (a, s) = 
f (sa, 1) so the function f is determined by g(a) = f (a, 1). Clearly g: A+G. 
Now qA and its inverse are defined by 

The maps r ; l ~  and qT1 are clearly homomorphisms and natural (in A 
and in G ) .  

This idea of regarding a function f (a,r) of two variables as a function 
of a whose values are functions of r will reappear more formally later 
(V.3), and this lemma will turn out to be a special case of a more general 
natural isomorphism, called "adjoint associativity". Injective modules 
will be studied further in $11. 

Exercises 
I .  If R is an integral domain, show that the field of quotients of R is a divisible 

R-module. If, in addition, R is a principal ideal domain, show that this field is 
injective as an R-module. 

2. If A is a left R-module and L a left ideal in R, each a E A defines an R-module 
homomorphism fa: L + A  by fa(l) = la. Prove that A is injective if and only if, 
for all L every f :  L -+A is fa for some a. 

3. If K is a complex of R-modules and J an injective R-module, show that a 
of (4. I) yields an isomorphism 

Hn ( H o ~ R ( K ,  J)s H o ~ R ( H ,  ( K ) .  J )  . 

8. Injective Resolutions 

A complex s: A-tY under the module A is a sequence 

such that the composite of any two successive homomorphisms is zero. 
In other words, Y is a negative complex, positive in upper indices, and 
e :  A+Y a chain transformation. If this sequence is exact, E :  A+Y is 
called a coresolution of A ;  if each Y, is injective, e :  A- tY  is an injective 
comfilex under A. The results of the previous section show that every 
module A has an injective (co)resolution - by a customary abuse of 
language, an "injective resolution". 

Theorem 8.1. (Comfiarison theorem.) If a: A-tA' is a module 
homomorphism, E :  A+Y a coresolution, and E': A'+Y1 an injective 
complex under A', then there is a chain transformation f :  Y + Y 1  with 
eta= f e and any two such chain transformations are homotofiic. 

The proof is exactly dual to that of Thm.6.1, which used only the 
categorical properties of projective modules and exact sequences. Again 
the map f will be said to lift a. 



96 Chapter 111. Extensions and Resolutions 

For each module C the negative complex Y determines, as in (4.4), 
a negative complex 

Hom (C,Y) : Horn (C,YO) +Hom (C,Y1) + . -. +Hom (C,YU) + . . . (8.2) 

Its homology gives Ext, as follows 

Theorem 8.2. For each module C and each injective coresolution 
E : A+Y there is an isomorflhism 

which is natural in C and natu~al in A, in the sense that if a: A+A1, 
E': A1-+Y' is an injective coresolution, and f :  Y-tY' is any chain trans- 
formation lifting a, then 5 a,= f,r. Here f ,  is the induced homomorflhism 
f , :  H"(Hom(C,Y))+Hn(Hom(C,Y')) .  

The homomorphism 5 is defined as follows. Regard any SEE Ext" (C, A) 
as a coresolution of A, zero beyond the term C of (upper) degree n ;  by 
Thm. 8.1 construct a cochain transformation as in 

Then g" : C +Yn is a cycle of Hom (C, Y). Define 

(CIS S) = (clsg") E Hn(Hom (C, Y)) . (8.5) 

The rest of the proof, like the definition, is dual to the proof of Thm. 6.4. 
We can summarize the theorems of $6 and $8 in the scheme 

Hn(Hom (RespC, A)) r E x t n  (C, A) =Hn(Hom (C, R ~ s ~ A ) ) ,  

where Res,C denotes an arbitrary projective resolution of C, ResJA 
an arbitrary injective coresolution of A. A symmetric formula Ext" (C, A )  
~HU(Hom(RespC,  ResJA)) can be established (Ex.V.9.3). 

Exercises 
1. Carry out the construction of g in (8.4) and of the inverse of 5.  
2. State and prove the dual of Lemma 6.2. 

3. For direct sums and products establish the isomorphisms 

~ x t "  (Cct ,  A )  E n Extn(Ct, A ) ,  Extn(C, n A t )  C: n Extn(C, At) 

9. Two Exact Sequences for Extn 

Composition of long exact sequences with a short exact sequence E 
from A to C yields connecting homomorflhisms 

E*:  EX^^ (A, G) -+Ex~'+'(c, G) , E,  :  EX^^ (G, C)  EX^^+' (G, A). 
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Since E determines A and C, both Exth (A, G) and ~ x t ~ + l ( C ,  G) may 
be regarded as contravariant functors of the short exact sequence E. 
Moreover, each morphism r= (a, ,!?, y) : E +E1 of short exact sequences 
gives a E =  Ery and hence 

E*cr* = y*E' * : Exth (Ar, G) +Extk+l (C, G) . 
This states that E* is a natural transformation between functors of 
E, as is E, . With these connecting homomorphisms, the exact sequences 
for Hom and Ext=Extl already found in (3.1) and (3.2) will now be 
continued to higher dimensions. Observe similarly that an n-fold exact 
sequence S starting at A and ending a t  C is a composite of n short 
exact sequences; hence composition with S yields iterated connecting 
homomor#hisms 

S* : Extk (A, G) +Extk+" (C, G) , S* : Extk (G, C) +Exth+" (G, A), 

which depend only on the congruence class of S. 

Theorem 9.1. If E =  (%,a) : A- B +C is a short exact sequence of 
modules and G is another module, then the sequences 

are exact. These sequences start at the left with 0 +Hom (C, G) = Ext0 (C, G) 
and with O+Hom (G, A), res#ectively, and continue to the right for all 
n=O, 1 ,  2, ... . The maps in th6se sequences are defined for arguments 
e E Ext" (C, G), o e Ext" (B, G), zc Ext" (A, G), . . . by composition with 
X ,  a, E as follows: 

The sign in the last part of (9.3) occurs because E* z= r E  involves 
an interchange of an element E of degree 1 with an element z of degree n. 

Proof. First consider (9.2). Take any free resolution X of G and 
apply the exact cohomology sequence (Thm. 11.4.5) for the sequence E 
of coefficients. Since the cohomology groups H" (X, A) are Ext" (G, A), 
and so on, this yields an exact sequence with the same terms as (9.2). 
To show that the maps in this sequence are obtained by composition, 
as stated in (9.4), we must prove commutativity in the diagram 

Ext" (G, A) 3 Ext" (G, B) % Ext" (G, C) -% ExtU+l (G, A) 

.It .It .It ,-I,,, .It (9.5) 
Hn (X, A) 3 H" (X, B) 3 H" (X, C) - H"+' (X, A), 

Mac Lane, Homology 7 
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where each 5. is the isomorphism provided by Thm.6.4, while 6, is 
the connecting homomorphism provided in Thm.II.4.5. Since 5 is 
natural for coefficient homomorphisms x and a, the first two squares 
are commutative. The commutativity of the right-hand square requires 
a systematic use of the definitions of various maps involved, as follows. 
For n > ~  and SEEEX~"(G,C), regard Eo  S as a resolution of G and 
construct the commutative diagram 

where f lifts lG .  By the definition of 5, 

CE, (cls S) = (cls fn+,) E Hn+l (X, A) . 
On the other hand, a f is a chain transformation lifting I,, so c (cls S) = 
cls (a f,). Now dE is defined by the switchback dB = clsx-I 6 0-1 cls-1 of (11. 
4.12) andx-ldu-l(of,) = x-16f,=(--1)n+1x-1(fna)=(--1)n+1x-l(xfn+1) = 
(-l)"+l fn+l, so that d,cls(of,) = ( - ~ ) " + ~ c l s f ~ + ~ =  (-l)"fl tE,clsS. 
This shows (9.5) commutative. 

For n=0 the definition of 5 (and the commutativity proof) is cor- 
respondingly simpler. 

The exactness of the sequence (9.1) of the theorem is proved similarly, 
using injective coresolutions. Specifically, let E :  G-tY be an injective 
coresolution of G. Then Hom(A,Y) is, as in $8, a negative complex; 
furthermore each Y" is injective, so each sequence Hom(C,Yn)- 
Hom (B, Yn) -+Horn (A, Y") is exact. Therefore 

is an exact sequence of complexes. Hence Thm.II.4.1, in the version 
with upper indices, states that the first row of the following diagram 
is exact for each n: 

 om (c,Y))- om ( B , Y ) ) ~ H * ( H ~ ~  (A,Y)) d- ~ " + l ( ~ o m  (c.Y)) 

tf t t f 
Ext" (C, G) Ext" (B, G) 5 Ext" (A, G) ExtWf1 (C, G) . 

The desired proof that the bottom row is exact requires now only 
the commutativity of the diagram. Note that the connecting homo- 
morphism 6, is defined by switchback as 8, =cis o*-l6x*-lcls-l, and no 
trouble with signs occurs. Given this definition, the proof that commuta- 
tivity holds is now like that given above for the dual case - though 
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since the proof manipulates not only arrows, but also elements, we 
cannot say that the proof is exactly dual. Thm.9.1, though formulated 
in the language of exact sequences, can also be regarded as a statement 
about annihilators in the "pseudo-ring" ExtR of Thm. 5.3. Indeed, if 
E = (x, a) is a short exact sequence of R-modules, then 

and these equations indicate the whole left and right annihilator in 
Ext, of each of x ,  E, and a, as follows. The right annihilator of x con- 
sists of multiples of E; whenever e ~ E x t ,  is such that the composite 
x~ is defined and is 0, then either Q=O or Q= E z for a suitable z~Ext , .  
Similarly, ex= 0 implies e = za  for some z, etc. In other words, the left 
annihilator of x is the principal left ideal (ExtR)a. 

Exercises 
I .  Given the usual short exact sequence E of modules and given projective 

resolutions E' :  X - t A  and E": Z+C of the end modules A  and C, construct a 
projective resolution E: Y-t B of the middle module B and chain transformations 
f: X + Y ,  g: Y+Z lifting x and a, respectively, such that X-Y +Z is an exact 
sequence of complexes. (Hint: for each n, take Yn= Xn@Zn and define E and i3 
so that ( Y ,  E )  is a complex.) 

2. Use the result of Ex. 1 to give a proof of the exactness of (9.1) by projec- 
tive resolutions. 

3. Deduce Prop. 3.7 from Thm. 9.1 and Cor. 6.6. 
4. For A  a finite abelian group, Q the additive group of rational numbers, 

prove ExtZ ( A ,  2) GE HornZ (A, Q/Z) . 

10. Axiomatic Description of Ext 

The properties already obtained for the sequence of functors Extn 

suffice to determine those functors up to a natural equivalence, in the 
following sense. 

Theorem 10.1. For each n = 0, 1 ,  . . . , let there be given a contra- 
variant functor Exn (A) of the module A, taking abelian grozcps as values, 
and for each n and each short exact seqzcence E :  AH B +C let there be given 
a homomorphism E": Exn ( A )  +Exn+l (C) which is natural for mor+hisms 
r: E-tE' of short exact sequences. Suppose that there is a fixed moduZe G 
such that 

Ex0 (A) = Hom (A, G )  for all A ,  (10.1) 

Exn (F) = 0 for n>O and all free F,  (1 0.2) 

und suppose that for each E = (%,a) the sequence 
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i s  exact. Then there is for each A and n an isomor#hism fl: Exn (A)  
Extn ( A ,  G) , with t& = 1 , which is natural in A and stcch that the diagram 

F Exn (A)  --+ Exn+' (C) 

b" 1- (10.4) 
Extn ( A ,  G) Extn+' (C, G) 

is commutative for all lz alzd all short exact E:  A - B+C. 
Property (10.4) reads "9 commutes with the connecting homomor- 

phisms". With the naturality of p, it states that the y'' provide a mor- 
phism of the long sequence (10.3) into the corresponding sequence (9.1) 
for Ext. 

The same theorems holds with "free" in (10.2) replaced by "pro- 
jective". Since the functors Extn clearly satisfy the analogues of (10.1), 
(104,  and (10.3), we may regard these three properties as axioms 
characterizing the sequence of functors Extu "connected" by the homo- 
morphisms E*. 

The proof will construct q? by induction on n; the case n= 1 presents 
the most interest. Represent each module C as a quotient F/K, with 
F free. This gives a short exact sequence Ec: K- F+C. By (104, 
Exl(F) =O, so the sequence (10.3) becomes 

Hom (F, G) % Hom (K, G) 6b Ex1 (C) - 0. 

Exactness states that Ex1 (C) ~ H o m  (K, G)/x* Hom (F, G). The sequence 
(9.1) for Extl shows Extl(C,G) isomorphic to the same group. Com- 
bining these isomorphisms yields an isomorphism& : Ex1 (C) ~ E x t l  (C, G) ; 
by its construction, q$ is characterized by the equation 

& E i  = EE: Hom (K, G) +Extl (C, G)  , 

which is a special case of (10.4). To show that I& is natural for any 
y: C +Cf, pick an exact Ec,: Kf - F'+Cf. The comparison theorem 
lifts y to /I : F-tF', which induces a morphism r= (a, /I, y) : Ec+ Ec, . 
Since both connecting homomorphisms El and E* are natural with 
respect to such morphisms r, it follows that y*p'& E& = y* E$= E&* 
= &EL a* = & * E:, . But E$, is an epimorphism, so 

y* &, = p i  y* : Ex1 (C) --+Extl (C, G )  ; 

pl is indeed natural for maps of C. In particular, if Ec and Ec, are two 
free presentations of the same module C (y=lc), this identity shows 
that the homomorphism q$ is independent of the choice of the particular 
free module F used in its construction. Finally, if E :  A-  B +C is any 
short exact sequence, the comparison theorem (for F free) again lifts 
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1 to a morphism (a, ,9, 1): Ec+E and yields 

~ z E * = E z a *  (because E* is natural), 

= t p i  Eia* (definition of tp) , 
= $0; El (because El is natural). 

This is the required property (1 0.4) for n = 1. 
For n>1 we proceed in similar vein, choosing again a short exact 

sequence Ec with middle term free. Then Exu-I (F) = O=ExS(F), so 
the exact sequence (10.3) becomes 

~o"'  
0 +Exu-l (K) - Exu (C) +O 

and Ex*(C) rEx*-l (K). Using the similar sequence for Ext*, we define 
tpu by 

tp; = E&;-'(%-~)-~ : Exu (C) r E x t u  (C, G) 

and establish naturality, independence of the choice of F, and the 
commutativity (1 0.4) much as in the case n = 1. 

There is a dual characterization for Ext (C,A) as a functor of A, 
using the second exact sequence (9.2). 

Theorem 10.2. F m  a fixed modccle G, the covariant functors Extu (G, A)  
of A, n=  0, 1, . . . together with the natural homomor$hisms E, : Extu (G, C) 
-tExtU+l(G, A) defined for short exact sequences E of modccles, are char- 
acterized u$ to a natural isomor$hism by these three $ro$erties: 

Ext0 (G, A) = Hom (G, A) for aU A, (10.5) 

Ext" (G, J) = 0 fm n>O a d  all injective J, (10.6) 

The sequence (9.2) i s  exact fm all E .  (1 0.7) 

Proof. Observe first that Extu does have the property (10.6), for 
an injective module J has the injective coresolution O+J+J+O, which 
vanishes in all dimensions above 0. Conversely, the proof that these 
three properties characterize the Extu(G, A) as functors of A is dual 
to the proof we have just given. 

Exercises 
1 .  (S. SCHANUIL.) Given two short exact sequences K H  P+C and Kt* P'+C 

with P and P' projective, K < P, K'< P', and the same end module C :  Construct 
an isomorphism P @  P ' a  P @  P' which maps K @  P' isomorphically on P @  Kt. 

2. Call two modules C and C' projectively equivalent if there are projective 
modules Q and Q' and an isomorphism CeQ'er C'@ Q. Let S :  K- P,-,+ 
+P,+C be an n-fold exact sequence with all 4 projective. Using Ex. 1, show 
that the projective equivalence class of K depends only on that of C and not on 
the choice of S. 
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3. For S as in Ex. 2, show that the iterated connecting homomorphism provides 
an isomorphism S* : Extl (K, G) ei Extm+l (C, G) for any G .  

11. The Injective Envelope 

Every R-module A is a submodule of an injective one (Thm. 7.4). 
We now show that there is a unique "minimal" such injective module 
for each A.  

An extension A< B - or a monomorphism x: A'+ B with image A - 
is called essential i f  S < B and S n  A = 0 always implies S = 0.  This 
amounts to the requirement that to each b+O in B there is an r € R  
with rb+O and in A. For example, the additive group Q of rational 
numbers is an essential extension of the group Z of integers. If A< B 
and B < C are essential extensions, so is A< C. 

Lemma 11.1. If x :  A'+ B is an essential monomorphism, while 
1: A'+ J is a monomorphism with injective range J ,  there is a monomor~hism 
p:  B+J with,ux=1. 

In other words, an essential extension of A' can be embedded in any 
injective extension of A'. 

Proof. Because J is injective, 1:  A1+J extends to a ,u with ,ux=l .  
Let K be the kernel of p. Since 1 is a monomorphism, KnxA1=O; 
since x is essential, K=O. Hence ,u is a monomorphism. 

Proposition 11.2. A module J is injective if and only if J has no 
proper essential extension. 

Proof. If J< B with J injective, then J is a direct summand of B, 
so the extension J< B is inessential unless J= B. Conversely, if J has 
no proper essential extensions, we wish to show that any extension 
J<  B splits. Consider the set Y of all submodules S < B with Sn J = 0.  
If a subset {Sc) of elements of Y is linearly ordered by inclusion, the 
union S = U S, of the sets S, is a submodule of B with S n  J =  0 ,  hence 
also in 9 .  Since any linearly ordered subset of Yhas  an upper bound 
in Y, Zorn's lemma asserts that Y has an element M maximal in the 
sense that it is properly contained in no S. Then J+ B + B/M is an 
essential monomorphism. But J is assumed to have no proper essential 
extension, so J-t B/M is an isomorphism, B = JV M and Jn M = 0.  Thus 
J is a direct summand of any containing B, so is injective. 

This suggests that we might construct a minimal injective extension 
as a maximal essential extension. 

Theorem 11.3. For every module A there is an essential monomorphism 
x:  A-tJ with J injective. If x': A-tJ' is another such, there is an isomor- 
phism 8:  J-tJ' with 8x=xt .  
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Proof. By Thm.7.4 there is an injective module Jo with A< J,. 
Let F be the set of all submodules S of Jo with A< S essential. If {St} 
is a subset of F linearly ordered by inclusion, the union U St is an 
essential extension of A,  hence is in .F. By Zorn's lemma again, 9- has 
a maximal element, J, and A< J is essential. Any proper essential 
extension of J could by Lemma 11.1 be embedded in J,, counter to 
the maximality of J .  Hence J is injective, by Prop. 11.2. 

Let x:  A-tJ be the injection. If x': A-tJ' is another essential mono- 
morphism to an injective J', Lemma 11 .I gives a monomorphism 
p :  J'+ J with ,uxl=x. Since pJ' is injective, it is a direct summand 
of J .  Since A+ J is essential, p J' must be all of J ,  so p is an isomorphism, 
as asserted. 

The essential monomorphism x:  A-tJ with J injective, unique up 
to equivalence, is called the injective envelope of A.  Its existence was 
established by BAER [1940] ; our proof follows ECKMANN-SCHOPF [1953]. 
For some of its applications, see MATLIS [1958]. A dual construction - 
of a "least" projective P with an epimorphism P+A - is not in general 
possible (Why ?). 

Notes. The study of extensions developed first for extensions of multiplicative 
groups (see Chap. IV), with extensions described by factor systems. The systematic 
treatment by SCHREIER [1926] was influential, though the idea of a factor system 
appeared much earlier [HOLDER 18931. The same factor systems were important 
in the representation of central simple algebras as crossed product algebras [BRAUER 

19281. [HASSE-BRAUER-NOETHER I 9321 and hence in class field theory. An invariant 
treatment of extensions without factor systems was first broached by BAER [1934, 
19351. That the group of abelian group extensions had topological applications 
was first realized by EILENBERG-MAC LANE [I9421 in their treatment of the uni- 
versal coefficient problem. There Extl was named. Another proof of the universal 
coefficient theorem and the homotopy classification theorem of 3 4 has been given 
by MASSEY [1958], using the mapping cone. 

Resolutions, perhaps without the name, have long been used, for example 
in HILBERT [1890]. Hopr in 1944 used them explicitly to describe the homology 
of a group. CARTAN [I9501 used them for the cohomology of groups and gave an 
axiomatic description as in $10. Extn was defined via resolutions by CARTAN- 
EILENBERG. The definition by long exact sequences is due to YONEDA [1954]. 
who also has [I9601 a more general treatment of composites. 

Chapter  four  

Cohomology of Groups 

The cohomology of a group 17 provides our first example of the 
functors Extz(C,A) - with R the group ring and C=Z. These co- 
homology groups may be defined directly in terms of a standard "bar 
resolution". In low dimensions they arise in problems of group extensions 
by I7; in all dimensions they have a topological interpretation (5 1 I). 
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1. The Group Ring 

Let l7 be a multiplicative group. The free abelian group Z ( n )  
generated by the elements X E I I  consists of the finite sums z m ( x ) x  
with integral coefficients m ( x )  €2. The product in I I  induces a product 

of two such elements, and makes Z ( R )  a ring, called the integral groufi 
ring of 17. Thus an element in Z ( n )  is a function m on 17 to Z ,  zero 
except for a finite number of arguments ~ € 1 7 ;  the sum of two func- 
tions is defined by ( m  + m') ( x )  = m (x )  + m' ( x )  , while the product is 
(mm') ( x )  = m (y )  mf (z ) ,  where the latter sum is taken over all y and z in 
17 with yz= x. A ring homomorphism 8: Z (n) +Zl called augmentation, 
is defined by setting 

& ( Z P  (4 X )  = Z x m  (4.  (1.1) 

Let p,: lT- tZ(n)  be the function which assigns to each y e n  the 
element labelled 4 y in Z (n) ; this means more exactly that po y is 
that function on 17 to Z for which (p ,  y) ( y )  = I  and (,a, y) ( x )  =O for 
x+ y. Clearly po is a mdtiplicative homomorphism, in the sense that 
yo ( y  y') = (p, y) (p, y') and p, ( I )  = 1. The group ring Z (a, together with 
this homomorphism p,, can be characterized by the following universal 
property. 

Proposition 1.1. I f  I I  is a mdtifilicative groufi, R a ring with idelztity, 
and p : l7+R a function with p (1) = 1 and ,u ( x  y) = ( p  x) ( p  y), then there 
i s  a unique ring homomorfihism e : Z (n) + R such that e p, = p. 

Proof. We may define e ( x m  ( x )  x )  = Z m  ( x )  p ( x )  ; this is a ring 
homomorphism, and the only such with e p,= p. 

In view of this property it would be more suggestive to call Z ( n )  
not the "group ring of D", but the free ring over the muZtifiZicative groufin. 

Modules over Z ( n )  (l7-modules for short) will appear repeatedly. 

Proposition 1.2. A n  abelian groufi A i s  given a unique structure 
as a left I7-modde by giving either 

(i) A function on n x A  to A, written xa for x ~ l 7 ,  a€ A ,  such that 
dwa  ys 

x(%+aZ)=x%+xa2, (x1x2)a=x,(x,a), la=a;  (1.2) 

(ii) A groufi homomorfihism 

Here Aut A designates the set of all automorphisms of A ;  that is, 
of all isomorphisms a:  A-tA.  Under composition, Aut A is a multi- 
plicative group. 
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The proof is immediate, for (4.2) gives p by p (x) a =  xu, while 
Aut A is contained in the endomorphism ring Hom,(A, A), and p 
extends by Prop. 1.1 to p: Z ( Q  +Horn, (A, A), making A a left module 
with operators p (u) a for each u G  (IT). 

In particular, any abelian group A can be regarded as a trivial 
17-module by taking p x = 1 ; then x a = a for all x. 

To each D-module A we construct an additive, but not necessarily 
abelian, group A x p  called the semi-direct firoduct of A and 17 with 
operators p. Its elements are all pairs (a, x) with the addition 

One proves that this is a group with the "identity" element 0= (0,i) 
and inverse - (a, x) = (- x-la, x-1) and that there is a short exact 
sequence 

o+A-%AxJI-%17+1, (1.5) 

where x is the homomorphism given by xa=  (a, I), a is a(a, x) =x, 
and 1 denotes the trivial multiplicative group. Also a has a right inverse 
v defined by V X =  (0, X) for all x; it is a homomorphism of the multi- 
plicative group 17 to the additive group A x p .  

Exercises 
I. A holomorphism h of the multiplicative group G is a 1-1 function on G to G 

with h (a b-*c) = (ha) (h b)-I (h c) for a, b, c E G. Show that the set of all holomorphisms 
of G under composition form a group, the holomorph HolG. Construct a short 
exact sequence (A,T) : G-HolG +AutG, where (Ag) (a) = ga, (th) a =  h ( l ) - l h  (a), 
and r has a right inverse. 

2. (R. BAER.) Let A be a IT-module and HolA the holomorph of its additive 
group, as in Ex. 1. Form the direct product (Ho1A)xIT with projections n, and n, 
upon its factors, show that A x &  is isomorphic to the subgroup of (Hol A) x n  
where 

tnl=pn,: (HolA)xIT-tAutA, 

and compare the sequence (1.5) with that of Ex. I. 

2. Crossed Homomorphisms 

If A is a 17-module, a crossed homorfihism of 17 to A is a function f 
on 17 to A such that 

f(xy)=xf(y)+f(x),  YE^. (2.1) 

Then necessarily f (1) =0. For example, if A is a trivial lI-module 
(xa=a always), a crossed homomorphism is just an ordinary homo- 
morphism of the multiplicative group 17 to the additive abelian group A. 
The sum of two crossed homomorphisms f and g, defined by (f+g) x= 
f (x) + g (x), is a crossed homomorphism. Under this addition the set 
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of all crossed homomorphisms of II to A is an abelian group which 
will be denoted by Z:(17, A )  - here p, records the 17-module structure 
17-tAut A of A. For each fixed a €  A the function fa  defined by f a  ( x )  = 
x u - a  is a crossed homomorphism. The functions of this form f a  are 
principal crossed homomorphisms. Since fa+ f ,  = f(a+a) and f(-,) = - f a ,  
they constitute a subgroup Bt (17, A) of Z:. The first cohomology 
group of 17 over A is defined to be the quotient group 

If A is the multiplicative group of a field and 17 a finite group of 
automorphisms of A (thus determining the 17-module structure of A ) ,  
a fundamental theorem of Galois Theory (ARTIN 1944, Thm. 21) asserts 
that H1 (IT, A) = 0 - that is, in this case, every crossed homomorphism 
is principal. Another application of crossed homomorphisms is 

Proposition 2.1. The group of all those automorphisms of the semi-direct 
product B= A x p  which ilzduce the identity both on the subgroup A alzd 
the quotient group B / A  ~ 1 7  i s  isomorphic to the group Z: (IT, A )  of crossed 
homomorphisms. Under this isomorphism the inner automorphisms of B 
induced by  elements of A correspond to the principal crossed homomor- 
phisms. 

Proof. An automorphism w of the sort described must be given 
by a formula w (a,  x)  = (a+ f ( x ) ,  x )  for some function f on 17 to A with 
f ( I )  =o.  The condition that w be an automorphism is equivalent to the 
equation (2.1). Composition of automorphisms then corresponds to the 
addition of the functions f ,  and inner automorphisms (b ,x)  +(a,l)+ 
(b, x )  - (a,  1)  to principal crossed homomorphisms, as asserted. 

Crossed homomorphisms may be described in terms of the group 
ring Z (n) and its augmentation E : Z (II) -+Z, as follows. 

Proposition 2.2. A crossed homomorphism of II to the Z(17)-module 
A i s  a homomorphism g: Z ( n ) - + A  of abelian groups such that always 

The  principal homomorphisms are the homomorphisms ga defined for a 
fixed a c A  as ga(r) =ra-as ( r ) .  

Proof. In these formulas E (r)  and E (s) are integers which operate 
on A on the right as multiples; thus a &  (r)  = E (r)a. Given any function g, 
as in (2.3), its restriction f =gl17 to the elements x ~ n i s  a crossed homo- 
morphism in the previous sense of (2.1), since & ( x )  = 1. Conversely, any 
crossed homomorphism f in the sense of (2.1) may be extended by 
linearity to a homomorphism g: Z(n)-tA of abelian groups; that is, 
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by g (zm, x) =Em, f (x). Then (2.3) follows from (2.1). We identify f 
with its extension g, and obtain thus the results stated. 

The augmentation E: Z(IT) +Z is a ring homomorphism, hence its 
kernel I(17) is a two-sided ideal in Z(IT) and therefore also a 17-sub- 
module of Z(17). The injection L gives an exact sequence 

of 17-modules, where Z has the trivial module structure. The map 
m +ml of Z to Z (n) is a homomorphism of additive groups (not of 
17-modules!) which is a right inverse of E. Hence the sequence (2.4) 
splits as a sequence of abelian groups. A left inverse p : Z (17) -tI(IT) of 
the injection L is therefore the map defined for r € Z  (IT) as p r  = r- E (r)l. 
It is a homomorphism of abelian groups and a crossed homomorphism 
of 17 to the module I(q. 

Proposition 2.3. For any 17-module A the operation of restricting 
to I(Q a crossed homomorphism g of the form (2.3) provides an isomor- 
phism 

2; (Q A) r Hornz(,, (I(IT), A) . (2.5) 

The principal homomorphisms correspond to the module hmomorfihisms 
ha: I(IT)+A defined for fixed a by the formula he(u)=ua, ueI(IT). 

Proof. When E (s) = O  the identity (2.3) for g becomes g (rs) =rg (s), 
so g restricted to the kernel of E is a module homomorphism, as stated. 
Conversely, any module homomorphism h: I(IT) +A, when composed 
with the special crossed homomorphism p r = r- E (r) 1, yields a crossed 
homomorphism hp on Z(IT) whose restriction to I(17) is exactly h. 
Finally, the principal homomorphisms behave as stated. 

For 17 fixed, Zi(17, A) and H i  are covariant functors of A ;  for each 
module homomorphism u : A+ B, (a, f) (x) is defined as a [f (x)]. For a 
fixed abelian group A with the trivial 17-module structure one can 
make Zf, and Hf, contravariant functors of 17; for a group homomor- 
phism 5: n+IT and a crossed homomorphism f on IT define the in- 
duced map [* : Zf, (n', A) +Zi (17, A) by ([* f)  (x) = f ([x). This will not 
do when A is a non-trivial 17- or IT-module. However, if [: n+IT and 
A' is a n'-module via p': IT+Aut A', then A' is also a 17-module via 
qf[: 17+Aut A', and we may define induced homomorphisms 

[*: Z;,(fl, A') +Zf,,c(17, A'), [*: Hf,,(n', A') + ~ f , , ~ ( 1 7 , ~ ' )  

by setting ([*f) (x)=f ([x) for any crossed homomorphism f on I7'. 
These induced homomorphisms [* behave functorially; that is, (['[)* = 
c*c'* and 1*=1. 
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More formally, regard the triple (17,A,y) as a single object in a 
category 9- in which the morphisms e : (II, A, y) -t (IT,  A', p,') are 
changes of groufis; that is, pairs e= (C,a) of group homomorphisms 
with 

[ : n + n l ,  a: A1+A, x(aa1)=a[(Cx)a'] (2.6) 

for all xcIIand ~ ' E A ' .  Note that a is backwards (from A' to A), and that 
the third condition states that a is a homomorphism a: A'+A of 
II-modules. If e' = (r, a') : (n', A', 9') -+ (n", A", 9") is another change 
of groups, the composite e'e is (C'C, aa'). For any crossed homomor- 
phism f' on n' to A' the definition (e* f ' )  (x )  =a ~ ( C X ) ]  gives a map 
e* : Zi.(nl, A') +Zi (17, A) which makes Z', and H', contravariant func- 
tors on the change of groups category 3-. This map e* is the composite 

of the maps 5* and a, previously defined. 

3. Group Extensions 

A grot@ extension is a short exact sequence 

E :  o + - G % B B ~ ~ - + ~  (3.1) 

of not necessarily abelian groups; it is convenient to write the group 
composition in 0, G, and B as addition; that in II and I as multiplica- 
tion. As before, the statement that E is exact amounts to the assertion 
that x maps G isomorphically onto a normal subgroup of B and that o 
induces an isomorphism B/x Gr17 of the corresponding quotient group. 
The extension E sfilits if a has a right inverse v; that is, if  there is a 
homomorphism v: 17+B with av=ln, the identity automorphism 
of 17. The semi-direct product extension (1.5)  splits. 

Let AutG denote the group of automorphisms of G, with group 
multiplication the composition of automorphisms. Conjugation in B 
yields a homomorphism 6: B+AutG under which the action of each 
8 (b) on any g c  G is given by 

Suppose G = A abelian; then 8 (A)  = 1, so that 8 induces a homomor- 
phism y :  17-tAutA with p,a=6. Thus y is defined by 

We then say that E is an extension of the abelian group A by the group 
17 with the ofieratms y:  II-tAut A. This map p, records the way in which 
A appears as a normal subgroup in the extension. 
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The problem of group extensions is that of constructing all E, 
given A, I l ,  and 9. Now O, gives A the structure of a 11-module; hence 
the group extension problem is that of constructing all E, given lI 
and a n-module A. There is a t  least one such extension, the semi-direct 
product A x &  

If E and E' are any two group extensions, a mwphism r: E+Et  
is a triple r= (a, B, y)  of group homomorphisms such that the diagram 

E: O + A  + B  -+n -+I 

k L - 1 ~  
E': o-+At-+B'-+IT'+l 

is commutative. If A and A' are abelian, and g, and 9': Il'-+AutA1 
the associated operators of E and E', one shows readily that always 

For example, if A=At, and a=.iA, then (g,x)a=(ytyx)a: Inother 
words, the 17-module structure on A  is determined by the IT'-module 
structure. If r: E+E' and r': Et+E" are morphisms of extensions, 
so is the composite PI': E -+EM. 

If E and E' are two group extensions of the same module A  by the 
group 17, a colzgruence r: E +Et  is a morphism F= (a, j9, y) with a = lA 
and y = In. For A abelian, it follows from (3.4) that 9=0,'; i. e., con- 
gruent extensions have the same operators. The (non-commutative!) 
short five lemma shows that a congruence r= (IA, j9, In) has B an  SO- 
morphism, hence that each congruence has an inverse. We may there- 
fore speak of congruence classes of extensions. Let Opext ( n ,  A, g,) denote 
the set of all congruence classes of extensions of the abelian group A 
by II with operators y. We wish to describe Opext. 

Any extension (3.1) with G=A abelian which splits (under v :  n + B )  
is congruent to the semi-direct product A x &  under the isomorphism 
B: B - + A x p  given by /?b=(x-l[b-vab],ab). In detail, 

exactly as in the addition table (1.4) for the semi-direct product. 
If l7 is a (non-abelian) free group with generators t,, then any epi- 

morphism a : B  + 17 has a right inverse given by setting v t, = b, , where 
b, is any element of B  with a b,= t,. Hence any extension by a free 
group splits, and Opext then consists of a single element. 

As a more interesting case, take n=C,,,(t) cyclic of finite order m 
with generator t. In any extension E by C,,, identify each a €  A with its 
image x u  c B, so that A< B. Choose a representative u for t with atc = t; as 
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a (mu) = f = 1, mu= a,€ A.  Each element of B can be written uniquely 
as a j i u  for a e A  and Ol;i<m. By the choice of a, and (3.4, 

With these equations, the sum of any two elements of the form a + i u  
can be put in the same form. By associativity, u+mu=(m+ I )  u= 
mu+ u, so u+ a,.= a,+ u.  Therefore a,= ta,, so a, is "invariant" under t .  
This element a, is not unique; if u'= %+ u is a different representative 
for t in B, then, by (3.5) and induction on m, 

Here N,%=q+t%+ - . . + P - l a ,  is the lzorm with respect to t in the 
Cm-module A ;  it is a group homomorphism N,: A- tA .  Since the coset 
of a, modulo N,A is uniquely determined by the congruence class of 
the extension, we have established a correspondence 

opext (Cm ( t ) ,  A , v )  * [a ]  t a= allq-4. (3.6) 

This is 1-1 ; given any invariant a,, take B to be all symbols a+ i u  
with 0s i< nz and addition given by (3.5). The invariance of a, proves 
this addition associative, and B is an extension of A by C, with the 
given operators. In particular, if A has trivial operators ( ta=a always), 
the expression on the right of (3.6) is the group AIm A - in agreement 
with the result already found in the case of abelian extensions in Prop. 
111.1.1. In this case, all extensions of A by C, are abelian. 

Again, let 17=C,xC, be the free multiplicative abelian group on 
two generators t, and t,. In any extension by 17, take representatives 
ui of t i ,  i = 1 ,  2 .  There is then a constant a, in A with u,+ y = a,+ y+ u, , 
all elements of the extension can be written uniquely as a+ y+ m,u, 
with integral coefficients m, and m,, and the addition in B is determined 
by the addition in A and the rules 

% + a = h a + ~ , ,  u,+a=t ,a+u, ,  u,+u,=a,+u,+u,. 
This addition is always associative and makes the collection of elements 
a+ m,ul+m u a group. If the representatives u, and u, are replaced ,, by any other y = % + u , ,  u;=a,+u,, for 6, a,cA,  the constant a, 
is replaced by a,+a,-ha,--%+t,a,. Hence, if S is the subgroup of 
A generated by all sums a,-- t,a,-- %+ t,a,, we have a 1-1 correspond- 
ence, 

Opext (C,X C, , A,  q) * A / S .  (3.7) 

Exercises 
I .  Describe Opext (C, x C, x C,, A, v). 
2. Describe Opext ( C m x  C,, A ,  v) . 
3. Show that Prop. 2.1 holds if Ax,Zi' is replaced by any extension of (17, A,  p.) 
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4. Factor Sets 

The calculations just made suggest that Opext ( n ,  A, cp), like Ext, 
is a group. This group structure can be described by means of certain 
factor sets. 

Let E be an extension (3.1) in Opext (l7, A, c p ) :  For convenience, 
identify each a with xa.  To each x  in lI choose a "representative" 
u  ( x )  in B; that is, an element u  ( x )  with o u  ( x )  = x. In particular, choose 
u ( l )  =O. Now each coset of A in B contains exactly one u  ( x ) ,  and the 
elements of B can be represented uniquely as a+ u  ( x )  for ac A, ~ € 1 7 .  
We write the operators as cp(x) a= x a :  Then (3.2) for b=u ( x )  becomes 

On the other hand, the sum u  ( x )  + u  (y )  must lie in the same coset as 
.u ( x  y ) ,  so there are unique elements f  ( x ,  y )  E A such that always 

( x ) + u ( y ) = f  ( x , Y ) + ~ ( x Y ) .  ( 4 . 4  

Since u  ( I )  = 0, we also have 

The function f  is called a factor set of the extension E. With this 
factor set and the data ( n ,  A,  p), the addition in B is determined, 
for the sum of any two elements a+ u  ( x )  and %+ u  ( y )  of B can be 
calculated, by (4.1) and (4.2) ,  as 

[ a + ~ ( x ) l + r % + ~ ( ~ ) l = ( a + ~ % + f ( ~ > ~ ) ) + u ( ~ ~ ) .  (4.4) 

By this rule form the triple sums 

r ~ ( ~ ) + u ( ~ ) l + u ( z ) = f ( ~ , y ) + f ( ~ ~ ,  Z ) + U ( X Y  4 ,  
( ~ ) + [ u ( Y ) + ~ ( z ) I = x f ( r > z ) + f ( ~ , ~ z ) + ~ ( x Y z ) .  

Their equality (associative law!) gives 

x f ( y , z ) + f ( x , y z ) = f ( x , y ) + f ( x y , z ) ,  x , y , z c n .  (4.5) 

The factor set f for an extension depends on a choice of represen- 
tatives; if u f ( x )  is a second set of representatives with u l ( l )  =0, then 
u l ( x )  and u  ( x )  lie in the same coset, so there is a function g on I7 to A 
with g ( I )  = 0 such that u l ( x )  =g ( x )  + u  (x ) .  Thus 

One verfies that this function dg does satisfy the identity (4.5), with f 
replaced by dg there. 
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These observations suggest the following definitions. Let 2, (17, A )  
denote the set of all functions f on17x17 to A which satisfy the identity 
(4.5) and the normalization condition (4.3). This set is an abelian group 
under the termwise addition ( f  + f ' )  ( x ,  y) = f ( x ,  y) + f ' (x ,  y). Let B: (17, A )  
denote the subset of 2, which consists of all functions f of the form 
f=6g, where 6g is defined as in (4.6) from any function g on 17 to A 
with g (1)  = 0. The factor group 

P, (17, A )  =q (17; A)/B: (17, A )  

is called the 2-dimensional cohomology group of lI over A. Our discus- 
sion has suggested 

Theorem 4.1. Given p,: 17+AutA, A abelian, the function w which 
assigns to each extension of A by 17 with operators p, the congruence class 
of one of its factor sets is a 1-1 -correspondence 

w : Opext (17, A ,  p,) t*P, (17, A )  (4.7) 

between the set Opext of all congruence classes of such externions and the 
2-dimensional cohomology group. Under this correspondence the semi-direct 
product corresponds to the zero element of P,. 

Since H: is an abelian group, this correspondence w imposes the 
desired group structure on Opext. This group structure can also be 
described conceptually via the Baer product, as set forth in the exercises 
below. 

Proof. Since the factor set of an extension is well defined modulo 
the subgroup B:, and since congruent extensions have the same factor 
sets, we know that the correspondence w is well defined. The semi- 
direct product A x &  clearly has the trivial function f ( x ,  y) =O as one 
of its factor sets. If two extensions yield factor sets whose difference 
is some function Bg(x, y), then a change of representatives in one ex- 
tension will make the factor sets equal and the extensions congruent. 
Therefore (4.7) is a 1-1 correspondence of Opext with part of Ha. Finally, 
given any f satisfying (4.5) and (4.3), one may define a group B to con- 
sist of pairs (a, x)  with a sum given as in (4.4) by 

( a , ~ ) + ( % > ~ ) = ( a + x % + f ( x > ~ ) # x ~ ) >  a,beA. 

The module rules and the condition (4.5) show that this composi- 
tion is associative; it clearly yields an extension with representatives 
u ( x )  = (0, x )  and factor set f .  This completes the proof of the theorem. 

If A is abelian, a central group extension of A by 17 is an extension 
E as in (3.1) in which x A  is in the center of B. In other words, a central 
extension is one with operators p, = 1. This theorem thus includes the 
fact that the set of congruence classes of central extensions of A by 17 
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is in 1-1 correspondence with the group H2(17,A), where the abelian 
group A is taken with trivial operators 9. If 17 is abelian, every abelian 
extension is central, so there is a monomorphism ~ x t ;  (17, A) +Ha (17, A). 

We can regard the cohomology groups 9, and Hi as the cohomology 
groups of a suitable complex 

of free 17-modules. Take X, to be the free 17-module generated by 
all pairs [ x ,  y] of elements x+ I ,  y+ I of 17. In order to define [x, y] EX, 
for all x, ~ € 1 7 ,  set also [I, y] = 0 = [x, I] and [I, 11 = 0. A 2-dimensional 
cochain f of Hom, (X, A) is thus a 17-homomorphism f : X, +A ; it is 
determined by its values f [x, y] on the free generators of X,; hence is 
in effect a function on nx17 to A with f (x, I) =0= f (I, y). Next take 
X3 to be the free 17-module generated by all triples [x,y,z] of elements 
not 1 in 17, with a: X,+X2 given by 

the condition that f be a cocycle (f a = O )  is exactly the identity (4.5). 
Finally, take X, to be the free module generated by all [x] with x / l  
and set [I] =0. A I-dimensional cochain is a module homomorphism 
X,+A, and is hence determined by its values on [x], so is, in effect, 
a function g on lI to A with g (I) = 0. If we now define a: X, +XI by 

then aa=O, and the coboundary of g is the function given by the for- 
mula (4.6). Thus Ha, (17, A) is Ha(Homz(,, (X, A)). We get the analogous 
result for H i  if we take X,, to be Z(17) and set a[x] =x- 1 ~Z(17). 

This complex also defines a 0-dimensional cohomology group as 
(17, A) = HO(Homz(,, (X, A)). A 0-dimensional cochain is a module 

homomorphism f : Z ( m  +A ; it  is determined by its value f (4)  .=a€ A. 
I t  is a cocycle if -(dl) [x] = f a [x] = f (x- I)  = xu- a is zero. Hence 
the 0-cocycles correspond to the elements acA invariant under 17 
(xa=a for all x): 

Exercises 
The Baer sum, introduced for extensions of modules in Chap.111, can also be 

applied to group extensions, as indicated in the following sequence of exercises. 

I .  Prove: If E is an extension of G by L! and y  : Il'+L!, there exists an extension 
E' of G by 17' and a morphism I l = ( IC ,  B, y )  : E'+E. The pair (I: E') is unique up 
to a congruence of E'. If G is abelian and has operators q :  n+AutG, then E' 
has operators qy .  Define E y =  E'. 

Mac Lane, Homology 8 
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2. Under the hypotheses of Ex. i ,  prove that each morphism (a1, 81, yl) : El +E 
of extensions with yl= y can be factored uniquely through P. 

3. For E EOpext (L7, A,  q), q': lI+AutA', and a: A+A' a L7-module homo- 
morphism, prove that there exists an extension E1€Opext (L7, A', q') and a morphism 
O= (a, 8, in): E +E', unique up to a congruence of E'. Define aE to be E'. 

4. Under the hypotheses of Ex. 3, prove that for El€ Opext (q, A', qi) each 
morphism (a,, a, yl) : E -t El with al = a and q; yl = q' can be factored uniquely 
through O. 

5. For a, y, and E as in Exs. 1 and 3, with G = A  abelian, prove that a(Ey) 
is congruent to (aE) y. 

6. Using Exs. 1, 3, and 5, show that Opext is a contravariant functor on the 
category 9- of changes of groups. 

7. Show that Opext (lT, A,  q) is an abelian group under the Baer sum defined 
by El+ E,= 6 (El% E,) An, and show that this composition agrees with that 
given by factor sets. 

5. The Bar Resolution 

The boundary formulas (4.8) and (4.9) for the complex X of the 
last section can be generalized to higher dimensions. Specifically, for 
any group 17 we construct a certain chain complex of 17-modules 
B,(Z(n)) .  Take B ,  to be the free 17-module with generators [x,] . . . 1 x,] 
all %-tuples of elements x1+ 4 ,  . . . , x,+ 4 of 17. Operation on a generator 
with an x d l  yields an element x [x,  1 . . . I x,] in B ,  , so B ,  may be described 
as the free abelian group generated by all x [xll . . . I x,]. To give a meaning 
to every symbol [xlJ . . . I x,], set 

[xll . . . I  x,]=o ifanyone x i=4;  ( 5 . 4 )  

this is called the normalizatiolz condition. In particular, B ,  is the free 
module on one generator, denoted [ I ,  so is isomorphic to Z(n), while 
E [ ] = 1 is a l7-module homomorphism E: B ,  +Z, with Z the trivial 
17-module. 

Homomorphisms s-, : Z -+ B, , s, : B ,  -.t B,+, of abelian groups are 
defined by 

s - , 1 = [ ] ,  snx[x,l . . . I  xn]=[xIxll  . . . I  x , ] .  (5.2) 

Define l7-module homomorphisms a:  B,+B,- ,  for %>O by 

in particular a [ x ] = x [ ] - [ I ,  a [ x l y ] = x [ y ] - [ x y ] + [ x ] .  Note that 
formula ( 5  .3) holds even when some xi = 1 ,  for then the terms numbered 
i- 4 and i on the right cancel, and the remaining terms are zero. All 
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told, we have a diagram 

with solid arrows module homomorphisms and dotted arrows group 
homomorphisms. Call B = B (Z(n)) the bar resolution. 

Theorem 5.1. For alzy group I7 the bar resolution B(Z(17)) with 
azcgmentatiolz E is  a free resolution of the trivial 17-module Z. 

Proof. The B, are free modules, by construction, so we must show 
that the sequence of solid arrows in (5.4), with zero adjoined on the left, 
is exact. We will prove more: That this sequence is a complex of abelian 
groups with s as a contracting homotopy. The latter statement means 
that 

E S - , = I ,  ~ s , + s - , & = I ,  ~ s , + s , - , a = ~ ,  (n>o). (5.5) 

Each of these equations is immediate from the definition; for example, 
by (5.3), as,(x [xll . . . I  x,]) starts with x [xll . . . I x,] while the remaining 
terms are those of s,-,ax[x1l ... Ix,], each with sign changed; this 
proves the last equation of (5.5). Moreover, these equations determine 
E and a,,+, : B,,, -+ B, uniquely by recursion on n, for B,+, is generated 
as a 17-module by the subgroup s, B,, and the equations (5.5) give 
a,,, on this subgroup as a,,,,sn = I - s,-, a,; thus the formula (5.3) 
for a can be deduced from (5.5) and (5.2) for s. By the same recursion 
argument it follows that E a,= 0 and a,a,+, = 0,  for 

gives a 2 = O  by induction. This can also be proved, directly but labor- 
iously, from the formula (5.3) for a. Either argument shows B(Z(Q) 
a complex and a resolution of Z, as stated in the theorem. 

The same theorem holds for the "non-normalized" bar resolution 
B(Z(17)). Here /?, is the free I7-module generated by all the n-tuples 
xl @ . . . @ x, of elements of I7 (no normalization condition) and E, a, 
s are given by the same formulas as for B. Thus B,s /? , /D, ,  where D, 
is the submodule generated by all xl @ - . . @ x, with one xi = 1. The 
symbol @ is used here because this description makes /?, the (n+ 1)- 
fold "tensor product" Z(17) @ . .. @Z(17) of the abelian groups Z(17); 
these tensor products are defined in Chap.V and applied to the bar reso- 
lution in Chap. IX. 

For any I7-module A we define the cohomology groufis of ll with 
coefficients A by the formula ' 
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in keeping with the special cases treated in the previous section (where 
the subscript g, was used to record explicitly the structure of A as a 
IT-module). The cohomology groups H" (IT, A) are thus those of the 
cochain complex B (17, A )  = Hom, [B(Z(n)), A], where Hornn is short 
for Since B, is a free module with generators [xll . . . I xu] 
(no xi = I), an n-cochain f : B, -t A is a IT-module homomorphism which 
is uniquely determined by its values on these generators. Therefore the 
group B" (IT, A) of n-cochains may be identified with the set of all those 
functions f of n arguments xi in IT, with values in A, which satisfy the 
"normalization" conditions 

The sum of two cochains f l  and f ,  is given by addition of values as 

Under this addition the set Bn of all such f is an abelian group. The 
coboundary homomorphism 8: P + P - I  is defined by 

df(x1, . . . , %+I) = (- I)"+l[Xlf (xp, . . . , %,+1)+ 

n ( 5 4  + z (-l)if(~l?...tXiXi+l>...,~,+l)+(-~)n+lf(~l , ... ,%)I. 
i-1 

Hn (17, A) is the lz-th cohomology group of this complex B (IT, A).  
As a functor, Hn (IT, A) is contravariant in the objects (IT, A, v), 

for if  e=(r,  a) is a change of groups as in (2.6), the induced map 
e*: Hn (IT, A') +Hn(II, A) is defined for any f ' ~  B'" by 

In particular, for IT fixed, Hn(17, A) is a covariant functor of the IT- 
module A. 

Corollary 5.2. For any IT-module A there is an isomor+hism 

0: E X ~ ? ( ~ , ( Z , A ) ~ V ( ~ T , A )  
which is natural ilz A. 

Since B is a free resohtion of the trivial IT-module 2, the result is 
immediate, by Thm. 111.6.4; it shows that the cohomology of a group is 
a special case of the functor ExtR, for R the group ring. 

For a short exact sequence E: A- B a C  of IT-modules, Cor. 5.2 
and the usual exact sequence for Ext yield an exact sequence 

The connecting homomorphisms E, are natural in E. For fixed II, the 
cohomology groups H" (17, A) are covariant functors of A which may 
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be characterized, with these connecting homomorphisms, by three 
axioms like those for Ext (111.40) : The sequence above is exact, H0 (IT, A) 
r A", and Hn (IT, J) = 0 if  n>0 and J is an injective IT-module. 

For IT finite, the coboundary formula gives an amusing result: 

Proposition 5.3. I f  IT is a finite group of order k, every element 
of Hn (IT, A) for n>0 has order dividifig k. 

Proof. For each n-cochain f define an (n- 4)-cochain g by 

Add the identities (5.8) for all x=x,+, in Il. The last term is inde- 
pendent of x; in the next to the last term, for x, fixed, 

2 Gf(~1, ..., x,, x)=-Gg(xl, ..., x,)+kf(xl, ..., x,). 
%En 

For 6 f = 0 this gives k f = Gg a coboundary, hence the result. 

Corollary 5.4. If  IT is finite, while the divisible abelian group D with 
no elements of finite order is a IT-module in any way, then H" (IT,D) =0 
for n>0. 

Proof. For g as above, there is an (n-4)-cochain h with g=kh. 
Then kf=f k dh; since D has no elements of finite order, f=f  Gh, 
and the cocycle f is a coboundary. 

Corollary 5.5. I f  IT is f i~i te ,  P is the additive group of real numbers, 
mod 1, and P and Z are trivial IT-moddes, Ha (IT, 2 )  r Hom (Il, P) . 

The (abelian) group Hom (IT, P )  of all group homomorphisms D-tP 
is the character group of IT. 

Proof. The additive group R of reals is divisible, with no elements 
of finite order. The short exact sequence 2- R + P of trivial Il-modules 
yields the exact sequence 

By Cor. 5.4, the two outside groups vanish; since P has trivial module 
structure, Hl (IT, P) = Hom (17, P). Hence the connecting homomorphism 
is the desired isomorphism. 

To illustrate the use of resolutions, consider the operation of con- 
jugation by a fixed element t d I .  Let 8,: IT-tIT denote the inner auto- 
morphism B,x=t-lxt, while, for any IT-module A, a,: A+A is the 
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automorphism given by a, a=ta. Then x (a,a) = xta =t (t-lxta) = 
a, [(O,  x) a ] ,  so ( O f ,  a,) : (IT, A,  pl) -+ (IT, A,  pl) is a change of groups in the 
sense of (2.6). The induced map on cohomology is necessarily an iso- 
morphism, but more is true: 

Proposition 5.6. For any II-module A, conjugation by a fixed teI I  
induces the identity isomorphism 

Proof. A module homomorphism g,: B,(Z(II)) -t B,(Z(II)) is given 
by 

g,(x[x,l . . . Ix,])=xt [t-1x1t/ . .. p lx i t l  . . . It-lx,t]. 

Observation shows g, a= ag,, so g, is a chain transformation of resolu- 
tions which lifts the identity Z+Z. By the comparison theorem for 
resolutions, g, is homotopic to the identity, so the induced map on 
cohomology is the identity. But this induced map carries any 12-cochain 
f into g: f where 

The cochain on the right is (Of, a,)*f, as defined by (5.9, hence the 
conclusion. Note that the comparison theorem has saved us the trouble 
of constructing an explicit homotopy g,-- 1 .  

This theorem may be read as stating that each n-cocycle f is co- 
homologous to the cocycle g: f defined above. Like many results in the 
cohomology of groups, this result was discovered in the case n = 2 from 
properties of group extensions (Ex. 3 below). 

In the bar resolution, B,(Z(II)) is the free abelian group with free 
generators all symbols x [xll . . . lx,] with all x d 7  and none of x,, . . . , x, 
equal to 1 d7. We call these symbols the nonhomogeneous generators 
of B. Now the string of elements x, x,, . . . , x, in I I  determines and is 
determined by the string of elements yo = x, yl = xx,, y, = xxl x, , . . . , 
y, = x x, . . . x, in I I ,  and the condition xi = 1 becomes yi-, = y,. Hence 
the generators of B, may be labelled by the elements y@, in symbols 

while conversely 

x[xll ... (x,]=(x,xxl,  xx1x2, ..., xxl ... x,). (5.11) 

Translating the boundary formula to this notation proves 

Proposition 5.7. The abdian group B,(Z(17)) contains the dements 
(yo ,  ..., y,) of (5.10) for all y i € n  I f  yi-l=yi, (yo,  ..., Y,)=o. 
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remaining such elements are free generators of B,. The 17-module structure 
is given by 

Y(YO, YI, . . . ~ Y ~ ) = ( Y Y o ~ Y Y I ~  . . . * Y Y ~ )  (5.12) 

and the boundary a: B,+ B,-, is determined by 

where the A over yi indicates that yi is to be omitted. 

Note that this formulation of B(Z(I7)) uses the multiplication of 17 
only in the definition (5.12) of the module structure. In view of the form 
of this definition, the symbols (yo ,  . . . , y,) are called the homogeneous 
generators of B,. They have a geometrical flavor. If we regard (yo, y,, 
. . . , y,) as an n-simplex a with the element y , d l  as a label on the i-th 
vertex, then (yo, . . . ,yi, . . . , y,) is the n- 1 simplex which consists of the 
i-th face of a with its labels, and the boundary formula (5.13) is the usual 
formula for the boundary of a simplex as the alternating sum of its 
(n - 1 )-dimensional faces. 

The non-homogeneous generators may be similarly read as a system 
of edge labels. On the simplex, label the edge from the vertex i to vertex j 
by zi =yrl  yj , so that the simplices a and ya  have the same edge labels, 
and zi j  zjk=ziR. Hence the edge labels X ~ = Z , _ , , ~  determine all the edge 
labels by composition. The non-homogeneous generator x [x,J . . . 1 x,] 
simply records these edge labels xi and the label x=yo on the initial 
vertex, as in the figure 

%.A= y,  

Y 4 - 7 - Y l  . 
X l = Y i  Y t  

The non-homogeneous boundary formula (5.3) may be read off from 
these edge labels. This schematic description can be given an exact 
geometrical meaning when I7 is the fundamental group of a space 
(EILENBERG-MACLANE 1945). 

Exercises 

1. Show that f i  (2 (If)) - the non-normalized bar resolution - with a suitable 
augmentation is a free 17-module resolution of 2. 

2. Deduce that Opext (D, A,q) can be described by factor sets which satisfy 
(4.5) but not the normalization condition (4.3). Find the identity element in the 
group extension given by such a non-normalized factor set. 

3. For n= 2 in Prop. 5.6, show explicitly that the cohomologous factor sets f 
and g; f determine congruent elements of Opext (lT,A, q). 

4. Show that Ext;(rn (Z ,A)  is a contravariant functor on the category 9- 
of changes of groups, and prove the isomorphism 8 of Cor. 5.2 natural. 
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6. The Characteristic Class of a Group Extension 

For n = 2, Cor. 5.2 provides an isomorphism 

0: Ext&,,(Z,A)rHa(l7,A). (6.1) 

Hence each group extension E of A by 17, 

with given operators (p must determine a two-fold l7-module extension 
of A by the trivial module Z. I t  is instructive to construct this module 
extension 

x(E): o + A ~ M ~ ( ~ ) % z + o  (6.2) 

directly. To do so, take Z(n) to be the group ring of 17, with E its aug- 
mentation. Take M to be the quotient module M=F/L, where F is 
the free l7-module on generators [b], one for each b+ 1 in B, with the 
convention that [I] =0 in F, while L is the submodule of F generated 
by all [bl+ b,] - (ahl) [b,] - [bl] for bl , b, E B. The module homomorphisms 
a and @ of (6.2) may then be given by a a =  [xu] + L, @ ([b] + L) = 
ab-lgZ(I7). Clearly Ba=O and EB=O, so the sequence x(E) of (6.2) 
may be regarded as a complex of l7-modules. The exactness of this 
sequence is a consequence of 

Lemma 6.1. As a chain complex of abelialz groufls, (6.2) has a colz- 
trading homoto+ y. 

Proof. A contracting homotopy s would consist of homomorphisms 
s: Z+Z(n), s: Z ( Q  +M, and s: M +A of abelian groups such that 
E S = I ~ ,  / ~ s + s E = I ~ ( ~ ) ,  as+s/?=lM, and sa=l,. The first condition 
is satisfied by setting s 1 = 1, and the second by s x= [u (x)] -+ L, where 
u (x) E B is a representative of x in B with au (x) = x and u (1) = 0. For 
all x and 6, zc (x)+ b- u(x(o;b)) is in the kernel of a, so there are ele- 
ments h (x, b) E A with 

A homomorphism s : M + A  may be defined by s (x [b] + L) = h (x, b). 
The proof is completed by showing that as+ sg= I ,  sa= 1. 

The given short exact sequence E of groups thus determines an 
exact sequence x(E) of modules, hence an element of Exti(,,(Z,A), 
called the characteristic class of E. That the correspondence 

x : Opext (17, A ,  (p) + Exti (n) (2, A )  

is an isomorphism will follow by composing it with the 0 of (6.1) and 
applying 
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Theorem 6.2. The covq5osite corresfio.ndence 

is the isomorfihism which assigns to each E the cohomology class of one 
of its factor sets. 

Sketch of proof. To apply the definition of 8 we must find a chain 
transformation of the bar resolution, regarded as a free resolution of 
the trivial module Z, into the sequence x (E) ,  regarded also as a resolu- 
tion of Z. Such a chain transformation 

may be specified in terms of representatives u(x )  of x in B, with the 
usual factor set f (x ,  y) for the u (x) ,  by the module homomorphisms 

The cohomology class belonging to x(E)  is then the cohomology class 
of g,, regarded as a cocycle on B(Z(I7));  that is, is the cohomology 
class of a factor set f for the extension E, as asserted in our theorem. 

This construction may be reversed. The bar resolution provides a 
%fold exact sequence starting with aB,  and ending in Z. Left multi- 
plication of this sequence by the cocycle f produces the sequence (E) .  

Exercises 
1 .  Show that a and B as defined for (6.2) are indeed module homomorphisms. 
2. Complete the proof of Lemma 6.1, in particular showing that the function h 

there introduced satisfies h (x ,  b,+ b,) = h ( x  (a b,), b,) + h ( x ,  b,) and hence that 
s : M + A is well defined. 

3. Express the function h in terms of the factor set f. 
4.  Verify that (6.4) gives a chain transformation as claimed. 

7. Cohomology of Cyclic and Free Groups 

Since Ha (a A) =Exti (n, (2, A ) ,  we may calculate the cohomology 
of a particular group I7 by using a IT-module resolution of Z suitably 
adapted to the structure of the group I7. 

Let 17=Cm(t) be the multiplicative cyclic group of order m with 
generator t .  The group ring r=Z(Cm( t ) )  is the ring of all polynomials 

m-1 
u = z  aiti in t with integral coefficients a<, taken modulo the relation 

i = O  
tm = 4 .  Two particular elements in r are 
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Clearly ND=O, while, if u = z  aiti is any element of r, 

If Du=O, then a,=%=-..=am-, and %=Nu,. If Nu=O, then ai=O 
andu=-D[aO+(~+aO)t+.. .  + (am-l+...+aO)tm-l].Thi~means that 
the sequence of l7-modules 

is exact. The augmentation E : r-4 is EU = 2 a;, hence ~u = 0 implies 
that u=Dv for some v. All told, the long exact sequence 

thus provides a free resolution of 2. This resolution is customarily 
denoted by especially in algebraic topology, where it is of considerable 
use in calculating cohomology operations (STEENROD [1953]). 

For any IT-module A the isomorphism Hornn ( r ,  A )  =A sends any 
f :  r + A  into f ( I ) .  Hence the cochain complex Homn(W, A ) ,  with the 
usual signs 6 f = (- l)"+l f a for the coboundary, becomes 

-D. N* 
A-A-A-A-...., 

starting with dimension zero, where N* a = N a, D* a = D a = (t - 1 )  a. 
The kernel of D* is the subgroup [a It a = a] of all elements of A invariant 
under the action of tcCm, while the kernel of N* is the subgroup of 
all a in A with a+ ta+ . -. + tm-la = 0. The cohomology groups of Cm 
are those of this cochain complex, hence 

Theorem 7.1. For a finite cyclic group Cm of order m and generator t 
and a Cm-module A,  the cohomology groups are 

Note that these groups for n>O repeat with period two. 
Next we consider free groups. 

Lemma 7.2. If F is a free grozlp on free generators ei, for i € J ,  then 
Z i ( F ,  A) is isomorphic to the cartesian product n A i  of copies A i r A  
of A ,  under the correspondence which sends each crossed homomorphism f 
to the family {fej} of its values on the generators. 

Proof. By definition, the free group F consists of 1 and the words 
x= e:; . . . e,: in the generators, with exponents E~ = & 1. If we assume 



7. Cohomology of Cyclic and Free Groups 123 

that the word is reduced (i.e., ej+ E ~ + ~ + o ,  when ij=ii+l), then this 
representation is unique. The product of two words is obtained by 
juxtaposition and subsequent cancellation. Now a crossed homomor- 
phism f satisfies the equation f (xy) = x f (y) + f (x) and hence also f (I) = 0 
and f (x-1) =- x-lf (x). Therefore f is completely determined by its 
values f (e,) = ai E A on the free generators e, . Conversely, given constants 
a, in A ,  we may set f (e,) =aj  and define f (x) by induction on the length 
of the reduced word x by the formulas 

We verify that these formulas hold even when the word e,x or e;lx 
is not reduced, and hence that the f so defined is a crossed homomor- 
phism. This completes the proof. 

Consider now the exact sequence (2.4) of Z(F)-modules 

with p the crossed homomorphism from F to I(F) given by p x=  x- 1. 
By Prop. 2.3 the crossed homomorphisms f on F to A correspond one-one 
to the module homomorphisms h: I(F) + A ,  indeed each h determines 
an f =hp. In particular f e,=hpe,=h(e,- I). Thus the lemma above 
states that the module homomorphisms h are determined in one-one 
fashion by their values on e,- 1 EI(F). This means that I (F)  is a free 
F-module on the generators ei- I .  Hence (7.9) is a free resolution of 
the trivial F-module Z, and may thus be used to calculate the cohomology 
of F. Since this resolution is zero in dimensions beyond I ,  we conclude 

Theorem 7.3. For a free groyb F, H" (F, A )  =0, for n > l .  

Exercises 
1. Describe H1 (F, A) for F free. 
2. Without using crossed homomorphisms, prove I(F) a free module. 

3. Find a resolution for Z as a trivial module over the free abelian group IZ 
on two generators, and calculate the cohomology of IZ. 

4. Determine the Yoneda products for the cohomology groups Hk(Cm,Z), 
showing that 

sari: o+zN,r3,rj. . .  +r>z + O  

is an exact sequence with 2n intermediate terms r and maps alternately multi- 
plication by N and by D, that, for n>O, H2"(~,, Z)=Extan(Z, Z)=Z/mZ has 
an additive generator of order m given by the congruence class of the sequence 
S2*, and that the composite s ~ " s ~ ~  is S2(n+k). 

5 .  If E, is the exact sequence Z%Z-+Cm, where the map Z + Z  is multi- 
plication by m, show that the characteristic class x(E,,) in the sense of $6  is the 
sequence S2 of Ex.4. Deduce @at Opext(Cm, Z) is the cyclic group of order m 
generated by the extension E,, . ' 
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6. Let 5 :  Cm+Ch be a homomorphism of cyclic groups. For A a trivial 17- 
module in Thm. 7.1, calculate the induced map [* in cohomology. 

8. Obstructions to Extensions 

The 3-dimensional cohomology groups appear in the study of ex- 
tensions of a non-abelian group G. We write the composition in G as 
addition, even though G is not abelian. 

For any element h of G, denote by p (h) or ph the ilzrter automor#hism 
phg= h+ g- h given by conjugation with h. The map p : G +Aut G 
is a homomorphism of the additive group G to the multiplicative group 
Aut G of all automorphisms of G; its image p G is the group In G of 
inner automorphisms of G. This image is a normal subgroup of Aut G, 
for if q ~ A u t  G, then always 

q ( ~ h g ) = q ( ~ + g - ~ ) = ) 7 ~ + q g - ' 1 7 ~ = ~ ~ h ( ~ g )  
and hence 

q ph q - I  = hh, ph = conjugation by h . (8.1 

The factor group Aut G/InG is called the group of automor#hism classes 
or of outer automor#hisms of G; it is the cokernel of p :  G+AutG. The 
kernel of p is the celzter C of G; it consists of all ccG such that c+ g= 
g+ c for all G. The sequence 

is therefore exact. 

Any group extension 

E :  o-+G-L~,BL~+I 

of G by lI determines, via conjugation in the additive group B, a homo- 
morphism 8 : B +Aut G for which 8 (xG) < In G. It hence determines an 
induced homomorphism p: lI+AutG/InG. In other words, for each 
b E B the automorphism g -+ b+ g- b of G is in the automorphism class 
~ ( a b ) .  We say that the extension E has colzjugatiolt class y: thus y 
records the fashion in which G appears as a normal subgroup of B. 
Conversely, call a pair of groups IT, G together with a homomorphism 
y: L!-tAutG/InG an abstract kernel. The general problem of group 
extensions is that of constructing all extensions E to a given abstract 
kernel (lI,G,y) ; that is, of constructing all short exact sequences E 
with given end groups G and 17 and given conjugation class v. As in 
9 3, congruent extensions have the same conjugation class. 

A given extension E may be described as follows. Identify each 
g~ G with x g ~  B. To each x d 7  choose u ( x )  E B with au ( x )  = x, choosing 
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in particular u (1) = 0. Then conjugation by u ( x )  yields an automorphism 
p, ( x )  E y ( x )  of G with 

The sum u ( x )  + u ( y )  equals u ( x  y) up to a summand in G, which we may 
denote as f ( x ,  y)  E G, 

The associativity law for u ( x )  + u ( y )  + u (z)  implies that 

If the group G containing the values of f were abelian, this identity 
would state that 8f=0. Also, conjugation by the left and by the right 
side of (8.4) must yield the same automorphism of G ;  hence the identity 

which states that pf measures the extent to which p, deviates from a 
homomorphism p,: 17-tAut G. 

Conversely, these conditions may be used to construct an extension 
as follows: 

Lemma 8.1. Given 17, G, and functions p, on 17 to Aut G, f on 17x17 
to G which satisfy the identities (8.5) and (8.6) and the (normalization) 
conditions (p(l)=l, f (x ,1)=0=f(I ,y) ,  the set Bo[G,p,, f,n] of all Pairs 
(g, x )  under the sum defined by 

i s  a grou*. Wi th  the homomorfihisms g -t (g, 1) and (g, x )  -t x,  G n B,, +17 
i s  a n  extension of G by 17 with conjugation class given by the automorPhism 
class of p,. 

Proof. A routine calculation shows that (8.5) and (8.6) yield the 
associative law. Because of the normalization condition, (0,l)  is the 
zero, while (- f ( x - l ,  x )  - p,(x-l) g, x-l) is the negative of the element 
(g, 4.  

We call the group Bo= [G,p, f , l I]  so constructed a crossed Product 
group and the resulting extension a crossed Product extension. Our 
analysis just before the previous lemma showed that any extension 
was isomorphic to such a crossed product, in the following explicit 
sense. 

Lemma 8.2. If p, ( x )  ~y ( x )  has p, ( 1 )  = 1 ,  then any  extension E of 
the abstract kernel ( n , G , y )  i s  congruent to a crossed Product extension 
[G, p,, f ,  171 with the given function q. 



126 Chapter IV. Cohomology of Groups 

Proof. In the given extension E the representatives u ( x )  can be 
chosen so that g+u(x)+g- u ( x )  is any automorphism in the auto- 
morphism class y ( x ) .  Make this choice so that the automorphism is 
p (x ) .  Each element of B then has a unique representation as g+ u ( x ) ,  
and the addition rules (8.3) and (8.4) yield a sum which corresponds 
under g+u(x)+(g,x) to that in the crossed product (8.7). This cor- 
respondence is a congruence. This proves the lemma. 

Suppose now that just the abstract kernel (17, G, y )  is given. In 
each automorphism class y ( x )  choose an automorphism p ( x ) ,  taking 
care to pick q ( I )  = I .  Since y is a homomorphism into Aut GIInG, 
p ( x )  p ( y )  p ( X  y)-l is an inner automorphism. To each x ,  y €17 choose an 
element f ( x ,  y) in G yielding this inner automorphism, in particular picking 
f ( x , l ) = O = f ( l , y ) ;  then p ( x )  p ( y ) = p [ f ( x , y ) l  p ( x y ) .  This is (8.6); we 
would like (8.5) to hold, but this need not be so. The associative law 
for p ( x )  p ( y )  ~ ( z )  shows only that (8.5) holds after p is applied to 
both sides. The kernel of p is the center C of G; hence there is for all 
x,y, z an element k (x ,y ,z )  E C such that 

Clearly k ( I ,  y, z) = k ( x ,  I ,  z)  = k ( x ,  y,  I )  = 0 ,  so that this function k may 
be regarded as a normalized 3-cochain of 17 with coefficients in C. 

The abelian group C = center (G) may be regarded as a l7-module, 
for each automorphism p ( x )  of G carries C into C and yields for C E C  
an automorphism c+p(x) c independent of the choice of p ( x )  in its 
class y (x ) .  We may thus write xc  for p ( x )  c. 

We call the cochain k of (8.5') an obstruction of the abstract kernel 
(17,G,y). There are various obstructions to a given kernel, depending 
on the choice of p ( x )  E y ( x )  and of f satisfying (8.6), but when there is 
an extension E we have shown in (8.5) that there is an obstruction 
k = 0 ; hence 

Lemma 8.3. A n  abstract kernel ( n , G , y )  has a n  extensiofi if and 
only if one of its obstructions i s  the cochain identically 0. 

Next we prove 

Lemma 8.4. A n y  obstruction k of a kernel (17, G, y )  i s  a non-homo- 
geneous 3-dimensional coc ycle of B(Z(n) ) .  

We must prove 6k=0. This is plausible, for if only G were abelian 
and p a homomorphism, the definition (8.5') of k would read k = 6 f, 
hence would give 6 k = 66 f = 0. The proof consists in showing that 6 6  
is still 0 in the non-abelian case. In detail, for x ,  y, z, t in 17 we calculate 
the expression 

L = ~ ( x )  [v(Y) f ('1 t)+f ( Y ,  z t ) l+ f  
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in two ways. In the first way, apply (8.5') to the inside terms beginning 
y ( y )  f (2, t )  ; upon application of the homomorphism y ( x )  to the result 
there are terms y ( x )  f ( y ,  z) and cp ( x )  f ( y z ,  t )  to each of which (8.5') 
may again be applied. When the terms k in the center are put in front, 
the result reads 

L = [ x k ( y , z , t ) l + k ( x , y z , t ) + k ( x , y , z ) +  U ,  (8.8) 

where U is an abbreviation for the expression 

In the second way of calculation, the automorphisms y ( x )  y ( y )  on the 
first terms in the brackets in L may be rewritten by (8.6) to give 

Using (8.5') on each term involving y ,  the fact that all values of k lie 
in the center gives 

L = k ( x ~ , z , t ) + k ( x , ~ ,  z t )+ U (8.9) 

with U as before. But the terms added to U in (8.8) and (8.9) are respec- 
tively the positive and the negative terms in 6 k ( x ,  y, z, t )  ; hence com- 
parison of (8.8) and (8.9) gives 6k= 0 ,  q.e. d. 

We now investigate the effect of different choices of g, and f in the 
construction of an obstruction to a given kernel. 

Lemma 8.5. For given y ( x )  E ~ J  ( x ) ,  a change in the choice of f in (8.6) 
replaces k by a cohomologous cocycle. B y  suitably changing the choice 
of f ,  k m a y  be replaced by any  cohomologous cocycle. 

Proof. Since the kernel of p is the center C of G ,  any other choice 
of the function f in (8.6) must have the form 

f ' ( x , y ) = h ( ~ ,  y ) + f ( x , y ) ,  h ( x , l ) = O = h ( l j ~ )  (8.1 0) 

where the function h has values in C, hence may be viewed as a 2-di- 
mensional normalized cocycle of 17 with values in C. Now the definition 
(8.5') states essentially that the obstruction k is the coboundary k=6f.  
The obstruction k' of f' is thus k' = 6 (h+ f ) .  The values of h lie in the 
center, so we may write 6 (h+ f )  = (6h)  + (6 / )  ; the new obstruction thus 
has the asserted form; since in (8.10) h may be chosen arbitrarily in C, 
we can indeed replace the obstruction k by any cohomologous cocycle. 

Lemma 8.6. A change in the choice of the azctomorphisms y ( x )  may  
be followed by  a suitable new selection of f such as to leave the obstruction 
coc ycle k unchanged. 

Proof. Let y ( x )  cy ( x )  be replaced by automorphisms y l (x )  E p ( x )  
with y l ( l )  =1. Since y ( x )  and y ' (x)  lie in the same automorphism 
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class there must be elements g (x) E G with g (1) = 0 such that q f ( x )  = 
[pg(x)] q(x). Using (8.1) and ( 8 4 ,  calculate that 

As the new function f'(x, y) we may then select the expression in brackets. 
We write this definition as I 
This definition has the form f'= (6g)+ f, so that we should have 6 f'= 
(8Bg) + B f = 6 f, modulo troubles with commutativity. If one, in fact, 
successively transforms the expression y' (x) f'(y, z) + f'(x, y z) + g (xy z) 
by (8.1 I )  and (8.6) one obtains k (x, y,z) + f'(x, y) + f'(xy,z)+g(xyz), 
which shows that the obstruction k is the same as before. 

These results may be summarized as follows. 

= 0. 
Indeed, when the cohomology class of k is zero, any obstruction k 

has the form k = 6 h. By Lemma 8.5, there is a new choice f' for f which 
makes the obstruction identically zero; with this factor set f' the ex- 
tension may be constructed as the crossed product [G, p,, fl,lT]. 

To complete the study of the extension problem we have the follow- 
ing result on the manifold of extensions. 

Theorem 8.8. I f  the abstract kernel (17,G,y) has an extension, then 
the set of congruence classes of extensions is in 1-1 corresfiondence with 
the set Ha(17, C), where C is the center of G with module structwe as in 
Thm. 8.7. 

We shall actually show more: That the group Ha(17,C) operates 
as a group of transformations on the set Opext (n, G, y) and that this 
operation is simply transitive, in that from any one extension E, we 
obtain all congruence classes of extensions, each once, by operation 
with the elements of Ha(17, C). 

Theorem 8.7. I n  any abstract kernel (n,G,y), iltterfiret the center C 
of G as a 17-naodule with ofierators xc=q(x) c for any choice of automor- 
fihisms 9 (x) ~y ( x ) .  The assignment to this kernel of the cohomology class 
of any one of its obstructions yields a well defined element Obs(17, G,y) E 
Hs (17, C). The kernel (17, G, y) has an extension if and only if Obs (17, G, y) 

[GJ 
set 

Proof. Write any extension E E Opext (17, G, y)  as a crossed product 
y, f,n]. Hold p, fixed. Represent each element of Ha ( n ,  C) by a factor 
(2-cocycle) h. The required operation is [G,q, f,lT] + [G, y, h+ f,lT]. 

The stated properties of this operation follow. In particular, to show 
that any extension E' is so obtained from E, write El, as in Lemma 8.2, 
in the form 0f.a crossed product [G,q, f', 171 with the same function 9. 
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Two applications of (8.6) give 

Plf (x,y)l =pl (4 pl (Y) pl (xy)-l= P [f'@J~)l - 
This states that f ( x ,  y) - f'(x, y) lies in the kernel of p, that is, in the center 
of G. If h is defined as h (x,y) =- f (x,y) + f'(x,y), then (8.5) for f and f' 
shows dh=O, hence h a cocycle with f '=h+ f ,  as desired. 

The operations of Ha on Opext may also be defined in invariant 
terms, without using factor sets. Represent an element of Ha(17,C), 
according to Thm. 4.1, as an extension D of C by 17 with the indicated 
operators. Let C x G  be the cartesian product of the groups C and G. 
Define a "codiagonal" map V : C x G  +G by setting V(c, g) = c+ g; 
since C is the center of G, this is a homomorphism. The result of operating 
with D on an extension E in Opext(D,G,y) may then be written as 
V (DxE)  A,. Exactly as in the case of the Baer sum (Ex.4.7) this does 
yield an extension of G by 17 with the operators y ;  if we calculate the 
factor set for this extension we find that it is given, just as above, by 
a map f +h+ f .  

9. Realization of Obstructions 

We have proved that the obstruction to an extension problem is 
an element of H3(17,C). If C=O, the obstruction vanishes, hence the 
extension problem has a solution. The result is 

Theorem 9.1. I f  the (additive, nolz-abelian) group G has celzter 0, 
then afiy abstract kernel (ZI,G,y) has an extension. 

This simple result is worth a direct proof. Since G is centerless, 
G - Aut G +Aut G/In G is an extension E,; the induced extension E,y 
of Ex.4.1 is the desired extension of G by 17 with operators y. 

In other cases the extension problem may not have a solution. 
By § 7 there are cases (e. g., with 17 finite cyclic) where H3 (n, C) + 0; 
the obstruction theory above then produces abstract kernels with no 
extension, provided that we know that every 3-cocycle can be realized 
as an obstruction. This fact, which is also of interest in showing that 
the cohomology of groups "fits" the extension problem, may be stated 
as follows. 

Theorem 9.2. Given 17 not cyclic of order 2, a 17-module C, and any 
cohotornology class of H3 (17,C) there exists a grozlp G with center C and a 
homomorphism y :  17+AutG/InG ilzducing the given 17-module structure 
on C and such that Obs (IT, G,y) = E .  

The theorem is true for all 17 (cf. EILENBERG-MAC LANE [1947]) ; 
a special proof is required when 17 is cyclic of order 2.  

Mac Lane, Homolog J 9 
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The proof is obtained by reversing the considerations leading to 
the definition of the obstruction in such a way as to construct a "free" 
kernel with a given 3-cocycle k  as obstruction. 

Take G = C x F ,  where C  is the given II-module and F is the free 
(non-abelian) group with generators all symbols [ x ,  y ]  for x i  1 and 
y /  I in lir. Write the composition in F and G as addition. Define a func- 
tionf on 17d7 to G > F  by f ( x , I ) = f ( l , y ) = O ,  and f ( x , y ) = [ x , y ]  for 
x+ I + y .  For each x d I  define an endomorphism ( x )  : G -+G by setting 

( x )  c= x c  (under the module structure of C )  and 

for each generator [ y ,  z ]  of F.  Since k  is normalized (i. e., k  ( x ,  y ,  I )  = 
k :x ,  1, z )  = k  ( I ,  y ,  z)  = 0 always), this equation also holds with [ y ,  z ]  
replaced by f ( y ,  z ) ;  that is, with y  or z = I .  The equation thus asserts 
that k = 6 f ,  in the same "non-abelian" sense as in the definition (8.5') 
of the obstruction. 

By this definition, B ( I )  is the identity automorphism. We now assert 
that always 

B ( x ) B ( ~ ) = l u [ f ( x ~ ~ ) I B ( x y ) :  G+G. (9.2)  

Both sides have the same effect on an element c  of the lI-module C ;  
hence it suffices to prove that the endomorphism on each side of (9.2) 
has the same effect on any one of the generators [z ,  t ]  of F. First calculate 
B(x )  B ( y )  [z; t ]  by repeated applications of the definition @.I) ,  once for 

( y )  and three times for /?(x). The terms in k all lie in C ,  which is surely 
contained in the center of G, so can be collected. These terms in k  
include all the terms of 6 k  ( x ,  y ,  z ,  t )  except for the term - k  ( x  y,  z, t ) .  
Since 6 k = 0 ,  we can replace the terms in k  by the one term k ( x  y,  z ,  t ) .  
The result is 

B ( ~ ) B ( Y )  [z, t l = f  ( x , y ) + k ( x y , z , t ) + f  ( x y , z ) + f  (xyz,t)--f ( x y , z t ) - f  ( x , ~ )  

= f  ( x > Y ) + B ( x Y )  [ z ,  t l - f  (%Y)  

= luV(%y)I  B ( x Y )  [ z . t l .  

This proves (9.2) .  
We claim that each B ( x )  is an automorphism of G. Indeed, (9.2)  

proves that B ( x )  B ( ~ - l ) = p [ f ( x , x - ~ ) ] ~ ( 1 ) = p [ f ( x , x - l ) ]  is an inner 
automorphism. Hence B ( x - l )  has kernel 0 and B ( x )  has image G. Since 
x  is arbitrary, this gives the result. 

Denote by y ( x )  the automorphism class containing B ( x ) .  By (9.2) ,  
y is a homomorphism y: lI-+AutG/InG, hence (IT,G,y) is an abstract 
kernel. Since II is not cyclic of order 2, we can assume that lI contains 
more than two elements. The free group F then has more than one 
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generator, hence is centerless, so that C is exactly the center of G =  
C x F .  Our construction has been designed precisely to yield the given 
cocycle k as the obstruction of this kernel, hence the theorem. 

A many-one correspondence of abstract kernels with center C to 
the group H3 (17, C) has now been established. This correspondence can 
be so decorated as to become a group isomorphism; one first defines a 
relation of similarity between abstract kernels such that two kernels 
are similar if and only if they have the same obstruction; with a suitable 
product of kernels the group of similarity classes of kernels ( n , G , y )  
with fixed 17 and fixed 17-module C as center is then isomorphic to 
H3 (R; C ) .  The details are given in EILENBERG-MAC LANE [1947]. 

No reasonable analogous interpretation of H4(17,C) or of higher 
dimensional cohomology groups is known. 

10. Schur's Theorem 

We now apply factor sets to a problem in group theory. 
For any set S the collection Aut S of all 1-1 mappings of S onto 

itself is a group under composition. A (multiplicative) group G is said 
to act on the set S if a homomorphismp : G +Aut S is given. Equivalently, 
to each gcG and to each "point" s e S  there is given a unique point 
gs = p (g) s E S so that always (g,g2) s = g, (g2s) and Is = s .  The orbit of 
a point so€ S under the action of G is the set of all gso for gcG;  any other 
point in this subset has the same orbit. The whole set S is the union 
of disjoint orbits. The set of all ~ E G  such that hso=so is a subgroup H 
of G called the group fixing so.  The correspondence gH+gs,, is a 1-1 
mapping of the left cosets of H in G onto the orbit of so.  By definition, 
the number of such cosets is the index [G:  HI ; if the index is finite, it 
is therefore the number of points in the orbit. Thus when a finite group 
G acts on a set S ,  the number of points in each orbit is a divisor of the 
order of G. 

Take S to be the set of all subgroups U of a given group G. The 
correspondence U+gUg- l  defines an action of G on S ;  one says that 
G acts on S by conjugation. Similarly G (or any subgroup of G) acts by 
conjugation on the set of elements of G. 

Theorem 10.1. (Cawhy's Theorem.) I f  the order n of a finite grou# 
G i s  divisible by a #rime number #, then G contains an element of order #. 

The proof is by induction on n. Let G act on itself by conjugation. 
The orbit of an element c consists of c alone when always gcg- l=c;  
that is, precisely when c is in the center C of G. Let m denote the order of 
C and k j > l ,  the number of points in the i-th orbit outside C,  i=  1, . . . , t .  
Since G is the union of disjoint orbits, n = m +  k+. . .+ k, .  

9' 



132 Chapter IV. Cohomology of Groups 

If wz is divisible by $, write the abelian group C as a direct sum of 
cyclic groups; one of these summands then has order divisible by $, 
hence contains an element of order $. Otherwise m is prime to 9, so 
also at least one of the integers k,. But ki is the number of points in 
some orbit, hence equals the index [ G : H ]  of some subgroup. Since p 
does not divide ki i t  must divide the order of the subgroup H. By the 
induction assumption, H contains an element of order $. 

A $-group is a group in which every element has order some power 
of the prime $. By Cauchy's Theorem, a finite $-group may also be 
described as a group of order some power of $. 

Theorem 10.2. Any finite $-grozlp + 1 has a center C+ 1. 

Proof. Let the $-group act on itself by conjugation. Each orbit 
consists of 9" points for some exponent m,Zo; together the orbits 
exhaust the 9'' elements of the group. Since the orbit of I consists of 
itself only, $*= 1 +x pm. Therefore a t  least f i -  I other orbits consist 
of one element c only. These elements lie in the center C ,  so C 4  1. 

A maximal pszlbgrozlp of G is a $-group P<G which is contained 
in no larger $-subgroup of G. By Cauchy's Theorem, a finite group 
of order n has at least one maximal $-subgroup + I  for each prime $ 
which divides n. 

A subgroup U of G is said to normalize a subgroup V if ~Voc-l=V 
for all H E  U; that is, if V is a one-point orbit under the action of U 
on subgroups of G .  

Lemma 10.3. If P and Q are maximal $-subgrou$s of G such that 
P normalizes Q, then P= Q. 

Proof. Let PQ denote the subgroup of G generated by P and Q. 
Since P normalizes Q, Q is a normal subgroup of PQ. Since P is a 
$-group, so is its quotient P/Pn QsPQIQ. Thus P Q is an extension 
of the $-group Q by the $-group P/Pn Q, hence is itself a #-group. Since 
P is contained in no larger $-subgroup, P= P Q,  so P > Q. Since Q is 
contained in no larger $-subgroup, P= Q. 

Any conjugate of a maximal $-subgroup is itself a maximal 
$-subgroup. Moreover 

Theorem 10.4. Any two maximal p-subgrozl+s of a finite grou$ are 
conjugate. 

Proof. Let S be the set of all conjugates in G of some maximal 
$-subgroup P, and let P act on S by conjugation. By the lemma, a 
point PIES is a one-point orbit exactly when P1=P. The number of 
points in any other orbit is the index of a subgroup of P, hence is 
divisible by $. Therefore the number of points in S is congruent to 1, 
modulo $. 
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Any maximal p-subgroup Q of G  acts by conjugation on S; under this 
action each orbit again has either one point or a number of points divis- 
ible by p. The congruence above thus shows that there is a one-point 
orbit P'. In other words, Q normalizes some conjugate P' of P, so, 
by the lemma, Q =  P' and is itself a conjugate of P. 

Theorem 10.5. (SCHUR-ZASSENHAUS) I f  the integers m and n are 
relatively prime, any extension of a grot.@ of order m b y  one of order n 
splits. 

Proof. Let GH B%17 be such an extension, with G  of order m and 
17 of order n. This extension splits if a has a right inverse; that is, if 
B contains a subgroup (also of order n) mapped by a isomorphically 
on 17. 

Suppose first that G  is abelian. The given extension is then an ele- 
ment ec Ha (17, G). By Prop. 5 .3 ,  ne= 0 ;  trivially, me = O .  Since m and 
n are relatively prime, e=O; the extension splits. 

For G not abelian the proof will be by induction on the order m 
of G. It suffices to prove that the extension B  contains a subgroup 
of order n, for such a subgroup is mapped by B - t n  isomorphically 
upon 17. 

Take a prime # dividing m and a maximal +-subgroup P  of B. 
The normalizer N  of P i n  B is defined to be the set of all b with b P  b - I=  P. 
The index [ B :  N] is then the number of conjugates 
of P  in B. All these conjugates must lie in G  and are 
maximal p-subgroups there. By Thm. 10.4 they are 
all conjugate in G. Now GnN is the normalizer G 
of P  in G,  so the index [G : GnN] is the number of 

yB\ , y "... 
these conjugates and is therefore equal to [B: N].  
This index equality (see the diagram) proves also GnN H 

that n = [ B : G ] = [ N :  GnN].  Now P  and GnN 1 1 . . :  
are normal subgroups of N ,  and NIP is an ex- P . '  K . . 
tension of the group (GnN)/P, of order some I ..:. : 
proper divisor of m, by the group N/GnN of C  . '  
order n. By the induction assumption, NIP thus 

L 1 ..... ' 
contains a subgroup of order n, which may be 1 :, 
written in the form HIP for some H  with P( H  < N 
and [ H : P ] = n .  

The center C  of P is, by Thm. 10.2, not 1 .  Conjugation by elements 
of H <  N  maps P  onto itself and hence C  onto itself, so that C  and P 
are normal in H. Thus H/C is an extension of the +-group PIC by the 
group HIP of order n prime to p. Since CS. 1 ,  the order of PIC is less 
than m, so the induction assumption provides a subgroup K/C<H/C 
of order n. This group K is an extension of the abelian #-subgroup C 
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by a group K/C of order n,  hence splits by the abelian case already 
reated. This splitting provides a subgroup L< K of order n ,  and the 
subgroup L splits the original extension B. 

Exercises 
I .  (The first Sylow Theorem.) If the order of a finite group G is divisible by 

pk, p a prime, then G contains a subgroup of order pk. 
2. If p" is the highest power of p dividing the order of G, every maximal p- 

subgroup of G has order pn. 
3. If the order of the finite group I7 is prime to the order of the finite abelian 

group A, prove that H" (I7, A) = 0 for n > 0 and any IT-module structure on A. 
4. Let a: B +lI be an extension of an abelian group G of order m by 17 of 

order n, with (n,m)= 1, as in the Schur-Zassenhaus Theorem. If S and T are two 
subgroups of B isomorphic to I7 under a, show S and T conjugate under conjuga- 
tion by an element of G (use Z P  (17, G) = 0). 

11. Spaces with Operators 

The geometrical meaning of the cohomology groups of a group will 
now be illustrated by an examination of spaces with operators. 

For any topological space X, let Aut (X) denote the group of all 
homeomorphisms of X with itself. A group 17 operates on the space X 
if a homomorphism p:  IT-tAut (X) is given. Equivalently, to each a d 7  
and each xc X a unique point ax = p (a) x E X is given such that a x 
is continuous in x for each fixed a and such that always (qa,)x= 
q (a, x) and I x= x. An open set U in X is called proper (under the action 
of 17) if a U n  U = 0  (the null set) whenever a+ I. Any open subset 
of a proper open set is proper. The group 27 is said to operate pr@erly 
on X if every point of X is contained in a proper open set; then every 
open set in X is the union of proper open sets, so that the proper open 
sets constitute a base for the topology of X. When 17 operates properly, 
no homeomorphism p (a) with a+ 1 can leave a point x fixed. 

Assume henceforth that 17 operates properly on X. The quotient 
space XI17 is the space whose points are the orbits of points of X under 
the action of II. Let the projection p :  X+X/17 be the function which 
assigns to each x its orbit p x. Thus p xl = p  x, if and only if there is an 
a d 7  with axl= x,. The topology of XI17 is defined by taking as a base 
for its open sets the sets p U, where U is a proper open set of X under 17; 
these sets V=p U are called proper in Xl17. 

Proposition 11.1. The map $: X-+X/lI is continuous. The space 
XI17 is covered by proper ope* sets V ;  each p-lV is the union of disjoint 
ope% sets U, such that each restriction $1 U, is a homeomorphism U,=V. 

This proposition asserts that X is a "covering space" for X/II under 
the map p. The U, are the sheets of X over V .  
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Proof. If U is proper and V=p U, then p-IV is the union of the 
sets a U  for ~€17. These sets are disjoint by the assumption that U is 
proper. Each a U is mapped by p onto V, and the open sets a U are all 
proper, and map onto proper open sets in X / n ,  so that plaU is 
indeed a homeomorphism. 

For example, let X be the real line El and 17 the infinite (multi- 
plicative) cyclic group with generator c, acting on El by the rule cRx= 
x+ k for any integer k. Then open intervals of length less than 1 on the 
line are proper, so 17 acts properly. The quotient E1/17is homeomorphic 
to the unit circle S1. If we identify E1/17 with 9, p: E1+S1 becomes 
the map p x = eanix which wraps the line El around the circle 9. Similarly, 
the free abelian group on two generators b and c acts properly on the 
Euclidean plane Ea by 6kd(x, y) = (x+ k, y+l) ; here b is horizontal 
translation and c vertical translation, each by one unit. The quotient 
space Eat17 is the 2-dimensional torus S1xS1. Again, the cyclic group 
of order 2 operates properly on the 2-sphere Sa by mapping each point 
into its diametrically opposite point, and Sa117 is the real projective 
plane. In each of these cases X is the "universal covering space" of 
X/17, and 17 is the "fundamental group" of XI17 [Hu 19591. 

Now consider the singular homology of X, as defined in Chap.11. 

Lemma 11.2. If  the group IT operates properly on X, then the si~gular 
complex S (X) is a complex of free 17-moddes. 

Proof. The group S, (X) of n-chains is the free abelian group gener- 
ated by the singular n-simplices T: An +X. For each a d 7  the composite 
a T  is also a singular n-simplex; the operators T-taT make S,(X) a 
17-module. If d,T denotes the i-th face of T, then a (diT) =di (aT), 
hence a = x  (- l)'d,: S, -tS,-, is a 17-module homomorphism. Thus 
S (X) is a complex of 17-modules. To show S,(X) free, pick any subset 
Xo < X (a "fundamental domain") containing exactly one point from 
each orbit of X under 17. Then those singular n-simplices T with initial 
vertex in Xo constitute a set of free generators for S,(X) as a module. 

Lemma 11.3. I f  the group 17 operates properly on the space X, any 
T: An +X/17 can be written as T=pT1 for some T': An+X. With 
suitable choice of one T' for each T, these T' are free generators of S,(X) 
as a 17-module. 

We say that T can be lifted to T'; the possibility of such a lifting 
is actually a consequence of a more general fact on the lifting of maps 
in a covering space. 

Proof. If T is "small" in the sense that T(AS) is contained in a proper 
open subset V of X/n,  and if U is any sheet over V then T can be 
lifted to T1=(plU)-lT in U. The general case can then be handled 
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by subdividing An into small pieces, lifting T in succession on these 
pieces. It is technically easier to do this by replacing A" by the n-cube 
I n = I x . .  . X I  ( n  factors), where I is the unit interval. Since An is 
homeomorphic to In, it will suffice to lift any T: I"+X/lir. The cube 
I" is covered by the inverse images T-I (V) of proper open sets of X/IT 
Since In is a compact metric space, the Lebesgue Lemma provides a 
real E>O such that any subset of diameter less than E lies in one of the 
T-I (V). Now subdivide I" into congruent n-cubes, with sides parallel 
to the axes, each of diameter less than E .  Then T can be lifted in suc- 
cession on the cubes of this subdivision, beginning with the cubes on 
the bottom layer. When we come to lift Ton any one cube, the continuous 
lifting T' will already be defined on a certain connected set of faces of 
this cube and will lie in one sheet U over some proper V; the rest of 
the cube is then lifted by (PI U)-l. This completes the proof. 

Proposition 11.4. If l7 operates properly on X ,  while the abdian 
group A has the trivial lir-module structure, thelz p :  X-+X/n  induces an 
isomorfihism p* : Hom,(S(X/n) , A )  r Homn ( S ( X ) ,  A )  of chain complexes 
and hence an isomor$hism 

p* : Hn (XlL7, A )  r Hn(Hom, ( S ( X ) ,  A ) ) .  (11.1) 

Proof. A cochain f :  Sn(X/IT)  +A is uniquely determined by its 
values on the n-simplices T of X/lir, while a cochain f' of S ( X ) ,  as a 
module homomorphism f ' :  Sn(X)+A,  is uniquely determined by its 
values on the free module generators T' of S,  ( X ) .  Since these generators 
are in 1-1 correspondence T'+p T' by Lemma 11.3 and since (p* f )  T' = 
f ( ~ J T ' ) ,  the result follows. 

More generally, when A is any IT-module, the cohomology of 
Homn(S(X) ,A)  is known as the equivariant cohomology of X with 
coefficients A ; in this general circumstance the theorem would still hold if 
Hn(X/lT, A )  were interpreted as the cohomology of XI17 with "local 
coefficients" A ,  defined as in EILENBERG [I9471 and EILENBERG-MAC 

LANE [1949]. The main result now is 

Theorem 11.5. I f  a group L7 operates properly on an acyclic space X 
and if A i s  an abelian group with trivial lir-module structure, there is  an 
isomorphism 

Hn(X / l i r ,A )~H"( l i r ,A ) ,  n=O,l ,  ..., (1  1.2) 

natural i n  A,  betweelz the cohomology groups of the quotient space XI17 
and those of the group 17. 

Proof. The hypothesis that X is acyclic means that H, ( S ( X ) )  =O 
for n>0 and H,(S(X))=Z. This latter isomorphism yields an epi- 
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morphism So(X)+Z with kernel BSl(X). Thus the exact sequence of 
17-modules 

is a free resolution of the trivial module Z. Hence the equivariant 
cohomology of S (X) is  EX^;(^, (2, A ) ,  which is H* (17, A)  by Cor. 5.2. 

The system (X,l7) consisting of a topological space with a proper 
group of operators 17 may be regarded as an object in a category where 
the morphisms Q : (X, n) + (X', 17') are pairs Q = (5, y), with 5 : X +X' 
a continuous map and y: 17+n' a group homomorphism such that 
always 5 (ax) = (ya) 5 x for ~€17. The isomorphism (1 1.2) is natural for 
these maps. 

This theorem provides a geometric interpretation of all the cohomo- 
logy groups of a group 17. Assuming some concepts from homotopy 
theory, let Y be a pathwise connected topological space with funda- 
mental group 17=nl(Y). Then, if Y has suitable local connectivity, 
one can construct its universal covering space; this is a space upon 
which IT properly operates in such wise that Y is homeomorphic to 
X/n.  Suppose, in particular, that Y is aspherical (all higher homotopy 
groups vanish). One can then prove that the universal covering space 
X is acyclic. Thm. 11.5 thus applies to show that the cohomology of 
the aspherical space Y is, in fact, isomorphic to the cohomology of the 
fundamental group of Y. 

Notes. The fact that the cohomology of an aspherical space Y depends only 
on the fundamental group was proved by HUREWICZ 119351, while the expression 
of this dependence via the cohomology of groups was discovered by EILENBERG- 
MAC LANE [1943, 1945b], and later but indepedently by ECKMANN [1945-19463. 
There is a corresponding result expressing the homology of Y by the homology 
of 17, found by HOPF [I9451 and independently by FREUDENTHAL [1946]. All 
these investigations were stimulated by the prior study of HOPF [I9421 on the 
influence of the fundamental group on the second homology group of any space. 
This line of investigation provided the justification for the study of cohomology 
of groups in all dimensions and was the starting point of homological algebra. 
The I-dimensional cohomology groups (crossed homomorphisms) had been long 
known; the 2-dimensional cohomology groups, in the guise of factor sets, had 
appeared long since in the study of group extensions by SCHREIER [1926], BAER 

[1934, 19353, HALL [1938], and FITTING [1938]. Earlier, SCHUR had considered 
projective representations @ of a group 17. Each Q is a homomorphism of II to the 
group of projective collineations of complex p;ojective n-space, hence may be 
represented by a set of (n+ i ) x ( n + l )  non-singular complex matrices A, for 
~€17  with A, A = f ( x ,  y) Ax y ,  where f (x, y) is a non-zero complex number. This 
f is a factor set for II in the multiplicative group C* of non-zero complex numbers. 
Hence SCHUR'S "multiplicatot", which is the cohomology group P ( n ,  C*), with 
trivial II-module structure for C*. (For recent literature ASANO-SHODA (29351, 
FRUCHT [1955], KOCHEND~RFFER [1956].) Projective representations of infinite 
groups have been studied by MACKEY [1958]. The 3-dimensional cohomology 
groups of a group were first considered by TEICHM~LLER [ig4O! in a study of 
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simple algebras over a number field. The cohomology of groups has been applied 
extensively in class-field theory: HOCHSCHILD [1950], TATE [1952], ARTIN-TATE 
[I 9601. 

Exercises 
I .  Show that a set V is and only if p-I V is 

asserts that X / n  has the standard "quotient space" topology.) 
2. Construct an explicit homeomorphism of An with I". 

Chapter  f ive  

Tensor and Torsion Products 

1. Tensor Products 

Let G be a right R-module and A a left R-module - a situation we 
may indicate as G,, ,A. Their tensor product G B R A  is the abelian group 
generated by the symbols g @ a  for gc G and a €  A subject to the relations 

More formally, this statement describes G B R  A as a factor group 
( G O A ) / S ,  where G O A  is the free abelian group with generators all 
symbols gOa,  while S is the subgroup of G O A  generated by all ele- 
ments (g+gf)Oa--gOa-g'Oa, gO(a+a')--gOa-gOa', and grOa-  
gOra.  Then g @ a  denotes the coset (gOa)  + S in (G0A)I .S .  

The intention is that G A be a group in which an element of G 
can be "multiplied" by an element of A to give a "product" g @ a ;  
one wishes the product to be distributive, as assured by (1.1), and 
associative, as in (1.2). More formally, let G x A  be the cartesian pro- 
duct of the sets G and A ,  while M is any abelian group. Call a function f 
on G x A  to M biadditive if always 

and middle associative if always 

f (gr ,a)  = f  (g, 4. (1 -4) 

If f satisfies both conditions, call f middle linear. Now g @ a  is middle 
linear by definition, and G@,A is the universal range for any middle 
linear f ,  in the following sense. 

Theorem 1.1. Given modules GR and and a middle linear functiolz 
f on G x A  to an abelian group M ,  there i s  a unique homomorphism 
w : G @, A+M of abeZian groups with w (g @ a )  = f (g, a). 
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Proof. The formula w ( g  @a)  = f ( g ,  a) defines w on the generators 
of G @,A; the assumption that f is middle linear implies that w "pre- 
serves" the relations ( 1  . I )  and (1.2) defining G @,A ; hence w is a homo- 
morphism; it is manifestly the only such. This proof is a shorter state- 
ment of the following argument: Since G O A  is free abelian on the gene- 
rators gOa, there is a unique homomorphism w': GOA+M with 
wl(gOa) =f (g,a). The assumptions on f show that co' maps the sub- 
group S above into zero; hence w' factors as GOA+(GOA)/S  + M ;  
the second factor is the desired w.  

This theorem has a variety of uses. First, it gives a universal property 
of Mo=G @,A which characterizes this group and the middle linear 
function @: G x A + M o  uniquely (up to an isomorphism of M,). Hence 
the theorem may be taken as a conceptual definition of the tensor 
product. Next, the theorem states that every middle linear f can be 
obtained from one such function @ followed by a group homomorphism 
o; in this sense, the theorem reduces middle linear functions to homo- 
morphisms. Finally, the theorem states that a homomorphism w with 
domain the tensor product G@,  A  is uniquely defined by giving the 
images of the symbols g @ a  under w,  provided only that these images 
are additive in g and a  and middle associative in R. This last version 
we shall use repeatedly to construct maps w.  

For example, if y :  GR+Gf, and a :  RA+RA' are R-module homo- 
morphisms, then in G1@,A' we can form the expression yg@aa,  which 
is middle associative and additive in g~ G  and a€  A.  Hence there is 
a homomorphism y@a:  G@,A-tG1@,A' with ( y@a) (g@a)=yg@aa .  
Clearly I @ I A  = 1 ,  and, for matching maps, y  y1@aa' = (y  @a)  (y1@a') ; 
hence G@,A is a covariant bifunctor of A and G. Moreover 

These identities can be applied to a direct sum diagram to give an iso- 
morphism 

5 :  G@R(A@B)=(G@,A)@(G@RB) .  ( 1  -6) 

Alternatively, since (g@a,  g@b) is middle linear as a function of g 
and (a, b ) ,  we can construct 5 directly by Thm. 1 .I  as that homomorphism 
5 :  G@R(A@B)+(G@RA) @(G@RB) w i t h 5 [ g @ ( a , b ) l = k @ a ,  g@b) ;  
5-1 may also be constructed from g @ a  + g  @ (a, 0)  and g @ b  + g  @ (0, b). 

The ring R may be considered as either a left or a right module 
over itself. For modules GR and ,A one has isomorphisms (of abelian 
groups) 

G @ , R r G ,  R g R A = A ,  (1.7) 

given by g @r+gr, r  @ a + r a .  
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If Q :  S+R is a homomorphism of rings, each right R-module G 
becomes a right S-module G, when the operators are defined by gs= 
~ ( Q s ) .  Similarly, each left R-module A becomes a left S-module ,A; 
this is "pull-back along Q", as in 111.6. If Q': T+S is a second ring 
homomorphism, G(,,.) = (G,),. , while (,,,,A =,,(,A), in opposite order. 

Lemma 1.2. (The Pull-back Lemma.) For a ring homomorfihism 
Q :  S+R and modules GR, .A, there are lzatural homomorphisms 

Q#: (G,) @s (,A) +G@RA, $ 1  HomR(C,A) +Horns (,C, ,A). (1.8) 

If Q is an efiimorphism, both Q# and Q# are isomorfihisms. 

Proof. For geG, aeA, and seS, 

so g gR a is S-middle associative. Thus Q# ( g  @,a) = g 8, a determines 
a homomorphism, by Thm. 1 .l. If Q (R) = S, Q# has an inverse g @,a + 
g @a. Similarly each R-module homomorphism f :  C +A is an S-module 
homomorphism, and conversely if Q (S) = R. 

We normally write the modules G,, ,A without the subscript Q 

when this is indicated by the context G @,A. 
An abelian group A is a module over the ring Z of integers, so our 

definition of tensor product includes that of the tensor product G @ A  
of two abelian groups (here @ is short for 8,). In this case, any bi- 
additive function f (g,a) is automatically middle associative, for, with 
m any positive integer, 

This holds also for negative m, since f (- g, a) = - f ( g ,  a) = f (g, - a). 
Hence the middle associativity condition (1.2) may be omitted in 
defining 8,. 

Tensor products of finite abelian groups can be explicitly computed. 
For each positive integer m, let Zm (go) be the cyclic group with generator 
go of order m, while m A  denotes that subgroup of A which consists 
of all multiples ma, aeA. We claim that an isomorphism 

is given by setting 7 (a+ M A )  =go @a. Indeed, since go @ma= mg, @a 
=0, the product go @a depends only on the coset of a, modulo mA, 
hence g is a homomorphism A/mA+Z,,, 8 A. To construct an inverse 
for g, note that any generator of the tensor product has the form kg, @a, 
for some keZ; since the product ka is distributive in both factors, the 



2. Modules over Commutative Rings 141 

formula y (kg, @a) = k a + m A provides a homomorphism from right 
to left in (1.9). Clearly yq= I, while qy(kg,@a) =go @ha= kgo@a, 
so also gy=  1. Therefore q and y are mutually reciprocal isomorphisms, 
proving (1.9). 

We also have Z @ A r A  by (1.7). Since any finitely generated 
abelian group is a direct sum of cyclic groups 2 and Z,, these formulas, 
with ( 1 4 ,  provide a calculation of G@A for G finitely generated. 
Note also that G @A =A @G.  

Exercises 
I .  Prove Z,, ,@Z,rZ(, , , ) ,  where (m, n) is the g. c. d. of m and n. 

2. Show that G I ~ I ~ ~ A ~ ~  X G B ~ A ~ .  

3. Show that the tensor product of two free modules is a free abelian group. 

4. If Q is the additive group of rational numbers, Q @ Q r  Q .  

2. Modules over Commutative Rings 

The meaning of tensor products may be illustrated by examining 
other special cases. If K is a commutative ring (as usual, with an iden- 
tity), then any left K-module A can be regarded as a right K-module, 
simply by defining the multiple ak, with ~ E K  on the right, as ka. The 
rule a (kk') = (ak) k' then follows, because K is commutative, by the 
calculation a (k k') = (k'k) a = kl(ka) = (a k) k' ; the other axioms for a right 
module follow even more directly. With this observation, it is fruitless 
to distinguish between left and right modules over K; instead we speak 
simply of moddes and write scalar multiples on either side, as may 
be convenient. 

For modules A and B over a commutative K, the tensor product 
A g K B  is not just an abelian group, but is also a K-module, with mul- 
tiples defined (on the generators) as 

k(a@b)=(ka)@b, (or =a@kb). (2.1) 

This definition leads to a variant of Thm. 4.1. Let A, B, and M be 
K-modules. Call a function f on A x  B to M K-bilinear if f (a, b) is K-linear 
in each argument when the other is fixed (e. g., f (&%+ k,a,, b) = 
k, f (6, b) + k, f (a,, 6)). Thus a @b is a K-bilinear function f on A x  B 
to A@KB, and Thm. 1 .I implies that any K-bilinear function f on A x B  
to M can be written as f (a, b) =w (a @ b), for a unique homomorphism 
w : A@K B -t M of K-modules. 

Since A B K  B is still a K-module, one may form iterated tensor pro- 
ducts such as (A@,B) @KC; this iterated product is associative and 
commutative, in the sense that E [(a @ b) @ c] = a @ (b @ c) and t (a @ b) = 



I 42 Chapter V. Tensor and Torsion Products 

b @a define natural isomorphisms 

5':  (A@B)@CrA@(B@C), t: A@B=B@A (2.2) 

of K-modules, with @ short for @K . The function (a@b) @ c  is K- 
trilinear (i.e., K-linear in each argument separately) and is universal 
for K-trilinear functions on A x B x C  to a K-module. The same holds 
for K-multilinear functions in any number of arguments. 

Similarly, (cf. 1.6) HomK(A,B) becomes a K-module if to each 
f : A+ B the multiple k f : A+ B is defined as (kf) (a) = k (f a). 

A module over a field F is simply a vector space V, and Hom,(V, W) 
is the vector space of all linear transformations f :  V+W. Suppose 
that V and W have finite bases (e,, . . . , em} and (4, . . . , h,,}, respectively. 
This means that V is a direct sum 2 Fe, of copies Fei of the field F.  
Since "Hom" carries finite direct sums to direct sums, Hom,(V, W) 
is a vector space of dimension mn, as in the usual representation of 
linear transformations f :  V+W by m x n  matrices. Since the tensor 
product is additive, V@,W has a basis of mn vectors e@$, hence 
has dimension mn. In particular, any vector u of V@,V has a unique 
expression as u= zxij(ei@ej); the ma constants xiicF are known 
as the "components" of the "tensor" u relative to the basis (ei). From 
a change of bases one calculates the corresponding change in these 
components xii. Classical tensor analysis, lacking a proper conceptual 
definition of the tensor product, described twice covariant tensors 
(elements u of V@,V) strictly in terms of such components and their 
transformations under change of basis. A tensor with one covariant 
and one contravariant index is, by definition, an element of V@,V*, 
where V* = Hom,(V, F) is the dual space. Now the given basis {ej} 
for V determines a dual basis (ei} for V*. Any tensor in V@,V* has a 
unique representation as a sum 2 xij (ei @ ej), so is determined by com- 
ponents xSj, for i, j = 4 ,  . . . , n. 

Exercises 
i .  If a new basis {el} in the finite dimensional space V is given by the formulas 

e; = Zi ti jej, calculate the resulting transformation in the components of 
a) a twice covariant tensor in V@,V; 

b) a tensor in VBFV8. 
2. Describe the transformation of components for tensors covariant in Y indices 

and contravariant in s indices. 

3. Bimodules 

If R and S are two rings, an R-S-bimodule A - in symbols .As - 
is an abelian group which is both a left R-module and a right S-module, 
with always (r a)s = r (as) . For example, any ring R is an R-R-bimodule ; 
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any left R-module can be regarded as an R-2-bimodule; any K-module, 
with K commutative, is a K-K-bimodule; etc. If A and B are R-S- 
bimodules, we denote by Hom,.,(A, B) the abelian group of all bi- 
module homomorphisms f :  A+B; that is, of all those group homo- 
morphisms f with r (fa) s=  f (ras) always. A bimodule ,As can be 
Pulled back by ring homomorphisms e :  R'+R and o :  S'+ S to give 
an R'-S'-bimodule ,A,. 

The functors Hom and @ carry suitable bimodules into bimodules. 
To show how this takes place, let T, R, and S be any three rings. Then 
we have the implication 

where the bimodule structure indicated on the right is defined on 
generators, according to Thm. 1 .1, by t (g @a) s =tg @as. Note that the 
formula t (g @a) = tg @a which makes G @ A a left module over T is 
essentially the same as the formula y (g@a) = (yg) @a which makes 
G@, A a covariant functor of G. Similarly there is an implication 

where the bimodule structure on the right is defined for each f :  C +A 
by (tfs) (c) =t[f (sc)]. The reader should show that this does produce 
a T-S-bimodule, noting that the given bimodule associativities s (cr) = 
(s c) r and t (ar) = (t a) r are used to insure that t f s is indeed a homo- 
morphism of right R-modules when f is one. Observe also how the contra- 
variance of HornR in C changes left operators of S on C into right 
operators of S on Hom, (C, A). In case S = T, the group Horn,., (C, A) 
of bimodule homomorphisms can be described as the set of all those f 
in the S-S-bimodule Hom, (C, A) with sf = f s. For left-module homo- 
morphisms, the analogue of (3.2) is the implication 

An elzdomorPhism of the right R-module A is by definition an R- 
module homomorphism f :  A-tA. Under addition and composition the 
set of R-endomorphisms of A form a ring End,(A) =Hom,(A,A) 
with identity element l A  . The equation (fa) r = f (ar) which states that 
f is a homomorphism of right R-modules also states that A is an End, (A)- 
R-bimodule. If ,AR is a bimodule, the left multiplication 1, by SES, 
defined by l,a=sa, is an R-endomorphism of A, and the correspondence 
s+l, is a ring homomorphism S-+EndRA. Conversely, given A, and 
a ring homomorphism S -+EndR A, pull-back along this homomorphism 
yields a bimodule ,AR. In our treatment of ExtR(C, A) (Chap. 111), 
we showed how to multiply an element S,EEEX~;(C, A) on the left 
by a homomorphism a: A+A' and on the right by a y: C'+C, and we 
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proved (Lemma 111.1.6) the congruence (a So) y = ci (So y) .  For endo- 
morphisms a and y, this means that Extl  (C, A) is an End, (A)-End,(C)- 
bimodule. If we pull back this bimodule structure along T+End,C 
and S+End,A, we get the implication 

exactly as in (3.2) for n=O. 
A function of two variables f (a, b) can be turned into a function q f 

of the first variable a whose values are functions of the second variable, 
according to the formula [(q f)  a] b = f (a, b). This change of simultaneous 
arguments to successive arguments appears in many connections; for 
example, in the treatment of the topology of function spaces. In the 
present context it takes the following form, which we call the adjoint 
associativity of Hom and @ : 

Theorem 3.1. I f  R and S are rings with A, B, and C modules irc the 
situation A,, ,BS, CS , there is a natural isomorphism 

q : Hom, (A@ ,B, C) =HornR ( A ,  Horns (B,  C)) (3.5) 
of abelian groups defined for each f :  A@, B+C by 

The proof is mechanical. First check that (3.6) assigns to each acA 
and each S-module homomorphism f :  A@,B-+C a function F =  
[(qo a] which, as a function of b, is an S-homomorphism [(qn a] : B -.C. 
Next check that qf, as a function of a, is an R-module homomorphism 
of A into Hom, (B, C). Finally check that q (I,+ f,) =qfi+qf,, so that 
q is a group homomorphism, as asserted. 

To show that q is an isomorphism, construct an inverse map (. 
To this end, take any right R-module homomorphism g : A+ Horn, (B, C), 
and consider the function (ga) b of aeA, bcB. Any r in R operates on 
a on the right and on b on the left, and 

this because g is an R-module homomorphism and because of the way 
an operation of r on a homomorphism ga: B+C was defined. This 
equation is the "middle associative" property for the function (ga) b 
of the elements a and b. Hence, by Thm. 1.1, a homomorphism 
(g: A @, B +C is defined by setting 

One checks that (: Hom, (A, Hom, (B, C)) -+Horn, (A@* B, C), and that 
both composites cq and q( are the identity. Both domain and range 
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of are functors of A, B, and C, covariant in C but contravariant 
in A and B. Moreover 5 and q are natural homomorphisms between 
these functors. 

Corollary 3.2. If  U, R, S, and T are rings and UAR, RBS, TCS are 
bimodules, then the map q of (3.5) is a isomorphism of T-U-bimodules. 
If U = T, it induces a natural isomorphism 

q': Hom,, (A@, B, C) =HornT-, (A, Horn, (B, C)) . (3.7) 

Proof. The right U-module structure on the terms of (3.5) and the 
description of these terms as functors of A are given by identical for- 
mulas. Hence the fact that 7 is natural (in A and C) implies that 7 is 
a module homomorphism in U and T. In case U= T, this yields (3.7). 

As another application we prove 

Corollary 3.3. I f  PR is projective as an R-modde, while the bimodzlle 
,P,' is firojective as an S-modzlle, then P@,P1 is a firojective S-module. 

Proof. To say that P' is S-projective means that to each epimor- 
phism B +C of S-modules the induced map Horns (P', B) +Horn, (PI, C) 
is an epimorphism (of R-modules). Since P is projective as an R-module, 

Hom, (P,  Hom, (PI, B)) +HornR (P, Hom, (PI, C)) 

is an epimorphism. Application of adjoint associativity to each side 
gives the statement that P@,P1 is S-projective. 

A simpler analogue of adjoint associativity is the associativity of 
the tensor product. In the situation A,, ,BS, ,C, the correspondence 
(a @ b) @ c +a @ (b @c) yields the natural isomorphism 

If in addition .AR and ,CT, this is an isomorphism of U-T-bimodules. 
We normally identify the two sides of (3.8) by this isomorphism. 

For modules A,, RB we also make the identifications 

by the natural isomorphisms a @r +ar, r @ b +r b. 

Exercises 
1 .  If A and B are left R-modules, show that HomZ(A, B)  is an R-R-bimodule, 

and that the subgroup HomR(A. B)  consists of those group homomorphisms 
f :  A + B  withrf=fr. 

2. For GR, RA show that GORA is an EndR(G)-EndR(A)-bimodule. 

3. For R-S-bimodules C and A define the group ExtPs(C, A) of bimodule 
extensions of A by C. 

Mac Lane, Homology 10 
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4. Establish a "permuted" adjoint associativity 

Hom ( A @  B, C) E Hom (B, Horn ( A ,  C)) . 
Deduce that if "PR is a projective U-module and a projective R-module, 
then P B R  P' is a projective U-module. 

5 .  In the situation AK, BK, CK, with K commutative, establish the natural 
isomorphism HOmK ( A ,  HornK (B, c ) ) ~  HornK (B, H o m ~  ( A ,  C)) of K-modules. 

4. Dual Modules 

The dual or conjugate of a left R-module A is the right R-module 
A* = Hom, (A, R). Thus an element of A* is an R-module map f : A-tR, 
while f r:  A-tR is the R-module map defined for each a €  A by (f r) a =  
(fa)r. The dual of an R-module homomorphism u: A+A1 is u*= 
Hom(u, I): A1*+A*, so the dual is a contravariant functor on left 
modules to right modules. Similarly, the dual of a right R-module G 
is a left R-module G*. 

For left modules A and B there is a natural isomorphism 

(A@ B)*gA*@ B*. (4.1) 

Indeed, in the direct sum diagram A=A@ B Z B  take the dual of 
each object and each map; the result is still a direct sum diagram, 
with the injections LA : A+A@ B and tB converted into projections 
L$ : (A@ B) *+ A* and L; . 

By the properties of Horn, A - B +C short exact gives C* - B* +A* 
(left) exact. In other words, if A< B, then (B/A)*rC* is isomorphic 
to that submodule of B* which consists of all those f :  B+R which 
vanish on A. Call this submodule the annihilator of A, in symbols 
Annih A ; thus 

(B/A)*sAnnihA< B*, B*/AnnihA - A*. (4.2) 

For each left R-module A, there is a natural homomorphism 

which assigns to each a €  A the map va:  A* +R with (va) f = f (a). 
In other words, for fixed a, regard the expression f (a) as a linear function 
of the element f E A*. 

Theorem 4.1. If L is a finitely generated and projective left R-module, 
then L* is a finitely generated projective right R-module. For such 
L, v :  L-tL* * is a natural isomorphism. 

Proof. If F is free on the generators el, . . . , en, we may define 
elements ej in F* by 

el(ei)=l, if i = j ,  
=0, if i+j .  
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Any f : F-tR is uniquely determined by the elements f e, = ri c R, hence 
f=z eirj, and F* is free on the generators el, . . . , en. They are said 
to be the dual basis to el, . . . , en. Now vF maps the e, to the basis ele- 
ments dual to the ei, so vF: F+F** is an isomorphism. 

If L is finitely generated and projective, there is such an F with 
F+L and F r L @ L t ;  L' is also finitely generated and projective. 
Hence F*rL*@Lt* ,  and L @ L f ~ F r F * * r L * * @ L f * * ;  this iso- 
morphism carries L onto L** by vL, whence the conclusion. 

For example, if R is a field, any finitely generated module V (i.e., 
any finite dimensional vector space) is free. For such spaces V**rV, 
and, for V > W, 

(V/W)* rAnnihW; V*/AnnihWgW*. 

For left modules A and C there is a natural homomorphism 

defined for each f : A-tR and each ce  C by [5 (f @c)] a=  f (a) c for all a. 
One checks that c(f @c) is a module homomorphism A+C, and that 
this homomorphism is biadditive and middle associative in f and c. 

Proposition 4.2. If  L is a finitely generated projective left R-module, 
then 5 is a natural isomorphism 5 =cL : L* @ RC =HornR (L, C). 

For example, if V and W are finite dimensional vector spaces, take 
L =  V* and C= W. Then L*Y V, so c gives V@WrHom (V*, W). Thus 
tensor products of such vector spaces may be defined via Horn and 
the dual. Alternatively, V@W is the dual of the space of bilinear maps 
of VxW to the base field. 

Proof. First suppose that L = F is free on the generators q , . . . , en. 
With the dual basis el, . . . , en, each element of F* @C has a unique 
representation as 2 e@c, for constants c , ~  C. But 5 (2 ei@ci) = f is 
that homomorphism f :  F-tC with f (e,) = cj, j= 1, . . . , n. Since F is 
free, any f :  F-tC is uniquely determined by its values f (ej) for all j. 
Hence 5, is an isomorphism. The case when L is a finitely generated 
projective is now treated as in the proof of Thm. 4.1. 

Proposition 4.3. For modules L and B over a commutative ring K, 
with L finitely generated and projective, there is a natural isomorfihism 
y:  L*@B*r(L@B)*. 

Proof. For any two K-modules A and B a natural homomorphism 
y: A*@B*+(A@B)* is defined for /€A*, gcB* by setting 

This map y is the composite 

A* @ B * L  Hom (A, B*) = Hom (A, Hom (B, K)) r H o m  (A@ B, K) 
10" 
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of 5 of (4.4) with adjoint associativity. The latter is always an isomor- 
phism, and so is 5 when A= L is finitely generated and projective. 

Note. For further discussions of duality see DIEUDONN* [1958], MORITA 
[1958], Bass [1960], or JANS [1961]. 

Exercises 
I. For each RA, show that 0 ( a @ f ) =  fa is a bimodule homomorphism 

0 :  ABZA*+R. 
2. For modules RA, GR, a bimodule homomorphism y :  A BZG +R is called a 

paiving. Show that p  determines p ~ :  G +A* such that y =  0  (1 B y G ) ,  for 0  as in 
Ex 1. 

3. For each R-module A,  prove that the composite 

(PA)' A* %A**+ -A* 
is the identity. 

5. Right Exactness of Tensor Products 

The tensor product preserves short right exact sequences: 

Theorem 5.1. If G i s  a right R-modzlle, while D A B ~ C  i s  a n  
exact sequence of left R-modules, then 

i s  a n  exact sequence (of abelian groups). 

Proof. With the cokernel L of I @ p  manufacture the exact sequence 

Compare this with (5.1). The composite ( I  @ a )  ( I  @p)  = I @a/? is zero, 
so I @ a  factors as u'q for some a': L-tG @, C. Since a ( B )  = C, there 
is to each c in C a b with a b = c. By exactness at B ,  each 7 (g @ b) depends 
only on ~ E G  and C E  C ,  but not on the choice of b. Moreover, 7 (g@b) 
is biadditive and middle associative. Hence Thm. 1.1 gives w : G @, C +L 
with w(g@c)=q(g@b) ,  and o l w = l ,  wa1=l .  Thus w : G @ ~ C S L  
makes (5.1) isomorphic to the manufactured sequence and hence exact. 

Corollary 5.2. The tensor product of two e~imorphisms i s  a n  epi- 
morphism. 

Proof. By the theorem, if z and a are epimorphisms, so are z @I 
and l @ a ,  hence also their composite ( z @ l )  ( l @ a )  = z @ a .  For the 
kernel of z @a,  see Lemma VIII.3.2 or Ex. 'j below. 

In Thm. 5.1 it would not be true to state that a short exact sequence 
(x ,  a )  : A +P B + C yields a short exact sequence like (5.1)  because when 
x :  A - t B  is a monomorphism l @ x :  G B R A + G g R B  need not be a 
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monomorphism. To illustrate this, take R=Z, A = 2 2  (the group of 
even integers), B=Z, x the injection, and G=Z,(g) a cyclic group of 
order 2 with generator g. Then, as calculated in ( 4 . 9 ,  2, (g )  @ (22 )  is 
the cyclic group of order 2 with generator g 8 2 ,  while 

(1@x)(g@2)=g@2=2g@1=0@1=0, 

so g @ 2  is in the kernel of 1 8 % .  

This example can be reformulated thus. For a submodule A< B 
one cannot assume that G @  A< G @ B, because an element g@a of 
G @A may be non-zero while the "same" element g@a becomes zero 
in G@B. For these and related reasons we have insisted from the 
start that the inclusion A< B be represented by a map x :  A+B. 

In this example, the integer 2 can be replaced by any integer m. 
Thus we can describe certain elements in Ker(l@x) for R=Z and 
(%,a) : A w B +C any short exact sequence of abelian groups. These 
elements g @a arise whenever there is an element b with both xa=mb 
and mg=O for the same integer m, for then 

Now xu, and hence a, is determined by b, while g@a depends only on 
a b ~  C. Indeed, a b =a b' by exactness implies b'= b+ xu, for some a,, 
whence x(a+ma0)=mb1 and g@(a+ma,)=g@a+g@ma,=g@a. 
The kernel element g @a depends on g, mEZ, and ab= c ;  furthermore 
mc = m (a b) =a (m b) = axa= 0, by exactness. By way of notation, set 

here a is any element of A such that xa=mb, a b = c for some b;  that 
is, a is obtained by "switchback" as a=x-lm a-lc. In the next section, 
we shall show that the elements k (g, m, c)  of (5.2) generate Ker ( I  8%). 

These elements k (g, m, c)  satisfy certain identities. They are additive 
in g and in c ;  for example, additivity in c means that 

whenever mc,= O=mc,. For any two integers m and n, one calculates 
that 

k (g ,  mn, c )  = k (g, m, nc) (5.4) 

whenever mg=O, mnc= 0, and that 

whenever gmn=O, nc=O. Here we have written gm for mg because 
we can consider the abelian group G as a right module over 2. These 
relations will now be used to define a new group. 
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Exercises 
I. If A n  B, show that each element in Ker (A @Zm -+ B @Zm) has the form 

k (c, m, I )  for 1 the generator of 2 , .  
2. If J is a two-sided ideal in the ring R show that the map a@ (Y+ J) 4 ar for 

a E J yields an epimorphism JaR (R/ J) -3 J/JZ of R-modules. If Jz+ J prove that 
the injection J -tR induces a map JBR (R/J) +RQR (R/ J )  which is not a mono- 
morphism. 

3. If (y, t ) :  G + H + K  and (B, a) :  D - t B - 3 C  are exact, then t@a: H @ R B +  
KBRC has kernel y + (G @ B ) u ~ ,  (H  @ D). 

6. Torsion Products of Groups 

For abelian groups A and G we define the torsion product Tor (G, A)  
as that abelian group which has generators all symbols (g, m, a),  with 
m € Z ,  gm= o in G, and ma = 0 in A ,  subject to the relations ("additivity" 
and "slide" rules for factors m, rt) 

Each relation is imposed whenever both sides are defined; in each 
case this amounts to the requirement that the symbols on the right 
hand side be defined. The additivity relations (6.1) and (6.2) imply 
that (0 ,  m, a )  = 0 = (g, m, 0). Hence Tor (G, A) = 0 when A has no ele- 
ments (except 0)  of finite order. Also Tor ( A ,  G) =Tor (G, A) .  

If a : A+ A', the definition a, (g, m, a )  = (g, m, aa)  makes Tor (G, A) 
a covariant functor of A.  It is likewise covariant in G. From (6.2) one 
deduces (a+ ,8)* =a, +#I* and hence the isomorphism Tor (G, A,@ A,) 
Tor (G, A,) @Tor (G, A,). Thus to calculate Tor (G, A)  for finitely gener- 
ated groups it will suffice to make a calculation for G finite cyclic. 

For G=Zq(go) a cyclic group of order q and generator go, there is 
an isomorphism 

C :  ,A =Tor (2, (go),  A ) ,  (6.5) 

where ,A denotes the subgroup of those elements a E A for which qa = 0. 
Indeed, each a€$  yields an element Ca= <go, q, a )  in Tor (2, , A) ; by 
(6.2), C is a homomorphism. To find a homomorphism 17 in the reverse 
direction, write each element of Zq as go k for some keZ;  each generator 
of the torsion product then has the form (gok, m, a)  where ma= 0 and 
m k s  0 (mod q). With n=mk/q, (6.3) and (6.4) give 



6.  Torsion Products of Groups i 51 

This suggests that q be defined by q <g,k,m, a )  = (mk/q)  a. The reader 
should verify that this definition respects the defining relations (6.1) 
to (6.4), in the sense that q carries elements defined to be equal in Tor 
into equal elements of ,A. This shows that q yields a homomorphism 
q : Tor (2, , A )  +,A. Furthermore $,a = a,  while the calculation displayed 
just above shows that t q  = 1 .  Therefore q and t are reciprocal isomor- 
phisms, as asserted. 

For a fixed cyclic group, the isomorphism (6.5) is natural in A ,  but 
depends on the choice of the generator for the cyclic group 2,. 

The torsion product, born of the inexactitude of @, does measure 
that inexactitude as follows. 

Theorem 6.1. If E = @,a) : A w B +C i s  a n  exact sequence of abelialz 
groups, then each abelian group G gives alz exact sequence 

o +Tor (G, A) +Tor (G, B )  2 Tor (G, C) 

5 G@A*G@B+G@C+O. 

The maps are those induced by x and a except for E,, which i s  defined 
on each generator of Tor (G, C) by the formda 

for k as ilz (5.2). This map E,  i s  natural whert its arguments are considered 
as bifunctors of E and G. 

Proof. E ,  is a homomorphism because the identities already noted 
in (5.3), (5.4), and ( 5 . 5 )  for k match exactly the defining identities for 
Tor. Naturality is readily proved. Since each k (g, m ,  c) lies in Ker (1  @ x ) ,  
one has (1 a x )  E ,  = 0, and one also verifies that E,a, =O. As usual, 
the crux of the exactness proof lies in the demonstration that each 
kernel is contained in the corresponding image. 

It suffices to prove this, we claim, in the case when G has a finite 
number of generators. As a sample consider exactness at G @ A .  An 
element u= 2 gi @ai of G @ A  involves only a finite number of elements 
of G. If its image (.i@x) u = 2 g, @ xui is zero in G @ B ,  it is zero because 
of a finite number of defining relations for G @ B;  these relations again 
involve but a finite list 4 ,  . . . , h,,, of elements of G. Now take Go to be 
the subgroup of G generated by all the elements g,, ..., g,, 4 ,  .. . , h,,, 
which have occurred, and let L: G,+G be the injection. Then zc,= 
2 gi @ai is an element of Go @ A  with ( L  @ 1) u, = u. By naturality the 
diagram 

x*=l@x 
T O ~ ( G , , C ) ~  G,@A -G,@B 
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commutes, and we are allowed to assume the top row exact. Since Go 
contains all the elements hjeG used to show x,u=O, these same ele- 
ments will show x, uo = 0 in Go @ B. By exactness of the top row, there is 
ato€Tor(G0, C) with E,to=uo. But E, L * ~ ~ = ( L @ I ~ )  E*to=(~@l)uo=u;  
this proves the bottom row exact at G@A. 

This argument depends not on the particular form of the definitions 
of Tor and @, but only on the fact that these groups were described 
by generators and relations. 

Return to the proof of exactness. Now G is finitely generated, hence 
representable as a direct sum of cyclic groups. Since both Tor and @ 
carry direct sums into direct sums, the sequence (6.6) is the direct sum 
of the corresponding sequences for cyclic groups G. If G=Z is cyclic 
infinite, the torsion products are all zero and the sequence is isomorphic 
to the given sequence E. If G =Zq is finite cyclic, the various terms have 
been calculated in (1.9) and (6.5) ; the calculations amount to a diagram 
in which the central portion is 

In the second row, define E# by the switchback rule E#c=x-lqa-lc 
+ qA ; with this definition this diagram is readily seen to be commu- 
tative. Since 7 of (1.9) and [ of (6.5) are isomorphisms, the exactness 
of the top row is now reduced to the exactness of the bottom row, 
which reads in full 

Exactness here may be verified from the definitions of the terms and 
the exactness of E. For example, if x (a+ qA) = O  in B/q B, then xa=qb 
for some be B. Thus a (qb) =o, hence ab= ccqC; the very definition of 
the switchback yields E#c = a+ q A. 

We leave the reader to prove 

Theorem 6.2. The following conditions on an abelian group G are 
equivalent: 

(i) G has no elements of finite order, except 0; 

(ii) Tor (G, A) = 0 for every abelian group A ; 

(iii) If  x :  A+B is a monomorphism, so is l@x: G@A-+GQPB; 

(iv) Any short exact sequelzce remains exact upon tensor mdtiplication 
by G; 

(v) Any exact sequence remains exact when tensored with G. 
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Such a group G is said to be torsion-free (condition (i)). 
A different description of the generators of Tor (G, A)  is useful for 

generalization. The triple (g, m, a) determines three homomorphisms 

by p I =  g,  a I = m, v I =a .  Regard L : Z t Z  as a chain complex, zero 
except in dimensions Lo = Z =  L,; since p a = 0, p : L+G is a chain com- 
plex over G. Regard the dual L* as a chain complex a*: L: +L: over 
A via v :  L: + A .  The triple (g, m, a) has become a triple (p ,  L, v) ,  where 

L and its dual L* are chain complexes (of "length" I ) ,  

p :  L+G and v :  L* + A  are chain transformations. 

The slide rules (6.3) and (6.4) can be written as one rule 

If m and m' determine chain complexes L and L', nom=m'nl makes 

commutative, hence Q :  L+L' a chain transformation. Now g' and a 
determine p': LA=Z+G and v :  L:+A by p'l =g', v l  = a  and $ e l =  
g'n,, ve*l  =%a. In this notation, the slide rule (6.S) becomes 

(p'e, L, v) = (p',  L', vp*) , Q :  L+Lf.  

Exercises 
I. For both sides defined, prove (g ,  %+ ma, a) = (g ,  mx, a )  + (g ,  ma, a ) .  

2. Let Q > Z be the additive group of rational numbers, and let T ( A )  (the "tor- 
sion subgroup ") be the subgroup of A consisting of all elements of finite order in A .  
Establish a natural isomorphism Tor (Q/Z, A )  T ( A ) .  

3. If Q,, is that subgroup of Q consisting of all rational numbers with denominator 
some power of p, describe Tor (Qg/Z,  A ) .  

4 .  Investigate Tor (G, A )  when its arguments are infinite direct sums. 

5 .  If A and B are finite abelian groups prove that A 8 B s Tor ( A ,  B) (The 
isomorphism is not natural). 

6 .  Show that Tor (G, A )  = 0 if for each element a of finite order k in A and each 
g  of finite order I in G one always has k and I relatively prime. 

7. For moduies GR,  RA, let T ( G , A )  be defined by generators (g, Y,  a)for 
g  Y = 0 = r a and relations (6.1) through (6.4) .  Show that the sequence (6.6) with 
Tor replaced by T need not be exact a t  G B R A .  
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7. Torsion Products of Modules 

For fixed rtzo we consider chain complexes L of length n, 
a a a  a 

L:  Lo+-L,+...-L,-,+L,, 

with each L, a finitely generated projective right R-module. The dual 
L* =HomR(L, R) can also be regarded as a chain complex L*, with 
L t  as the chains of dimension n- k, 

8  d d b  
L*: L:+L,i,+...+L:+-L:. 

Each L,* is also a finitely generated projective left module, and 
6,: L t  +L&, is defined from a,,,: L,,, +L, as 8,= (- I)&+",*+,. Here 
and below, we could equally well require the L, to be finitely generated 
and free; the same then holds for the L:. 

If G is a right R-module, regarded as a trivial chain complex, a 
chain transformation p : L+G is a module homomorphism p,: Lo +G 
with po a = 0 :  L, -+ G, while a chain transformation v  : L* +,C is a module 
homomorphism v : L: -+C with v  d = 0. For given modules GR and RC 
we take as the elements of T o e  (G, C) all the triples 

where L has length rt and p, v are chain transformations, as above. 
If L' is a second such complex and Q :  L-tL' a chain transformation, 
then so is the dual Q* : L'*+L*. Given pl: L1+G and v: L*-+C, we 
propose that 

(/A1& L, V )  = ($, L', v Q*) . (7.l) 

These maps may be exhibited by a pair of commutative diagrams 

resembling the definition of the congruence relation on Extn by mor- 
phisms of long exact sequences. Formally, the equality relation on 
Tor, is to be the weakest equivalence relation in which (7.1) holds; 
this means that two triples in Tor, are equal if the second is obtained 
from the first by a finite succession of applications of the rule (7.1). 
This describes Tor, as a set. 

This set is a functor. Indeed, for maps 7 :  G +GI, y :  C 4 C '  the rules 

preserve the equality (7.1) and make Tor, a covariant bifunctor. 
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Two triples t, and t, in Tor,(G, C) have as direct sum the triple 

in Tor, (G@ G, C@ C). If t,=t; and t,=t; according to (7.1), then 
tl @ t, = t; @ ti. If wG is the automorphism of G @ G given by w (gl , g,) = 

(g, , gl), then (aG), (4 @ t,) = (ac), (t2@ 4), as one sees by applying (7.1) 
with e :  L1@ La+ La@ L1 the map interchanging the summands. 

Now Tor,(G, C) is an abelian group when the addition is defined by 

with VG: G@ G+G and Vc the codiagonal maps (111.2.1'). The proof 
of the group axioms is direct. The associative law follows from the 
associativity of the codiagonal maps. The commutative law follows from 
(aG)* ( h e  t,) = (aC)* (t2@ tl) and VG a, = VG . As a zero for the addition 
we may take (O,O, 0), where the middle zero designates the zero complex 
of length n, while the inverse - (p,L,v) is (-p,L,v). The maps 17, and 
y , ,  defined as in (7.2), respect this addition, so Tor, is a bifunctor to 
the category of abelian groups. The same formulas (7.2) show that if 
the modules G and C are bimodules =GR, RCS for other rings T and S ,  
then Tor, is a bimodule T(T~r,)S, much as in (3.1). 

Proposition 7.1. The symbols (p, L, v) in Tor, are additive in p and v; 
e.g., 

(PI+ p29 L, 4 = ( / 4 9  L, v)+ (PZ, L, 4. (7.4) 

Proof. Recall (111.2.2) that pl+ , u , = V ~ ( ~ @ ~ , )  A,. The dual of 
the diagonal map AL : L-t L @ L is the codiagonal VL. : L* @ L* +L*. 
Hence the equality rule (7.1) and the definition (7.3) yield (7.4) as 

Proposition 7.2. Every element of Tor, (G, C) has the form (p, F, v) 
where p :  F+G, v: F*+C, and F is a chain complex of length n of finitely 
generated free right modules. Hence the functor Tor, defined using complexes 
of finitely generated free moddes is naturally isomorphic to the functor 
Tor, defined using complexes of finitely generated projective modules Lj. 

Proof. The construction above, using only free modules instead of 
projectives, yields a functor Torf,(G,C). Since each free complex F 
of length N is also projective, each element (p, F, v) of Torf, is also an 
element of Tor,. This map Torf +Tor has a two-sided inverse. For take 
any (p, L, v) €Torn. Each L, can be written as a direct summand of 
some finitely generated free module F,=L,@ M,. Make F a complex 
with boundary a@ 0: L,@ M, -+L,-,@ M,-I . The injection L :  L+F 



i 56 Chapter V. Tensor and Torsion Products 

and the projection IG: F+L are chain transformations with n &=I,  
6*n*' 1. B y  our equality rule, 

(p, L, v) = ( p ,  L, v L* lt*) = ( p  lt, F ,  v L* )  ; 

this is an element of Torf, for F is a free compIex of length n. By this 
process, triples equal in the sense (7.1) are turned into equal triples 
of Torf ; hence the natural isomorphism Tor,rTorf, . 

For n= 0, Tor, may be identified with @: 

Theorem 7.3. There is  a natural isomorphism G @, CgTor,R (G, C). 

Proof. Each ge G determines a map p,: R +G of right R-modules by 
p, (r) =gr;  similarly each ce C determines a map v,: R =  R* +C of 
left R-modules by vc (1) = c. The triple (p,, R, v,) €Toro (G, C) is additive 
in g and c and middle linear, so g @c + (p,, R, vc) is a homomorphism 
G @ C +Tor, (G, C)  of abelian groups. It is natural. This homomorphism 
takes each element 2 gi @ci of G @C into the triple ( p ,  F, v),  where F is 
free on generators ei , p ei = gi , and vei= ci . 

To construct an inverse map 0 ,  use Prop. 7.2 to write each element 
of Tor,(G,C) as (p, F ,  v) where p :  F 4 ,  v :  F*+C, and F is a finitely 
generated free module. Choose any free generators el, ..., em for F ,  
use the dual basis el, . . . , em of F*, and set 

m 

@ (p ,F , v )= ,Zp (e i )@v(e i )  E G@RC- 
,=1 

To express the equality in Tor,, write Q :  F+F1, in terms of bases ei 
and ej, as e e,= 2 ej rji  with a matrix (rji} of elements from R. Then 

i 

Q*e''=Z rji e' and 
i 

@(ple ,  F ,  v) =s (C, pl(e,! rji)  @ v ei) , 9 

=C ( p ' e ~ @ C v ( r j i e i ) ) = O ( p ' ,  F' ,ve*).  
i i 

This shows O well defined for the equality in Tor; also, if F=F1 and 
e,! is a different basis in F, it shows the definition of O independent of 
the choice of the basis in F. Since O is a two-sided inverse of the previous 
map, the proof is complete. 

Corollary 7.4. For L a finitely generated and projective right R-module 
a natural isomorphism E : Hom, (L*, C) =LBRC i s  defined by [ (v) = 
(I,, L, v). Hence each element t of Toro(L,C) has a unique representation 
as t = ( I L ,  L, v) for some v :  L*+C. 

Proof. By additivity (Prop.7.1), E is a natural homomorphism. 
To show it an isomorphism, it suffices to prove the composite 
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the identity, where 5 is the isomorphism defined in Prop. 4.2. If L = R, 
the definitions show that t 5  is the identity; since all functors are addi- 
tive, this makes 55 the identity for L finitely generated and free. Any 
L is a direct summand of a finitely generated free module F. Since 5 
and ( are natural, their composite maps direct summands to direct 
summands, hence is the identity for any L. 

The torsion products are symmetric in G and A. To show this, con- 
struct from the ring R its opposite ring PP: The additive group of ROP 
is an isomorphic copy of that of R, under an isomorphism r + P ;  the 
product in ROP is defined by +'sop= (sr)OP. Each right R-module G 
becomes a left PP-module via the definition PPg=gr; symmetrically, 
each left R-module A is a right IPP-module. 

Proposition 7.5. The correspondence (p ,  L, v) +(v, L*, p) is an iso- 
morphism 

Tor: (G, A)  = T o r y  (A ,  G) , n = 0, I ,  . . . . 
Proof. The complex L* consists of finitely generated projective 

Pp-modules. Hence the correspondence is well defined; it is clearly 
an isomorphism. 

For a short exact sequence E = (%,a) : A - B +C and an element 
t = (p, L,v)  tor, (G, C) with n>O a product E t E Tor,--, (G, A )  may be 
defined. Regard v: L* +C and E as complexes over C, the first projective 
and the second exact. By the comparison theorem, there is a chain 
map g,: 

d . . - + L , ~ ~ - L , + : C  

l- l II (7.5) 
E : O + A  + B + C + O .  

Let "-tL designate the chain complex of length n- I formed by removing 
the last module L, from L, and set 

Theorem 7.6. For E E Extl (C, A) and t €Tor, (G, C) the Product E t 
is a well defined element of Tor,-,(G, A)  which satisfies the associative 
laws 

( E t ) = ( a E ) t ,  (Ey)t1=E(y,t'), E(q,t)=q*(Et), (7.7) 

for a :  A+A1, y: C'+C, q :  G+G1, and t1€Tor,(G,C'). It provides a 
homomorphism 

Proof. Any different choice g,' for the chain transformation g, of 
(7.5) is homotopic to g,, so there is an s: L,* +A with g,L-l= g,n-l+ s 13. 
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The product E t defined via q' is 

But let ;L be L with the first module Lo removed; then a: 7L-t"-:L 
is a chain transformation, and the second term above is (f pa, TL, s) = 
(0, ?L, s) = 0. The product E t is thus independent of the choice of v. 
If (,up@, L, v) = (p', L', v e*) is an equality in Tor, for some Q:  L-tL', 
then O, Q* is a chain transformation, and the products 

are equal. Hence E t  is well defined. 
Consider the associative laws (7.7). If a :  A+A1, attach the mor- 

phism E +aE to the bottom of the diagram (7.5). It gives (aE) (p, L,v) = 
(p,"-:L, a vn-,) =a(p,"-:L, vn-J =a [E(p, L, v ) ] ,  proving the first rule 
of (7.7). A similar large diagram for y : C1+C, E y  E Extl (C', A), and 
t1cTor,(G, C') proves the second of (7.7); the third rule is immediate. 

To say that (7.8) is a homomorphism is to say that the product 
E t is additive in each factor E and t separately. But E (t + t') = E t + E t' 
follows at once by the definition (7.3) of the addition in Tor,. The other 
rule (El+ E,) t = Elt+ E, t derives from the definition El+ E, = 
V' (El@ E,) A, of the addition of extensions. The proof is complete. 

Given E and G, a map E, : Tor,(G, C) +Tor,-, (G, A )  is defined 
as E, t = E t ; hence the long sequence 

E . . . +Tor, (G, A) +Tor, (G, B) +Tor, (G, C) 2 
Tor,-, (G, A) +Tor,-, (G, B) + a .  . .  } (7.9) 

Its exactness will be proved in the next section by homological means. 
An element S ~ a c E x t ~  (C, A) is a long exact sequence which may 

be written as a composite S=ElE2. ..Em of short exact sequences. 
Define the product ot to be El (E,. . . (Emt)). By (7.7), the result is un- 
changed by a congruence (E"y) o E'= E"o (YE') of long exact sequences, 
hence gives a well-defined "composite" connecting homomorphism , 

Extm (C, A )  @Tor, (G, C) +Torn-, (G, A), n 2 m. (7.10) 

Exact sequences in the first argument of Tor, yield symmetric 
results. For E'cExtl (K, G) and tcTor, (K, A) a product E't   tor,-, (G, A) 
is defined, with properties as in Thm.7.6, and yielding composite 
connecting homomorphisms 

Extm(K,G) @Torn(K, A) +Tor,-,(G, A), n am. (7.11) 
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Multiplications by E and E' commute in the following sense: 

Theorem 7.7. Let E=(x,n): A-B+C, a.nd E1=(t , t ) :  G - H a K  
be short exact sequences of left and right modules, res+ectively, while 
t€Tor,(K,C). I f  1212, EE7=-EIEtcTor,-,(G,A). 

Proof. Take t= ( p ,  L,Y). The products E t  and E't are calculated 
from the diagrams 

as E t =  (p,n-& q~,,-,) and E1t= (y,, ;L, Y). If 12 1 2 ,  the diagrams do 
not overlap, so we may calculate E E 7  from the first diagram if we 
note that 6 for L* and 6 for (;L)* have opposite signs. Changing the 
sign of pl in the diagram gives E E7= ,"-,'L, - q~,-,). Similarly, but 
without sign trouble, E'E t = (yl ,"-,1L, q,-,). Hence E'E = - E E', as 
asserted. 

Exercises 
I. By taking L free with a given basis, show that the elements of Tor,(G, C) 

can be taken to be symbols ((gl, . .., g,), x, (el, ..., c,)) with giEG, cjEC and x an 
m x n  matrix of entries from R such that (g,, . . . , g,) x = 0 = x (c,, . . . , c,)'; here 
the prime denotes the transpose. Describe the addition of such symbols and show 
that  the equality of such is given by sliding matrix factors of x right and left. 

2. Obtain a similar definition of Tor, (G, C). 

3. Prove that Tor, (P, C) = 0 for n > 0 and P projective. (Hint: show first that 
i t  suffices to prove this when P is finitely generated.) 

The exactness of (7.9) can be proved directly (i.e., without homology) as in the 
followipg sequence of exercises. 

4. Show that the composite of two successive maps in (7.9) is zero and that the 
exactness of (7.9) for G finitely generated implies that for all G. 

5 .  For E'= (1, t) : G n H -+K exact with H free show that E: : Tor, (K, C) 4 

Tor,-, (G, C) is an isomorphism for n> I and amonomorphism with image Ker (1 81 ,-) 
for n = I. (Hint: construct an inverse map.) Show that E; maps the displayed 
portion of (7.9) for n= I isomorphically onto the Ker-Coker sequence of the 2 x 3 
diagram with rows G BE and H BE. 

6. Prove by induction on n that the displayed portion of (7.9) is exact. 

8. Torsion Products by Resolutions 

The functor Extn(C, A )  can be calculated (Thm. 111.6.4) from a 
projective resolution X of C as Hn(HomR(X, A)). There is an analogous 
calculation for Tor, (G, A). If E :  X+G is a projective resolution by 
right R-modules, X @I, A is a complex of abelian groups, with boundary 
a @ l A : X, @I A-+Xn-, @I A. The comparison theorem for resolutions 
shows the homology H, (X @IRA) independent of the choice of X, 
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To show cc, a homomorphism, note that two chain transformations 
hi: Li+X yield V (hl@ ha) : L1@ L2+X, and hence that 

w (,(p19 L1, v,)+ (p2, L2, v2)I =w [V(,4@ A), L1@ La, V ( V ~ @ V ~ ) ]  
=ci~[v(h:@h:), L;@L:, V ( V ~ @ V ~ ) ] = O ( , U ~ ,  L 1 , v 1 ) + ~ ( p 2 ,  L ~ , v ~ ) .  

That o is natural in A is immediate, while the asserted naturality 
in G follows by observing that a chain transformation f :  X - t X '  lifting 
7 : G -+GI composes with an h : L+X to give f h : L-t X'. 

I t  suffices to show co an isomorphism when the resolution X is free. 
Any homology class in X @ A is the class of a cycle in some X'@ A ,  
where X' is a suitable finitely generated subcomplex of X .  By Cor. 7.4, 
this cycle can be written as ( I ,  Xk,  v) for some v:  XL *+A. If the com- 
plex X', with E':  X'+G, is cut off beyond dimension n,  it is one of the 
complexes L used in the definition of Tor,, so t = (E', X', v) is an element 
of Tor, (G, A) .  The injection r :  X f - t X  shows o t  = cls ( L ,  X i ,  v).  Hence 
w is an epimorphism. 

I t  remains to prove o a monomorphism. Suppose ot=O for some t. 
This means that the cycle (h,, L,, v) is a boundary in X @ A ,  hence 
also in some X 1 @ A  for X4<X a finitely generated free subcomplex 
of X .  Choose X' to contain h(L) .  Then h: L- tX  cut down yields 
h' : L-t X' with (hk, L,, v) = ( I ,  X:, v hk *) the boundary of some (n+ 1)- 
chain of X1@ A. By Cor. 7.4, write this chain as ( I ,  X;+, , 5)  for some 
5 :  XL+*l+A. Now 

( I ,  X i ,  v hk*)=a(l, 5)=(1, X i ,  5 a*),  
so the uniqueness assertion of Cor. 7.4 yields v hi*= C a*. Let ",XI be 
the part of X' from X i  to XL inclusive and ,+:X' the part from X i  
to X;+, , so that h': L+;X1 and a:  "+:X'+:X' are chain transformations. 
The original element t of Tor,(G, A)  becomes 

( p ,  L,  v) = ( ~ ' h ' ,  L,  v) = (E' ,  :XI, v h' *) 

= (&I,  ,J, 5 a*) = ( ~ ~ a ; + : r ,  5)  = (0, -, --) = 0 ,  

and t= 0,  as desired. The proof is complete. 
It is convenient to have a homomorphism "converse" to o. 

Corollary 8.2. If 7: Y+G is a projective complex over G, there is  
a homomor~hism 

7 : H, (Y 8, A) -+TO$ (G, A)  (8.2) 
natural i n  A .  If Y is  a resolution, z=o-l. 

Proof. Let X be a projective resolution of G. The comparison theorem 
lifts 1 ,  to a chain transformation f : Y +X such that f ,  : H, (Y @, A )  -+ 
H, ( X  @, A )  is independent of the choice of f .  Set z=o-If,. 

Mac Lane, Homology 11 
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The connecting maps t + E t may also be calculated from resolutions : 

Proposition 8.3. Let E :  X 4 G  be a projective resolaction. Each short 
exact sequence E :  A w B +C of left R-modules yields a n  exact sequence 
X @ E : X @ A w X @ B +X @ C of complexes with a connecting homo- 
morphism ax@= : H, (X @ C) +H,-, (X @ A) .  For each t E Tor, (G, C), 

cu (E t )=  (- I )"axaE~t;  

that i s ,  the isomorphism o of Thm.  8.1 commutes with connecting homo- 
morphisms. 

The proof applies the relevant definitions directly 
the reader. The exactness of the homology sequence for the sequence 
X @ E of complexes now implies 

Theorem 8.4. A short exact sequence E : A w B +C of left R-modules 
and a right R-module G yiekl a long exact sequence 

ending with Tor, (G, C) = G @ C +O. The  ma$ E ,  i s  left multiplication 
by E .  

For a projective module A = P, the exactness of a resolution X makes 
H, (X @ P) and hence Tor, (G, P) zero for n >O. Much as for Ext (111.10) 
we can now characterize Tor by axioms, as follows. 

Theorem 8.5. For a fixed right R-module G the covariant functors 
Tor, (G, A)  of A ,  n = 0, 1, . . . , taken together with the homomorphisms 
E ,  : Tor,(G, C )  +Tor,-, (G, A), natural for short exact sequences E of 
modules, are characterized u# to natural i somor~hisms by the properties 

(i) Tor, (G, A) = G @,A for all A ,  
(ii) Tor,(G,F) = O  for n>0, and all free F ,  

(iii) The sequence (8.3) i s  exact for all E .  

By symmetry (Prop. 7. S), Tor, (G, A )  will also yield a long ekact 
sequence when the first argument G is replaced by a short exact sequence ; 
this gives a corresponding characterization of the Tor, as functors of 
G for fixed A .  For R = Z ,  it follows that Tor, for abelian groups agrees 
with the functor Tor defined by generators and relations in 3 6. 

Theorem 8.6. The  following properties of a right R-modde G are 
eq~ivalent  : 

(i) For every left R-modde C ,  Tor,(G, C) =O; 
(ii) Wheneverx: A+ B i s  a monomorphism, so i s  1 @ x :  G @ A+G @ B; 
(iii) Every exact sequence of left R-modules remains exact u+o.n tensor 

multip1icatio.n by G; 
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(iv) If  A is a left module and G' -G"+G is exact so is the sequence 
G1@A-GW@A+G@A; 

(v) For every and every n >0, Torn (G, C) = 0. 

Proof. Clearly (iii) + (ii) . Conversely, given (ii) , Thm. 5.4 implies 
that any short exact sequence remains exact upon tensor multiplication 
by G; since a long exact sequence is a composite of short ones, this gives 
(iii) . 

Given (i), the long exact sequences for Tor, yield (ii) and (iv). Con- 
versely, given (ii), represent C as a quotient C r P / A  of a projective P ,  
so that 

O=Tor,(G, P )  +Tor,(G,C) -+G@A+G@P 

is exact with G@A+G@ P a monomorphism by (ii), and therefore 
Tor, (G, C) = 0. The proof that (iv) + (i) is analogous. 

Finally, (v) + (i) ; conversely C r P/A and exactness of 

O=Tor, (G, P) +Tor, (G, C) +Tor,-, (G, A) 

show by induction on n that (i) + (v). 
A module G with the equivalent properties listed in Thm. 8.6 is said 

to be flat. Note the analogy: P projective means that the functor 
Hom(P, -) preserves exact sequences; G flat means that the functor 
G @- preserves exact sequences. Every projective module is clearly 
flat. When R=Z, Thm. 6.2 shows that a flat 2-module is just a torsion- 
free abelian group. Hence a flat module need not be projective. 

Exercises 
1 .  If ?I:  Y + A  is a projective resolution, establish an isomorphism 

w': ~ o r t  (G, A)  cr Hn (G BRY). For E': G-H +K exact prove that wfE' = aEBYw'. 
2. For a projective resolution X of G let S,(G,X) be the n-fold exact sequence 

0 +ax, +X,- ,  -+ . .. +G+O. Show that the isomorphism w of Thm. 8.1 is 
w t = CIS a-1 [S, (G, X) t] . , 

9. The Tensor Product of Complexes 

If KR and RL are chain complexes of right and left R-dodules, 
respectively, their tensor $roduct K @, L is the chain complex of abelian 
groups with 

(K@RL)n= 2 K p @ ~ L q ~  
P+q=n 

(9.4) 

with boundary homomorphisms defined on the generators k @l by 

a(k@l)=ak@I+ (- ~ ) ~ " g ~ k @ a l .  ( 9 4  
11* 
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If K and L are positive complexes, so is K @ L ,  and the direct sum in 
(9.1) is finite, with p running from 0 to n. The boundary formula (9.2) 
resembles that for the derivative of a product of two functions; the sign 
(- l ) d e g k  appears in accord with the standard sign commutation rule: 
Whenever two symbols u and v with degrees are interchanged, affix 
the sign (- with e = (degree u )  (degree v ) .  In the second term of (9.2), 
a of degree -1 has been moved past k ,  hence the sign. With this sign, 
one checks that a a = 0. 

If f :  K +Kt  and g: L+L1 are chain transformations, the definition 
( f  @g) (k  @ I )  = f k @gl gives a chain transformation f @g : K @ L-t 
K 1 @ L ' ;  in this way the tensor product is a covariant bifunctor of com- 
plexes. For chain homotopies one has 

Proposition 9.1. If f l e f 2 :  K + K 1  andgl=g2: L-+L1, then f l @ g , ~  
f ,  @g, . In detail, chain homotopies s : fl -Y f 2  and t : g l e  g, yield a homotoPy 

given as u=s  @gl+ f, @ t ;  that i s ,  b y  

~ ( k @ l ) = s k @ g ~ l + ( - l ) ~ ~ g ~  f 2 k @ t l .  

This is in accord with the sign convention, since t of degree 1 has 
been commuted past k. 

Proof. First, s and t give homotopies s @ 1 : fl @ I--  f ,  @ I : K @ L+ 
K 1 @ L  and l @ t :  l@g,==l@g,. Composing these two homotopies (by 
Prop. 11.2.3) gives the result. 

Corollary 9.2. I f  f :  K + K 1  and g: L+L1 are chain equivalences, 
so i s  f @ g :  K@L+K1@L' .  

As a first application of the tensor product of complexes, we show 
that the torsion products can be computed from resolutions of both 
arguments, as follows. 

Theorem 9.3. If E : X+G and q : Y - t A  are projective resolutims 
of the modules GR and .A, respectively, then E @ 1 : X @ Y-tG @ Y 
induces alz i somor~h i sm H, ( X  @, Y )  sf?, (G @, Y), artd hence a n  iso- 
morphism 

H,  ( X  @, Y) =Tor: (G, A ) ,  n=o,  I ,  ... . (9.4) 

Proof. Let Fk,  for k = 0, 1, . . . , be the subcomplex of X @ Y spanned 
by all Xi @ Y, with js k, while M k  is the subcomplex of G @ Y consisting 
of all G@E;. with j S k .  Then 
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and & @ I  maps Fk into M ~ .  Since a ( x @ y ) = a x @ y  -J= x @ a y  i n X @ Y ,  
the quotient complex Fk/Fk-' is isomorphic to 

Similarly Mk/Mk-I consists only of the chain group G@Yk in dimension 
k .  Because each Yk is projective and O+ G c X o t X l c  - .  . is exact, the 
sequence 

o t G @ y k t X o @ y k t X l @ y k t . . .  

is exact. This amounts to the statement that @ I  : Fk/Fk-' +M~/M'-' 
induces an isomorphism in homology for all k. On the other hand, E @ 1 
maps the exact sequence Fk-' -Fk +Fk/Fk-' into the corresponding 
sequence for the M's, as in the commutative diagram 

We claim that H,(Fk) -+H,(Mk) is an isomorphism for all n and k. 
This is true for k negative and all n. Now suppose by induction that 
this is so for smaller k and all n. Thus the four outside vertical maps 
in the diagram are isomorphisms, so the Five Lemma makes the 
middle vertical map an isomorphism. This completes the induction. 

In dimension lz every cycle or boundary of 
within F+'. Hence the isomorphism Hn(Fk) r ZBY , ( M ~ )  for large appear k 
(specifically, for k >= n+ 1) implies the desired isomorphism H, ( X  @ Y )  r 
Hn (G @ Y ) .  Now Hn (G @ Y )  =Tor, (G, A )  by the symmetric case of 
Thm. 8.1 ; hence the result. 

A sequence of subcomplexes Fk of X @ Y arranged as in (9.5) is 
called a fzltratiolz of X @ Y .  The method here used of comparing two 
complexes via filtrations of each will be formulated in general terms in 
Chap. XI. 

Exercises 

I. For complexes K, L, M over a commutative ring, establish the adjoint 
associativity Horn (K @L, M )  r Hom(K, Hom (L, M)). 

2. Let f  : K +L be a chain transformation, Fk a filtration of K and Mk one of L 
with f (Fk)< Mk. If f ,  : H, (Fk/Fk-I) + H, (Mk/Mk-l) is an isomorphism for all n and k, 
while for each n there is a k such that  the injections induce isomorphisms 
H ,  (Fk) r: Hn (K), H, (Mk)  = H, (L) ,  show f ,  : H, (K) -t H,  (L) an isomorphism for 
all n. 

3. If E :  X + C is a projective resolution and q :  A + Y an injective coresolution 
prove that Extn (C, A) E H" (Horn (X, Y)). 
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10. The KUNNETH Formula 

The tensor product of complexes corresponds to the cartesian pro- 
duct of spaces X and Y, in the sense that the singular complex S ( X x  Y) 
can be proved (VIII.8) chain equivalent to S (X) @ S (Y) . This suggests 
the problem of the present section: To determine the homology of K @L 
in terms of the homologies of K and L. 

The boundary formula (9.2) shows that the tensor product u@v 
of cycles is a cycle in K @L and that the tensor product of a cycle 
by a boundary is a boundary. Hence for cycles u and v in K and L, 
respectively, 

p (clsu @clsv) =cls(u @v) (10.1) 

is a well defined homology class in K @L, so yields a homomorphism 

of abelian groups, called the (external) honaology product. The direct 
sum 2 Hm@Hq for m+q=n is thereby mapped into H,(K@,L), 
and the image gives all of H, (K @L) under stringent conditions on the 
modules B, (K), C, (K) , and H, (K) of boundaries, cycles, and homology 
classes of K, respectively: 

Theorem 10.1 (The KUNNETH Tensor Formula.) If L is a compex 
of left R-moddes while K is a complex of right R-modules satisfyiltg 

(i) C, (K) and H, (K) are projective modules, for all n, 
then, for each n, the homology product i s  an isomorphism 

This is a consequence of a more general theorem, which among 
other things shows that the image of p does not usually exhaust H(K L). 

Theorem 10.2. (The KUNNETH Formula.) If L is a coelex of left 
R-modtdes and K a coqblex of right R-modules satisfying 

(ii) C,(K) and B,(K) are flat modules, for all n, 
then there i s  for each dimension n a short exact sequence 

where p is the homology product and /3 a lzatural homomor~hism. 
Neither complex K,. L need be positive. 
This implies the previous theorem. Indeed, since H,(K) s C ,  (K)/B,(K), 

the hypothesis (i) that H,(K) is projective implies that C,-+H, 
splits, hence that B, (K) is a direct summand of the projective module 
C,, so is itself projective. Now every projective module is flat (Thm. 8.6), 



lo. The KUNNETH Formula 167 

so C, and B, are flat, as required for (ii). Moreover, H, flat makes 
Torl(Hm,Hq)=O, so (10.3) reduces to (10.2). 

Before proving Thrn. 10.2 we treat the special case when the bound- 
ary in K is zero. It suffices to set K=G. 

Lemma 10.3. If G is a flat right R-module, # : G @ H ,  ( L )  cH, (G @ L).  

Proof. Set H,= H,(L), C,=C,(L), B,= B,(L). To say that H, 
is the wth homology group of L is to say that the commutative diagram 

has exact rows and columns. Indeed, the exactness of the long column 
states that C, is the kernel of a :  L,-+L,-,, while the exactness of the 
short column gives B ,  as aL,+, , and the exact row defines H ,  as C,/B, . 
Now take the tensor product of this diagram with G. Since G is flat, 
the new diagram is exact, and states that G @ H ,  is isomorphic, under 
p, to the homology group H,(G @ L ) ,  thus proving the lemma. 

To prove Thm. 10.2, we regard the families C,= C, ( K )  and D,= 
K,/C,rB,-,(K) as complexes of flat modules with zero boundary, 
so that C H K +D is an exact sequence of complexes. As D , r  B,-, ( K )  
is flat by hypothesis, Tor, (D,, L,) = 0 ,  so the sequence E : C @ L - 
K @ L + D @ L  is also an exact sequence of complexes. The usual 
exact homology sequence for E reads 

with connecting homomorphisms E ,  . Equivalently, the sequence 

is exact. We wish to compare this with the sequence (10.3) of the theorem, 
which also has H,(K@L)  as middle term. Let a' denote the map 
Dm+, -+ C, induced by a. 

The homology module H,(K) can be described by a short exact 
sequence S :  D,+,~C,+H,(K). Take the tensor product of this 
sequence with Hq(L).  Since C, is flat, Tor,(C,, Hq(L)) =O, so the long 
exact sequence for the torsion product, summed over m+ q=n, becomes 
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Since Dm+, and C, are flat, the vertical maps are isomorphisms by the 
lemma. If we know that the square part of the diagram is commu- 
tative, we get Ker (E,,,) from Ker (a' @ 1 )  ; explicitly, Ker (E,+,) g 
Ker (a' @ 1 )  CTor, (H(K) ,  H(L)) ,  and Coker En+, rCoker (a' @ I )  r 
C H(K)  @ H(L). Thereby (10.4) becomes the desired sequence (10.3). 
One checks also that the first map of (10.3) is indeed the homology 
product, while the second map ,9 is described by the commutativity of 
the diagram 

Hs ( K  @ L )  L C TorI(Hrn-1 ( K )  9 Hq (L))  
m+q=n LS* ( 1  0.6) 

H,((KIC) 8 ~ )  2 c ( K I C ) ~  @ H ,  (L) 
m+q=n 

with K-tKIC the canonical projection, p an isomorphism, Sm the short 
exact sequence S,: Km/Cm-Cm-,+Hm-,(K), and S, the sum of the 
corresponding connecting homomorphisms on Tor,. This shows ,9 
natural, but note that its definition is not symmetric in K and L ;  if 
C, (L) and B, (L) are also flat, symmetric arguments on L will produce 
a possibly different map ,9'. We show below (Prop. 10.6) that ,9=,9' 
for complexes of abelian groups; we conjecture that this should hold 
in general. 

I t  remains to show the square in ( 1 0 . 5 )  commutative. An element 
2 d, @cis v, in Dm+, @ Hq (L) is mapped by $ to cls (2 d, @vi).  The 
definition of the connecting homomorphism E,+, reads: Pull the cycle 
2 d, @vi of D @ L  back to a chain 2 k, @vi in K @L,  take its boundary 

a'd, @vi pulled back to C @ L  and the homology class of the result. 
This gives cls (2 a' d, @ v,) = p (a' @ 1 )  (C d, @ cls vi) , hence the com- 
mutativity. 

In the case of complexes of abeliq groups we can say more. 

Theorem 10.4. (The KUNNETH Tormula for Abelian Groups.) For (not 
necessarily positive) chain cowq5lexe$ K and L of abelian grozlps where no 
K ,  has dements of finite order except 0, the sequence (10.4) is exact and 
splits by a homomorphism which is ndt natwal. 

Proof. Since K ,  torsion-free implies that its subgroups C, and B, 
are also torsion-free and hence flat (as 2-modules), the previous theorem 
gives the exact sequence (10.3). I t  remains to show that i t  splits. First sup- 
pose that both Kand L are complexes of free abelian groups K,and Lq. Then 
Dm z a K m <  Km-, is a subgroup of a free abelian group, hence is free, so 
that Km splits as an extension of Cm by Dm, with Km g C m @  Dm. The 
homomorphism cls: Cm+Hm(K) can thus be extended to a map 
vm: Km +Hm ( K )  with vmc = cls c for each cycle c. There is a similar 
y,: Lq-+Hq(L) for the free complex L. The tensor product of these 
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group homomorphisms yields a map p, @y : (K @ L), +z H,,, (K) @ Hq(L) ; 
since p, and y vanish on boundaries, so does p,@y. There is thus an 
induced map (p, @y), : H, (K @L) +z H, (K) @ Hq (L). For cycles u 
and v, (p,@y), ~ (c l su@clsv)  =(p@y), cls(u@v) =p,u@yv=clsu@ 
cls v SO (p,@y)* # = I ;  (p,@y)* is a left inverse of p, splitting our 
sequence. 

Now consider any complexes K and L (with K torsion-free). Just 
below we will show that one can choose a free complex K' and a chain 
transformation f :  K1+K such that each f,: Hp (K') +Hp (K) is an iso- 
morphism. With a similar choice g: L1+L, the naturality of P and /3 
means that the diagram 

commutes. By the choice of f and g, the outside vertical maps are iso- 
morphisms. Hence by the Short Five Lemma the middle vertical map 
is also an isomorphism. The bottom exact sequence is thereby iso- 
morphic to the top exact sequence, which has just been shown to split. 
Therefore the bottom sequence splits. 

This proof, due to A. DOLD, depends on the following useful lemma. 

Lemma 10.5. If K i s  a com$lex of abelian grozcps there exists a 
com$lex X of free abelian groups and a chain transformation f :  X + K  
such that f ,  : H,  (X) +H, (K) i s  a n  isomorphism for each dimension n. 

Proof. I t  suffices to take X the direct sum of complexes X(") with 
chain transformations f @ ) :  X(*)+K such that (f@)), : H, (X@)) EH, (K) 
and Hq (X(")) = 0 for q + n. For fixed n ,  construct a diagram 

First write the group C, of n-cycles of K as a quotient of a free groupF,; 
this gives E: F,+C,< K,. Next take R,+,=[-l B, and j :  R,+,+F, the 
injection. Since R,+, is free and [jR,+, = aK,+, , Ej lifts to a map q 
which makes the diagram commute. The top row is now a complex 
X(") with homology F,/R,+, EC,/B,=H,(K) in dimension n and all 
other homology groups zero. The vertical maps constitute a chain 
transformation which is a homology isomorphism in dimension n, as 
required. 

Thm. 10.4 shows that the homology of K @ L  is spanned by two 
types of cycles. Type I is a cycle u@v built from cycles ucK,  veL; in 
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the theorem, I m p  is spanned by the classes of Type I cycles. Secondly, 
consider a triple (cls u, m, cls v )  in Tor, (H(K) ,  H (L)) ; there are then 
chains k and E with ak =mu, aE =mv for the same integer m; thus 

(I/m)a(k@l)=u@Z+ (-l)^+lk@v, dim u = n  

is a (Type 11) cycle. One may verify that its homology class is deter- 
mined, module Im #, by cls u and cls v. This yields an expression for 8 
in the KUNNETH formula, as follows: 

Proposition 10.6. For t = (cls u, m, cls v> €Tor, (H, ( K ) ,  H (L))  with 
ak=mu, al=mv the formula yt=(-l)"+l cls( l /m)a(k@l) defines a  
homomor#hism 

U d e r  t h  hypothtses of Thm. 10.4, y is an isomor#hism and its inverse 
induces 8. 

Proof. Since D = KIC, the map H (K @ L) - t H  (D @ L) carries y  t  = 
cls [(-I)"+' u @I+ k  @v] into cls [(k+ C) @v] .  The maps # S, of (10.6) 
carry t  into ( k f  C) @cls v  and thence into cls [(k+ C) @v] .  The iden- 
tity of these two results proves that y  induces 8, as stated. 

Exercises 
1. Show that Thm. 10.1 holds with (i) replaced by either (iii) C ,  (K), B, (K), and 

H, (K) are flat modules, for all n, or (iv) C ,  (K), B, ( K ) ,  and H, (L) are flat modules, 
for all n. 

2. For K and L finitely generated complexes of free abelian groups, calculate 
the Betti numbers and the torsion coefficients of K@L from those of K and L. 
(Cf. 11.6; this version gives the original theorem of KUNNETH [1923, 19241.) 

3. Prove Thw10.4 as follows. I t  suffices to take K finitely generated, hence to 
take I( ehwmtary (Ex. 11.2.2). In this case every cycle of K@L can be written as 
a sum of cycles of types I and 11; deduce that p is a monomorphism and y of Prop. 
10.2 an isomorphism (EILENBERG-MAC LANE {1954, 1 121). 

4. State a KUNNETH formula for K@L @ M. 

5. Using this, establish for abelian groups the isomorphisms 

Tor (A, Tor (B, C)) % Tor (Tor (A, B), C), 

Ext (A, Ext (B, C)) Ext (Tor (A, B), C) . 

11. Universal Coefficient Theorems 

The various homologies of a complex may now be listed. If K is a 
complex of right R-modules, while ,A and GR are modules, regard A 
as a complex (with trivial grading A = A ,  and boundary a= O), so that 



1 1 .  Universal Coefficient Theorems 474 

are complexes derived from K. The homology groups 

are known, respectively, as the n-dimensional homology of K with 
coefficients A and the n-dimensional cohomology of K with coefficients G. 
According to our rules for shifting indices up or down, H* (Hom, (K, G)) 
is H-,(HornR (K, G)). When K is a positive complex, H, (K @, A )  = 0 
for n < 0, while Hn (K, G) = 0 for n < 0 ; hence the custom of writing the 
homology index down, the cohomology index up. For K positive, 
H, (K @, A) is sometimes written as H,, (K, A).  Warning: Do not shift 
this index up, where i t  would have a different meaning H-"(K,A) = 

Hn (Horn (K, A)) - 
Consider complexes of abelian groups (R=Z). If each K,, is free, 

the universal coefficient theorem (Thm. 111.4.1) is an exact sequence 

We now have a corresponding homology theorem: 

Theorem 11.1. If  K is a (not necessarily positive) complex of abelian 
groups with no elements of finite order and A is an abeliala group, there 
is for each dimension n a split exact sequence of groups 

with both homomor~hisms natural and # defined for a cycle u of K by 
p (cls u @a) =cls (u @a). If K is a complex of vector s#aces over some 
field and V a vector space over the same field, then 9: H,(K) @ V cz 
Hn (K@V)- 

This is a corollary to the previous Thm. 10.4. A direct proof is easy 
when K is free. Write a, for a @1 : K, @A +K,-, @A. The exact 
sequence 

O+Cn+K,,+C,-l-+Hn~l-+O 

is a free resolution of H,,-,; its tensor product with A  then has homology 
0 in dimension 2, Tor (H,-, , A) in dimension 1, and Hn-, @A in dimen- 
siod zero. The first states that C, @A can be regarded as a subgroup 
of &,, @ A  : indeed 

The second states that Ker a&, @ A =Tor (H,-, , A) ; the third (with n 
replaced by n+l )  that C,@A/Im a,,+, =H,@A. Therefore H,(K @A) = 

Ker a,,/Im a,,+, is an extension of *,@A by Tor (Hn-,, A ) ,  as asserted 
by the exact sequence (1 1 .I). 
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Corollary 11.2. If K am2 K' are compZexes of abeZialz grou$s, each with 
no elements of finite order, while f :  K+K' is a chain tralzsformatiolz 
with f* : H, (K) r H ,  (K') an isomorphism for each n, then f ,  : H, (K @ A )  
+H, (K' @A) is an isomorphism for every abelian group A and every n. 

Proof. Write the sequences (11.1) for K and K' and apply the Five 
Lemma, as in the proof of Cor. 111.4.6. 

These universal coefficient theorems express the homology and 
cohomology of K with any coefficients in terms of the so-called "integral " 
homology H,(K), a,t least when the K, are free. If the K, are free and 
finitely generated abelian groups, there are corresponding expressions 
in terms of the "integral" cohomology Hn (K, Z), as in Ex. 2 below. 

Exercises 

1. For abelian groups K and A construct natural homomorphisms 
Hom (K, Z) @A +Horn (K, A) and K @  A + Hom (Hom (K,Z), A). Show them 
isomorphisms when K is a finitely generated free group, and chain transformations 
when K is a complex. 

2. Let K be a complex of abelian groups, with each K, a finitely generated free 
abelian group. Write H"(K) for H" (Hom (K,Z)). Using Ex. I and the universal 
coefficient theorems, establish natural exact sequences 

3. If K is a complex of finitely generated free abelian groups, show that the 
n-th Betti number b, of K (11.2) is the dimension of the vector space H,(K@Q), 
where Q is the field of rational numbers. 

4. For K as in Ex. 3, and Zp the field of integers modulo +, calculate the dimension 
of the vector space H, (K@ Zp) from the Betti numbers and torsion coefficients of K. 

5. If 69 is a complex of vector spaces over a field F, write K* for its dual 
Hom (K, F). If each K, is finite dimensional, establish the natural isomorphisms 
H"(K*)= [H,(K)I*. 

Notes: Tensor products were long used implicitly; for example, via GmRX Re, 
xGei or V@ W E Hom (V*, W). Their central role in multilinear algebra was 

highlighted by BOURBAKI'S [I9481 treatise on this subject. The tensor product for 
abelian groups was first explicitly defined by WHITNEY [1938]. The universal 
coefficient theorem 11.1 was first proved by CECH [I9351 who thereby first intro- 
duced (but did not name) the torsion product Torl. CARTAN-EILENBERG used 
resolutions to define the higher torsion products. The description ( 8  6) of Tor, for 
abelian groups by generators and relations (EILENBERGMACLANE [1954. 1 123) is 
useful in treating the BOCKSTEIN spectrum of a complex K of abelian groups (the 
various H, (K, 2,) and their interrelations - BOCKSTEIN [1 9581 ; PALERMO [I 95 71). 
A similar description (Ex. 7.1, 7.2) of Tor, by generators and relations (MACLANE 
[1955]) involves some rather mysterious new functors, the "slide products" (e.g., 
T in Ex. 6.7) and leads to the conceptual characterization ( 3  7) of the elements of 
Tor, as triples ( p ,  L, v )  . 
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Chapte r  s i x  

Types of Algebras 
1. Algebras by Diagrams 

This chapter studies the formal properties of various types of algebras 
over a fixed commutative ring K, with @ short for Q K ,  Hom for HornK. 

A K-algebra A is a ring which is  also a K-module such that always 

k(3,1,)=(k&)A2=iZ,(kA2), ~ E K ,  A1, A 2 d .  

If l A  is the identity element of A, then I ( k )  =kgA defines a ring 
homomorphism I :  K-tA. Indeed, a K-algebra may be described as a 
ring A together with a ring homomorphism I :  K-tA such that always 
( Ik)  1  = 1  (Ik)  ; that is, with I K in the center of A. 

The product &A2 is left and right distributive, so is a K-bilinear 
function. Hence n (Al @A2) = 4 1 ,  determines a K-module homomorphism 
n: A@A+A. In these terms a K-algebra may be described as a 
K-module A equipped with two homomorphisms 

of K-modules such that the diagrams 

are commutative. Indeed, the first diagram asserts that the product 
is associative, while the deft and right halves of the second diagram state 
that I  ( I K )  is a left and right identity element for the product in A and 
that n(Ik@A) = k 1  *n(A@Ik) .  

In case K is the ring 2 of integers, a 2-algebra is simply a ring, so 
this gives a diagrammatic definition of a ring, via tensor products of 
abelian groups. The dual diagrams define a "coring" or a "coalgebra". 
Algebras may be graded by degrees such that deg &A2) = deg A,+ deg A, ,  
or may have a differential a, with a ( & A , ) = ( a ~ ) 1 , + A l ( ~ 1 , ) .  This 
chapter will give a uniform treatment of these various types of algebras 
and the modules over them. As an illustration of algebras with a dif- 
ferential, we first consider certain resolutions over a polynomial ring. 

Let P=F [x]  be the usual ring of polynomials in an indeterminate x  
with coefficients in a field F; actually, P can be regarded as an F-algebra, 
but for the moment we consider i t  just as a commutative ring. Since 
F=F [x] / (x)  is the quotient of P by the principal ideal (x)  of all multiples 
of x, we can regard F as a P-module so that E (x)  = 0 defines a P-module 
homomorphism 8 :  P+F. Form the sequence 
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of P-modules, where P u  is the free P-module on one generator u and 
8 the P-module homomorphism with au =x. The sequence is exact, 
so is a free resolution of F. For any P-module A, the group Ext: (F, A) 
may be calculated from this resolution as the first cohomology group 
of the complex 

Homp (P, A) + Homp (Pu, A) -to. 

Under the isomorphism Homp(P, A) =A, this is the complex 8 :  A-tA 
with 8a  =-xu, so Ext%(F,A) rA/(x)A. By taking the tensor product 
of the resolution (1.3) with a module B, we find TO<(F, B) to be the 
submodule of B consisting of all ~ E B  with xb =O. For example, 
Ext$(F, F)  r F ,  and Tor,P(F, F )  rF.  

Similarly, let P=F [x, y] be the ring of polynomials in two indeter- 
minates x and y over F. If (x, y) denotes the ideal generated by x and y, 
then F = P/(x, y) is again a P-module and E :  P+F a P-module homo- 
morphism with E (x) = 0 = E (y). The kernel of & can be written as the 
image of the free P-module on two generators u and v under the module 
homomorphism 8,: Pu@ P v  -t P with alu= x, a,v= y. The kernel of 
this map a, consists of all fzl+gv for polynomials f,  g c P  such that 
f x +g y =0; by the unique factorization of polynomials we must then 
have f = - h y and g = h x for some polynomial h. This kernel is therefore 
the image of the free module P(uv) on one generator uv under the 
homomorphism a, with a, (huv) = (h x) v - (h y) zl= f u + gv. Since P has 
no divisors of zero, 8, is a monomorphism. We have thereby shown that 
the sequence 

is exact. From this resolution one calculates that Ext$(F, F) =F @ F  EZ 

TO~:(F, F),  and Extg(F, F) r F  =TO<(F, F). 
In the resolution (1.4) omit F and write E= P @  Pu@ Pv@ P(uv). 

Now set vu = -uv, us=O, v2=O; this makes E a ring, with Ip acting 
as the identity and products given, for example, by (f u)(gv) = (fg)(zlv) = 
- (gv)(fu). It is called the "exterior" ring over P in two generators u 
and v. Its elements may be "graded" by assigning dimensions as 
dim lp=O, dirnzl=l=dim v, and dimzlv=dimzl+dim v=2, in ac- 
cordance with the usual dimensions for the resolution (1 4). The dimen- 
sion of a product is then the sum of the dimensions of its factors. Further- 
more, the boundary homomorphism in the resolution is now a module 
homomorphism a: E +E of degree -1 with au = x, a v  = y, and 
a (uv) = (au) v- u (av). This implies a formula for the differential of a 
product of two elements q, e, of E as 
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This " Leibniz formula" is typical for a ring which is also a complex. 
Other examples are found in the next chapter, which may be read in 
parallel with this one. 

Exercises 
1. Prove that the three definitions given for a K-algebra are equivalent. 
2. If J is an ideal in K, show that K/J is a K-algebra. 
3. For P =  F [x, y] and A any P-module, show that E x t $ ( ~ ,  A) is the quotient 

A/(xAuyA), while 

Ext$(F,A) = [(a,, aa)l%, a&. %a,= yall/[(xa, ya)la€AI. 

4. Obtain a similar formula for TO~[(F,F) when P =  F [n, y]. 
5.  Obtain a free resolution for F as a module over the polynomial ring F[x, y,z] 

in three indeterminates. 

2. Graded Modules 
An (externally) 2-graded K-modzcLe is a family M = {M,, , n = 0, 

f I ,  f 2, . . .) of K-modules M,,; an element m of M,, is also said to be 
an element of degree n in M (briefly, deg m = n). A graded szcbmodzcle 
S< M is a family of submodules S,,< M,,, one for each n. For two 
2-graded modules L and M a homomorfihism f :  L +M of degree d is a 
family f = {f,: L, + M,,+,; n€Z) of K-module homomorphisms f,, . The 
set of all f :  L +M of fixed degree d is a K-module Horn, (L, M). The 
composite of homomorphisms of degrees d and d' has degree d+d'. 
A 2-graded module M may also be written with upper indices as 
Mn=M-,; in particular, Homd(L, M)=Hom-,(L, M). 

A graded K-module M is a 2-graded module with M,,= 0 for n <0. 
These graded modules are of most frequent occurrence, and will be 
studied below, leaving the reader to formulate the corresponding facts 
for 2-graded modules. Warning: Many authors use "graded" for our 
2-graded and "positively graded" for our graded modules. 

A trivially graded module M has M, = 0 for n#= 0. 
The graded K-modules M, with morphisms hom (L, M) =Homo (L, M) 

the homomorphisms of degree 0, form a category. Each f : L +M of degree 
o has kernel, image, cokernel, and coimage defined as expected (i.e., 
termwise for each n) ; they are graded modules with the usual properties. 
For fixed degree d, Horn, (L, M) is a bifunctor on this category, contra- 
variant in L and covariant in M. Alternatively, the family Hom (L, M) = 
{Hom, (L, M)) is a bifunctor on this category to the category of 2-graded 
K-modules. Both bifunctors are left exact, in the sense of Thm. 1.6.1 
and Thm. 1.6.2. 

The tensor product of two graded modules L and M is the graded 
module given by 

W@M),,= 2 L,@M,; 
P+q=n 

(2.1) 
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in brief, the grading in the tensor product is defined by deg (1 @m) = 

deg Z+deg m. If f :  L+L1 and g: M +M' are homomorphisms of 
degrees d and e, respectively, then f @g: L@M-+L1@M' is the homo- 
morphism of degree d+ e defined by 

(f @g) ( I  @m) = (-l)(deg"(degg' (fl @gm) (2.2) 

in accord with the sign convention (interchange g and I). For 
deg f = deg g= 0, this makes L @M a covariant bifunctor on graded 
modules to graded modules. I t  is right exact, as in Thm. V.5.1. 

The tensor product for graded modules satisfies the same formal 
identities as in the ungraded (=trivially graded) case; that is, there are 
natural isomorphisms of degree 0 

Here @ = gK, and the ground ring K is regarded as the trivially graded 
module K with K,, = K, Kn=O for m .  We regard these isomorph'i;ms 
i s  identities. This we can do because they are manifestly consistent with 
each other: Given any two iterated tensor products of the same modules 
M I ,  . . . , Ms,  a suitable combination of these isomorphisms provides a 
canonical map of the first tensor product into the second-deleting or 
adding factors K a t  will, and with sign according to the sign conventions, 
as in (2.4). 

The same properties of HornK and gK hold for 2-graded modules 
and in a variety of other cases, as follows. 

A bigraded K-module B is a family B={Bp, ,  /P, q c Z )  of K-modules 
with Bp,, = 0 when p <O or q < 0 ;  a homomorphism f : B -+ B' of 
hidegree (d, e) is a family { f* , , :  Bp,q-+B~+,,q+,} of K-module homo- 
morphisms. For example, the tensor product of two graded modules 
L and M is initially a bigraded module {L* @ Mq}, which the summation 
(2.1) has turned into a singly graded module. Similarly, the tensor 
product of two bigraded modules B and C is a 4-graded module which 
yields a bigraded module by 

An element of B*,, is said to have total degree ++q. The natural iso- 
morphisms (2.3), (2.4), and (2.5) hold for bigraded modules when the 
total degrees are used in the sign of the transposition z. 

Trigraded modules, 2-bigraded modules, and the like are defined 
similarly. 
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An ilzternally graded K-module A is a K-module with a given direct 
sum decomposition A = z  A,; in other words, A and its submodules 
A,, n=0, 1, . . . , are given so that each element a+O in A has a unique 
representation as a finite sum of non-zero elements from different sub- 
modules A,. The elements of A,  are said to be homogeneous elements 
of A, of degree lz. Each internally graded module A determines an 
externally graded module {A,}. Conversely, each externally graded 
module M={M,} determines an associated internally graded module 
M,=zM,.  Moreover, (L@M),=L,@M,, but Hom(L,,M,) is 
larger than [Hom(L, M)], , because a K-module homomorphism 
f :  L,+M, need not be a sum of a finite number of homogeneous 
homomorphisms. 

In much of the literature, "graded module" means internally graded module. 
Following a suggestion of JOHN MOORE, we have chosen to work with external 
gradings. This choice has the advantage that in either event we always operate 
with the homogeneous elements and not with the sums m,+ ..- + m, of elements of 
different degrees. Similarly, one needs only the homogeneous homomorphisms 
L M, not the arbitrary homomorphisms L,  -t M ,  . Moreover, our choice dis- 
penses with the use of infinite direct sums, so that we can define a graded object M  
over any category A to  be a family {M,) of objects in 4, with morphisms of 
various degrees, just as for modules. For example, a graded set S is a family of 
sets {S,, n = 0, 1, 2, . . .). 

3. Graded Algebras 

A graded K-algebra A is a graded K-module equipped with two 
K-module homomorphisms n = a,, : A @ A  +A and I = I,, : K --+A, each 
of degree 0, which render commutative the diagrams 

The first asserts that the "product" il,u=n(l @,u) is associative, and 
the second that IA(IK) =IA is a two-sided identity for this product. 
.A homomor+hism f :  A+Af between two graded algebras over the same 
K is a homomorphism of degree 0 of graded K-modules such that the 
diagrams 

A B A ~ A  K%I 

are commutative. 
These definitions may be restated in terms of elements. A graded 

algebra A is a family of K-modules {A,, n = 0, I,  . . .) with a distinguished 
Mac Lane, Homology 12 
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element ~ E A ,  and a function which assigns to each pair of elements 
I ,  p a product I p  which is K-bilinear and such that always 

Similarly, an algebra homomorphism f :  A+A1 is a function carrying 
elements of A to those of A' so as to preserve all the structures involved: 

We emphasize that each homomorphism f takes the identity to the 
identity. 

As for rings, we also assume for algebras that 14 0. 
A graded subalgebra Z < A  is a graded submodule of A such that 

l,, E Z and a, a' E Z  imply a a ' ~  Z: Thus Z is itself a graded algebra, with 
the same identity as A, and the injection i: Z+A is a monomorphism 
of graded K-algebras. If f :  A+A1 is an algebra homomorphism, the 
image f (Z)  is a graded subalgebra of A'. 

A graded left ideal L<A is a graded submodule of A such that 
A L < L (i.e., I E A  and I E L imply IZ E L). Thus L is closed under products, 
but need not be a subalgebra since i t  may not contain the identity in. 
If a,, . . . , a, are elements of A, the smallest graded left ideal containing 
all ai is often denoted by A(%, . . . , a,) or simply by (a,, . . . , a,), with A 
understood. In degree n, i t  consists of all sums z & a i  with of 
degree .n- deg ai . A graded right ideal R< A is similarly defined by the 
condition that RA< R. 

A graded (two-sided) ideal J of A is a graded submodule which is 
both a left and a right graded ideal of A. The quotient module A/ J is a 
graded algebra with a product determined by the condition that the 
projection q: A+A/J is a homomorphism of graded algebras. This 
quotient algebra, with the map q, is characterized up to isomorphism 
by the fact that any homomorphism f :  A+A1 of graded algebras with 
f (J)=O has a unique factorization as f =gq for some algebra homo- 
morphism g: A/J-tA1. Moreover, the kernel of any homomorphism 
f : A +A' of graded algebras is an ideal of A. (Note : In case J= A, the 
quotient "ring" A/ J=o has 1 =0, counter to our convention 1 + 0.) 

A graded algebra A is commutative (some authors say skew-commu- 
tative or anti-commutative) if always 
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that is, if ZA=ZAT: A @ A - t A ,  with z the transposition (2.4). In con- 
sequence, the elements of even degree commute in the ordinary sense. 
If, in addition, Ia=O for every element I of odd degree, A is called 
strict1 y commutative. If the ground ring K is a field of characteristic not 2,  
then any commutative graded K-algebra is strictly commutative, for 
(3.4) with deg I odd gives AI= - 11, 2 Aa= 0 ,  so 2-I in K implies l a =  0 .  

For example, a graded #olynomial algebra P = PK[x]  may be defined 
for an "indeterminate " x of any degree d 2 0.  If d= 0, P is the ordinary 
ring of polynomials in x with coefficients in K. For d>,o, P is the 
graded module with P,=O for n+ 0 (mod d) ,  while P,, is the free 
K-module on one generator x4 for each q 1 0 ;  the product is defined by 
xfiX4= x $ + ~ .  If d is even, this polynomial algebra is commutative. P is 
characterized up to isomorphism by the fact that i t  is free in x: For any 
graded K-algebra A with a selected element Id of degree d there is a 
unique homomorphism f : P-+A of graded algebras with f x= Ad. 

The exterior algebra E=EK [u] on one symbol u of odd degree d is 
constructed from the free K-module Ku with one generator u as the 
graded algebra E with Eo= K, Ed = Ku, En = 0 for O=/= n+ d, and with 
product determined by I u = u =uI,  ua= 0.  It is strictly commutative. 
We may also define E as the quotient algebra PK [x] / (xa) ,  where x is an 
indeterminate of degree d and (xa) denotes the (two-sided) ideal in P 
generated by xa. The algebra E may be characterized as the strictly 
commutative algebra free on u :  Given any strictly commutative 
with a selected element AdcAd, there is a unique homomorphism 
f : EK [u] + A  of graded algebras with f (u) = I d .  

The tensor algebra T ( M )  of a K-module M is the graded K-module 

T,(M)=K,  T , (M)=Ms=M@ ... @ M  (n factors), 

with product given by the identification map n :  M " @ M ~ S M ~ + ~ .  In 
other words, the product is formed by juxtaposition, as in 

Clearly T is a covariant functor on K-modules to graded K-algebras. 
More generally, if M is a graded K-module, a tensor algebra T ( M )  is 
defined similarly, with 

where the second sum is taken over all di with 4+ . .. +a,=%. For 
M = MI this includes the previous case. The graded algebra T ( M )  with 
the obvious K-module injection M -+ T ( M )  (of degree 0 )  is characterized 
up to isomorphism by the following "universal" property: 

12* 
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Proposition 3.1. If M i s  a graded module and A a graded algebra 
over K, each homomor+hism g: M+A of graded modules, of degree zero, 
exteads to a unique homomor#hism f : T ( M )  +A of graded algebras. 

Proof. Set f ( % @ . . .  @rnP)=(g%) ... (gm&. 
In particular, if M is the free graded K-module F on n free generators 

x,, . . . , x,, each of a given degree, T(F) is the free graded algebra on 
these generators, in the sense that any set map 6: {x,, . . ., x,)-+A of 
degree zero extends to a unique homomorphism T(F) +A of graded 
algebras. When F has just one generator x,  T(F) is the polynomial 
algebra on the indeterminate x ;  when V is a vector space over a field K, 
T(V) is the tensor algebra of V over K, consisting of all covariant tensors 
in any number of indices (cf. V.2). 

The ground ring K itself is a graded K-algebra, with trivial grading. 
An augmented graded algebra is a graded algebra A together with a 
homomorphism 8 : A + K of graded algebras. The polynomial, exterior, 
and tensor algebras each have an evident such augmentation. An 
augmented algebra has been called a "supplemented" algebra (CARTAN- 
EILENBERG). In the present book, an "augmentation" of an object C in a 
category V will always mean a morphism e :  C-tB  into some fixed 
"base" object B of Y .  In the category of K-algebras, the base object 
is the algebra K; in the category of chain complexes of abelian groups, 
i t  is the trivial complex 2, and so on. 

Starting with graded K-modules, we have defined graded K-algebras 
by the product and identity element morphisms n and I which make the 
diagrams (3.1) commutative. By starting with other types of modules, 
we get the corresponding types of algebras. Thus, the diagrams (1 2) for 
(ungraded) K-modules define K-algebras; call them ungraded K-algebras 
when a distinction is necessary. Similarly 2-graded modules yield 
2-graded algebras, bigraded modules, bigraded algebras, and internally 
graded modules yield internally graded algebras. As before, internally 
and externally graded algebras are equivalent: Each graded algebra A 
determines an internally graded algebra A, = 2 A,, with product given 
by bilinearity as in 

( n ~ + . - . + ~ ~ ) ( P o + - " + r ~ q ) = ~ ~ i P ~ ,  
Note that a graded algebra isn't an algebra, but that an internally graded 
algebra may be regarded simply as an algebra (ignore the grading). The 
internally graded ideals, defined as above, are usually called homogeneous 
ideals; they are among the ideals of the associated ungraded algebra. 

Exercises 
I. Describe the free graded K-module on any graded set of generators. 

2. Describe the bigraded tensor algebra of a bigraded module, and prove the 
analogue of Prop. 3.1. 
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3. Let S be a set of elements in a graded algebra A. Show that the set of all 
homogeneous sums of products I s  A', for sES, is a graded ideal in A and is the 
smallest ideal containing S.  It is called the ideal generated by S (or, sflanned by S ) .  

4. Show that a graded K-algebra may be described as a graded ring R equipped 
with a homomorphism I  : K -+ R of graded rings such that always (I k) r = v ( I  k )  . 

4. Tensor Products of Algebras 

The tensor product of two graded K-algebras A and Z is their tensor 
product A@Z, as graded modules, with product map defined as the 
composite 

l@r@l - A A  A ,  (4.1) 

where t is the (signed) transposition (2.4) of Z and A, and with identity- 
element map given by I @I:  K =  K @ K +A @Z. In terms of elements, 
the product is given by 

@@a) (A'@ar)=(--l)degodega' A A r  B a a r  

and the identity of A @ Z  is In@ lz. The axioms for a graded algebra 
all hold. If f :  A-+Ar and g: Z+Zr are homomorphisms of graded 
algebras, so is f @g: A@Z-+A1@Z'. Also, A+A@l,, cr+l,@a define 
homomorphisms 

A - + A @ Z t Z  

of graded algebras. With these mappings, the tensor product A @ Z  is 
characterized up to isomorphism by the following property: 

Proposition 4.1. If  f : A+Q artd g: Z+52 are homomorphisms of 
graded K-algebras such that always 

there is a unique homomorphism h: A @Z+Q of graded algebras with 
h(A@I)=f (A), h(l@o)=g(a). 

The proof is left to the reader (set h (A @a) = f (A) g (0)) .  

If 52 is commutative, condition (4.2) holds automatically. Thus in 
the category of commutative graded algebras, A +A @ Z t  Z is a mi-  
versal diagram with ends A and Z. In the category of all (not necessarily 
commutative) algebras, the universal diagram requires a free product 
[COHN 19591, the couniversal diagram a direct product A x 2  as defined 
below in (VII.5.1). 

The tensor product of algebras, with this characterization, applies in 
all the other relevant cases: The tensor product of K-algebras (trivial 
grading) ; of rings (K=Z) ; of bigraded algebras. In each case the tensor 
product of algebras is commutative ( t :  A @ Z s Z @ A )  and associative, 
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and satisfies K@A=A; in other words, the natural isomorphisms 
(2.3) - (2.5) hold for algebras. The tensor product of algebras is also 
called their KRONECKER Product or, in older literature, their "direct" 
product . 

We also assign to each graded algebra A a graded ofiposite algebra 
AOP. This is defined to be the graded K-module A with the same identity 
element and the new product n~ z: A@A-tA (transpose the order of the 
factors, with the appropriate sign, then multiply). To avoid the in- 
convenience of writing two different products for the same pair of 
elements, we also say that the underlying graded module of AOP is an 
isomorphic copy of that of A, under an isomorphism I-+3PP, and with 
product defined by P p o P  = (- l)deg'degp (,uit)OP. This product is clearly 
associative. For example, if A is the (trivially graded) algebra of n x n  
matrices with entries in K, with the usual " row-by-column" matrix 
multiplication, then AoP is the ring of n x n  matrices with "column-by- 
row" multiplication. The same construction of an opposite applies to 
rings (as already noted in V.7), to bigraded algebras, etc., and in each 
case there are natural isomorphisms 

The tensor product may be used to construct various examples of 
algebras, as follows. 

Let PK [x i ] ,  i=1, . . . , 12, be the graded polynomial algebra (5 3) on the 
indeterminate xi of even degree di 2 0 .  The commutative graded algebra 

is called the graded polynomial algebra on the given xi. In each dimension 
m,  PK [x, ,  . . . , x,] is the free K-module on all 

x : @ . .  . @q with %&+ ... + end,=m (if ei=O, readgas1K); 

two such generators are multiplied by adding the corresponding ex- 
ponents. This polynomial algebra is the free commutative algebra on the 
generators xi of even degree, in the sense of the following characterization. 

Proposition 4.2. If A i s  a commutative graded algebra, any set map 
5 :  {x , ,  . . . , xn}+A with deg (Exi) = deg xi for aU i extends to a unique 
homomor+hism f : PK [x,  , . . . , xn] -+A of graded algebras. 

Proof. Since PK [xi]  is free on xi ,  the correspondence xi-+ 5 xi 
extends to an algebra homomorphism f i :  PK [xi]  +A. Since A is com- 
mutative, these fi combine by Prop. 4.1 to give a unique f :  PK-+A. 

If all x, have the same degree, this property shows that a change in 
the order of the indeterminates simply replaces the polynomial algebra 
by an isomorphic algebra; hence the order of the xi is irrelevant. If all 
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the xi have degree zero, PK [%, . . . , x,] is trivially graded. We may 
regard it as an ungraded algebra, and denote it as K [x,, . . . , x,] ; it  is 
the ordinary polynomial algebra in n indeterminates over K .  For n 
given constants kicK, Prop. 4.2 yields a unique homomorphism 
f : PK + K with f xi = ki , i=l , . . . , n. This is the homomorphism obtained 
by the familiar process of "substituting ki for xi, i=l ,  . . . , n". 

We next construct a similar free strictly commutative algebra with 
generators q of odd degree (degree 1 will suffice). For n letters y , . . . , u,, , 
each of degree 1, the tensor product (over K) 

is a strictly commutative graded algebra, called the exterior algebra over 
K with generators %, . . . , u,. AS before, 

Proposition 4.3. T h  exterior algebra E= EK [ y  , . . . , u,] is  i n  degree 1 
the free K-modzde El on the generators y , . . . , u,. If A is  any strictly 
commutative graded K-algebra, each modde hmomor$hism /I: El+Al 
extends to a unique homomor$hism f : E - t A  of graded algebras. 

The product of two elements e and e' in the exterior algebra is often 
written as e A e'. Clearly E is the free module on all products (in order) 
of generators ui ; the products of degree fi > 0 are 

UiUi ,... U i p = U ~ l A t 4 i , A  ... A % ,  

with 1 5 << i,< < ip 5 n. The number of such products is ($, n- fi), 
where 

(4.5) 

is our notation for the binomial coefficient. Any permutation a of the 
marks 1, . . . , fi can be written as the composite of sgna transpositions 
of adjacent marks, where sgn o r  1 or 0 (mod 2) according as the 
permutation o is odd or even, so the commutation rule yields 

Ukl uiar . . . Uiar =(-I)-* ui, ui, . . . uip. 

The tensor product K @, K' of two commutative rings is a commuta- 
tive ring, and the definition of E shows that 

There are similar isomorphisms for more u's, more factors, or for E 
replaced by P. The polynomials on n commuting indeterminates with 
coefficients in a not necessarily commutative (ungraded) K-algebra A 
may be defined as 

P ~ [ x l ,  ..., x , ]=A&P~[x l ,  ..., x,]. (4.7) 
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Exercises 
1. In any graded algebra A let C= C(A) be the ideal spanned (cf. Ex. 3.3) by 

all differences Ap - (- 1 ) m " p A  for m = deg A, n = deg p. Show that A/C is com- 
mutative, and that any homomorphism of A into a commutative algebra factors 
uniquely through the projection A-tAlC. 

2. The symmetvic algebra S ( M )  is defined from the tensor algebra as S (M) = 
T (M)/C ( T  (M)), for C as in Ex. 1. Show that Prop. 3.1 holds when A is commutative 
and T(M) is replaced by S (M), and that, for M free on a finite set of generators of 
even degrees, S (M) is the polynomial algebra. 

3. Make a similar construction of the exterior algebra on any graded K-module 
M consisting of elements all of degree 1. 

4. I nEx .  2, show S ( M @ N ) = S ( M ) O S ( N ) .  
5. Show that free strictly commutative graded algebra on any finite graded set 

of generators may be constructed as a tensor product of polynomial and exterior 
algebras. 

6. If P =  K[x] and Q= P[y], show that Q, as an (ungraded) K-algebra, is 
isomorphic to K[x, y ] .  Extend this result to the graded case with more indeter- 
minate~. 

5. Modules over Algebras 

Let A be a graded K-algebra. A left A-modde A  is a graded K-module 
together with a homomorphism nA : A @ A  - + A  of graded K-modules, of 
degree zero, such that the diagrams 

commute. Alternatively, a left A-module is a graded abelian group A  
together with a function assigning to each 1cA and a c A  an element 
1 a  E A  with deg (2a) = deg A+ deg a  such that always (for deg 1, = deg A, ,  
deg a, = deg a,) 

Indeed, given these conditions, the definition ka= ( k l A ) a  makes A  a 
graded K-module. By ( 5 . 3 ) ,  ( k l )  a  = k  (1a)  = 1  ( k  a) holds. With (5.2) 
this makes the function 1 a  K-bilinear, so defines nA as nA (A@a)=Aa.  
Finally, ( 5 . 3 )  is a restatement of the commutativity ( 5 . 1 ) .  

If C  and A  are left A-modules, a A-modde homomor#hism f :  C + A  
of degree d is a homomorphism of graded K-modules, of degree d, such 
that 

fnc = n A ( I @ f ) :  A @ C - + A  ; (5.4) 

in other words, such that always 

f ( A C )  = ( - ~ ) ( ~ ~ g f ) ( ~ ~ g ~ )  1  ( f  C )  ; (5.4') 
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the usual sign arises from the definition (2.2) of l@f .  The set of all 
such f of degree d is a K-module which we denote as H o ~ - ~ ( C ,  A). 

The class ,A of all left A-modules is a category with morphisms 
hom, (C, A) = Horn! (C, A) those of degree 0. In ,A, direct sums, sub- 
and quotient-modules, kernel, image, coimage, and cokernel are defined 
as expected, with the usual properties. For each n, Homn (C, A) is an 
additive bifunctor on A to K-modules, contravariant in C and co- 
variant in A. The fam' d y Hom, (C, A) = {Hom; (C, A), n = 0, f I ,  & 2, . . .) 
is a similar bifunctor on ,A to 2-graded K-modules. According to the 
definition (5.4) of a A-module homomorphism, we can also describe 
Hom, (C, A) as that 2-graded K-module which is the kernel of the natural 
homomorphism 

of 2-graded K-modules defined by 

Proposition 5.1. The functor Horn, is left exact; that is, if 
D-+B+C-+O is a short right exact sequence in ,A, then the induced 
sequence 

0 -+HornA (C, A) -+HornA (B, A) -+HornA (D, A) (5.6) 

is exact, with the corres$onding result when A is re#laced by a short left 
exact sequence. 

Proof. Construct the commutative 3 x3 diagram 

By right exactness of the tensor product (Thm. V. 5 .I), A @ D +A @ B -+ 

A @C+O is right exact. The left exactness of HornK makes the last 
two rows left exact; by the definition (5.5), all three columns are left 
exact (when starting with 0 +- . .). The 3 x3 lemma (in the strong form 
of Ex. 11.5.4) now shows the first row left exact, q.e. d. 

Right A-modules G are treated similarly. A homomorphism 
y : G -+ G' of right A-modules must satisfy y (g 1) = (y g) 1 ;  no sign is 
needed (as in (5.4')), because the homomorphism and the module 
operations act on opposite sides of gcG. A right A-module G may also 
be described as a left AoP-module, with operators switched by 3PPg= 
( - I ) ( ~ ~ ~ ' )  (degg)gjl; this definition insures that lop (poPg) = (PpoP) g. 
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Given modules G, and ,A, their tensor product over A is a graded 
K-module. I t  is defined to be the cokernel of the map g, of graded 
K-modules 

G @ A @ A ~  G@A+G@,A+O (5.7) 

given as p,(g@l@a)=gil@a-g@ila. This amounts to stating that 
each (G @,A), is the K-module quotient of (G @A), by the submodule 
generated by all differences g w a - g  @ l a  in (G @A),. This tensor 
product is characterized via the middle linear functions to a graded 
K-module M, just as in Thm. V.l.l: 

Theorem 5.2. If f is a family of K-bilinear functions fp,, on GpxAq 
to Mp+, which is A-middle associative in the sense that always f (gil, a) = 
f (g, l a ) ,  there is a unique homomorphism w : G @,A +M of graded 
K-modules, with degw = 0, such that always o (g @a) = f (g, a). 

Proof. Each fp,, is bilinear, hence determines w;,,: Gp @A,+Mp+, 
with wf(g @a) =fp,, (g, a) ; the middle associativity insures that o' 
vanishes on the image of the map p, of (5.7), and hence that w' induces a 
map o on the cokernel G @,, A of g,, as desired. 

This result implies that A-module homomorphisms y: G-tG' and 
a :  A+Af of degrees d and e, respectively, determine a homomorphism 
y @a: G @IA A +G' @,A' of degree d+ e of graded K-modules by the 
formula 

(y @a) (g @a) = (- 4 ) (dega) (degg) yg@aa ,  ( 5  4 
with the expected rules for composing (y @a) with (yf@cc') - with a 
sign (- ~ ) ( ~ ~ g ~ ) ( ~ ~ g f ) .  In particular, G BAA is a covariant and biadditive 
bifunctor on the categories A, and ,&of right and left A-modules to 
graded K-modules. From the definition (5.7) it follows as in Prop. 5.1 
that this functor carries right exact sequences (in G or A) into right 
exact sequences. 

Modules over other types of algebras (2-graded, bigraded, etc.) are 
correspondingly defined. Note that each A-module A automatically 
carries the same type of structure as A (e.g., graded when A is graded, 
bigraded when A is bigraded). We may introduce modules with added 
structure; thus a graded module over an ungraded algebra A means a 
module over A, regarded as a trivially graded algebra - exactly as for 
graded modules over the commutative ring K. 

If A and 2 are two graded K-algebras, a A-2'-bimodule A - in 
symbols ,Az - is a graded K-module which is both a left A-module 
and a right 2-module such that always ( la)  a= i2 (aa). This condition 
amounts to the commutativity of an appropriate diagram. Note that 
k a = (k 1,) a = a (k I,), so that the same given K-module structure on A 
comes from the left A-module structure by pull-back along I: K+A, 
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or from the right Z-module structure by pull-back along I: K+Z. 
' For example, any graded algebra A is a A-A-bimodule. Since A is a 

left A-module and Z a right Z-module, the tensor product A g K Z  is a 
A-Z-bimodule; in fact, the free bimodule on one generator 1 8 1 .  Simi- 
larly, for modules .A and B, the tensor product A g K B  is canonically 
a A-Z-bimodule via I (a @ b) a = I a @ b a. 

The typographical accident that a letter has two sides could hardly 
mean that modules are restricted to one-sided modules and bimodules. 
Indeed, we naturally reach trimodules; for example, modules .A and 
,Bn will have a tensor product A gK B which is canonically a right 52- 
and left A-Z-module. Here we have called C a left A-Zlmodule if it is 
both a left A- and a left Z-module such that always 

Fortunately we can reduce trimodules to bimodules or even to left 
modules over a single algebra. By setting (I @a) c=I(ac), each left 
A-Z-module may be regarded as a left (A@Z)-module, or conversely. 
Similarly we have the logical equivalences 

Bz-2PPB* AAz-(A@~o~) A (5.91 

v i a o O P b = ( - ~ ) ( ~ ~ g ~ ) ( ~ ~ g ~ ) b u ,  (i l@aOP)a=(-l)(deg~(d*a)Iau. This reduc- 
tion carries with it the definitions of Hom and @ for bimodules. Thus 
for bimodules ,GA and .Az the bimodzlle tensor product 

G@A-zA=G@(A,~)A (5.10) 

is by (5.7) the quotient of G gK A by the graded K-submodule spanned 
by all 

gI@a-g@la,  ag@a- ( - ~ ) ( ~ ~ g " ) ( ~ q g + ~ ~ g ~ ) ~ @ a a .  

The vanishing of the first expression is A-middle associativity; that of 
the second is Z-outside associativity. Similarly the graded K-module of 
birnodule homomorphisms of .C, into .Az is written HornA-, (C, A) = 

Hom(~g,,) (C,A). 

Exercises 
1. An (ungraded) K-algebra A is a ring R equipped with a ring homomorphism 

I: K+R with I (K)  in the center of R. Show that a left A-module A is just a left 
R-module, with the K-module structure of A given by pull-back along I. Show 
also that HornA (C, A) = HomR (C, A) and G @A A = G aR A. 

2. As in Ex. i ,  reduce modules over the graded algebra A to modules over A, 
regarded as a graded ring (cf. Ex. 3.4). 

6. Cohomology of free Abelian Groups 
As an illustration of tensor products of algebras we calculate the 

cohomology of a free abelian group. 
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For the group ring Z (17,xn2) of the cartesian product of two multi- 
plicative groups 17, and U2 there is a natural isomorphism 

For Z(17,) is characterized (Prop. IV.1.1) by the fact that any multi- 
plicative map pi of Hi into a ring S, with pi (I) =is, extends to a ring 
homomorphism Z (17,) + S. By Prop. 4.4, a multiplicative map 
p : fix& + S with p (1) = 1 then extends to a unique ring homomorphism 
Z (17,) @Z (17,) + S, so that Z (a) @Z (17,) satisfies this characterization 
of the group ring Z (ax17,). 

Let C, be the infinite (multiplicative) cyclic group with generator t, 
and R=Z(C,) its group ring. Any element of R is a polynomial in 
positive, negative, and zero powers of t, hence may be written as tm+ (t) 
where + is an (ordinary) polynomial in positive powers of t with integral 
coefficients. The kernel of the augmentation E: R+Z is the set of all 
multiples of t - 1, hence the exact sequence 

with Ru the free R-module with one generator u and au= t-I . Thus 
a :  R t R u  is a free R-module resolution of ,Z; it is a special case of the 
resolution found in (IV.7.3) for any free group, and is analogous to the 
resolution (1.3) for a polynomial ring. For any R-module A,  H1 (C,, A )  
may be calculated from this resolution to be the factor group 
A/[ta-ala~A], while Hn(CoJ, A)=O if n>1. 

The free abelian group 17 on generators t,, . . . , t, is the cartesian 
product of n infinite cyclic groups. By (6.1) the group ring Z(n)  is 
R1 @ . . . @Rn, where each R%s the group ring Z (C, (ti)), while the 
augmentation E : Z (17) +Z is the tensor product @I . . @ E" of the 
augmentations Ri+Z. For each index i form the Ri-projective 
resolution X b  RRitRiui  as in (6.2). Form the tensor product complex 

it is a chain complex of free R1 @ . . . @ Rn =Z (IT)-modules. 
On the one hand, each Xi is a complex of free abelian groups. The 

iterated KUNNETH tensor formula (Thm. V.10.1) shows that the homo- 
logy product 

is an isomorphism in each dimension m = q+ . . + m, . But H, (Xi) = o 
unless mi=O, while E ~ :  Ho (Xv )rZ, so Hm (X) = 0 for m positive, while 
E : Ho(X) =Z. This proves that X is a free resolution of Z as a 17-module. 
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On the other hand, each Xi is the exterior algebra ERt [ui] ; as in 
(4.6), X is the exterior algebra Ez(q [ul, . . . , u,], so has the form of an 
exact sequence 

O t Z t X , , t X l t  - . -  t X , t O  

of 17-modules, with each XP free on the generators uil @ .. . muip with 
I 5 4 < . . . < i* 5 n. Since 8% =ti--I, the boundary formula (V.9.2) for 
the tensor product gives 

where the .- indicates omission. The cohomology of 17 may be computed 
from this resolution. For any 17-module A ,  

For p 5 n, a P-cochain f :  XP + A ,  as a module homomorphism, is deter- 
mined by @, n - +) arbitrary elements f (uil @ . . . @ %) E A ,  and 

In particular, if A is an abelian group regarded as a trivial 17-module 
(t,a=a for all i), then s f  is always zero, so Hfi(fl, A)  is simply the 
direct sum of (p, n- p) copies of A .  

Exercises 
1. For II free abelian as above, show that IP ( n ,  A) is the quotient LIM, where 

L is the subgroup of A@ . . . $A (n summands) consisting of all (al, . . . , a,) with 
tiai-t .a.=ai-ai 3 * always, while M i s  all (tla-a, ..., t,a-a) for aEA. Interpret 
this result in terms of classes of crossed homomorphisms. 

2. Obtain a similar formula for Ha (II, A) and compare this with the result found 
for two generators in IV.3.7. 

3. Determine Hn(17, A) for II free abelian on n generators. 

7. Differential Graded Algebras 

The resolution X of the last section is both a complex and an algebra, 
with the boundary of a product given by the Leibniz formula (1.5). 
Such we call a DG-algebra. Further examples of DG-algebras will 
appear in the next chapter; they will be used extensively in Chap. X, to 
which the following systematic development will be relevant. 

A positive complex X =  (X, a) of K-modules is a graded K-module 
X =  (X,) equipped with a K-module homomorphism a= a, : X -+X of 
degree -I such that aa = 0. A positive complex will tbus also be called 
a differential graded module (DG-module for short): the homology of 
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X is the graded K-module H (X) = (Hn(X)). A chain transformation 
( = DG-module homomorphism) f : X-tX' is just a homomorphism of 
graded modules, of degree 0, with ax,f = f ax. The set of all such f is 
an abelian group hom(X, X'); with these morphisms the DG-modules 
form a category. Similarly, a not necessarily positive complex of 
K-modules is a differential 2-graded module (DG,-module). 

The tensor product X @  Y of two DG-modules is the tensor product 
over K of the graded modules X and Y equipped with the differential 
a = ax 81 +I 8 a,. According to the definition (2.2) of 1 @ a, this gives 

in agreement with the previous definition (V.9.2) of the tensor product of 
chain complexes. This tensor product of DG-modules satisfies the 
standard natural isomorphisms (2.3), (2.4), and (2.5) ; in the latter, the 
ground ring K is .regarded as a DG-module with trivial grading and 
differential a = 0. 

For DG-modules X and Y the 2-graded module Hom(X, Y) = 

{Homn (X, Y)) has a differential defined for each /€Hornn as a,f = 

ayf + (-l)"+l f ax, as in (111.4.4). Thus Hom(X, Y) is a DG,-module. 
Note especially that Hom(X, Y) with capital H in "Hom" stands for 
homomorphisms of graded modules of all degrees, while hom(X, Y), 
with lower case h, includes only the homomorphisms of DG-modules, of 
degree O. 

A DG-algebra U= (U, a) over K is a graded algebra U equipped with 
a graded K-module homomorphism a: U -t U of degree -1 with a 2 =  0, 
such that the Leibniz formula 

a (261212) = (a%)u2+ (--l)degU1% (8~2)  (7.2) 

always holds. Similarly, a homomorphism f :  U-tU'  of DG-algebras 
is a homomorphism of graded algebras (conditions (3.3)) with af = f a. 
With these morphisms, the DG-algebras form a category. 

By the Leibniz formula the product of two cycles is a cycle, and the 
product of a boundary by a cycle u, is a boundary a (u,u2). Hence 
a product of homology classes in H (U) may be defined by (cls y) (cls u,) = 
cls(u,u,); this makes H(U) a graded algebra. Any homomorphism 
f : U -+ U' of DG-algebras induces a homomorphism f, : H ( U )  +H(U') 
of graded algebras. 

The telzsor product U @ U' of two DG-algebras is their tensor product 
as graded algebras, with the differential given by (7.1). The analogue 
of Prop. 4.1 holds. The opposite Uo'' of a DG:algebra is the opposite of U, 
as a graded algebra, with the same differential. 

A left U-module X =  (X, a) is a left module over the graded algebra U 
equipped with a graded K-module homomorphism a: X + X  of degree 
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-1 with aa=o, such that the formula 

always holds. Equivalently, a left U-module X is a DG-module over K 
equipped with a homomorphism UgKX-+X of DG-modules, of degree 
0, written u @ x +u x ,  such that the standard conditions 

always hold, as in the diagrams (5.1). If X and Y are U-modules, a 
morphism t :  X-+ Y is a homomorphism of the whole structure: A homo- 
morphism of DG-modules, of degree 0, which is also a homomorphism 
of modules over the graded algebra U; in other words, t is additive and 

The K-module of all such morphisms 6  is written hom,(X, Y). With 
these morphisms, the left U-modules form a category in which sub- 
and quotient modules, kernels, images, coimages, and cokernels are 
defined as usual. Right U-modules are treated similarly. 

On this category we define bifunctors Horn, and 8,. For U-modules 
X and Y, a graded U-module homomorphism f :  X + Y  of degree -n 
is a homomorphism of X to Y, regarded just as modules over the graded 
algebra U; in other words, f is additive and 

but f need not commute with 8. The set of all such f is a K-module 
Hom",X, Y). The family Hom, (X, Y) = {Homc (X, Y)) becomes a 
DG,-module over K when the differential 8, : Homn - t ~ o m " + l  is defined 
by the usual formula 

aHf= a,f+ (-qU+lf a,. (7.6) 

Thus Hom, with capital "H" differs from hom,, with lower case "h" : 

Hom, (X, Y) is a DG,-module over K; elements all f : X + Y; 

hom, (X, Y) is an (ungraded) K-module; elements all 6 :  X +  Y. 

Moreover, hom, is the K-module of cycles of degree 0 in the complex 
Hom,. 

Let X be a right U-module, Y a left U-module. Considered jusi as 
modules over the graded algebra U, they define a graded K-module 
X @,Y which becomes a DG-module over K when the differential is 
defined by (7.1) ; for, by that formula, a (xu @ y) = a (x @u y) (U-middle 
associativity). Thus the elements of Hom, and @, are defined from 
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the grading and module structure of X and Y; the differentials on HornU 
and come from the differentials on X and Y. 

For two DG-algebras U and U' a U- U'-bimodule (X, a) has one 
differential 8 which satisfies (7.3) for 8 (u x) and the corresponding rule 
for a (xu') - just as a bimodule has just one K-module structure induced 
from U or from U'. 

The augmented case is reIevant. A different& graded azpzented 
algebra U (DGA-algebra, for short) is a DG-algebra together with an 
augmentation E: U+K which is a homomorphism of DG-algebras. Here 
the ground ring K is regarded as a DG-algebra with trivial grading 
(KO = K) and differential (a= 0). Such an augmentation is entirely 
determined by its component of degree 0, which is a homomorphism 
E ~ :  UO + K of (ungraded) K-modules with 

A DG-algebra U is connected if Uo= K and a: Ul+ Uo is zero; this 
implies Ho(U)sK (hence the choice of the term "connected": A topo- 
logical space X is path-connected precisely when Ho(X) g Z ) .  A con- 
nected DG-algebra has a canonical augmentation &,=I : Uo+K. 

Next some examples of DG-algebras. Take the polynomial algebra 
PK[x] in an indeterminate x of degree 1, select some k0€K, and set 
ax=ko; with this, ax2"=0, a ~ ~ ~ ~ ~ = k ~ ~ ~ ~ ,  and P is a DG-algebra. 
Similarly, the exterior algebra EK [u], with u of degree I ,  has a unique 
differential with au = KO, and is a DG-algebra. 

If X is a DG-module over K, the tensor algebra T(X) has a unique 
DG-algebra structure such that the injection X-+ T(X) is a chain trans- 
formation; the requisite differential in T(X) is given by 

with r,= deg x,+ . . . + deg xi-, , in accord with the sign convention. 
The analogue of Prop. 3 .I holds for this T(X). 

One may construct universal DG-algebras on given generators. Thus 
if x has degree 2 and u degree I ,  there is exactly one DG-algebra structure 
on V = P[x] @ E[u] for which ax= u, for by the Leibniz rule (7.2) the 
differential is given on the free K-module generators of the algebra V as 

If u2 is a selected element of degree 2 in any strictly commutative DG- 
algebra U, there is a unique homomorphism f :  V-t  U of DG-algebras 
with f x = u2 (and hence with f u = azc,). 

Similar considerations will define differential internally graded and 
differential 2-graded algebras. 



8. Identities on Horn and @ 4 93 

Exercises 
1. For DG-modules over K, show that the exact homology sequence (Thm. 11.4.1) 

for a short exact sequence E:  W-X-t Y of DG-homomorphisms x and a takes the 
form of an exact triangle 

H(W) 3 H(X) 

& d* 
H( Y) 

(kernel = image at  each vertex), with x+ and a+ homomorphisms of graded modules 
of degree 0, while the connecting homomorphism aE has degree -I. [The usual 
long exact sequence spirals around this triangle, dropping one level with each aE .] 

2. Prove that a DG-algebra U is a DG-module over K with homomorphisms 
n: U @ U-+ U and I: K +  U of DG-modules, of degree 0, satisfying (3.1). Give a 
similar definition of U-modules by (5.1), and show that Homu and @U may be 
obtained from HornK and BK, for DG-modules, by the analogues of (5.5) and (5.7). 

3. For V as in (7.7) determine the graded homology algebra H(V) when K=Z 
and when K = Z p  (the field of integers modulo p). 

4. Construct a universal strictly commutative DG-algebra on a given finite set 
of generators (of odd and even degrees). 

5. For degxi=2, degui=l, the graded algebra P[xl, ..., xnl@E[ul. ..., u-I 
is isomorphic to the tensor product of n algebras 5 = P[xi] @E[ui] like that treated 
in the text, hence has a unique differential with axj= ui, i= I, . . . , n. For any 

. . 

aP a * polynominal p in the xi, show that ap = z- @u,, where -denotes the usual a xi a xi 
partial derivative. Hence show directly that @p= 0. Note that a p  is the usual 
differential of the function p of n variables if we replace ui by a symbol axi. 

8. Identities on Horn and @ 

Consider modules and bimodules over various graded K-algebras 
A, 2, and D (which may equally well be DG-algebras). The functors 
Hom,, and @,, have inherited module structure as follows 

definedforf: C+Aby(ofa)(c)=o[f(uc)] and forg@abyo(g@a)o= 
og @am, just as in (V.3.2) and (V.3.1). 

There are several natural isomorphisms for iterated tensor products. 
Thus 

A @ A A ~ A l  LA) (8.1) 

is given by I @a +la .  The commutative law 
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is given by g @a + (- l)(degg)(dega)a @g. The associative law 

is given by a[a @ (b @c)] = (a @ b) @c ; here B @,C is regarded as a left 
P-module with operators cc, (b @c) = (-l)(degb)(de6@) b @WC. TO show this 
map a well-defined, observe first that for fixed a the function (a @b) @c 
is bilinear and Z-middle associative in b and c. By Thm. 5.2 there is 
for each a a unique homomorphism F(a) : B @, C + (A B) @,@, C 
which satisfies F(a) (b @ c) = (a @ b) @ c. The function F(a) (b @ c) is again 
bilinear and (A@P)-middle associative in its arguments in A and 
B @,C. By Thm. 5.2 again there is a unique homomorphism a with 
a[a @ (b @c)] = (a @ b) @c. The inverse of a is constructed similarly. 
The associativity law also holds in simpler cases; e.g., with Q omitted 
(set Q= K in (8.3)). A general version of the commutative law is the 
middle f  ow interchange 

defined for modules A,-,, , AB,y, AKz. ,-I;.,D by setting 

In the DG-case, all of these natural isomorphisms are isomorphisms of 
DG-modules over K, as one verifies by showing that each of the given 
isomorphisms commutes with the differential which we have defined 
on @u. 

For the functor Hom, alone, we have the natural isomorphism 

given by f +f (I) and the natural homomorphism 

K +HornA (A, A), @e6) 

given by mapping IK into the identity homomorphism 1, : A +A. 

Adjoint associativity is the natural isomorphism 

for modules I)AA, ,,B,, and ,C,, defined for f :  A @A B+C by 
[(q f )  a] b = f  (a @ b), just as in th'e case of rings (V.3.5). In the DG-case 
one checks that q commutes with the differentials defined on both sides, 
hence is an isomorphism of DG,-modules over K. In particular, taking 
the cycles of degree zero on each side of (8.7) gives the natural iso- 
morphism 

hom~-,(A @A BJ C) ~ O ~ Q - A  (A, Hom=(B, C)) (8.8) 
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- where, as above, hom with lower case h denotes homomorphisms of 
degree zero of the full DGZ-structure. In this case, since A has no elements 
of negative degree, the 2-graded Hom (B, C) on the right may be re- 
placed by the graded module (Hom-" (B, C), n = 0,1, . . .). 

Com~osition of homomorphisms yields a map 

which is natural in A and C. Another useful natural homomorphism is 
the Hom- @I interchange for modules ,B, ,A, A,B', ,#A', 

C : Hom, (B, A) @Horn,, (B', A') ( B  @ B', A @A1), (8.10) 

defined for f :  B +A and f ' :  B' +A' by 

[C (f @I f ' ) ]  (b @ b') = (-l)(deg")(degb'f b @I f r  b' 

In the DG-case, this and composition are homomorphisms of DG- 
modules. 

A notational curiosity emerges here. In this definition, f @ f' denotes 
a typical element in the tensor product shown on the left of (8.10). 
Previously, in ( 2 4 ,  we used f @f' to denote the homomorphism 
B @ B'+A @ A' here written as C (f @I f'). The two symbols f @ f' need 
not agree, because C may well have a kernel not zero. This ambiguity 
is not serious; long ago we observed that the tensor product a@b of 
two elements has meaning only when the modules in which these ele- 
ments lie are specified, and may become zero when one or the other 
module is enlarged. 

Various other natural homomorphisms may be defined by com- 
position of these. For example, the evaluation homomorphism 

is given for f : A + B by e (f @a) = f (a) ; i.e., by taking the value of the 
function f at a. I t  may be written as the composition 

of the maps (8.5), (8.9), and (8.5). I t  would be instructive to know the 
various identities holding between composites of the assorted natural 
homomorphisms (8.1) - (8.1 0) described above. 

As an application; consider free and projective A-modules over a 
graded algebra A. A left A-module P is projective, as usual, if each 
epimorphism a: B+ C of left A-modules, of degree 0, induces an epi- 
morphism homA(P, B) + hOmA(P, c). The free A-module on the graded 
set S of generators is the A-module C containing S and characterized up 
to isomorphism by the usual property (Prop. 1.5.1) that each set map 

13* 
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S+,A of degree zero extends to a unique A-module homomorphism 
C+A; as usual, a free module is projective. The algebra A itself is the 
free A-module on one generator i of degree 0; the free A-module on any 
S may be constructed as the direct sum A S = z A s  for scS. Here As 
denotes the left A-module with elements As of degrees deg (As) = 
deg A+deg s. Note that AS =A@ K S, where KS = Ks is the free 
graded K-module on the generators S. In other words, each free graded 
K-module F yields a free A-module A @F. Similarly, 

Proposition 8.1. If M is a projective graded Kmodule and A a graded 
K-algebra, then A @ M is a projective A-module. 

The proof, as in Cor. V.3.3, follows from the adjoint associativity 

The same associativity proves more generally 

Proposition 8.2. For each graded K-module M define a homomorphism 
e : M -+A @ M of graded K-moddes by e (m) =l @m. This e is universal: 
For every left A-module A each homommfihism g: M-+A of graded 
K-modules of degree 0 can be factored uniquely through e as g= y e, with 
y : A @ M -+ A a A-module homomorphism of degree 0. 

Proof. Observe that y must have y (A @m) =lg(nz) €A;  the right 
side of this formula is K-bilinear in A and m, hence defines y uniquely. 

For "e is universalJ' in the sense of this proposition we also say that 
A @ M is the relatively free A-module generated by the graded K-module 
M, or that A @ M  is (A, K)-free. Similarly, for two graded algebras A 
and 2 ,  each A M @ 2  is a (A-2, K) relatively free bimodule ; if M is 
K-projective, it is A-Z projective; if M is K-free, it is A-2-free. 

For Thm. X.7.4 we shall need 

Proposition 8.3. I f  B and B' are free left A- and A'-modzdes of filzite 
type, the Hom- €31 interchange is a natural isomorphism 

~ : H O ~ ~ ( B , A ) @ H O ~ ~ ~ ( B ' , A ' ) S H O ~ ~ ~ ~ ~ ( B @ B ' , A  @A'), (AA, n#A'). 

Proof. By direct sums, this reduces to the case B =A, B'=AP ; in 
this case is the identity A @A'S A @ A'. 

Exercises 
I. Give a direct proof of the middle four interchange; that is, show that t as 

specified is well defined and has an inverse. 
2. Deduce the middle four interchange by repeated applications of the associa- 

tivity (8.3) and A @K B s% B BKA. 
3. For modules ACZ and AAn describe the bimodule structure on H o m ~  (C, A)  

(Attention to signs !). 
4. Describe the behavior of composition (8.9) for a map B + B'. 
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5. Show that 5 of (8.10) may have non-zero kernel (Hint: use finite cyclic 
groups). 

6.  Construct a natural homomorphism 
A @aHom~ (B, C) + Homn (Homn(A, B), C) . 

9. Coalgebras and Hopf Algebras 
A formal dualization of the notion of an algebra yields that of a 

coalgebra. These coalgebras have recently gained importance from a 
variety of topological applications; for instance, the singular complex 
of a topological space turns out to be a coalgebra. 

A graded coalgebra W over the commutative ground ring K is a graded 
K-module W with two homomorphisms y: W -t W @ W and s: W+K 
of graded K-modules, each of degree 0, such that the diagrams 

are commutative. The first diagram gives the associative law for the 
diagonal map (or coproduct) y; the second diagram states that E is a 
cozmit. Coalgebras which are not associative or which have no counit 
are sometimes useful, but will not occur in this book. A homomor~hism 
p : W -+ W' of coalgebras is a K-module homomorphism of degree 0 such 
that the diagrams 

WL W@W W L K  
b 1- 1. ll (9.2) 
W ' ,  W1-K 

are commutative. If the following diagram is commutative 

we call the graded coalgebra W commzltative. As usual, our definition 
includes the special cases of coalgebras (W trivially graded) and graded 
corings (K=Z). DG-coalgebras may also be defined by the diagram @.I), 
for W a DG-K-module. In particular, the ground ring K itself is a 
(trivially graded) K-coalgebra with diagonal map K -+ K @ K the canonical 
isomorphism and counit the identity K 4  K. 

If W and W' are graded coalgebras, their tensor product W @I W' (as 
graded modules) is a graded coalgebra with diagonal map the com- 
posite 

v&' 1@7@1 
W@W'-W@W@W'@W'-----+ (W @ w 1  @ (W @ ' 8 (9.4) 

for z as in (9.3), and with counit E@E': W@IW'+K@K=K. 
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For completeness, let us also define comodules by dualizing the 
diagrammatic definition (5.1) of a module over an algebra. A graded 
left W-comodde over the graded coalgebra W is a graded K-module C 
equipped with a homomorphism 9: C -+ W @ C of degree zero such that 
the diagrams 

C -L W@C C = K@C 

1. v 0 1  
pe. pi 8 0 1  I1 (9.5) 

W@C-W@W@C, W@C-K@C 

both commute. 
A graded Ho#/ algebra V is a graded K-module V = {K} which, with 

this grading, is both a graded algebra for a product map n: V @ V -t V 
and unit I :  K -+ V and a graded coalgebra for a diagonal y and a counit E ,  

and such that 

(i) I  : K -t V is a homomorphism of graded coalgebras; 

(ii) E : V -t K is a homomorphism of graded algebras ; 

(iii) n : V @ V -t V is a homomorphism of graded coalgebras. 

Condition (i) states that y (1) = I  @1 and that & I :  KJ K is the identity. 
Condition (5) states that V is an augmented algebra, with augmentation 
the counit. In view of the definition (9.4), condition (iii) states that the 
following diagram commutes 

l @ @ l  V@V - V@V@V@V- V @ V @ V @ V  

k v J.0. (9.6) 
v > V @ V  , 

for z as in (9.3). But (n@n) (4 @z 8 4 )  is the product map in the tensor 
product algebra V @ V ,  so this diagram may equally well be read as 

(iii') y : V -t V @ V is a homomorphism of graded algebras. 
Thus (iii) is equivalent to (iii'). 

A homomorphism v :  V -t V' of Hopf algebras is a K-module homo- 
morphism which is both an algebra and a coalgebra homomorphism. 

Let V and V' be graded Hopf algebras over K. A formal argument 
from the definitions shows that V @ V' is a graded Hopf algebra over K, 
with grading that of the tensor product of graded modules, product and 
unit that of the tensor product of algebras, coproduct and counit that 
of the tensor product (9.4) of coalgebras. 

Now for some examples of Hopf algebras. 
The ground ring K is itself (trivially) a graded Hopf algebra. 
Let E = EK [u] be the exterior algebra on one symbol u of degree 1. 

Since E is the free strictly commutative algebra on one generator u, 
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there are unique algebra homomorphisms E : E + K, y : E + E @ E with 

With this structure, we claim that E is a Hopf algebra. To prove it a 
coalgebra, note that (y @I) y and (1 B y )  y may both be characterized 
as the unique homomorphism 7: E + E  @ E  @E of algebras with 
~(2~)=%@1@1+1@~@1+1@1@~; by asimilar argument ( ~ @ l ) y = I  
= (1 @ E) y. Condition (i) for a Hopf algebra is trivial, while conditions 
(ii) and (iii') follow by the definitions of E and y. 

Let P= PK [x] be the polynomial algebra in one symbol x of even 
degree. By a similar argument, it is a Hopf algebra with 

Since y is an algebra homomorphism, y (x") = (y x)", so 

y , ( x n ) = z  ( A q ) ~ p @ ~ ~  (Z%d=(++q)!I(*!q!). (9.9) 
P+q=n 

By taking tensor products of Hopf algebras, it follows that the ex- 
terior algebra EK [%, . . . , %,] on generators % of degree 1 or the poly- 
nomial algebra PK [x,, . . . , x,] on generators xi of even degrees is a Hopf 
algebra. 

The group ring2 (17) of any multiplicative group is a (trivially graded) 
Hopf algebra over Z, for if ~ € 1 7 ,  the function y (x) = x@x on 17 to 
Z (I7) @Z (17) carries 1 to 1 and products to products, hence (Prop. IV.1 . I )  
extends to a ring homomorphism y : Z (n) +Z (Il) @Z (n). With the 
usual augmentation E : Z (n) +Z this makes Z (17) a coalgebra (condition 
(9.1)) and a Hopf algebra, with unit I: Z+Z(n) the injection. Any 
homomorphism c :  17-+17' of groups induces a homomorphism 
Z (5) : Z (n) +Z (IT) of Hopf algebras. 

For any commutative K, the groqb algebra K(17) is defined as the 
K-algebra K@J(D); equivalently, it is the free K-module with free 
generators the elements xc17 and product determined by the product 
in 17. It is a Hopf algebra, with coproduct y (x) = x @ x. 

Now consider left modules A, B, C over a graded Hopf algebra V: 
that is, modules over the graded algebra V. The tensor product A B K  B 
is a left (V @V)-module, but becomes a left V-module by pull-back 
along the diagonal y : V + V @ V: We write this module as A @ B = 

(AgKB). The associative law (9.1) for y proves the usual associativity 
law A @ (B @ C) = ( A  @ B) @ C for this tensor product. Moreover, the 
ground ring K is a left V-module ,K by pull-back along E: V -+ K, and the 
rule (E @I) y =I = (1 @ E) y gives the isomorphism K @A r A EZ A @ K. 
Using these two isomorphisms, parallel to (2.3) and (2.5), one can define 
an algebra over a graded HoPf algebra V - by exactly the mechanism used 
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to define algebras over K itself. If the coproduct y is commutative (9.3), 
one can obtain the isomorphism z : A@ B E  B @ A  for V-modules, and 
in this case one can define the tensor product of algebras over V. 

Exercises 
I. If M is a K-module show that the tensor algebra T(M) has a unique Hopf 

algebra structure with cp (m) = m @ 1 + 1 @m. 
2. If A is a graded K-algebra with each Aq finitely generated and projective as 

a K-module, show that the dual A* is a coalgebra with diagonal map induced by 
n* (use Prop.V.4.3). Under similar hypotheses, show that the dual of a Hopf 
algebra is a Hopf algebra. 

3. Characterize the group algebra K (n) by the analogue of Prop. IV.l. 1. 

Notes. Originally, a linear associative algebra meant an algebra over a field K 
which was of finite dimensions as a vector space over that field, and the classical 
theory dealt with the structure of such algebras (e.g. the WEDDERBURN Principal 
Theorem X.3.2). In analysis, algebras of continuous functions were vector spaces 
of infinite dimension. In topology, the cup product in cohomology (Chap.VII1) 
introduces graded algebras over a commutative ring not a field. BOURBAKI and 
CHEVALLEY [I9561 codified the present general concept of a graded algebra, and 
emphasized a principle due to E. H. MOORE: State theorems in the maximum 
useful generality; e.g., for graded algebras, not just for rings. Hopf algebras first 
occurred in H. HOPF'S study of the cohomology of a Lie group. Their algebraic 
structure has been examined bv various authors (ex., BOREL r19531. HALPERN 

[1958]) ; for a systematic treatment see M I L N O R - M O O ~ E - [ ~ ~ ~  73 .  ~ i ~ e b r t &  over Hopf 
algebras were recently considered by STEENROD [1962]. 

Chapter  seven 

Dimension 
This chapter is a brief introduction to the extensive applications of 

homological algebra to ring theory and algebraic geometry. We define 
various dimensions, use them in polynomial rings and separable algebras, 
and in the Hilbert theorem on syzygies. Subsequent chapters are indepen- 
dent of this material, except for the description ($3)  of Ext and Tor for 
algebras and the direct product and ground ring extensions for algebras. 

1. Homological Dimension 

For abelian groups C and A, ~ x t i  (C, A) is always zero; we say that C, 
regarded as a module over the ring Z of integers, has homological dimen- 
sion at most 1. Over any ring R, a projective module P is characterized 
by the fact that all Extk (P, G) vanish; we say that P has homological 
dimension 0. The general phenomenon may be described as follows. 

Theorem 1.1. For each ideger n, the following conditions on a left 
R-module C are equivalent: 
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(i) For all left R-modules B, Extn+l (C, B) = 0 ; 

(ii) Alzy exact sequence of modules 

with the Xi all projective has the first term C, projective; 

(iii) C has a projective resolution of length n :  

Here and below we write Ext for Ext,. 

Proof. Factor the sequence S of (ii) into short exact sequences 
Ei : Ci+, n Xi -+ Ci . Each gives the standard long exact sequence 

of (111.9.1). Since Xj is projective, the outside terms Extk(Xj, B) are 
zero if k>O, so the connecting homomorphism E: is an isomorphism. 

8 The iterated connecting homomorphism S* is the composite E: . . . En-, , 
hence an isomorphism 

S* : Extl (C,, B) zExtn+l  (C, B) . 
Now given Extn+l (C, B) = O  by (i), this isomorphism makes 

Extl(C, , B) = O  for all B, hence C, projective as in (ii). Since C has 
a t  least one projective resolution, (ii) implies (iii). Given a resolution 
of the form (iii), Extn+l (C, B) computed thereby is 0, whence (i). 

The homological dimension of an R-module C is defined by the 
statement that h.dim,Cdn when any one of the equivalent conditions 
of Thm. 1 .I hold. In other words, h. dim, C = n means that all 
Extn+l (C, B) = 0, but that Ext" (C, B)+ 0 for at least one module B. 

Corollary 1.2. If h. dim, C = n, then for all modules RB and G,, 

EX~"+~(C,B)=O,  TO~,+~(G,C)=O, k>O, 

while for each m 5  rc there is a left module B, with Extm (C, B,)+o. 

Proof. The first result follows by (iii). If Extn(C, B)+O for n>0, 
imbed B in an injective module J to get a short exact sequence 
B - J + B'. The corresponding exact sequence 

shows that Extn-I (C, B') =j= 0. 
Similarly, h. dim C = ao implies that for each positive integer n 

there is a module B, with Ext" (C, B,) + 0. The homological dimension 
of a module C can be calculated from any projective resolution 
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0 t C  tX,,cXl t -. - as the first n with Im (X,+X,-,) projective (for 
n =0, read X-, as C), or as co when none of these images is projective. 

For example, the calculations of VI.6 show that the trivial module Z 
over the group ring Z (17) of a free abelian group 17 on n generators has 
homological dimension n. 

The left global dimension of a ring R is defined as 

1.gl.dim. R=sup @dim C),  

where the supremum is taken over all left R-modules C. For example, 
1. gl. dim Z =1. For a field F, every module is a vector space, hence free, 
so 1. gl. dim F = 0. More generally, 

Proposition 1.3. Each of the following conditions i s  equivalent to 
1.gl.dim R=O: 

Every left R-module i s  projective; 
Every short exact sequence A n B +C of left R-modules splits; 
Every left R-module i s  injective; 
Every left ideal of R i s  injective, as a left R-module; 
Every left ideal of R i s  a direct summand of R, as a left R-module. 

Proof. Condition (i) is the definition of I. gl. dim R = 0. Given (i), 
each short exact sequence (ii) has C projective, hence splits. Since every 
such sequence beginning with A splits, each A is injective by Prop. 111.7.1. 
Hence (i) =+ (ii) 3 (iii), and the reverse argument shows (iii) + (ii) =+ (i). 
Clearly (iii) + (iv) + (v). Given (v) and a left ideal L ,  the short exact 
sequence L n R -B R / L  splits, so that Horn (R, A) +Hom (L, A) is an 
epimorphism for each module A .  By Prop. 111.72, A is injective. 
Hence (v) + (iii) ; the proof is complete. 

Theorem 1.4. For each rilzg R and each n 2 0 the following conditions 
are equivalent: 

(i) l.gl.dim R s n ;  
(ii) Each left R-module has homological dimension 5%; 
(iii) Extn'l= 0, as a functor of left R-modules; 
(iv) Extk= o for all k> lz; 

(v) A n y  exact sequence 

with n intermediate modules Yk all injective, has A, injective. 

Proof. The first four conditions are equivalent by Thm. 1.1. The 
sequence S in (v) gives a connecting homomorphism which is an iso- 
morphism S, : Extl (C, A,) z E x t n + l  (C, A) for each C. But Extl (C, A,) =O 
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for all C states exactly that A, is injective; hence the equivalence of 
(iii) and (v). 

Corollary 1.5. (AUSLANDER [195 51.) For any ring R 

l.gl.dim R=sup (h.dim R/L ( L  a left ideal in R). 

Proof. (MATLIS [1959] .) If the supremum is infinite, 1. gl. dim R = oo . 
Hence assume that the supremum is n c oo , so that ExtU+l (RIL, A) = o 

. for all left ideals L and all R-modules A. For each S as in (v) above, 
S, : Extl (RIL, A,) r E x t U + l  (RIL, A )  = 0. By Prop. 111.7.2, A, is in- 
jective; by the theorem, 1. gl. dim R 5  n. 

The condition 1. gl. dim R= 0 is equivalent to the requirement that R 
be semi-simple, and so is connected with classical representation theory. 
Indeed, a left R-module A may be regarded as an abelian group A 
together with the ring homomorphism p,: R+End,A which gives the 
left operators of R on A. This p, is a representation of R and A is the 
corresponding representation modzcle. The module A is called simple 
(and the corresponding representation irredzccible) if A+O and A has 
no submodules except 0 and A. A module A is semi-simple if it is a 
direct sum of simple modules; a ring R+ 0 is semi-simple if it is a semi- 
simple left R-module. Using Zorn's lemma, one can prove (see e.g. 
CARTAN-EILENBERG, Prop. 1.4.1) that a module is semi-simple if and 
only if every submodule of A is a direct summand of A. By condition 
(v) of Prop. 1.3 it then follows that R is semi-simple if and only if 
1. gl. dim R = 0, and by (ii) that every left module over a semi-simple ring 
R is itself semi-simple. It can also be proved that left semi-simplicity 
of R (as here defined) is equivalent to right semi-simplicity. 

Various other dimensions can be introduced. For example, the left 
injective dimension of a module is defined by the analogue of Thm. 1.1 
using injective resolutions, so that the equivalence (v)e.(iii) in the 
theorem above states that the left global dimension of R agrees with 
its left global injective dimension. Right dimensions are defined using 
right R-modules; KAPLANSKY [1958] has constructed an example of a 
ring for which the left and right global dimensions differ by 1. Aus- 
LANDER has proved that if R satisfies the ascending chain condition for 
left ideals and for right ideals, its left and right global dimensions agree 
(for proof see NORTHCOTT [1960], Thm. 7.20). The finitistic left global 
dimension of R is the supremum of the homological dimensions of all 
left R-modules C with h. dim C < ao . The weak dimension of a module C 
is defined by replacing the condition that Extnf l (C, A) = 0 for all A 
by the weaker condition that Tor,,, (G, C) = 0 for all GR. For example, 
C is flat if and only if its weak homological dimension is 0. For the 
development of these ideas, see BASS [1960]. 
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Exercises 
I .  State and prove the analogue of Thm. 1.1 for left injective dimensions. 

2. I f  1.gl. dim R 2 I ,  then 

1. gl. dim R = 1 + sup {h. dim L I L a left ideal in R) . 
3. I f  A n B + C  is a short exact sequence of  R-modules, then i f  any two have 

finite homological dimension, so does the third. 
4. In Ex. 3 above, show that h.dimA< h.dimB implies h.dimC = h.dimB, 

h. dim A = h. dim B implies h. dim C 5 I + h. dim B, and h. dim A > h. dim B implies 
h.dimC= l+h.dimA. 

2. Dimensions in Polynomial Rings 

In (VI.1.4) the exterior ring provided an explicit resolution for a 
field F regarded as a module over the polynomial ring F[x ,y ]  in two 
indeterminates. The same device works if F is replaced by a commutative 
ring K or the two indeterminates are replaced by n such. 

In detail, let P = K [x, , . . . , x,] be the polynomial ring in n in- 
determinate~ xi, each of degree 0 .  Then E (xi) = O  defines an augmenta- 
tion E =  EP:  P 3 K ,  while pull-back along E makes K a P-module ,K. 
This amounts to regarding K as the quotient module P/(xl, . . ., x,), 
where (x,,  . . . , x,) denotes the ideal in P generated by all the xi. 

Let E= E p [ y  , . . . , u,] be the exterior algebra over P on n generators 
ui,  each of degree 1 .  Thus Em in each degree m is the free P-module 
with generators all exterior products of m of the ui in order. The dif- 
ferential with aui=xi makes E a DG-algebra over P with aE,,,+, <Em,  
while cP gives an augmentation Eo-+K.  Together these provide a 
sequence 

B o+ ,KP-  P = E ~ + E , +  ... +E,+o (2.1 

of P-modules and P-module homomorphisms. 

Proposition 2.1. For P the fiolynomial ring in n indeterminates over K ,  
the exterior algebra E in n generators over P firovides, as in @.I) ,  a free 
P-module resolution of .K. 

The proof will construct K-module homomorphisms 7 : K +E and 
s :  E+E of respective degrees 0 and 1 such that 7 is a chain trans- 
formation with ~7 = I  while s is a chain homotopy s :  4 "7s :  E +E.  
This contracting homotopy will show (2.1) exact as a sequence of K- 
modules, hence exact as a sequence of P-modules, hence a resolution. 

The chain transformation 7 is defined by q k = k1; clearly ~7 = l .  The 
homotopy s is constructed by induction on n. Set 
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Thus P= P" @ P', E" and E' are DG-algebras over P" and P' respec- 
tively, their tensor product E" @E' is a P" @ PI-algebra, and (VI.4.6) 
gives an isomorphism E r E U @ E '  of DG-algebras over P. Moreover, 
C= d '@d and 7 =ql'@ 7'. For n=1, the contracting homotopy 
s' : E; -+ E; may be defined on a polynomial f = 2 a, xi of degree k in 
x=xn with coefficients sic K by setting 

then aslf=f-a,=f-q's'f and s18fzl=fzl, so s': 1=7'e1. Note in 
particular that s', though a homomorphism of K-modules, is not a 
homomorphism of P-modules. 

Now assume by induction that there is a K-chain homotopy 
Sw I 4 : E~*+E~~.  Since we alreadybhave st, Prop. V.9.1 gives a 
K-chain homotopy s on E =E"@ E', and so completes the induction. 

The resolution (2.1) is known as the Koszul resolution; it first occurs 
explicitly in a study of Lie algebras by Koszu~ [1950]. 

Theorem 2.2. I f  P= K [x,, . . . , xu] is the ~ngraded +olynomial algebra 
over a comvnutative ring K in n indeterminates xi, while I: K - t  P is the 
injection and K is a P-module in an y way szlch that ,K = K, then 

Ext$(K, K) is the direct sum of (m, n- m) co+ies of K, and ~ o r ~ ( K ,  K) = 

{Tor: (K, K)} is an exterior algebra over K on n generators in Tor, (K, K). 

Proof. Suppose first that K is the P-module ,K. The Koszul resolu- 
tion (2.1) stops with degree n. Hence the homological dimension of K 
is at  most n. 

We may calculate TorP(K, K) from the resolution (2.1) as the homo- 
logy of the complex 

with boundary a (k @ H ~ )  = k @xi. But under the isomorphisms above, 
k @xi -+ (k @, xi) @ 1 -+ k E (xi) @ 1 = 0, since by definition E (xi) = 0. Thus 
the differential on the complex is zero, so TorP(K, K) is the exterior 
algebra over K in lz generators. In particular, To< (K, K) =K+o, so 
h. dim, K is exactly n. Similarly, Extp(K, K) is calculated from the 
resolution as the cohomology of the complex 
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The coboundary in this complex is again zero, so ExtT(K, K) r 
HornK (Em, K) is the direct sum of (m, n - m) copies of K, as asserted in 
the Theorem. 

Now consider the ideal J = (x, , . . . , x,) = Ker E.  Since a : E,+E,=P 
has image exactly J, the Koszul resolution (2.1) yields a resolution 

O t  J t  El+ . . a +  E , t  0 

of J, with Em+, in " dimension" m. Hence Ext? (J, K) =HornK (Em+, , K) 
for m> 0, so Ext",-I (J, K) = K+ 0, and J has exact dimension 12-1, as 
asserted. 

Now let K have some other P-module structure, say by operators 
p o k for PEP.  The condition ,K= K states that this P-module structure, 
pulled back along the injectipn I  : K -t P with I (k) =KIP, is the original 
K-module structure of K; in other words, that k'o k= k'k. Now 
Q (9) = $ o 1 K defines an algebra homomorphism Q : P -t K, because 
p o k = #J o (1 k) = Q (p) o k = Q (p) k. In other words, K is the P-module 
,K obtained by pull-back along Q. But set ai = Q xi c K and x: = xi- ai . 
Then P can be viewed as the polynomial algebra K [xi, . . . , xi] and 
Q x:=o, so Q is the corresponding augmentation, and the previous 
calculations apply. 

In conclusion, note that TOP(K, K) =EK [ul, . . . , u,] turns out to 
be not just a graded P-module - as it should be, on general principles - 
but actually a graded algebra; to wit, the exterior algebra on the n cycles 
(homology classes) ui in Tor,. This algebra structure on TorP(K, K) 
hides a mystery. By our general results we may (and did) compute 
Tori (K, K) from any convenient resolution. By "accident" the DG- 
module E which we used as a resolution was in fact a DG-algebra, so 
TorP(K, K) inherited "by accident" an algebra structure. We shall 
show in Chap. VIII that this structure arises intrinsically from the fact 
that K (as a P-module) is a P-algebra; indeed, the torsion product of 
two algebras is an algebra. 

Exercises 
1 .  Calculate  or^( J, K) and Extp (J, K) for J = (x,, . . . , x,). 
2. Show that h. dimp (x,, . . . , xk) = k - I .  

3. Examine Thm.2.2 when K is a skew field. 

3. Ext and Tor for Algebras 

If A is an (ungraded!) K-algebra, the usual functors Extn and Tor" 
may be regarded as functors with values which are K-modules. For this 
purpose, as in VI.l, we regard the K-algebra A as the composite object 
A= (R, I )  consisting of a ring R and a ring homomorphism I :  K-tR 
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with (Ik) r=r  (Ik) ; that is, with I (K) in the center of R. A left A-module 
(say as defined by (VI.5.2) and (VI.5.3)) is just a left R-module A; by 
pull-back along I : K + R it is a K-module, hence also an R- K-bimodule 
,AK. A homomorphism a: A -+Af of left A-modules is defined to be a 
homomorphism of left R-modules, and then is automatically a homo- 
morphism of R-K-bimodules. 

Proposition 3.1. For A =  (R, I) a K-algebra and C, A left A-modules, 
the abelian group Extg (C, A) has two K-module structures induced by the 
K-module structures of C and A, respectively. These two K-module 
structures agree; if we write Extz (C, A) for the resulting K-module, then 
Extz is a bifunctor from A-modules to K-modules which satisfies the axioms 
formulated in Thm. 111.10.1. For a third A-module D, com~osition is a 
homomorphism of K-modules 

Proof. The first K-module structure is that induced on Ext; (C, A) 
as a functor of C by the R-module endomorphisms p,: C - + C  defined for 
each kc K by 9, (c) =kc; the second arises similarly from A. Equi- 
valently, regard C and A as R-K-bimodules; then Ext;(C,A) is a 
K-K-bimodule as in V.3.4. The crux of the proof is the demonstration 
that these two K-module structures agree. 

For n = 0 and f c Hom, (C, A), the first K-module structure defines 
kf by (kf)c=f(kc), the second by (fk)c=k(fc). Since f is a K-module 
homomorphism, they agree. 

For n > 0, take a long exact sequence S E E Extg (C, A). Multiplication 
by k is a morphism p,: S+S of sequences of R-modules which agrees 
on the left end with multiplication in A by k and on the right end with 
multiplication in C by k. By Prop. 111.5.1, pk S= Sp,, and the structures 
agree. Alternatively, if X is a projective resolution of C and Ext$(C,A) 
is calculated as Hn(HomR(X, A)), the K-module structure, like the 
functorial structure, is computed from that of X or of A, which are 
known to agree in Hom, (X, A). 

Any R-module homomorphism a: A + A f  commutes with the endo- 
morphism P,, so the induced map a, : Extg (C, A )  -+Ext$(C, A') is a 
K-module homomorphism, and Extn (C, A )  is a bifunctor of K-modules. 
The connecting homomorphisms are also K-module homomorphisms, 
and the Yoneda composite is K-bilinear; hence (3.1). 

The treatment of torsion products is similar. 

Proposition 3.2. I f  A =  (R, I) and GA, *C are A-modules, then for 
each n 2 0 the abelian groufi T o e  (G, C) has two K-module structures 
induced by the K-module structures of G and C, respectively. These two 
K-module structures agree; if we write T o e  (G, C) for the resulting Kmodule, 
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then T o e  is a covariant bifunctor from Amodules to K-modules which 
satisfies the axioms formulated in Thm. V.8.5. 

Proof. For n =  0, kg @c=g @kc, so the two K-module structures 
agree. We leave the proof for n>O to the reader (use V.7.1). 

Now let A and Z be two K-algebras (still ungraded). A A-Zrbimodule 
,Az is then a bimodule over the rings A, Z such that the two induced 
K-module structures agree. They induce identical K-module structures 
on HornA-, (C, A). The corresponding K-modules Ext:-= (C, A) for 
n>O could be defined as the congruence classes of exact sequences of 
bimodules leading from A to C through n intermediate steps, just as 
before. Equivalently, turn A and C into left A@Pp-modules, and 
define Extz-, as E~t? , j@~oq.  Similarly, bimodules =BA, .Cz are one- 
sided modules B(,@pp), (A@zoP)C and so have a tensor product 
B @(A@,, C and torsion products (B, C) which are K-modules. 
We also write these products as To#-,(B, C). We next show that Ext 
for left A-modules sometimes reduces to a A-bimodule Ext. 

Theorem 3.3. Let A be a K-algebra and C and A left A-modules. 
Assume that A and C are projective K-modules (for ilzstance, this automat- 
ically holds if K is a field). Thelz adjoint associativity induces a natural 
isomor~hism 

of K-modules. For lz= 0, Ext; (C, A) = Hom, (C, A) = Hom, (A @*C, A), 
and 17 is the ordinary adjoilzt associativity. 

In (3.2), HornK (C, A) is a left A-module via the left A-module struc- 
ture of A and a right A-module via the left A-module structure of the 
contravariant argument C. 

Proof. Take a free resolution s : X +A of the A-A-bimodule A. As a 
free bimodule, each X, has the form X,=A@F,@A for some free 
K-module F , .  Now a projective module is a direct summand of a free 
module, so the tensor product of two projective K-modules is a pro- 
jective K-module. Since we have assumed A and C projective as 
K-modules, A @ F ,  and F, @C are projective K-modules, so, by Prop. 
VI.8.1, X,= (A@&) @ A  is a projective right A-module and X,  @,CS 
A @ (F,  @ C) is a projective left A-module. 

Adjoint associativity is natural, so yields an isomorphism of com- 
plexes 

17 : Hom, ( X  @,C,A) = HornA-, (X, HornK ( C , A ) ) .  (3.3) 

The cohomology groups of the right hand complex are 
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Examine those of the left hand complex. Since E :  X+A is a projective 
resolution of A as a right A-module, the homology of the complex 
X @,C is To# (A, C). But A itself is a free right A-module, so all 
Torf(A, C) =O for n>O, so the complex X g A C  with &@I : X0@AC+ 
A B A C = C  constitutes a projective resolution of AC. Therefore its 
cohornology over A, as on the left side of (3.3), is ExtA (C, A). Thus 7 
induces an isomorphism of these cohomology groups, as asserted. 

This isomorphism can be described as follows in terms of long exact 
sequences. 

Corollary 3.4. For any long exact sequence SEE EX^;^ (C, A) with 
n> 0 the isomorfihism g of (3.2) carries the class of S into the class of 

Proof. First analyze [Hom (C, S)] 7 ( I c )  Since I, E HornA (C, C) and 
7: HomA(C, C) =HomA(A BAC, C) r H o m ~ - ~ ( A ,  Horn (C, C)), g (1,) is 
a map u : A +Horn (C, C) (actually, with (u A) c = l c ) .  If 

is exact, and Horn is short for HornK, then Hom (C, S) is the sequence 

since C is K-projective, it is an exact sequence of A-A-bimodules. Acting 
on the right of this sequence with g(lc), we get a long exact sequence 
of bimodules from Hom (C, A) to A, as in the conclusion of the corollary. 

To apply the canonical isomorphism [: Ext; (C, A) dn (X @A C, A )  
of (III.6.3), we regard S as a resolution of C, lift lc to f :  X@,C-tS, 
and obtain [(cls S) as the class of the cocycle f,. But apply adjoint 
associativity; g f : X +Horn (C, S) lifts g (4,) : A -+Horn (C, C), so g f 
factors through a chain transformation g : X-t  [Hom (C, S)] 7 (Ic) 
lifting 1 A with g f, = g, . Thus g, cls f, = cls g,, [ (cls S) = cls f, , and 
(again by the definition of 5 )  cls [Horn (C, S) 7 (lc)] = cls g, , whence 
the conclusion. 

Exercises 

1. If A is an algebra over a field, P a projective A-A-bimodule, and B a left 
A-module, show that PBAB is a projective left A-module. 

2. If TEE (A, Horn (C, A)), as in Cor. 3.4, is the exact sequence 

with all Xi projective show 17-lclsT= cls(e(T&C)), where e is the evaluation 
map e: Hom(C,A)@C+A. 

3. For A an algebra over a field F, = A@AOP, and modules CA, AA, prove 
~or;;l (c, A )  h: TO$ (A, A @K c). 

Mac Lane, Homology 14 
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4. For K-algebras A and 2, modules GA and AAz and an injective right Z- 
module J use Ex.III.7.3 to establish the isomorphism ("duality"; CARTAN-EILEN- 

BERG vI$/ 
Ext2(G, Homz(A, J)) a: ~ o m ~ ( ~ o $  (G, A), J) . 

4. Global Dimensions of Polynomial Rings 

We can now compute the global dimensions of polynomial rings over 
a field. 

Proposition 4.1. If the modules C and A over the commutative ring K 
are regarded as modules over the fiolynomial ring P = K [x], by pull-back 
along E : P + K with E (x) = 0, then Homp (C, A) = HornK (C, A) and, for 
n ) 0, there is an isomorphism of P-modules 

Here the ExtK on the right are K-modules, hence P-modules by pull- 
back. 

Proof. Take a K-projective resolution q :  X-tC. The exterior 
algebra E = Ep[u] provides a resolution E :  E+K of K by free P-modules 
E o r  El= P and the bounaary a : El +Eo is given by multiplication by x. 
Now P is a free K-module, hence so are El, E,, H(E),  and the cycles 
of E. The Kiinneth tensor formula (Thm. V.10.1) asserts that 
H ( E @ X ) r H ( E ) @ H ( X ) ,  so that H,(E@X)=O for n>O and 
~ @ q :  HO(E@X)zK@C=C. Thus &@q: E @X+C is a resolution 
of C by projective P-modules. Hence Ext, (C, A) is the cohomology of 
the complex Hom, (E @I X, A). 

Now (E @X),=Eo@X,@El@X,- lrP@Xn@ P@Xnnl,  so by 
adj oint associativity 

Homp((E@X),, A) =Homp(P, Hom (X,, A))@Homp(P, Hom(~,- , ,  A)), 

r Hom (X, , A) @ Hom (X,-, , A) 

Since the boundary a:  El +Eo is multiplication by x and since A and 
X, are P-modules via E with E (x) =O, these isomorphisms carry the 
coboundary on the left into the coboundary on the right (induced by a 
in X). This isomorphism of cochain complexes gives the asserted iso- 
morphism (4.1). 

Theorem 4.2. If the commutative ring K has global dimension r l  w ,  

then the polynomial ring P= K[x] has global dimension r+l (or w ,  
if r = w ) .  

Since K and P are commutative, we can omit "left " in 1. gl. dim. 

Proof. Let G be any P-module. The first r terms of a free resolution 
of G as a P-module give an exact sequence S : G, - Y,-l + . - .  + YO +G. 
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In this section we denote these equivalent properties by writing bidim 
A=0 (read: "The homological dimension of A as a A-bimodule is 
zero "). 

Proof. Properties (i) and (ii) are equivalent by the definition of 
homological dimension. In (iii), the product map n(A @p) = Ap is an 
epimorphism of A-bimodules. If A is projective, this product map splits 
by a bimodule homomorphism a :  A+A @A with nu =I ; this proves 
(ii) 3 (iii) . Conversely, if n u  = I ,  then A is a bimodule direct summand 
of the free bimodule A @A, hence is projective. If ncr=l, then a lA = 

ecA @A has ne=lA ; since a is a bimodule homomorphism, a A =  Ae= ed. 
Conversely, an element e with these properties determines such an a. 

We now investigate the preservation of the property bidim A= 0 
under three standard constructions for algebras: Direct products, ground 
ring extension, and formation of total matrix algebras. 

The direct flroduct of two K-algebras r a n d  Z i s  a K-algebra A = r x z ;  
as a K-module it is the direct sum re Z with elements all pairs (y, a) ; 
its multiplication is given by 

its identity is thus (Ir,  I=). The projections n, (y, a) = y, n2 (7, a) = a  
are algebra homomorphisms 

r 3 rx.z-% Z, (5.2) 

(the injections tl, l2 are not ; they do not map identity to identity). With 
these maps the algebra r x Z  is couniversal for r and 2 in the category 
of algebras. This is why we calI r x Z  the direct "product ", even though 
it is often called the direct "sum" of F and 2. 

Any r-bimodule becomes a (TxZ)-bimodule by pull-back along nl 
(on both left and right sides); similarly any Z-bimodule or any ( r - 2 ) -  
bimodule becomes a (rxC)-bimodule. In particular, the definition (5.1) 
shows that A = r x Z ,  regarded as a A-bimodule, is the direct sum 
re Z of the A-bimodules T and 2. Since the tensor product is additive, 
A @ A  = (P@ 2) @ (P@ Z) is the direct sum of four A-bimodules 

A@A=(r@r)@(r@Z)@(2@q@(Z@Z). (5.3) 

Proposition 5.2. For algebras F and Z, bidim r= 0 = bidim Z 
iwl ies  bidim ( T x Z )  = 0. 

Proof. By hypothesis, Prop. 5.1, part (iii) gives bimodule maps 
a,: r - + F @ r  and a=: Z-+Z@Z with nar=l and na==l .  They are 
also maps of A-bimodules, hence combine as a,@ az: r @  Z-t ( F @ r )  @ 
( 2 8 2 )  which, followed by the injection into (5.3), yields a A-bimodule 
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map a: A+A @A. Since the injections r @ r + A  @A and Z@ZiA@A 
preserve the product, na=1, as required for bidim A=0. 

A ground-ring extension is the process of passing from algebras over 
the commutative ground-ring K to algebras over a new ground-ring R, 
where R is now assumed to be a commutative algebra over K. If A is a 
K-algebra, then R @A is a ring (as the tensor product of rings) and an 
R-module (via its left factor); since R is commutative, it is also an 
algebra over R. As an algebra over R we denote R@A by AR (the 
standard notation is A,; this would conflict with our previous notation 
for R-modules) . 

Proposition 5.3. I f  bidim A = 0, then bidim AR = 0. 

Proof. The AR-bimodule AR AR = (R @A) @, (R @A) is iso- 
morphic to R @A @A under the correspondence (r @ A) @ (S @p) + 
r s  @A @p. If e = z p i  @vicA@A has the property (iv) of Prop. 5.1 
for A, one checks that e'= 2 1 @pi @vi has the corresponding properties 
for AR. 

The ground-ring extension is useful in the classical case of algebras A 
of finite dimension (as vector spaces) over a field F. Any field L > F  may 
be regarded as a commutative algebra over F ,  so that AL is an algebra 
over L. If A has F-basis u,, . . . , u,, the product in A is determined via 
ujuj= Ck fz uk by n3 constants f?cF. The extended algebra AL is the 
vector space over L with basis I@ui, i=1, . . ., n and the same multi- 
plication constants f?. In this case we have a converse of the last 
proposition. 

Proposition 5.4. If A is an algebra over a field F and R a commutative 
algebra over F ,  then bidim AR= 0 imfilies bidim A = 0. 

Proof. For @= a , ,  the product map for AR is equivalent to the 
epimorphism (1 @n) : R @A@A+R @A of AR bimodules; by hypo- 
thesis it has a right inverse u which is a map of AR-bimodules. Since an 
F-algebra homomorphism j: A+AR is defined by j(A)=l@A, each 
AR-bimodule pulls back along j to become a A-bimodule; in particular, 
we may regard u : R @A +R @A @A as a map of A-bimodules. Now 
R is a vector space over the field F; choose a basis with first element 1 R .  
If 7 maps IR to and the remaining basis elements to zero, 7: R + F  
is an F-module homomorphism whose composite with the injection 
L :  F +R is the identity. Now form the diagram 

The squares are commutative; the composite of the top row is a com- 
posite of A-bimodule maps, hence is a bimodule map a': A+A@A. 
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Since (1 @n) a =1 and 7 ~ = 1 ,  the diagram shows na1=1, so bidim A =  0 
by (iii) of Prop. 5.1. 

The process of ground-ring extensions also includes the process of 
"reduction modulo a prime fi ". Indeed, the ring Zp of integers modulo p 
may be regarded as a commutative algebra R over 2. For any 2-algebra 
A, Azp is then the algebra A " reduced modulo f ". 

The total matrix algebra M, (F) over a field F consists of all n x n  
matrices of elements from F with the usual product; as a vector space 
over F it has a basis consisting of the matrices eii for i, j= 1, . . . , n. 
Here ei is the matrix with entry 1 in the i-th row and the j-th column 
and zeros elsewhere. The multiplication is given by eiiejk=eik and 
e,, e,,= 0 for r+ S. If L > F is a larger field, [M, (F)lLeM, (L). 

Proposition 5.5. For any field F,  bidim M,(F) =O. 

Proof. The element e = z  eil@eliin M, (F) @M, (F) has ne = 2 eii=IM 
and e,, e= e,, @el, = ee,, , so that it satisfies the conditions (iv) of 
Prop. 5.1. 

An algebra A over a fieldF is semi-simple (cf. § 1) if every left A-module 
is projective. If bidim A = 0, A is semi-simple : For any left A-modules 
C and A, Thm. 3.3 gives an isomorphism 

Extf, (C, A) =Exti-, (A, Hom (C, A)), 

so Ext i  (C, -) vanishes and C is left-A projective. 
An algebra A over a field F is called separable if, for every extension 

field L>F,  the algebra AL is semi-simple. By Prop. 5.5, each total 
matrix algebra is separable. It is easy to see that the direct product of 
separable algebras is separable. Conversely, the Wedderburn structure 
theorem states that for every separable algebra A of finite dimension 
over a field F there is an extension field L of F (actually of finite dimen- 
sion as a vector space over F) such that AL is a direct product of a finite 
number of total matrix algebras. Assuming this result we prove 

Theorem 5.6. If the algebra A over a field F has finite dimension as a 
vector space over F ,  A is separable if and only if bidim A=O. 

Proof. First suppose A separable. By the structure theorem, there 
is a L with AL=Z1x . . . xZm with each Zj a total matrix algebra over L. 
By Prop. 5.5, bidim Zi = 0, hence by Prop. 5.2 bidim AL= 0, whence 
by Prop. 5.4, bidim A= 0. 

Conversely, suppose bidim A= 0. For each L)  F we wish to prove 
every left AL-module C projective. Let B be another left AL-module. 
By adjoint associativity (Thm. 3.3), 

Exti t  (C, B) r ~ x t f , ~ - , ~  (AL, HomL (C, B)) . 



6. Graded Syzygies 21 5 

But bidirn A=0 implies bidim AL=O by Prop. 5.5 ,  so that AL is a 
projective bimodule, and the Ext on the right vanishes. Therefore 
Extl (C, B) = 0 for any B, which states that C is projective, as desired. 

Note that the proof has been wholly elementary, except for the use 
of Extl, via adjoint associativity, to switch from the bimodule AL to left 
modules. 

The effect of direct product and ground-ring extensions upon the 
functor Ext (A, -) in the more general case when bidim A+o will be 
studied in Chap. X. 

Exercises 
I. Construct the direct product of two DG-algebras (over the same K) so as 

to be couniversal. 

2. For r and Z algebras over K prove (F@2JR E rR@RZX, ( ~ X Z ) ~  1. r R x Z R ,  
and (rxZ)OP % r 0 p x P p .  

3. (Coefficient extensions need not remain semi-simple.) For + a rational 
prime, Zg the field of integers mod 9, and L= Zp (x) the field of all rational functions 
over Zp in one indeterminate x, let F be the subfield Zp(xf'). Then L is a commu- 
tative algebra over F; let A be an isomorphic F-algebra under x-+uEA. Show 
A but not semi-simple. (If M is the ideal in AL generated by u - x, the epi- 
morphism A L - t ~  with l+u - x does not split.) 

6. Graded Syzygies 

Let P=F[x,, . . . , x,] be the polynomial algebra over a field F in n 
indeterminates xi, each of degree I .  Cor. 4.4 shows that any P-module A 
has a projective resolution 

which stops with the term X,. The Hilbert syzygy theorem asserts that 
a graded P-module A has such a resolution with X, free graded modules 
stopping at the same point. Though closely related, we cannot deduce 
this syzygy theorem from our previous result, because we do not know 
that a projective module must be free. 

In this section we regard P as an internally graded algebra over F ;  
the homogeneous elements of degree m are thus the ordinary homo- 
geneous polynomials of that degree. We work in the category of all 
internally graded P-modules with morphisms all P-module homo- 
morphisms of degree 0 ;  the kernels and cokernels of such morphisms 
are again internally graded P-modules. Each internally graded P-mo- 
dule A = 2 A, is also an ungraded module over the ungraded algebra P. 
If G is a second such module, we use G @,A and TO~;(G, A)  to denote 
the ordinary tensor and torsion products, constructed without regard to 
the grading. This use of internal grading has the advantage of suiting 
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the classical notion of a polynomial ring and the technical advantage 
of using the ordinary torsion product. A grading of the torsion product 
will be introduced in X.8 where it is appropriate. 

The coefficient field F is a (trivially) graded P-module under the 
usual action xi f = 0 for f EF.  

Lemma 6.1. I f  A i s  a graded P-module with A @,F = 0, then A = 0. 

Proof. Let J= (x,, . . . , x,) be the ideal of all polynomials in P with 
constant term 0. The exact sequence J H P +F of P-modules gives 
AQp J - f A @ p P + A @ p F = ~  exact, so that A@pJ-+A@pP=A. 
This states that each a €  A lies in A J. If A+O, take a non-zero element 
a of lowest possible degree k. Every product in A J= A then has degree 
at least one higher, in contradiction to the assumption A+ 0. 

Note that this proof does not work for 2-graded modules, where there 
could be elements of arbitrary negative degree. 

Lemma 6.2. A graded P-module A with Tor: (A, F) = o i s  free. 

Proof. Since A is graded, A @,F is a graded vector space over F ,  
spanned by homogeneous elements a @I. Take a set S of homogeneous 
elements such that the s @I form a basis of this vector space and form 
the free graded P-module M on the set S .  The identity S+S < A gives 
a homomorphism 7: M-tA of degree zero; by the choice of S ,  

is an isomorphism. The kernel B and the cokernel C of r,~ give an exact 
sequence of graded P-modules 

(with homogeneous homomorphisms of degree 0, though we do not need 
this fact). Applying gPF to the right hand portion produces an 
exact sequence 

M@pF-+A@pF+C@pF. 

By (6.1), C @,F= 0, so C = 0 by the previous lemma. To the remaining 
short exact sequence B - M -a A apply the fundamental exact sequence 
for the torsion product (with F) to get the exact sequence 

where the left hand zero stands for Tor, (M, F) ,  which vanishes since M 
is free. By (6.1) again, B @, FsTor,P(A, F), which vanishes by as- 
sumption. Hence B @, F =O, so B=O by another application of the 
previous lemma. Our exact sequence has collapsed to O-tM +A +O, 
showing A isomorphic to the free module M. 
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Proposition 6.3. For each graded P-module A there i s  a free graded 
P-module M and a n  epimorphism q:  M +A of degree 0, such that to each 
epimorphism e : X ,  + A with X, free, there i s  a commutative diagram 

with p a monomorphism. The kernel of 7 i s  contained in JM; with this 
property, the pair (M, q) i s  unique up to isomorphism. 

Proof. Construct q with q @ 1 an isomorphism as in (6.1) ; the first 
part of the proof above shows q (M) =A. The usual comparison gives a 
homomorphism /I; let B its kernel. Construct the diagram 

where the left-hand zero stands for Tor: (X,, F),  zero because X, is free. 
The row is exact and the dotted composite is the isomorphism (6.1), 
hence B BPF = 0, so B = 0 by Lemma 6.1 . The uniqueness is similar. 

The kernel A, of q: M +A can be again written as an image M, +A1; 
iteration yields a unique free resolution - - 0  +M,+ M,-+M+A +O of 
A, called a minimal resolution. For applications see ADAMS [1960, p. 281 ; 
for a general discussion, EILENBERG [I 9561. 

Theorem 6.4. ( T h e  HILBERT Theorem on Syzygies.) If A i s  a graded 
module over the graded polynomial ring P = F [x ,  , . . . , x,,] in n indeter- 
minutes of degree 1 over a field F,  then a n y  exact sequence 

of graded P-modules with the Xi free has its n-th term A, free. 

Such a sequence can always be constructed, by choosing X, free on 
a set of homogeneous generators of A, XI similarly for generators of 
Ker [X,+A], and so on. The theorem implies that h. dim,A $ n. 

Proof. Since the Xi are free, the connecting homomorphism of the 
given exact sequence T provides an isomorphism TO$+, (A, F) 
Tor: (A,, F). But the Koszul resolution for F showed h. dim, F 5 n ,  
so Tor:+, (A, F) = 0. Then by Lemma 6.2 A ,  is free, as asserted. 

Any ideal J of P is a submodule of P ;  as in VI.3 it is called a homo- 
geneous ideal if it is a graded submodule; that is, if J is generated by its 
homogeneous elements. 
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Corollary 6.5. If J is a homogeneous ideal in P ,  alzy exact sequence 
o t J t X o c . . . t X ,  - 2 t A , - , t ~  of graded P-modules with all Xi 
free has A,-, free. 

Proof. This implies our previous result that h.d& J S n - I .  
in that case, we prove it by composing the given sequence with the 
short exact sequence PI J+ Pu J and applying the Syzygy Theorem 
to the graded quotient module PI J. 

Note. HILBERT'S Theorem was proved [HILBERT 18903 with a view to in- 
variant theory, especially to the modules of forms invariant under a group of 
linear transformations; his paper (on pp. 504-508) contains a calculation equi- 
valent to the K o s z u ~  resolution of F .  His proof was simplified by GR~BNER [I 9491 ; 
our proof follows CARTAN [1952], who first applied homological methods and 
established a much more general theorem, valid also for local rings (see § 7, below). 

Exercises 
I. For P= F [ x ,  y, z ]  construct an ungraded P-module which has no internal 

grading consistent with this P-module structure. 

2. Show that the HILBERT Syzygy Theorem holds with P replaced by any 
internally graded ring G for which Go is a field. 

3. (General K o s z u ~  resolution.) If A is a right R-module, an element x +  0 
of R is called a zevo-divisor for A if a x  = 0 for some a +  0 in A. Thus x is not a 
zero-divisor for A exactly when the map a + a x is a monomorphism A n A. For 
xl,  . . . , x,,c R let Jk be the right ideal of R generated by xl ,  . . ., xk .  If for each 
k = i ,  . . ., n ,  nk is not a zero divisor for AIA J k - l ,  prove that [u l ,  . . ., u,,] 
with differential au ,  = xi and E :  A@Eo = A@R +A/A J, given by E (a @r) = 
a r  + a J, provides a resolution of length n for the R-module AIA J,,. (Hint: Use 
induction on n and apply the exact homology sequence to the quotient of A@E 
by the corresponding complex without u,,.) 

Note. This result with A = R = F [ x l ,  . . . , x,,] gives the previous Koszul 
resolution of F as a P-module. The more general case is useful in ideal theory. 
where the sequence xl,  . . . , x, with xk no zero divisor for AIA Jk-l and A/A J,+ 0 
is called an A-sequence for A [AUSLANDER-BUCHSBAUM 1957. with E in place of 
our A] while the least upper bound of all n for such A-sequences is the codimcnsion 
of A. 

7. Local Rings 

In this section we summarize without proofs some of the accomplish- 
ments of homological algebra for the study of local rings. All rings will 
be commutative. 

A prime ideal P in a ring K is an ideal such that rs c P implies re P 
or sc P; it is equivalent to require that the quotient ring KIP has no 
divisors of zero. Any ring K has as ideals the set (0) consisting of 0 
alone and the set K;  a proper ideal J  of K is an ideal with (O)+ J f  K. 
A unit u of K is an element with an inverse v  (vu=l)  in K .  Clearly no 
proper ideal can contain an unit. 
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A local ring L is a commutative ring in which the non-units form an 
ideal M ;  then M must contain all proper ideals of L. If L is not a field, 
M is the maximal proper ideal of L. In any event, M is a prime ideal. 
Moreover LIM is a field, the residue field of L. For a rational prime p, 
the ring of p-adic integers is a local ring; the residue field is the field of 
integers mod p. Another local ring is the set of all formal power series in 
non-negative powers of n indeterminates x,, . . . , x, and with coefficients 
in a field F; a power series has a (formal) inverse if and only if its con- 
stant term is not zero, so the maximal ideal is the set of all formal power 
series with vanishing constant term, and the residue field is F. 

If P is a prime ideal in the integral domain D, the ring of quotients Dp 
is the set of all formal quotients a/b for a, b~ D and b not in P ,  with the 
usual equality a/b = ar/b' if and only if a b' = a'b. These quotients form 
a ring under the usual operations a/b+ ar/b' = (a br+ a' b)/b b', (alb) (af/b') = 

aa'/bbr. Such a quotient a/b has an inverse b/a in Dp if and only if a %  P, 
hence Dp is a local ring with maximal ideal all a/b with ac P ;  if we regard 
Dp as a D-module, this maximal ideal may be written as the product 
PDp. For example, if D is the ring of all polynomials in n indeter- 
minates over an algebraically closed field C, the set of all zeros of P 
- that is, of all points (c,, . . . , c,) with f (c,, . . . , c,) = O  for each f c P - 
is an irreducible (affine) algebraic manifold V. The corresponding local 
ring Dp is then known as the ring of rational functions on the manifold V; 
indeed, for each formal quotient f/g in Dp we can define the value of the 
quotient f/g at each point (c,, . . . , c,) of V as f (c,, . . . , c,)/g(c,, . . . ,c,). 
Similarly, a point on the manifold V is associated with a prime ideal 
containing P ,  and the ring of rational functions at this point is a local 
ring. This example explains the terminology "local". 

A K-module C is noetherian if every submodule of C is of finite type; 
it is equivalent to require that C satisfy the ascending chain condition 
for submodules: For any sequence C, < < Ck < Ck+, < . of sub- 
modules of C there is an index n with C, = C,,, = . . . . The ring K itself 
is noetherian if it is a noetherian K-module. Hilbert's basis theorem 
asserts that the ring of polynomials in n indeterminates over a field is 
noetherian. Also any module of finite type over a noetherian ring is 
itself noetherian. 

Over a noetherian ring it is natural to consider the category of all 
noetherian modules; every submodule or quotient module of such is 
again noetherian. With this agreement, the Hilbert Theorem on Syzygies 
holds for noetherian local rings: In the statement of Theorem 6.4, replace 
the polynomial ring by a local ring L, the field of coefficients by the 
residue field LIM, and read "finitely generated module" for "graded 
module". The crux of the proof lies in the analogue of Lemma 6.1, 
with the ideal J replaced by M: When A =AM, then A= A M n  for 
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each n, and the intersection of the Mu is zero. An instructive presen- 
tation of this argument may be found in EILENBERG [1956]. 

In a noetherian ring K the KrulJ dimemion k is the largest integer 
for which there is a properly ascending sequence of prime ideals 
P,<P,< .- <P,< K;  it can be shown that this dimension is always 
finite. In a local ring L with maximal ideal M, the quotient M/Ma is a 
vector space over the residue field LIM; since M is a finitely generated 
ideal, the vector space dimension n=dimLIMM/Ma is finite. It can be 
shown that the Krull dimension of L is at most n. The local ring is 
said to be regular if its Krull dimension is exactly n=dimLlMM/M2. 
These are the local rings of greatest geometric interest. 

Using homological methods, SERRE [1956] and later AUSLANDER- 
BUCHSBAUM [1956] have proved (see also A s s ~ u s  [1959]) : 

Theorem. A local ring L with maximal ideal M is regdar i f  alzd o d y  
if h. dim, L/M< oo , or equivalemtly, if and o J y  if gl. dim L < ao . 

In particular this characterization of regularity allows an easy proof 
that if P is a prime ideal in a regular local ring L, then the (local) ring 
of quotients L, is also regular. Before the use of homological methods this 
result had been known only for certain geometrically important cases. 

More recently AUSLANDER-BUCHSBAUM [I9591 have proved Krull's 
conjecture : 

Theorem. Any regular local ring is a .unique factorization domain. 
The proof made essential use of NAGATA'S [I9581 reduction of this 

conjecture to the case of homological dimension 3. This theorem in- 
cludes, for example, the classical result of the unique factorization for 
power series rings. 

Note. The torsion product in local rings yields an efficient treatment of inter- 
section multiplicity of submanifolds of an algebraic manifold [SERRE 19581 Among 
the many recent studies of homological dimension in noetherian rings we note 
TATE [I 9571, AUSLANDER-BUCHSBAUM [1958], MATLIS [I 9601, JANS [I 9611. One 
of the earliest uses of homological dimension was HOCHSCHILD'S [1945, 19461 
discovery of the connection (5 5) between the bidimension of A and separability. 
The homology theory of Frobenius algebras is analogous to that of groups [NAKA- 
YAMA 1957; NAKAYAMA-TSUZUKU 1960, 1961 ; KASCH 19611. 

Chapter  e ight  

Products 
1. Homology Products 

Throughout the study of products there is an interplay between 
"external" and "internal" products. This relation may be illustrated 
in the case of homology products. If XR and .Y are chain complexes of 
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R-modules the external homology poduct is the homomorphism of abelian 
groups 

fi: Hk(X)@~Hm(Y)-fHk+m(X@RY)~ (I .1 

defined on cycles u of X and v of Y by 

fi (CIS u @ cls v) = cls (u @ v) . 
This mapping fi is natural in X and Y; it has already appeared in the 
Kiinneth Formula. This product is associative: For rings R and S and 
complexes XR, RYS, and, W the composites 

with n = k+ l+ m, are equal. 
On the other hand suppose U a DG-algebra over a commutative 

ring K. Then H (U) is a graded K-algebra under the product 

n: H(U) @H(U)-+H(U) 

already defined (VI .7) as 

n(c1s u@cls v)=cls(uv); 

we call this the internal homology poduct. The internal product may be 
obtained from the external product via the product map nu: U@U -+ U, 
as the composite 

The external homology product can be defined with coefficient mo- 
dules. Take (ungraded) K-algebras A and A', complexes ,X and A,X' 
of K-modules, and right modules GA, GAT, and set O=A@Af. The 
external homology firoduct is the composite map fiH= zfi in the diagram 

where f i  is the homology product of (1.1) with R=K, while z is 
short for Hk+m(z); that is, for the homology map induced by the 
middle four interchange of (VI.8.4). This product pH is natural and 
associative - the latter meaning that the diagram 

with G's and A's everywhere omitted, is commutative. 
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Theorem 1.1. For algebras A and /I' over a field, the homology product 
is an isomorphism 

Proof. All modules over a field are free, so the Kunneth tensor 
formula makes fi an isomorphism, while t is always an isomorphism. 

For left modules AA and the external cohomology prodzlct is the 
composite map pH=[p in the diagram 

Here p is the homology product of (4.4), written with upper indices, 
while 5 is the chain transformation determined by the Hom- @ inter- 
change of (VI.8.10). This product is natural and associative. Its de- 
finition may be rewritten in terms of cochains h: Xk-tA, h': X;+A1. 
Regard h and h' as homomorphisms of graded modules. By definition, 
[ (h @ h') is the homomorphism 

h@h': (X@X'),= 4 @ X i + A @ A 1  
p+q=* 

defined for n=k+m, xeXp, x'eX; as 

Then 6 (h @J h') = 8 h ah'+ (-1)" @ 6 h' and #H is given on cohomology 
classes as pH(c1s h @CIS h') = c1s (h @ h') . 

Theorem 1.2. For algebras A and A' over a field and positive com- 
plexes X and X' with each Xk a d  each XL a free A- or A'-module of 
finite type, the cohomology product is an isomorphism 

pH: 2 H*(Ho~, (X, A)) @  ho horn,, (X', A')) 
k+tn=n 

d2k+m(Homa (X @XI, A @A')) . 

Proof. Since X and X' are positive, each (X @X1), is a finite direct 
sum E X p  @Xi, and Hom (X, -) is additive for finite direct sums 
(=direct products). The finite type assumption, as in Prop. VI.8.3, 
insures that the Hom- @ interchange is an isomorphism of complexes, 
while p is an isomorphism by the Ktinneth tensor formula over a field. 

Theorem 1.3. Connecting homonam$hisms, when defined, commute 
with the homology prod~ct P. 
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Proof. In (1 .I), replace X by a short exact sequence 

of complexes of right R-modules. The homology connecting homo- 
morphisms are 

aE=E,: Hk+,(M)+Hk(K). 

The sequence of tensor product complexes 

E B R Y :  o + K @ ~ Y + L @ ~ Y + M @ R Y + O ,  (1.5) 

if it is exact, also defines connecting homomorphisms, as in the diagram 

Our theorem asserts that this diagram is commutative; the proof is 
a direct application of the "switchback" description of the connecting 
homomorphisms. A corresponding result holds if Y is replaced by a 
short exact sequence of complexes. 

This result applies whenever E @, Y is exact. It may not be; to get 
exactness we should replace the left hand zero in (1.5) by 2 T o e  (Mp , Y,) . 
It will be exact in any one of the following cases: 

Case 1 : Each Y, is a flat left R-module; 
Case 2: Each M, is a flat right R-module; 
Case 3 : E is split as a sequence of right R-modules. 

The third condition means that each sequence K, - L, +M, is split. 

Corollary 1.4. Connecting h o m o m o ~ ~ h i s m s ,  when defined, commute 
with the homology and cohomology products pH and p H .  

Proof. The result is immediate, since pH=zp and pH=6p and the 
natural maps z and commute with connecting homomorphisms. The 
statement includes the cases when any one of the arguments G, X, Gr or 
X' for pH is replaced by an appropriate short exact sequence. For ex- 
ample, replace G by a short exact sequence E of right A-modules. Suppose 

(i) X is a complex of flat left A-modules X,; 
(ii) E is split as a sequence of K-modules; 
(iii) X' is a complex of flat left A'-modules Xi.  

(These are plausible hypotheses; they hold if X and X' are projective 
resolutions and K is a field.) In succession, they insure that E @,X 
is a short exact sequence of complexes of K-modules, that E &GI is a 
short exact sequence of S = A @Ar-modules, and that the product 
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( E  @G') (X @X') is a short exact sequence of complexes of K-modu- 
les. Thus all connecting homomorphisms are defined, and the diagram 
like (1.6) is commutative. 

2. The Torsion Product of Algebras 

When X and X' are resolutions, the (co)homology products pH and 
pH will give corresponding products for Tor and Ext. 

For K-modules B, A, B', A' the middle four interchange 

of (VI.8.4) may be regarded as an external product for the functor @. 
Recall that Thm. V.7.3 gives an isomorphism q : Tor, (B, A) s B @A, 
where the elements of Tor, are written as triples t= (p, F ,  v) for F a 
finitely generated free module with dual F* and homomorphisms 
p :  F -+ B, v: F* +A. Using this isomorphism 7, the middle four inter- 
change takes the form 

Here v @vl: F* @F1* +A @A', but we may regard v @v' as a map 
defined on (F @Ff)* by the identification F* @F'* = (F @F')*, given 
by the isomorphism of Prop. V.4.3 (incidentally, this identification is 
consistent with the identification (F @F') @F" =F @ (F' @F)). This 
formula (2.2) will be extended to higher torsion products. 

An element of Tork(B, A) was written as a triple t=  (p, L, v) with L 
a finitely generated free complex of length k and p:  L-tB, v: L*+A 
chain transformations. Given a second such tl€Tor,,,(B', A'), define a 
product 

(p, L, v) (pl, L1, vl) = (p o p t ,  L @L1, v €34. (2.3) 

Here L @L' is a finitely generated free complex of length k+m, and 
v @v' a chain transformation L* @ L1* = (L @ L')* +A @ A'. This 
product is well defined with respect to the equality used for the elements 
of Tor, and is natural in the four modules concerned. This product tt' 
is bilinear; we avoid the direct proof, via the addition defined in Tor, 
by the following use of resolutions. 

Theorem 2.1. For four K-modzlles B,A, B', A', the product (2.3) is a 
homomor~hism 

It may be computed from pojective resolzltions E : X -+ B, E' : X' + B', and 
E" : Y 4 B @ B' as the composite 
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where pH i s  the external homology product of (1.2), with the roles of G and X 
interchanged, while f : X @X' -+ Y i s  a chain transformation lifting I 

Proof. The tensor product of free or projective K-modules is free or 
projective, as the case may be, so E BE': X @X1-+B @ B' is a pro- 
jective complex over B @ B'. By the comparison theorem, the map f 
lifting 1 exists and its homology map f ,  is unique. The calculation of 
Tor (B, A) from the resolution X is expressed by the isomorphism 
o : Tor (B,  A) g H ( X  @ A) of Thm. V.8.I. Let o' and w" be analogous. 
The statement that p, can be computed as the composite f,pH is 

Since o": Tor ( B  @ B', A @A1) g H ( Y  @A @A1) is an isomorphism, 
this equation also shows the product tt' bilinear, hence will prove that p, 
is a homomorphism as in (2.4). 

To prove (2.5), recall that o was defined by regarding t= (p, L, v) as 
a free complex p : L -+ B of length k over B plus a cycle (1, L, , v) E Lk @ A ,  
by lifting I ,  to a chain transformation h: L+X, and by setting 
o t = (h @ I ) ,  cls ( I ,  L, , v). But tt' is correspondingly written as the free 
complex p@pl: L@L1-+B@B' plus the cycle ( I ,  Lk@L6,v@v1). 
This cycle is the homology product zp [ ( I ,  L, , v) @ (1, L6, v')] while 
f (h @ h') : L @ L' -t Y lifts 1 B@Bl . Therefore 

so that (2.5) is a consequence of the naturality of the homology product pH 
under the chain transformations h and h'. 

Let A and r be two K-algebras, n: A @A+A and Q :  r@r-+r their 
multiplication maps. The composite 

gives the product in the algebra A @ r .  In other words, the internal 
product in the tensor product algebra A @ r  is obtained from the 
external product z of the modules. 

This internal product will now be defined for Tor (A, r). 
Theorem 2.2. For K-algebras A and r, the family   or: (A,  r)) is a 

graded K-algebra   or^ (A, r) in which the elements of degree zero cow 
stitute the tensor product algebra A @ r .  The product of two elements 
t = (p, L, v) and t'= (p', L', v') i s  defined by 

for n and e the firoduct maps of A and r 
Mac Lane, Homology 
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Proof. The internal product (2.6) is the composite [Tor (n, Q ) ]  pT , 
with pT the external product. By Thm. 2.1, this product tt' is bilinear; 
it is manifestly associative. The identity elements of the algebras A and r 
are represented by K-module homomorphisms I: K +A, I' : K +r, and 
the identity element In @ I p  of A @ r  appears, via 7 : Tor, (A, r) =A @r, 
as the triple 1 = (I, K, 1') of Tor,, , where K is regarded as a free K-module 
on one generator. Then formula (2.6) shows that 1 ,t = t = t I, .  Hence 
Tor (A, r) is a graded algebra as asserted. 

We record how this product may be computed from a suitable 
resolution of A. 

Corollary 2.3. If U k a DG-algebra alzd E : U +A a homomorphism of 
DG-algebras such that U,  regarded as a complex, is a projective resolution 
of the K-module A, then the canonical module isomorphism w : Tor (A, r) r 
H ( U @ r )  which expresses the torsion products by this resolution is also 
art isomorphism of graded algebras. 

Proof. Here U @ P ,  as tensor product of a DG-algebra U and a 
trivial DG-algebra I', is a DG-algebra, so that H(U @ r )  is indeed a 
graded algebra. In Thm. 2.1 above, we take B= B1=A, so we may 
choose both X and X' to be the resolution U ,  while Y is any projective 
resolution of A @A.  Lift I  and n to chain transformations f and g ,  as in 

Then Tor (n, Q )  is the homology map induced by g @ e : Y @ P @ r - t  
U @ r .  The product in Tor (A, r) is thus ( g  @Q) ,  f ,pH,  as in the diagram 

But the product xu: U @ U -+ U and gf : U @ U+ U are both chain 
transformations of resolutions lifting n :  A@A--tA, hence are homo- 
topic by the comparison theorem. Therefore the homology diagram 
above is commutative, so the product in Tor (A, T )  isgiven by (nu @Q) ,  pH.  
This is exactly the internal product in the graded algebra H ( U @ r ) .  

For the polynomial algebra P we have already noted in Thm.VII.2.2 
that the graded algebra TorP(K, K) is an exterior algebra over P; 
the proof used the fact that the K o s z u ~  resolution of K is a DG-algebra. 
Indeed, any algebra A has a projective resolution which is a D G-algebra U 
(Ex. 2 ) .  
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Our product definition (2.3) is new, but the external product PT which i t  
defines is exactly the product m defined by CARTAN-EILENBERG (Chap. XI.4). 
Their definition uses resolutions of A and A', but this is irrelevant (Ex. 3). 

Exercises 
1. If U is a DG-algebra, A a K-module, and p: A+U, a module homomorphism 

with amp = 0, show that the graded algebra U@T(A) has a unique DG-structure 
with alU=a,, alA=q, and A of degree n+ I. 

2. For any K-algebra A construct a DG-algebra U and a homomorphism 
E :  U-tA of graded algebras, so that, as in Cor.2.3, U is a projective resolution 
of A as a K-module. Hint: Use Ex. 1 to construct a DG-algebra U@) by recursion 
on n so that i t  is a projective resolution up to dimension n. 

3. Describe the external product in Tor(B, A) using resolutions of both B 
and A, or of A only. 

4. For K-algebras A and A' and modules BA, Bh,, AA, n*A' show that the 
formula (2.3) provides an external product 

T o d  (B, A) @TorA'(B', A') +To~A@~'(B @ B', A@A'), 

describe its properties, and show that i t  commutes with all four connecting homo- 
morphisms. This is the product T of CARTAN-EILENBERG X1.I. 

3. A Diagram Lemma 

In the next section we need the following anticommutative rule on 
the splicing of exact sequences. 

Lemma 3.1. (The 3 x 3  splice.) If a commutative 3 x 3  diagram of 
modades has columns the short exact sequences E', E,  and E", rows the 
short exact sequences EA , EBB and Ec, then 

Proof. The given 3 x 3  diagram has the form 

(zeros on the edges not shown). Construct the diagram 
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with v b =  (06, p b )  and p(c, 6") =yc- zb" (note the sign), while the 
other unlabelled arrows are maps or composites from (3.1 ). The diagram 
is commutative; a diagram chase shows the middle row exact. The top 
row is the composite EA o E"; by the vertical maps with - I,,,: C"4C" 
at  the right, it is congruent to the negative of the middle row, which in 
turn is congruent to the bottom row E'o Ec. This is the desired result. 

A related and frequently used result is 

Lemma 3.2. For right R-modules A< B, left R-modules A'< B', 

(BIA) @R(Bf/A')=CB@RB'I/[im(A@RB') u i m ( B @ d f ) ] .  (3.3) 

Proof. The first image here is that of A@ Bf+ B @ B'. This and the 
symmetric map yield the exact sequence 

AgRBf  @ B @, A'+ B @RB'+(B/A) @,(B1/A') - to.  
This sequence can also be derived (cf. Ex.2 below) from a diagram 
like (3.1) with first row A@Af, A@Bf, A@ (Bf/A'). 

Exercises 
I. In (3.1) assume only that the rows and columns are right exact, with the 

third row and the third column short exact. Prove that (3.2), with the left hand 
zeros omitted, is commutative with exact rows. 

2. Prove Lemma 3.1 by a diagram like (3.2) with vertical arrows reversed and 
middle row A' H B'@A -t B +Cf'. 

4. External Products for Ext 

The composition of long exact sequences yields an external product 
in Ext. For a single A-module A,  composition is a homomorphism 

By Thm. 111.5.3, this makes Ext, (A, A) a graded ring; indeed (by 
VII.3.1) a graded K-algebra. In this algebra, the elements of degree 
zero form the K-algebra of A-module endomorphisms of A. We now 
describe how this product can sometimes be obtained from the cohomo- 
logy product for resolutions. 

Let A and A' be algebras over a commutative ring K, while C and 
A are left A-modules, C' and A' are left A'-modules. Write Q for A@A1, 
where @ is short for and note that C @Cf and A@Af are left 
Q-modules. We wish to define a K-module homomorphism 

v : Ext i  (C, A) @Ext?, (C', A') +Exti+" (C @Cf, A@Af) (4.1) 

called the external or wedge product; for a€ Ext, and a'€ Ext,, we will 
write v (a @a') as a v a'. Take free resolutions 8 : X -t C and E' : X'-+Cf 
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by A- and At-modules, respectively. The cohomology product (1.3) is 

P H :  Hk(HomA(Xl A)) @Hm(HomA,(X: A'))+ Hk+"(Hom,(X@X', A@A1)) . 

With the canonical isomorphisms Ext i  (C, A) r Hk (HomA(X, A)), this 
will define the desired wedge product (4.1) Provided (E @E') : X @XI+ 

C @C' is a free 0-module resolution, for standard comparison argu- 
ments show that the result is independent of the resolutions used. In 
any event, each X,@XL is a free left 0-module. The proviso that 
X @XI is a resolution holds in two cases. 

Case 1. K is a field. By the Kiinneth tensor formula, valid over a 
field K, H,(X@X1) = O  for n>0 and E@E': Ho(X@X1)rC @C1, so 
X@X'  is a resolution. 

Case 2. A and A' are free as K-modules and C is a flat K-module. 
For, each free A-module X ,  is a direct sum of copies of the free K- 
module A, so X, is a free K-module. Then X+C is also a free K-module 
resolution of C, so Tor!(C, C') may be calculated (Thm.V.9.3) from 
X and X' as H,(X@X'). But C is flat, so Tor,(C, -) = O  for n>0, 
hence X @XI+ C @ C' is a resolution. 

Other cases will occur in the exercises and in our subsequent discus- 
sion of relative Ext functors (Chap.X). From the definition, it follows 
that the wedge product commutes with connecting homomorphisms, 
and is associative; for k=m=O, it reduces to the Horn-@ interchange. 
In Case 1, the wedge product may be expressed by the Yoneda compo- 
sition product. 

Theorem 4.1. [YONEDA 1958.1 For algebras A and A' over a field 
and U E  Ext;(C, A), U'E Extz (C', A') the wedge product is given by 

Here a @A' has an evident meaning, as follows. If k = 0,  o is a homo- 
morphism C+A; let a@A1 mean a@lA,: C@A'+A@Af. If k>O 
and m>Ol a and a' are the congruence classes of long exact sequences 

Since K is a field, preserves exactness, so gives long exact sequences 

Take a@At=cls(S@A') and C@a1=cls(C@S'), so the Yoneda 
composite (a @A1) o (C @a1) is defined; for k or m zero it is the usual 
composite of a homomorphism with a long exact sequence. 
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Proof. First assume k>O and m>O. Regard S as a resolution of C; 
the comparison theorem lifts 1, to a chain transformation f:  X+S. 
Similarly, I,, lifts to f' : X'+S1; in particular, f;: X:, +A' is a cocycle 
of X' and its class represents cls S' in the isomorphism Hm (X', A') z 
Extm (C', A') of Thm. 111.6.4. The complex X @X' is the first row of 
the diagram 

which extends in the same fashion left and right, ending with a column 
C@C1 on the right. The first row of vertical maps projects each (X@X1), 
to the indicated one of its direct summands. The bottom row is the 
composite long sequence T= (S @ A') o (C @St), with the splice at 
C@A1 displayed. The top squares do not commute, but erase the 
middle row; the resulting diagram is commutative, even at the splice. 
Hence the composite vertical map is a chain transformation h: X @X' 
+ T  which lifts the identity on C@Ct. To read off the cohomology 
class of X@X' corresponding to T, take h on dimension k+m. But 
h there is just 

( ~ ~ x ~ ) ~ + ~ - + x ~ ~ x : ~  A ~ A I ;  

the cohomology class of this cocycle is exactly the one obtained from 
cls fk  @cls f: by the cohomology product $H. Since cls fk and cls f:, 
represent S and S', respectively, this proves the first equation of the 
theorem for k>O and m>O. The proof for k=O (or m=o) uses a similar 
diagram, with splicing of sequences replaced by the action of a homo- 
morphism a: C -+ A on a sequence. 

The second equality in (4.2) is an (anti-) commutation rule. I t  is 
immediate from the definition if k = ~  or m=O. Since any long exact 
sequence is a composite of short ones, it suffices to give a proof in the 
case k= m= I ,  for short exact sequences E and E'. Here the commutative 
square diagram 

A@Et: A@A'-+A@Bt+A@C' 
I I I 
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and Lemma 3 .I prove (A @ E') o (E @C1) 5 - (E @A1) o (C @El), as 
required. 

From this theorem it again follows that the v product is associative. 

Theorem 4.2. If the K-algebras A and A' are free as Kmodules, 
while C, A, C', A' are all flat as Kmodules, the wedge product (4.1) is 
defilzed. I t  may be expressed by the composition Product as in (4.2). 

Proof. This falls under Case 2 above. The previous argument 
applies, since X@X' is a resolution and the tensor product S&A' 
of a long exact sequence S with a K-flat module A' is still exact. 

Corollary 4.3. If  A and A' are augmented K-algebras which are free 
as K-modules, the wedge product of ocExt;(K, K) and a1cExt:,(K, K) is 
given by 

a v a '=e~o,a '=  (- ~)~'"~a'o,,a E Ext$+'"(K, K) . (4-4) 

Here K is to be regarded as a A- or A'-module by pull-back along 
the augmentations E: A+K and d, while ,.a is short for (1 @&')*a; 
i.e., for the exact sequence in a pulled back along 1 BE': A@AP+ 
A@K=A. 

Now let V be a Hopf algebra with counit E: V-tK and diagonal 
map y : V-+V@V. Pull-back along yr turns (V@V)-modules into V- 
modules, exact sequences into exact sequences, and so gives a change 
of rings map ry#: E ~ t ~ ~ ~ + E x t ~ .  If C, A, C', and A' are left V-modules, 
so are ,(C@ C') and ,(A @A1), and the composite ry# v of wedge product 
and pull-back is a K-module homomorphism 

called the Hopf wedge product. I t  is defined when K is a field, or when 
C is K-flat and V is free as a K-module, and the analogues of Thms.4.1 
and 4.2 hold. Since y is associative, so is this product. 

* 

By pull-back, each K-module becomes a V-module ,M. 

Lemma 4.4. For a K-module M a d  a module C over the Hopf algebra V 

are isomorphisms of V-modules, with the V-modzcle structure on the right 
induced by that of C. 

Proof. The Hopf algebra, as a coalgebra, satisfies the identity 
(E 81) y = 1 of (VI.9.l). Pull-back yields 

and similarly on the other side. Hence a curious result: 
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Proposition 4.5. If V is a Hopf algebra over a field K and M ,  N are 
K-modules, C ,  A V-mddes ,  the Hopf wedge products 

are independent of the diagonal map y ;  that is, depend only on V as an 
augmented algebra e : V+ K. 

Proof. These wedge products are still given in terms of composi- 
tion of long exact sequences by the formulas (4.2), where the modules 
in these long exact sequences are pulled back to V-modules by y. The 
Lemma asserts that the resulting V-module structure is independent 
of y. 

In particular, let all modules in sight be ,K; then K @K= K, and the 
external wedge product becomes an internal product 

ExtV(K. K) @ExtV(K, K) +ExtV (K, K) (4.7) 

which makes Extv(K, K) a graded K-algebra. Since a @ K=a, the for- 
mula (4.4) shows this algebra commutative. 

Note. The external product for Tor arises from the middle four interchange 
and agrees with that map for Toro= 8; i t  may be obtained, as in (2.5), by replacing 
suitable arguments by resolutions, and composing with the homology product 
and a comparison of resolutions. The external product for Ext arises similarly 
from the Horn-@ interchange. Various other "products" involving Tor and Ext 
arise by the same mechanism from identities on Horn and 8; for example, there 
is one arising from the mixed adjoint associativity 

Hom ( A  @A', Horn (C, C')) -t Hom (C 8 A ,  Horn (A', C')) 

These are given in detail, via resolutions, in CARTAN-EILENBERG Chap.XI. De- 
scription in terms of the invariant definition of Tor and Ext would be of interest. 
Other types of products will appear in Chap.X below. 

Exercises 

1. Describe how the external product in Ext commutes with connecting 
homomorphisms. 

In the following exercises, K is a commutative ring, not necessarily a field. 

2. If P and P' are projective A- and A'-modules, respectively, show P@P' 
a projective (A@A1)-module. If A and A' are projective as K-modules, show also 
that P 8 P' is a projective K-module. 

3. Show that the wedge product for K a ring can still be defined, using projec- 
tive resolutions, provided A and A' are projective as K-modules and TO$ (C, C') = 0 
for n > 0. If, in addition, A and A' are K-flat, show that Thm.4.1 still.holds. 
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5. Simplicia1 Objects 

The cohomology H(X, 2) of a topological space X with coefficients 
Z is a graded ring under a product known as the cup product. This 
product can be defined not only for spaces but for other complexes 
with a "simplicial" structure. Hence we now analyze the combinatorial 
structure of a simplex; more exactly of a #-dimensional simplex A P  

with ordered vertices. 
For each non-negative integer #, let [#I denote the set {o, 1, . . . , #) 

of integers in their usual order. A (weakly) monotonic map p :  [q] +[#I 
is a function on [q] to [#] such that i 5 j  implies p i  5 p j. The objects 
[#I with morphisms all weakly monotonic maps p constitute a category 
A (for monotonic). Note that a monotonic p is determined by the 
sequence of q+ 1 integers p, 2 p15..  .s pq in [#] where p,=pO, . . . ; 
hence we regard p as the affine simplex (p,, . . . , pq) determined by the 
vertices on the standard psimplex AP. 

Let V be any category. A contravariant functor S:  d + V  will be 
called a simplicial object in%. Specifically, S assigns to each non-negative 
integer q (to each object of A) an object S, of %, and to each monotonic 
p :  [q] +[#I a morphism p* = S (p) : Sp +Sq of V, with S (1) = 1 and 
S ( p  v) = S (v )  S (p) . By a sim#licial set is meant a simplicial object 
in the category of sets; by a simplicial A-module is meant a simplicial 
object in the category of all A-modules. 

If F :  V + 9  is a covariant functor, each simplicial object S in V 
determines a simplicial object F S in 9, with (F S), =F(Sq), F S (p) = 

F(Sp).  In particular, if A is an algebra, and 4 the functor which assigns 
to each set Y the free (left) A-module with generators Y, then each 
simplicial set S determines a simplicial A-module 4 S. 

The singular simplices (11.7) of a topological space X constitute a 
simplicial set 3 (X). In detail, let Sp(X) be the set of all singular #- 
simplices T of X ;  each T is a continuous map T: AP+X defined on 
the standard affine p-simplex A+. Now each monotonic p :  [q] +[#I 
determines a unique affine map p :  Aq+AP carrying, vertex i of Aq 
onto vertex pi of AP; the composite p* T= T p :  Aq+X defines a map 
p* =s (p) : sp (X) +Sq (X) which makes 3 a functor on A and hence 
a simplicial set. For Z the ring of integers, S'=F,~ is a simplicial 
abelian group with SL the free abelian group generated by all singular 
+-simplices of X. In other words, S; is just the usual group of singular 
#-chains of the space X. We shall soon see that the usual boundary 
of a singular #-chain is also determined by the simplicial structure of 
S1(X). 

I t  is convenient to use two special families of monotonic maps 
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defined for i=o, . . . , q (and for q>O in the case of E') by 

ci(j)=j for j < i ,  ( j )  for j S i ,  

=j+l f o r j l  i ,  =j-I for j>i. 

In other words, ei may be described as the (q-1)-face of A
q 

with 
vertices (0, 1, . . . ,5, . . . , q) - omit index i - and q' is the (q+ 1)-face 
with vertices (0, I ,  . . . , i, i, . . ., q) - double the vertex i. From this 
description one verifies the identities 

. . 
= i<j ,  

. . 
7 7:+1= d rlF1. &j,  

i j-1 qi- l~;  = Eq-17q-8, i<j ,  
. . 

= I, z=y, i = j + l ,  
- i-1 j 
- Eq-lqq-a 9 i> j+ I 

We normally omit the subscripts q on E and q. 

Lemma 5.1. Any monotonic p : [q] --+ [ f i ]  has a unique factorization 
. . 

p = &*I .  . . &'vp. . . ?p, (5.5) 

with p2-il>.-. >is20, O S j l <  . . -<jt< q, and q- t+s=p. 

Proof. Let the elements of [#I not in ,a [q] be il , . . . , is in reverse 
order, while those elements j of [q] with p (j) = p (j+ I)  are jl, . . . , j, 
in order. Then (5.5) holds, and presents p as the composite of a mono- 
tonic epimorphism (the product of the 7's) with a monotonic mono- 
morphism (the product of the e's). 

This lemma allows an alternative definition of a simplicia1 object. 

Theorem 5.2. A simfilicial object S in a category Q is a family (Sq} 
of objects of Q together with two families of morphisms of Q, 

di: Sq+Sq-l, si: Sq+Sq+l, i=O, ..., q, 

(and with q>O in the case of d,) which satisfy the identities 

Proof. Since S is contravariant, the morphisms di = S (E'), si = S ($) 
satisfy the identities (5.6) - (5.8), which are the duals of (5.2) - (5.4). 
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Conversely, given the di and the s, , write any monotonic p  in the unique 
form ( 5 . 5 )  and define 

S  ( p )  = sjt. . . ~ j ,  di.. . . dil : Sp -t Sq . 
The identities (5.6)-(5.8) suffice to commute any two of d,,  s f ,  hence 
to calculate the factorization of a composite p v  from that of p  and 
of v ,  hence to prove that S ( p  v) = S (v) S  ( p ) .  This makes S : A 4 W  
contravariant. 

We call di the i-th face operator and si the j-th degelzeracy operator 
of S.  Note that (5.6) and (5.7) imply 

did ,=d,di+l ,  i z  j ,  (5.9) 
s . s . = s . s .  c 7 1 r - 1 ,  (5.10) 

For example, let V be any partly ordered set (1.8); call an ordered 
(q+ 1)-tuple (v,, . . . , vq) with elements v , S  - -. 5 vq in the given partial 
order of V a q-simplex of V. Let Sq ( V )  be the set of all q-simplices of V. 
Then S ( V )  is a simplicial set under the face and degeneracy operators 
defined by 

d, (v,, . . . , vq) = (v,, . . . , Gi, . . . , %I (omit vi) , ( 5 . 1  1 ) 

si (vO , . . . , vq) = (v, , . . . , vi , v, , . . . , v,) (double v,) . ( 5 . 1  2 )  

Geometrically, V may be regarded as a schematic description of a 
polyhedron with partly ordered vertices v i .  

If S and S' are simplicial objects in a category Q, a simplicial map 
a: S+S1  is a natural transformation of the contravariant functors 
S,  S t :  A+V. In other words, a simplicial map a is a family of mor- 
phisms a, : S, -t Si of V such that a, S ( p )  = S1(p)  ap for each monotonic 
p : [q] -+ [ p ] ,  or, equivalently, such that ad, = d,a and as ,  = s,o for every i .  
The simplicial objects in V form a category with morphisms the simpli- 
cia1 maps. 

Each simplicial module S  determines a (positive) chain complex 
K = K ( S )  with Kq= Sq and with boundary homomorphism a :  Kq-+Kq- ,  
the alternating sum of the face homomorphisms: 

a = d , - h + . . . +  (- l )qdq:  Kq-+Kq- l .  ( 5 . 1 3 )  
The identities (5.6) for d,dj imply that aa=O. This allows us to speak 
of the homology or cohomology modules of a sirnplicial module S, 
meaning those of the associated chain complex K ( S ) .  For a topological 
space X, (5.13) gives the usual boundary operator a in the singular 
complex S  ( X ) .  More formally, X determines the simplicial set 3 (X) 
described above, hence the simplicial abelian group F,S ( X ) ,  hence the 
chain complex K F , ~  ( X )  ; with boundary 8, this complex is the usual 
singular complex S ( X )  . 
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A simplicia1 module S over the ring R is augmented if there is a module 
homomorphism E :  So +R with &do = E & :  Sl +R;  the associated chain 
complex is then augmented by E .  

Notes. Simplicial sets, under the name complete semisimplicia1 complexes, 
arose in the study by EILENBERG-ZILBER [1950, 19531 of the singular homology 
of spaces and their cartesian products. Simplicial abelian groups, under the name 
FD-complexes (F for face, D for degeneracy) arose simultaneously in the analysis 
by EILENBERG-MACLANE [I9531 of the spaces K ( n ,  n) with one non-vanishing 
homotopy group n in dimension n. Simplicial sets satisfying the additional "Kan 
condition" and simplicial (multiplicative) groups subsequently proved to provide 
the suitable algebraic formulation of homotopy theory; see KAN [1958b]. The 
normalization theorem of the next section and its proof are due to EILENBERG- 
MACLANE [I9471 Each simplicial module is determined by its normalized chain 
complex; this gives an equivalence between the categories of simplicial modules 
and (positive) chain complexes of modules, DOLD [1958]. 

6. Normalization 

Let S be a simplicial module. In each dimension n,  define ( D S ) ,  
to be the submodule of S,  generated by all degenerate elements; that 
is, set (D S ) ,  = o and 

( D S ) , = S ~ S ~ - ~  u ... u s ~ - ~ S ~ - ~ .  n>O. 

By the identities (5.8) for disj,  D S  is closed under 3, so is a subcomplex 
of the associated chain complex K S of S.  The quotient K SID S = KN S 
is known as the normalized chain complex of the simplicial module S .  

Theorem 6.1. (Normalization Theorem.) For each simplicial mo- 
dule S the canonical projection n: K S+KN S= K SID S is a chain 
equivalence. 

For the proof, we interpret the degeneracies si as homotopies. For 
each non negative k, let D,S be the graded submodule of S generated 
by all degenerate elements s,a with is k ;  that is, set 

( D k S ) n = ~ o S n - l ~  . . - u  S , -~S , -~ ,  n - I S k ,  

. - .  VS,S , , -~ ,  n-1>k. 

By (5.8), each D,S is a subcomplex, while D S  is the union of all D,S. 
Define t,: S + S of degree 1 by 

t,a=(--l)kska, k l d i m  a ,  a€ S ,  

= 0 ,  k>dima, a e S ,  

and set hk= 1 - atk- t,a. This makes h,: K ( S )  +K(S)  a chain trans- 
formation and t, : 1 = h, a chain homotopy. Since t, S < Dk and aD, < D, 

h ,a=a(modDS) ,  a e S .  (6.1 
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Moreover we claim that 

Since sksi=sjsk-, by (5.10), the second inclusion is immediate. As for 
the first, the identities (5.8) for k s  dim a, a €  S ,  give 

while, for kS dim a, (5.8) and ( 5  .lo) give 

With a =z(- ~ ) ~ d ~ ,  these combine to give (atk+ t, a)sk a- sk a (mod Dk-, S )  
for k s d i m a  and hence the first inclusion of (6.2). In particular, 
hoDOS=o. 

Now set h=hot,h, . . . h, . . . . Since h,a=a for k>dima, this com- 
posite is finite in each dimension, and defines a chain transformation 
h :  K S + K S .  By (6.1), h k D S < D S ,  so an iteration of (6.1) gives 

ha= a (mod D S ) .  (6.3) 

By (6.2), h D  S=O. Since each hk is chain homotopic to 1, there is a 
composite homotopy t : 1 = h. Because h D = 0,  g (a + D S )  =ha defines 
a chain transformation g: K S / D S + K  S ;  by (6.3), ng= 1, where n 
is the projection K S +K S /D S .  Moreover, gn= h :  K S -+K S is chain 
homotopic to 1 ,  by construction, so n is a chain equivalence, as asserted. 

7. Acyclic Models 

The treatment of products of simplicial modules in the next section 
will require the use of acyclic models; here we state the preliminaries, 
for simplicial modules over some fixed ring R. 

For each non-negative integer n a simplicial R-module M" is defined 
by taking M; to be the free module with generators all monotonic 
maps 1: [#] -+ [n], while p* = Mu ( p )  : M;+M," is defined for each 
monotonic p :  [q] +[#I as p* 1= 1 p. This makes M" a contravariant 
functor. Observe that the generators 1 of M; are all the +dimensional 
faces ($, . . . , A&, degenerate or not, on the usual n-simplex, and 
that Mn is augmented by E (1,) = 1 ; often Mu is denoted as An. We 
call Mn the n-dimensional model simplicial module and the identity 
map xn = 1 : [n] -+ [n] the basic cell on this model ; thus x" E ME. 
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As in the case of spaces (II.7), an augmented chain complex E :  K +R 
is acyclic if Hn(K)  =O for n>O and B: H,(K)=R. 

Proposition 7.1. For each non-negative ideger n ,  K(Mn) is acyclic. 

Proof. I t  will suffice to construct a contracting homotopy. Define 
a homomorphism s : M; + M;+, by s (A,, . . . , A#) = (0, 2, , . . . , A+). By 
( 5 . 1 1 )  and (5.12), 

d,s=l, dis=sdd-,, i>O (7.1) 

and s si = si+,s. Hence, in the associated chain complex, s induces a 
chain homotopy s : 1 N f B, where f : R + S is defined by f 1 A = (0). 

Proposition 7.2. Fm each sim+licid module S and each a€ Sn there 
is a unique simPlicia1 ma* a : Mn += S with a xn = a. 

Proof. Each free generator A of M; can be written uniquely in 
terms of the basic cell xn as I*xn=xnl. Hence a(A*xn) =A*a defines 
a simplicial map a:  Mn 

-t S ;  it is clearly the only such with a xn = a. 
To summarize: the models are acyclic and represent each a€ S,. 

Similarly, in the proof (11.8) of the homotopy axiom for the singular 
complex S ( X )  of a topological space, the models S (An) and S ( A n x I )  
are acyclic and represent each singular simplex T via T: An+=X. This 
situation recurs in many connections as a means of constructing chain 
transformations and chain homotopies. It can be described in cate- 
gorical terms (EILENBERG-MACLANE [1953], GUGENHEIM-MOORE [I95 71) ; 
it is more efficient to apply it directly in each case, as in the argument 
to follow in the next section. 

Exercise 
4 .  If V is any set with the partial order defined by v 5 v' for every v,  v'E V, 

K(FZ SV) is acyclic. 

8. The Eilenberg-Zilber Theorem 
I f  U and V are simplicial sets, their cartesian Product U x V  is the 

simplicial set with (UxV) ,= U n x K  the cartesian product of sets and 

for u c Un , v c V,, , and n >O in the case of d, . This definition is suggested 
by the case of topological spaces. If X x Y  is the cartesian product 
of two spaces X and Y ,  with projections nl and n, on X and Y ,  respec- 
tively, each singular simplex T :  A n + X x Y  is determined by its pro- 
jections % T and n, T ,  while dinj T=njdi T ,  s,nj T=njsi T .  Hence 
T-t  (nl T ,  n, T )  provides an isomorphism S ( X x  Y )  S ( X )  x S (Y )  of 
simplicial sets. The computation of the singular homology of X x Y  is 
thus reduced to the computation of the homology of a cartesian product 
of simplicia1 sets. 
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There is a parallel product for simplicial modules A and B over a 
commutative ring. The cartesian product A x B  is defined to be the 
simplicial module with ( A x  B), = A, @ B, and 

for ~ E A , ,  ~ E B , ,  and n>0 in the case of d,. To avoid confusion with 
the tensor product of complexes we shall write a x b  for the element 
a @ b of A,@ B,. For simplicial sets U and V ,  this definition insures 
that there is a natural isomorphism of simplicial modules 

for F ( U x V )  in dimension n is the free module generated by the set 
U,x'V,, and this free module is naturally isomorphic to the tensor 
product (F U,) @ (F <) . 

The associated chain complex K ( A x B )  now reduces to the tensor 
product of the chain complexes K(A) and K(B). 

Theorem 8.1. (EILENBERG-ZILBER.) For sim+licial modules A and 
B over a commzltative ring there is a natural chain eqzlivalence 

In view of the normalization theorem, K(A)+KN(A) is a chain 
equivalence, so there is also a natural chain equivalence 

The proof, as recorded in the following lemmas, will use the method 
of acyclic models. Note that KO ( A x  B) =Ao @ Bo = KO (A)  @KO (B)  ; 
hence we can choose maps f and g in (8.4) to be the identity in dimension 
zero. 

Lemma 8.2. For simplicial modules A and B there exists a natural 
chain transformation f : K ( A x  B) +K(A) @ K(B) which is the identity 
irz dimension zero. Any two such natural maps f are chain homotopic 
via a homotopy which is natural. 

Proof. Since fo is given, suppose by induction on n that fq is already 
defined for all q<n and natural on Kq(AxB) ,  with afq= fq-la. We 
wish to define f ,  with af,=f,-,a; we do this first for the product 
xnxx" of the two basic cells in the model A=Mn= B. We require 
that af ,  (xnxx") = a ( ~ " X X " ) .  The right hand side e is already defined 
and has ae = 0 (or E e = 0, if n = 4 )  ; it is thus a cycle in the complex 
K(Mn) @K(Mn) ,  which is acyclic as the tensor product of two acyclic 
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complexes (Prop. 7.1). Hence there is in this complex a chain c of dimen- 
sion n with a c  = e. We set f ,  (x"xxn) = c, so that 

Now consider a€ A,, bc B, . By Prop. 7.2, there are simplicia1 maps 
a:  Mn+A, ,!?: Mn+B with uxn=a, ,!?xn=b. Then K(a):  K(Mn)+ 
K ( A )  is a chain transformation which we again denote as a, and 
a @,!?: K(Mn) @ K(Mn) -t K ( A )  @ K ( B )  is a chain transformation. Set 
f n  ( a x  b) = (u @I,!?) c, for c as in (8.6) ; since the simplicial maps a and @ 
are unique, the right hand side is bilinear in a and b, so defines 
f n  : K,  ( A x  B) -t [K(A)  @ K ( B ) ] ,  . Moreover, 

Now f n - ,  is natural, so 

Thus f is indeed a chain transformation up to dimension n.  
To prepare for the next induction step it remains to show that f ,  

is natural. Let q : A+A ', c :  B -+ B' be any simplicial maps, with q a = a', 
[b=bl. Then q u :  Mn+A' has qaxn=qa=a', so is the unique sirn- 
plicial map carrying x" to a'. Hence 

(v@O f , (axb)=(q@C)(~@,!?)  c = ( ~ Q @ C B )  c=f,(alxb') ,  
and f ,  is natural. 

Now let f and f' be two such chain transformations. By induction 
on n we may assume that the tq : Kq ( A x B )  +(K(A)  @ K(B)),+, are 
maps defined for q=O, . . . , n- I with at+ t  a= f - f' in dimensions 
q<tz. (For q = ~ ,  f,= fi; so choose to=().) Again we define t, first on 
xnxxn.  We require 

at, ( znxxn)  = ~ ( x ~ x x * )  - ~ ' ( x ~ x x ~ )  - tn-l a ( x ~ x x ~ )  . 
By the induction assumption, a ( / -  f ' -  ta) =o, so the right hand side 
is a cycle in an acyclic complex, hence is the boundary of some chain d. 
Set t,(xnxxn)=d, tn(axb)=(u@,!?)d for a, @ with ax*=a, jxn=b. 
The previous type of argument then shows t, natural and at,+ t,-,a= 
f-  f' for all a x b .  

Lemma 8.3. For sim$licial naodzcles A and B there is a natural 
chain tralzsformatiolz g :  K ( A )  @ K ( B )  + K ( A x B )  which is the identity 
i n  dimension zero. Any two suck g are homoto@ by a chain homotofly 
natural ilz A and B.  

The proof is analogous. A typical chain of K ( A )  @ K ( B )  in dimen- 
sion rt has the form a@b, with aeKp(A) ,  beKq(B),  and fl+q=n. Use 
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the models Mfi and Mq and maps a : Mfi -+ A ,  /3: M4 -+ B with a xfi= a, 
/3 d=b.  Now the complex K(MfixMq) is acyclic, for the homotopies s 
of (7.1) for Mfi and Mq yield a contracting homotopy s ( a x b )  = s a x s  b 
on K(MfixMq).  Using this acyclicity, the construction of g proceeds 
as before. 

We now have the chain transformations f and g of the theorem; 
it remains to establish homotopies = f g, 1 = g f .  These are done by 
exactly the same method; for instance the homotopy 1 = gf  in K ( A x  B )  
is obtained, using the acyclicity of K(MfixMP),  by comparing h=1 
with hl=gf as follows. 

Lemma 8.4. If h, h': K ( A x  B )  + K ( A x  B )  are two natural chain 
transformations, both the identity in  dimension zero, there is a natural 
chain homotop y t : h=hl. 

These proofs are actually constructive; explicit formulas for f and 
g can be found by calculating the chain c used at  each stage of the 
induction (e.g., in (8.6)) from the explicit contracting homotopies given 
in the proof of Prop.7.i for the models. We do not need the explicit 
homotopies I =  f g, 1 =g f ,  but the explicit formulas so obtained for f 
and g are useful. To write them out, denote the "last" face in a simplicia1 
object S by 2; that is, for a in Sn set d"a=dna. Thus, for any exponent 

M .  

n- i,  d"-'~=d,+~. . . dna. 

Theorem 8.5. For any sim$licial modules A and B,  a natwal chain 
transformation f : K ( A x  B )  +K(A) @ K ( B )  for the EILENBERG-ZILBER 

theorem is given by 

Proof. Since f is defined by face operators, it is natural. I t  reduces 
to the identity in dimension n=0. I t  remains to prove that 8f ( a x b )  = 

f a ( a x b ) ;  in view of naturality, it suffices to prove this for a=xn= b 
in the model Mn. Now xn= (0, 1, . . . , n) ,  3-%" is the simplex (0, I ,  . . . , i) 
and 

In af ( x nxx n)  the last face of each first factor cancels with the term 
arising from the initial face of the second factor, and the remaining 
terms assemble to give f i3(xnxxn), as required. 

The chain transformation f of (8.7) is known as the Alexander- 
Whitney map, since it appeared in the simultaneous and independent 
definition of the cup product in topology by these authors. The explicit 
map f calculated from our contracting homotopy differs from the 

Mac Lane, Homology 16 
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Alexander-Whitney map, but only by terms which are degenerate. 
Moreover, 

Corollary 8.6. The Alexander-Whitlzey map f induces a chain trans- 
formation on the associated aormalized chain complexes, 

Proof. By definition, KN A= KAID A ;  by (3.3) regard KNA@KN B 
as K A B K B  modulo the subcomplex spanned by the images of both 
DA@K B and KA@D B. In (8.7) suppose a x b ~ K ( A x B )  degenerate, so 
of the form ska'xskb' for some k. In each term on the right of (8.7) 
one of the factors is degenerate. Specifically, if i z k ,  (5.8) shows d:s,b1 
degenerate, while if i > k ,  &-is,a' is degenerate, whence the desired 
result. 

Geometrically, f is an "approximation to the diagonal". Consider 
for instance the cartesian product A1xA1 of two 1-simplices (= inter- 
vals) ; it is a square with four vertices. Algebraically, A1 is represented 
by K ( W ) ;  in KN(W) @KN (W) the group of 1-chains is a free group 
on four generators, corresponding to the four edges of the square. 
The diagonal of the square does not appear directly as a chain. How- 
ever, 

f ( ~ ' ~ 4 = ( 0 )  @(0 1)+(0 1) @(I) 

is the chain represented by left hand edge plus top edge of the square. 
This chain is "homotopic" to the diagonal, hence an "approximation" 
to the diagonal. Observe that the bottom edge plus the right hand 
edge would give a different approximation, which could be developed 
algebraically by interchanging the roles of initial and final faces in the 
formula (8.7). Comparison of these two different approximations to the 
diagonal leads to the Steenrod squaring operations (STEENROD [1953], 
MILNOR [i 9581, DOLD [I961 1, STEENROD-EPSTEIN [I 9621). 

For three simplicia1 modules A ,  B, and C, any natural Eilenberg- 
Zilber map f may be iterated, as in 

Proposition 8.7. Any natural f is associative up to homotopy, ia 
the sense that thre is a natural chain homotopy (I @ f )  f rr (f @ 1) f. The 
Alexander-Whitney map is associative. 

Proof. Since (1 @f) f and (f @I) f are each the identity in dimension 
0, a natural homotopy between them may be constructed by the method 
of acyclic models. The associativity (no homotopy necessary) of the 
Alexander-Whitney map can be computed directly, say by (8.8). 
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To describe the second map g of the Eilenberg-Zilber theorem we 
introduce certain "shuffles". If # and q are non-negative integers, 
a (#, 9)-shzlffle ( p ,  v) is a partition of the set p+q- I ]  of integers 
into two disjoint subsets p,<. . . < pfi and v,<. .. < vp of # and q integers, 
respectively. Such a partition describes a possible way of shuffling a 
deck of # cards through a deck of q cards, placing the cards of the first 
deck in order in the position h, . . . , pfi and those of the second deck 
in order in the positions v,, . . . , vq . A shuffle may be pictured as a se- 
quence of moves in the lattice of points (m,  n) in the plane with integral 
coordinates: Start at (0,O) at time 0 ;  at time k move to the right if 
k is one of p,, . . . , ,up and up if k is one of vl, . . . , vq; the result is a "stair- 
case" from (0,O) to (#, q). A (#, q)-shuffle can also be defined to be a 
permutation t of the set of integers { I ,  . . . , #+ q) such that t (i) < t ( j )  
whenever i< jS# or #ci< j ;  for, each such permutation t determines 
the pi as t (i) - I ,  the vj as t (#+ j )  - I ,  and conversely. The sig~ature 

~ ( p )  of the shuffle (p, v) is the integer e ( p ) =  pi- (i- 4 ) ;  then 
i-1 

( - I ) " ( " )  is the sign of the associated permutation t. 

Theorem 8.8. For any sim#licial modzcles A and B a natzcral chain 
transformation g for the Eilenberg-Zilber theorem is  given, for a€  A p ,  
bcBq,  by 

g(a@b)= 2 (-l)'e)(sv #... svlaxs,. .. s,,b), 
("9 v) 

(8.9) 

where the sum i s  taken over all (#, q)-shuffles ( p ,  v).  

Clearly g is natural, a @ b has dimension #+ q, and so do sve.. . svl a 
and s,. . . sPlb. The proof that g is a chain transformation is a straight- 
forward verification which we omit (details in EILENBERG-MACLANE 
[I953 b], 5 5, where the shuffles were first introduced). 

Geometrically this function g provides a "triangulation" of the 
cartesian product APxAq of two simplices. Specifically, take a=xfi~Mf' 
and b =#c Mq, so xfi has vertices (0, I ,  . . . , #). In this vertex notation, 

with 0 = io l i l l  .. .S ip+, =#. and ik=ik+, precisely when k is one of 
vl , . . . , vq . Similarly s,+. . . sfi1XP= ( j o ,  . . . . with jk = jk+, precisely 
when k is one of A, . . . , ,up. The simplex displayed on the right of (8.9) 
then has the form 

(i0, ...,i,+ ,)x(i0, ..., ifi+,), 
where the first factor is degenerate at those indices k for which the 
second factor is not degenerate. This symbol may be read as the (#+ q)- 
dimensional affine simplex with vertices (i,, jk)  in the product A k A q .  

16* 
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These simplices, for all (p, q)-shuffles, provide a simplicial subdivision 
of AbcAq. For example, if p=2, q= I ,  A%A1 is a triangular prism 
and the three possible (2,1) shuffles triangulate this prism into three 
simplices 

each of dimension three. (Draw a figure!) 
This description also shows that if either factor a or b is degenerate, 

so is each term on the right in (8.9). Hence 

Corollary 8.9. The shuffle map g of (8.9) induces a chain transforma- 
tion ON the normalized chain com$lexes 

For these normalized complexes, the composite fNgN can be shown 
to be the identity (no homotopy IefNgN is needed). 

Exercises 
1. Exhibit a second explicit formula for f, with first and last faces interchanged 

in (8.7). 
2. Establish associativity for the shuffle map g. 
3. Prove the normalization theorem of § 6 by the method of acyclic models. 
4. Show that the EILENBERG-ZILBER theorem holds for A a simplicial right 

R-module, B a simplicial left R-module, and R any ring. 
5. Calculate the integral homology of a torus S1xS1 from that of a circle S1 

(EILENBERG-ZILBER plus KUNNETH). 

9. Cup Products 

For any simplicial set U, Au = u x u  defines a simplicial map A : U-t 
U x U  called the simplicial diagolzal map. Now U determines the sim- 
plicial abelian group F, U and hence the chain complex K(F, U) which 
we write simply as K(U) ; each K,, (U) is the free abelian group generated 
by the set U, , with a = (- l)'di. The diagonal induces a chain trans- 
formation K(U) + K ( U x  U), also denoted by A .  If f is any one of the 
natural maps from the EILENBERG-ZILBER theorem the composite 

is called a diagonal map in K(U). Since f is unique up to a (natural) 
chain homotopy, so is o. Since A is associative - (A x 1) A = ( I x  A) A - 
and f is associative up to homotopy (Prop.8.7), there is a homotopy 
(w @ 1) w=(l @w)o. The complex K(U) is augmented by E (u) = 1 for 
u~ U,. We assert that there are homotopies 
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Indeed, each of ( E  8 1 )  o and (1 BE) o is natural and is the identity 
in dimension zero, so natural homotopies may be constructed by using 
the acyclic models Mn (taken this time as simplicial sets U). Now 
equalities in (9.2) and in associativity are exactly the conditions (VI.9.1) 
required to make o a coproduct with counit E, so that we might say 
that K(U) with diagonal o is a differential graded coalgebra "up to 
homotopy". 

If we choose for f the Alexander-Whitney map, then w is associative 
and it is easy to check that ( E  @ 1 )  o = (1 @ E )  o. Hence with this choice 
K(U) is a differential graded coalgebra, and so is the normalized com- 
plex KN ( U) - 

Now let A and A' be abelian groups, and write H ~ ( u ,  A)  for the 
cohomology group Hk(Hom (K(U),  A)) .  The composite u=o* p'f, 

Hk(U, A)@H'"(U, A') 
lfiE Y? (9.3) 

H~+"(K(U)  @K(U), A@A')% H~+"(u,  A@Ar),  

where p H  is the cohomology product of (1.3), is called the (external) 
simplicial cup product. With cochains h and h', the definition reads 
(cls h) u (cls h') = cls (h u h'), where 

( h u  h1)u=(h@h') f Au, (9.4) 

for h@h' as in (1.4). In particular, if U= S ( V )  is the simplicial set 
associated with a partly ordered set V of vertices and f is the Alexander- 
Whitney map, while heHk, ~ ' E H " - ~ ,  then 

(h u h') (vo, . . . , v,) = h(vO, . . . , vk) @h'(vk, . . . , v,) . (9.5) 

If A =A' is the additive group of a commutative ring R with product 
z: R @R +R, the composite n, u is a map 

Hk (U, R) @ HM (U,  R) +H~+" (u, R) (9.6) 
called the internal simplicial cup product. 

Theorem 9.1. For each simplicial set U and each coefficient r i ~ g  R 
the cohomology modules Hk (Hom (K(U), R) )  = Hk (U, R) constitute a 
graded ring uder the internal simplicid cu# product. If R i s  commutative, 
so is this cohomology ring. 

Proof. The associativity of the product is known. The augmentation 
E : K(U) +Z composed with I :  Z +R gives a zero dimensional cocycle 
I E of K(U). Then ( ~ u I E )  w = n ( h @ I ) ( I @ ~ ) o u ,  where n(h@I):  
K @Z +- R is h when K @Z is identified with K, while (1  @I E )  o" I .  
Hence the cohomology class e of the cocycle I E acts as the identity 
for the cup product. Similarly, to show that the cup product is com- 
mutative, it suffices to establish a chain homotopy fazf  for the usual 
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interchange t : K, @I K m r K m  @Kk. Both f and z f are the identity in 
dimension 0, and this homotopy is given by using acyclic models. 

When f is the Alexander-Whitney map, the cochains themselves form 
a graded ring, but the ring is not commutative: Commutativity holds 
only for cohomology classes. 

This theorem shows that the singular cohomology of a topological 
space X with coefficients Z is a commutative ring under the cup pro- 
duct. 

The simplicial cup product also applies to the cohomology of a 
group 17. By a n-set S is meant a set S together with an action of 17 
on S ; more formally, this action is given by y : I7+Aut (S), a homo- 
morphism of II into the group of 4-4 maps of S onto S. The 17-sets form 
a category. For example, take gn(17) to be the set of all (nf 4)-tuples 
(x, , . . . , x,) with the action of 17 given by x (x, , . . . , x,,) = (x x, , . . . , x x,,). 
The usual face and degeneracy operators 

di (x,, . . . , x,,) = (x,, . . . , i i  , .. . , x,) , O S i S n ,  n>O, 

si (x, , . . . , x,,) = (x, , . . . , xi, xi, . . . , x,) , 0 S i l; n , 

are 11-maps, so 8 (17) is a simplicial 17-set. The associated simplicial 
abelian group F, (B (17)) is a simplicial I7-module, while K = KF,(B (17)) 
is a complex of 17-modules, with K, the free abelian group generated 
by the (x,, , . . . , x,,) and with boundary 

n 
a(%,, . . ., x,,) = ,x (- I)~(x, ,  .. . , i i ,  . . . , x,,). 

r=O 

We have recovered the homogeneous description (IV.5.13) of the un- 
normalized bar resolution B (17) = KF, (B (17)), while K,F, (B (17)) is the 
normalized bar resolution B (17). 

Now recall that the group ring Z(17) is a Hopf algebra with co- 
product 

y :  ZO+Z(17)@Z(17), y (x )=x@x.  

By pull-back along the corresponding diagonal map 17+ 17x l7, the 
cartesian product 8 (17) x B  (17) of two II-sets is a II-set. The diagonal 
map w for (17) = KB (4 is the composite 

here A is a 17-map, f is natural, so commutes with the action of 17 
and is also a 17-map. Therefore w is a chain transformation for complexes 
of 17-modules. This implies that the simplicial cup product is defined, 
for two 17-modules A and A', as a homomorphism 

U: Hk(17, A) @Hm(17, ~ ' ) - + ~ ~ + " ( 1 7 ,  JA@At)). (9.7) 

This product is associative. 
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A homomorphism a : ,(A @A') +A" of 17-modules is called a #airing 
of A and A' to A". The cup product followed by the homomorphism 
induced by the pairing a yields an "internal" cup product which is a 
homomorphism H(IT, A) @ H(17, A') + H(17, A"). 

The discussion of IT-sets in the definition of this cup product could 
be short-cut by simply giving the direct description of the cup product 
by cochains. If h and h' are cochains of dimensions k and m, respectively, 
regarded as functions on the homogeneous generators (x,, . . . , x,) and 
(x, ,  . . . , x,) of t9 (n), their cup product is the cochain defined, via 
Alexander-Whitney, by 

This h u h '  is clearly a 17-module homomorphism into A@A' with 
diagonal operators, that is, into, (A@ A'). 

In particular, if A and A' are both the ring Z with trivial operators 
(Z=J), then ,(J@,Z) is J. I t  follows that Hk(17, ,Z) is a commutative 
graded ring under the simplicial cup product. 

Theorem 9.2. Under the isomor$hism Hn (II, A ) = E X ~ & ~  (2, A ) ,  for 
any 17-modzcle A, the sim$licial cw# $rodzcct is ma$#ed onto the Ho+f 
wedge prodzcct defined in Ext. 

The crux of the proof is the observation that the diagonal map 

of complexes of 17-modules commutes with the augmentation, hence is 
a comparison of the resolution E :  B(17) +Z to the resolution given by 
,p (n) @B (n)] +Z. Both H" and Extn are Hn (1 (IT), A). The Hopf 
wedge product of (4.5) is $$H, where $H is the cohomology product 
and ly# the change of rings defined by y: Z(II) +Z(n) @Z(n). Now 
Thrn.III.6.7 asserts that this change of rings can be calculated as 
yi#= f* y*, where y* maps H o ~ ~ ( ~ ) ~ ~ ( ~ ,  to H O ~ ~ ( ~ ,  while the map 
f : (n) +@ (17) @ p  (n)] is a comparison. Choose f to be the comparison 
o ;  then becomes o*y*$H, which is the simplicial cup product. 

The cup product in the cohomology ring H* (17,Z) can thus be de- 
fined in three equivalent ways: 

(i) As the simplicial cup product; 
(ii) As the wedge product induced by the diagonal map y ;  

(iii) As the YONEDA product, by composites of long exact sequences. 
Still a fourth definition will appear in Chap.XI1 and will facilitate the 
computation of examples. 

One application is the "cup product reduction theorem". Suppose 
17=F/R where F is a free multiplicative group. Let [R, R] be the com- 
mutator subgroup of R and set F,=F/[R, R], R,= R/[R, R]. Then R, 
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is abelian and IT=F,/R,, so 4 is an extension of R, by 17 with factor 
set a 2-cocycle f, of IT in the 17-module R,. For any IT-module A, 
Hom, (R,, A) is a 17-module with operators xa  defined for a :  R, +A by 
(X a) 7 = x [a (x-%)I, while a 8 7  +a 7 is a pairing Hom (R, , A) @ R,+ A. 
The internal cup product of an n-cocycle with f, then determines a 
homomorphism 

Hn (IT, Hom (R, , A)) -t Hn+2 (IT, A) . 

The cup product reduction theorem asserts that this is an isomorphism 
for n>O. The theorem is due to EILENBERG-MACLANE [I9471 ; an elegant 
proof, using relative cohomology and the characteristic class (IV.6) of 
an extension is given by SWAN [I9601 and also below in IX.7, Ex. 7- 10. 

The cohomology groups Hn (17,Z) were shown in IV.ll to be the 
singular homology groups of the space X/I l  when IT operates properly 
on the acyclic space X. The comparison made there evidently preserves 
the simplicia1 structure, hence the cup product, so H(17,Z)=H(X/IT, 2) 
is an isomorphism of cohomology rings. 

Exercise 
1.  Show that 8 (17) with non-homogeneous generators (IV. 5. I I )  has degener- 

acies and faces given by 

s i ( x  [x , ,  . . ., x,]) = x [x,,  . . ., xi-1> I ,  x i ,  . . . , xn1, O d i S n ,  

d i ( x [ x l ,  ..., x n l ) = z 2 - ,  [x2 ,  ..., %,I, i = o ,  

= x [ x l .  . . . . x ~ x ~ + ~ ,  . . . , xn] ,  O<i<n, 
= x [ x 1 .  ..., xn- l ] ,  i = n  

and that the mapo, for f Alexander-Whitney, is 

Notes. For topological discussion of the cup product (in contrary terminology) 
see HILTON-WYLIE [ I9601 .For the cup product for groups see EILENBERG-MAC 

LANE [1947] .  ECKMANN [1945-19461, [ I 9 5 4 1  A fiber space may be regarded 
as a sort of "twisted" cartesian product; there is a corresponding twisted version 
of the EILENBERG-ZILBER theorem (BROWN [1959] ,  GUGENHEIM [1960] ,  SZCZARBA 
[ 1 9 6 1 ] ) .  Simplicia1 fiber bundles are treated in BARRATT-GUGENHEIM-MOORE 

[ I 9 5 9 3  

Chapte r  n ine  

Relative Homological Algebra 

Introduction. When we described the elements of Extn(C, A) as long 
exact sequences from A to C we supposed that A and C were left modules 
over a ring. We could equally well have supposed that they were right 
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modules, bimodules, or graded modules. An efficient formulation of 
this situation is to assume that A and C are objects in a category with 
suitable properties: One where morphisms can be added and kernels 
and cokernels constructed. The first three sections of this chapter are 
devoted to the description of such "abelian" categories. 

If 17 is a group, each 17-module is also an abelian group; this gives a 
homomorphism of the category of all L7-modules to that of all abelian 
groups. If A is an algebra over the ground ring K, each A-module is 
also a K-module, while each A-bimodule is also a right A-module. If 
R > S are rings, each R-module is an S-module. In each such case we 
have a homomorphism of one abelian category to a second which leads 
naturally to the definition of "relative" functors Ext and Tor; for 
further introductory explanation, see 5 8 below. The general method 
is described in this chapter and will be applied in the next chapter to 
study the cohomology of various types of algebraic systems. 

1. Additive Categories 

First examine the categories in which suitable pairs of morphisms 
can be added. An additive category V is a class of objects A, B, C, . . . 
together with 

(i) A family of disjoint abelian groups hom(A, B), one for each 
ordered pair of objects. We write a :  A+ B for achom (A, B) and call 
a a mor#hism of W. 

(ii) To each ordered triple of objects A, B, C a homomorphism 

hom (B, C) hom (A, B) +hom ( A ,  C) (1.1) 

of abelian groups. The image of B @a under composition is written t9 a, 
and called the composite of B and a. 

(iii) To each object A a morphism jA: A+A, called the identity 
of A. 

These data are subject to the following four axioms: 

Associativity: If a :  A+ B, B :  B +C, and y : C +D, then 

Identities: If a : A+ B, then 

Zero: There is an object 0' such that hom(ol, 0') is the zero group. 
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Finite Direct S ~ m s :  To each pair of objects A,, A, there exists 
an object B and four morphisms forming a diagram 

r, 
A,&B=A, 

% n, 
with 

% h = l ~ l r  na~a=1.4,, h q +  L , ~ , = I ~ .  (l.4) 

To avoid foundational difficulties, two further axioms of a set-theoretic 
character are required; they will be stated at the end of this section. 

These axioms are like those for a category (1.7). Indeed, an additive 
category may be defined as a category with zero and direct sums, as 
above, in which each set hom(A, B) of morphisms has the structure 
of an abelian group such that the distributive laws 

are valid whenever both sides are defined. (This insures that composi- 
tion is bilinear, as required by (1 .I) .) 

If the existence of direct sums is not required, we speak of a pre- 
additive category. As in the case of categories, we can omit the objects 
and work only with the morphisms, using the identity morphisms jA 

in place of objects. The axioms are then like the axioms for a ring in 
which the compositions al+a, and /?a are not always defined but, 
whenever defined, satisfy the usual ring axioms such as (1.2), (1 .?), 
and (1.5). Thus HILTON-LEDERMANN [1958] call a preadditive category 
a rimgoid, following the terminology of BARRATT [1954]. 

By 0 we denote (ambiguously) the zero element of any group 
hom (A, B) ; then 0 cr = 0 = /? 0 whenever defined (proof: 0 a = (0+ 0) a ;  
use the distributive law). An object 0' with hom(O', 0') the zero group 
is called a zero object. Then 1 ,  = 0, hence hom (A, 0') and hom (O', B) 
are the zero groups whatever the objects A and B, and any two zero 
objects are equivalent. 

Examine next the consequences of the finite direct sum axiom. 
By (1.4), 

n , ~ , = n ~ ( h q + ~ ~ n ~ )  ~~=17d1~,+n,dl~al =nlb+%c11s1 

hence 7611,=0 and n,~,=o, as usual. Props.4.1-4.5 of Chap.1 now 
follow; in particular, the diagram (1.4) determines the object B up to 
equivalence, and we usually write such a B as A, @ A,. Each morphism 
y: A,@ A2+C determines a pair of morphisms yj=y L,.: Ai+C; the 
correspondence g, (y) = (y, , y,) is an isomorphism 

of abelian groups. The inverse is given by g,-l (y,, 7,) = y l q +  y2n2: 
Al@A2+C. Thus y=ylq+y2n2 is the unique morphism A,@A,+C 
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with y ti=yj, j = i ,  2, so the injections ti: Aj-+Al@ A, of the direct 
sum constitute a universal diagram. Here a diagram {a, : A, -+ Bl t E T }  
of coterminal morphisms at, with T  any set of indices, is universal 
if to each diagram {y, : A, +CI t~ T }  there is a unique morphism y : B +C 
with y a,= y, for each t .  Dually, there is an isomorphism 

y: hom(C, A,@A,)=hom(C, A,)@hom(C, A,) 

with y y = (nly, n,y) and y-l (y,, y,) =hy,+ t2y2. Consequently, the 
diagram {ni: A, @ A2-+Ail j =  l , 2 }  is couniversal. The usual diagonal 
and codiagonal morphisms 

are characterized by the respective properties 

Given two direct sums A, @A, and A; @ A; and morphisms ai: A,. -+A; 
there is a unique morphism ul @a,: A, @ A, + A; @A; with 

The same morphism is characterized by the dual properties 

The iterated direct sum A, @ (A, @ @ A , )  with the corresponding 
injections is a universal diagram, and any universal diagram on A,, 
. . . , A, is equivalent to this iterated direct sum. Dually, the projections 
nj of an (iterated) direct sum provide a couniversal diagram. The axiom 
requiring the existence of finite direct sums may be replaced either 
by the assumption that there exists a universal diagram for any two 
objects A, and A,, or by the dual requirement. In any event, the axioms 
for an additive category are self-dual. 

In an additive category V, hom (A, B) is a bifunctor on the category 
V to the category of abelian groups. 

To prepare the way for the study of kernels, we formulate defini- 
tions of "monic" and "epic" in categories to agree in the standard 
examples with monomorphisms and epimorphisms. In the category of 
sets, a function f on X to Y is surjective if f (X) = Y (f is onto Y) and 
injective if f (x)= f (x')  always implies x=xl (f is 1-1 into Y). In any 
category, a morphism x :  A+B is said to be monic if each induced 
map x, : hom (C, A) +hom (C, B) is injective. Thus x monic means that 
x  a = x  a' implies a = a' for all a, a': C +A, hence that x  is left carccellable. 
In an additive category, x is monic if and only if x  a = 0 implies a = 0 
whenever x a  is defined. Dually, a morphism a: B+C in any category 
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is said to be epic if each induced map a*:  hom (C, G) +hom (B, G) is 
injective. Thus a epic means that aa=ala always implies a=al, hence 
that a is right cancellable. In an additive category, a is epic if and only 
if ao=0 always implies a=O. In this chapter we systematically denote 
morphisms which are rnonic by x, A, p, v and those which are epic by 
Q, a, Z. If x and i2 are rnonic, so is xi2 whenever it is defined, and dually. 
Warning: In certain additive categories of modules, "monic" may not 
agree with "monomorphism" (see Ex. 5) though the agreement does 
hold in the category of all modules with morphisms all homomorphisms. 

An equivalence is a morphism 8 with a two-sided inverse y (y 8 = I ,  
8 y =  1).  Two morphisms a :  S -t A and a' :  St+ A with the same range 
are called right equivalent if there is an equivalence 8 :  S-tS' with 
a18=a; this relation is reflexive, symmetric, and transitive, so allows 
the formulation of right equivalence classes of morphisms with range A. 
If x is rnonic, so is each right equivalent of x. In the additive category 
of all modules, two monomorphisms with range A are right equivalent 
if and only if their images are identical, as submodules of A .  Hence 
in any additive category we say that the right equivalence class of a 
rnonic x :  S+A is a subobject of A. I t  is convenient to say that x itself 
is a subobject of A - meaning thereby the right equivalence class, cls x, 
of x .  Observe that a "subobject" so defined is not an object of the cate- 
gory; for example, we cannot regard A as a subobject of itself but we 
must use instead cls 1, , which is the class of all equivalences with range A .  

The dual definitions are: a :  A+ T and a' :  A+ T' are left equivalent 
if Bal=a for some equivalence 8. The left equivalence class of an epic 
a: A+T consists of epic morphisms and is called a quotient object of A. 

For modules, the kernel K of a homomorphism a :  A+B is the 
largest submodule of A mapped by a into 0 and is characterized by the 
property that each morphism /I with a /I=O factors uniquely through 
the injection x :  K +A as /?=x / I1. This can be paraphrased in any 
additive category %?: A kernel of a :  A-+B is a rnonic x with range A 
such that 

ax=O, while a / ? = ~  implies / I=x/I1 (1 . lo) 

for some /I1, necessarily unique. In other words, the right annihilators 
of a are exactly the right multiples of its kernel x. Hence any two 
kernels x and x' of a are right equivalent, so the class of all kernels 
of a, if not vacuous, is a subobject of A which we write as ker a. Dually, 
a cokernel of a: A+B is an epic a with domain B such that 

a a = 0 ,  while y a = 0  implies y=yla (1.11) 

for some y', necessarily unique. The left annihilators of a are thus the 
left multiples of a cokernel a of a. Any two cokernels of a are left equi- 
valent; if a has a cokernel, the class of all cokernels of a is a quotient 
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object of B, so aecoker a states that a is one of the cokernels of a. 
In the category of modules, the projection B-tBlaA is a cokernel 
of a. 

An immediate consequence of the respective definitions is 

Lemma 1.1. I f  the composites a,!?, x a, and a a are defined, the 
following iq5lications hold: 

a ,!? monic + ,!? monic, a B epic + a epic, 

x monic + ker (x a) = ker a ,  a epic + coker (a a) = coker a .  

Also ker lA=O, coker lA=O, and, for 0: A+B, lAEker 0 and I B E  
coker 0. (Here ker 1 = 0 i s  short for 0 E ker I.) 

Finally we introduce a notation for short exact sequences, defining 

This implies a rnonic and ,!? epic, so we may read "xlla" as " x  and a 
are the morphisms of a short exact sequence". 

To keep the foundations in order we wish the collection of all sub- 
objects of an object A and the collection of all extensions of A by C 
both to be sets and not classes. Hence, for an additive category we 
assume two additional axioms: 

Sets of sub- and quotient objects. For each object A there is a set 
of morphisms x, each rnonic with range A, which contains a represen- 
tative of every subobject of A and dually, for quotient objects of A. 

Set of extensions. For each pair of objects C, A and each n 2 1 there 
is a set of n-fold exact sequences from A to C containing a representative 
of every congruence class of such sequences (with "congruence" defined 
as in 111.5). 

Both axioms hold in all the relevant examples. 

1. 

2. 

3. 
4. 

5. 
which 

6. 

Exercises 
Prove: If 0: A+ B  is rnonic, then A  is a zero object, and conversely. 

In the isomorphism q, above, show that q,-I (yl, yz) = vc (yl @ yn). 

For u,p: A - t B  prove that u + p =  VB(u$p) Ad. 
Show that the direct sum of two short exact sequences is exact. 

Construct an additive category of (some) abelian groups in which a morphism 
is rnonic need not be a monomorphism. (Hint: Omit lots of subgroups.) 

Construct an additive category of some abelian groups in which some of the 
morphisms do not have kernels or cokernels. 

7. In  the categories of sets, of modules, and of (not necessarily abelian) groups, 
show that a morphism is rnonic if and only if i t  is injective, and epic if and only 
if i t  is surjective (as a function on sets). 
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2. Abelian Categories 

To use effectively the notions of kernel and cokernel just introduced, 
we need conditions to insure that these classes are not empty. Further- 
more, each monomorphism should be the kernel of its cokernel, and 
conversely. For modules, the image of a homomorphism a : A+ B appears 
in its factorization A+aA-tB, with first factor A+aA an epimor- 
phism and second factor the injection aA+B, which is a monomor- 
phism. Corresponding properties hold in other familiar categories: The 
category of all complexes of modules over a fixed ring, with morphisms 
the chain transformations; the category of all modules over a given 
graded algebra, with morphisms of degree zero; the category of all 
modules over a given DG-algebra. Thus an abelian category is to be 
an additive category d satisfying the following further axioms: 

(Abel-I). For every morphism a of JZI there exists a x~ ker a and a 
a~coker  a. 

(Abel-2). For x monic and a epic, xc ker a if and only if a~coker  x. 

(Abel-3). Every morphism of d can be factored as a = 2 a with 2 
monic and a epic. 

(Abel-2) may be restated thus: a epic and xcker a imply xlla, and 
dually. The three axioms together are subsumed in 

Theorem 2.1. To each mor@zism a there exist morflhisms x, a, 2, z 
formilzg the following diagram with the ilzdicated fwoperties 

Here and below the dots designate unnamed objects. 

Proof. By (Abel-?), write a = 2 a ;  by (Abel-I), xc ker a = ker a 
and z~ coker a = coker il exist ; by (Abel-2), x((a and il((z. The converse 
proof that this theorem implies the three axioms is left to the reader. 

The diagram (2.1) is called an analysis of a, and a =  il a is a standard - 
factorization of a. 

Proposition 2.2. The analysis of a mor#hism a d  is a ficnctor. 

Here we regard the analysis (2.1) of a as a functor on the category 
A= Morph ( d )  of morphisms of JZI; the objects of A are the morphisms 
a :  A-tB of d ;  the maps 5: a+al of A are the pairs 8= (El, E,) of 
morphisms of at' with dll = l2a.  The values of the "analysisJ' functor 
lie in a similar category of diagrams from d. As the analysis is not 
uniquely determined, we assert more exactly that any choice of ana- 
lyses, one for each a, provides such a functor. 
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Thus, given S= (5;, 5,) : a +a' and analyses of a and a', we assert 
that there are unique morphisms ql, q2, and q3 of d which render the 
diagram 

n a l r  03.--+o+o-+o , a=Aa, 

commutative. (In ordinary parlance, 7, is the map induced by t1 on the 
kernels, etc.) Indeed, a1(t1x) =[,a x=O implies that &x factors through 
x'cker a' as &x=x'ql; since x' is left cancellable, ql is unique. Dually, 
z1E2=qSz for a unique q3. Also 1'a1&x=E2a x=0; since 1' is left 
cancellable, alE,x = 0 and a'& factors through a c coker x as u1E1 =q,o, 
with 17, unique. Then t21 a =  1'u1E1 = A1q2a; cancelling a, t, 1 = A'q, . 
This proves the diagram commutative and unique. Applied to 1 : a-ta, 
with two different analyses of a, this argument gives equivalences ql, 
72, 73; thus 

Corollary 2.3. An analysis (2.1) of a i s  uniquely determined u# to 
equivale.nces of the three objects domain x ,  range a=domain 1, range z. 

In the analysis (2.1) the unique right equivalence class of 1 is the 
image of a and the unique left equivalence class of a the coimage of a. 
The image of a is a subobject of the range of a, the coimage a quotient 
of the domain. An analysis of a :  A - t B  has the form of a commutative 
diagram 

kera coim a 0- A- 0  

(2.3) 

with row and column short exact sequences. Here "ker a" of course 
stands for any morphism in the class ker a. With the same convention 
we may read off the relations 

(ker a) 11 (coim a) , (im a) 11 (coker a) , (2.4) 

coim a = coker (ker a) , im a = ker (coker a) , (2.5) 

ker a = ker (coim a) , coker a = coker (im a) . (2.6) 

Hence also ker (coker (ker a)) = ker a, and dually. 

Proposition 2.4. A mor#hism a is monic i f  and only if ker a=0, 
e#ic if and only if coker a=O, and a n  equivalence if and onZy if both 
ker a and coker a are zero. In #articular, a mor#hism which i s  both monic 
and e#ic i s  a n  equivalence. 
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Here ker a = 0 is short for 0 E ker a ; it means that every element 
of the class ker u is a zero morphism. 

Proof. The definition states that a rnonic a has only zeros as right 
annihilators, so that necessarily ker u=0. Conversely, if O ~ k e r  a, then 
any right annihilator of a factors through zero, hence is zero, so that a 
is monic by definition. The proof for a epic is dual; both proofs use 
only the axioms of an additive category. Finally, an equivalence a is 
both monic and epic, so that ker u = 0 = coker a. Conversely, if ker a = 
0 = coker a, then 1 E ker 0 = ker (coker a) = irn a by (2.5), so im a is equi- 
valent to I, hence an equivalence. Dually, coim a is an equivalence, 
and thus so is a = (im a) (coim a). 

Exact sequences operate as usual and can be defined in two (dual) 
ways. 

Proposition 2.5. If the com9osite /3a is defined, then im a =  ker /3 
if and on1 y if coim /3 = coker a. 

When this is the case, we say that (a, /3) is exact. In particular, 
xl(a implies (x, a) exact. 

Proof. If im a = ker /3, then coim /3 = coker (ker /3) = coker (im a) = 
coker a by (2.5) and (2.6), and dually. 

Proposition 2.6. The short five lemma holds in  any abelian category. 

Proof. Given a commutative diagram 

with xllo and x'lla', we wish to prove that a, y monic imply /3 monic, 
and dually. But take ,UE ker /3. Then /3 ,u = 0 gives 0=01/3 ,u = y a ,u; 
since y is rnonic, a p = 0. This implies that ,u factors through x~ ker a 
as ,u = x Y ,  for a v which is necessarily rnonic. Then x'a v =/3 x v =/3 ,u = 0. 
But x' and a are rnonic, so v =  0 and thus ker /3=p =x v=0, so /3 is 
rnonic, as desired. 

The Five Lemma, the Four Lemma, and the 3 x3 Lemma also hold 
in an abelian category. The proofs, which depend on certain additional 
techniques, will be given in Chap. XII. 

Call an abelian category selective if 
(Select I). There is a function assigning to each pair of objects 

A,, A,, a direct sum diagram, of the form specified in (1.4). 
(Select 2). There is a function selecting a unique representative x 

for each subobject and a unique representative o for each quotient 
object. 
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In a selective abelian category d we can assign an object K as 
Kernel for each morphism LX: Take K to be the domain of the selected 
representative x :  K+A of the right equivalence class ker a. (Observe 
that now "Kernel" in capitals means an object, in lower case, a mor- 
phism.) Similarly, we can assign Cokernels and form Quotients of sub- 
objects: In this regard we operate as if we were in the category of all 
R-modules. The various cited examples of abelian categories are all 
selective; by the axiom of choice, any small abelian category is selec- 
tive. 

Note on Terminology. The possibility of doing homological algebra abstractly 
in a suitable category was first demonstrated by MACLANE [1950], working in 
an "abelian bicategory" which was substantially an abelian category with a can- 
onical selection of representatives of subobjects and quotient objects. This canonical 
selection proved cumbersome and was dropped a t  the price of the present arrange- 
ment in which a subobject is not an object. The formulation of BUCHSBAUM [I9551 
uses exact categories, which are our abelian categories minus the direct sum axiom, 
while GROTHENDIECK'S extensive study [I9571 introduced the term "abelian 
category" in the sense used here. Other authors have used "abelian category" 
in other meanings. ATIYAH [I9561 established the KRULL-SCHMIDT theorem stating 
the uniqueness of a direct sum decomposition into indecomposable objects for an 
abelian category satisfying a "bichain" condition. Set-theoretical questions about 
abelian categories are considered in MACLANE [I961 b]. Various other types of cate- 
gories may be constructed by imposing additional structure on the sets hom (A. B). 
Thus a graded category (XII.4 below) has each hom(A, B)  a graded group; a 
differential category (EILENBERG-MOORE, unpublished) has each hom(A, B) a 
positive complex of K-modules. One might wish categories with a tensor product 
functor satisfying suitable axioms, as in our treatment (Chap.VI) of types of alge- 
bras. Noetherian Categories have been studied by GABRIEL [1962]. 

Exercises 
I. Given (Abel-2) and (Abel-3). show that (Abel-I) may be replaced by the 

weaker statement that each epic has a kernel and each monic a cokernel. 

2. In  ( 2 4 ,  show El monic implies r], monic and la monic implies r ] ,  rnonic. 

3. Categories of Diagrams 

Let d be an additive category and V a category which is small 
(i.e., the class of objects in V is a set). By Dgram(g, d) we denote the 
category with objects the covariant functors T:  V + d  and morphisms 
the natural transformations f :  T+S of functors. The sum of two 
natural transformations f and g: T + S  is defined for each object 
C EV by (f + g) (C) = f (C) +g (C). The axioms for an additive category hold 
in Dgram (V, d) ; in particular, the direct sum of two diagrams TI and 
T2 is (Tl@T2) (C) =Tl(C) €BT2(C): Take the direct sum at  each vertex. 
Here, as in 1.8, we can regard each T: V + d  as a "diagram" in d 
with "pattern" V. For example, if Vo is the category with two objects 

Mac Lane, Homology 17 
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C, C' and three morphisms lc, iC,, and y: C +C', then each T: yb+d 
is determined by a morphism T(y) in d ,  so that Dgram (Wo, d) is the 
category Morph(d) of $2,  with objects the morphisms of d. 

Proposition 3.1. (GROTHENDIECK [195 71 .) If  the category Q is small 
and d is abelian, 9=Dgram (V, d) is an abelian category. I f  f and g 
are mmfihisms of 9 ,  f Ug ilc 93 if and onZy if, for each C, f (C) llg (C) in d. 

Proof. Let f : T+S be natural. Since is small, we can choose 
for each object C a monic k(C)~ker  f (C), with domain, say, K(C). 
Thus k (C) : K(C) -t T(C) is a morphism of d.  Since f is natural, each 
y : C +C' gives a commutative diagram 

with exact rows. Since f(Ct) [T(y) k(C)]=O, and k(Ct) is the kernel 
of f (C') , there is a unique K(y) (dotted arrow) with T(y) k (C) = k (C') K(y)  . 
It follows that K: W + d  with mapping function K(y) is a functor 
and k: K+T natural. As a morphism of 9 ,  k is rnonic, for if kh=O, 
then (k h) (C) = k (C) h (C) = O  for each object C; since k (C) is monic 
in d ,  h (C) =O. Furthermore, if g: R +T is natural with fg=O, each 
g (C) factors uniquely through k (C) as g (C) = k (C) h (C), h: R +K is 
natural, and g = k h. Therefore k E ker9 f. This argument with its dual 
proves (Abel-1) in 9 and also gives 

f rnonic in 9 w each f (C) monic in d, 

k ~ k e r ~  f each k(C)~ker,,f (C). 

These statements with their duals prove (Abel-2). 

To get a standard factorization (Abelq) for f :  T+S, choose for 
each C a standard factorization f (C) =I (C) t (C) ; the range R (C) of 
t (C) yields a functor R : V - t d ,  t : T+R is epic and I: R + S monic 
in 9 ,  and f =I t. Since Q is small, we can also select for each T a set 
of representatives of the subobjects of T and for each S and T a set 
of representatives for the extensions of S by T, thus proving that 9 
satisfies the supplementary set-theoretical axioms (§  1) for an additive 
category. 

Next consider the diagrams which involve zero objects. In any cate- 
gory V call an object N a null object if for each object C of V there is 
exactly one morphism C+N and exactly one morphism N-tC; write 

' oc : C +N and oC : N -tC for these morphisms. Any two null objects 
in V are equivalent, and any object equivalent to a null object is null. 
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For given objects C and D, the composite morphism oDoc: C-tN +D 
is independent of the choice of the intermediate null object N; it may 
be called the null morphism o?: C+D. A (new) null object may be 
adjoined to any category. In an additive category the null objects 
are exactly the zero objects, and the null morphism 0: C-tD is the 
zero of hom (C, D) . 

If % and d have null objects, a normalized functor T: V 4 d  is 
one with T(N) null for some (and hence for any) null N of Q. I t  follows 
that T maps null morphisms to null morphisms. Dgram, (V, d )  will 
denote the category of all such T. Prop.3.1 again applies. 

An example is the category of complexes. To get this, take O to be 
the following small category: 

the objects of O are all integers n plus a null object N;  the morphisms 
are all identities, the null morphisms n+N, N - w ,  and n-tm, and 
morphisms a, : n + (n- 1). The composite of morphisms is defined by 
requiring a,-,a, to be null. Take any abelian category d. A normalized 
covariant functor T: O - t d  is then given by . tT,-,tT, -+. . ., a 
sequence of objects and morphisms of d ,  with 8,-,a,=O, so is just 
a chain complex of objects from a?' (in brief, an &'-complex). A natu- 
ral transformation f :  T-tS is a chain transformation. Therefore 
Dgram,(O, d)  is the category of all d-complexes; by Prop.).l it is 
an abelian category. If a?' is selective, the homology objects H, (T) = 
Ker a,/Im a,,, may be defined as usual; the reader should show that 
each f :  T+S induces f, : H,(T) +H, (S), so that H, is a covariant 
functor on this category, and that homotopies have the usual properties. 

Exercises 

1. If d is abelian, show that the category of graded objects of d is abelian. 

2. Describe an abelian category whose objects include the analyses (2 .1) .  

3. Show that the category of positive complexes of objects from an abelian 
category d is abelian. 

4. (MAC LANE [19$0] . )  In a category Y with null, assume that to each pair 
of objects A,, Ap  there is a diagram A1=B=A, in which the two morphisms 
with range B are universal and the two with domain B couniversal. In each 
hom(A, C) introduce a binary operation of addition as in Ex. 1.3 and show this 
addition commutative, associative, and distributive. 

5. In Ex. 4, assume also that there is a natural transformation VA : A + A  with 
5 ( VA @ I A )  AA = 0 for all A .  Use V to define - a for each morphism a, and prove 
that Y becomes an additive category. 
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4. Comparison of Allowable Resolutions 

If A is an algebra over a fixed commutative ground ring K, many 
concepts are appropriately taken "relative to K". Each left A-module 
A is also a K-module and each A-module homomorphism u: A+B 
is also a homomorphism of K-modules, but not conversely. Call such a 
homomorphism u "allowable" relative to (A, K) if there is a K-module 
homomorphism t :  B----*A (backwards!) with u t u=u. In particular, a 
monomorphism u is allowable if there is a t with t a =  IA ; that is, if a 
has a left inverse t which is a K-module homomorphism but not neces- 
sarily a homomorphism of A-modules. Similarly, a A-module epimor- 
phism a is allowable if and only if it has a K-module right inverse t. 
Hence a short exact sequence xlla of A-module homomorphisms is 
allowable if x has a left K-inverse and a has a right K-inverse. These pro- 
perties state that the sequence (x, a) becomes a direct sum sequence 
when regarded just as a sequence of K-modules. More briefly, the 
sequence of A-modules is K-s@it (for some authors, weakly s$lit). The 
use of such a class of "K-split" or "allowable" short exact sequences 
is typical of relative homological algebra. We shall now show how the 
comparison theorem for resolutions applies to any such situation. 

In any abelian category d, a class b of short exact sequences of d 
will be called allowable if B contains, with any one short exact sequence 
(x, a), all isomorphic short exact sequences of .at' and if also d contains 
for each A the short exact sequences (0, IA) and ( I , ,  0). Write x b a  if 
(x, a) is one of the short exact sequences of Band call (x, a) &-allowable. 
Call a monic x of d allowable and write x~ 8, if x B a  for some a ;  this 
is the case if and only if x b (coker x). Dually, call an epic a allowable 
and write ~ € 4  if and only if (ker a) &a. Since x B a  if and only if x ~ &  
and xlla, the class B is determined by the class 8, of allowable monics, 
or by the class 4 of allowable epics. Thus 4 determines &; for x monic, 
x E bm if and only if coker xE 4. If x E bm, any left or right equivalent 
of x is also in 8,. 

From the properties of an analysis of u we derive at  once 

Proposition 4.1. For a given allowable class &, the following condi- 
tions on a mor+hism u are equivalent: 

(i) i m u ~ b ,  and coimuc&; 
(ii) ker u E B:, and coker a E ge ; 

(iii) In a standard factorization u = A a, A E grn and aE ge ; 
(iv) Each analysis of u consists of  allowable monics and e+ics. 
The morphism a :  A+B is called allowable when it satisfies these 

conditions. If u happens to be monk, then coim a =  fA, so u is allowable 
and monic if and only if a E bm. Likewise, the allowable morphisms which 
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are epic are the elements of 4. The composite of allowable morphisms 
need not be allowable. 

For example, in the category of all left A-modules, the K-split short 
exact sequences form an allowable class, and the corresponding allow- 
able morphisms can be shown to be those u with u t u=u for some t ,  
as above. Additional properties which hold in this case will be studied 
in Chap. XII. 

Let B be any allowable class in d. An &'-projective object P (or, 
an allowable projective object) is any object P of d such that, for every 
allowable epic a :  B-tC, each morphism y :  P+C of .d' can be factored 
through o as y =a  y' for some y': P-t B. As before, this condition can 
be formulated in several equivalent ways: 

Proposition 4.2. For a given allowable class &' of short exact sequences 
the following conditions on a n  object P are equivalent: 

(i) P i s  a n  allowable projective; 
(ii) Each o : B + C in c?~ induces a n  epimorphism hom (P, B) -P 

hom (P,  C) ; 
(iii) For each allowable short exact sequence A - B+C the induced 

sequertce hom (P ,  A )  ~ h o m  (PI B) +hom (P, C )  of abelian grozlps i s  short 
exact. 

We say that there are enough allowable projectives if to each object 
C of d there is at  least one morphism Q: P+C which is an allowable 
epic with an allowable projective domain P .  The dual notion is that 
there are enozcgh allowable injectives. 

Any long exact sequence in an abelian category can be written as 
a Yoneda composite of short exact sequences; we call the long exact 
sequence allowable if and only if each of these short exact sequences 
is allowable. 

Consider a complex . - - +X,, +. . +XI  - t X ,  - tC +O over an object 
C of d. Call it an allowable resolution if it is an allowable long exact 
sequence, and an allowable projective cowqblex over C if each X ,  is an 
allowable projective. If both conditions hold, it is an allowable pro- 
jective resolution of C. 

Theorem 4.3. (Comparison Theorem.) Let &' be a n  allowable class 
of short exact sequences in the abelian category d. If y :  C +C' i s  a mor- 
phism of d, e :  X+C a n  allowable projective comfdex over C and 8':  X'+Ct 
a n  allowable resolution of C1, then there i s  a chain transformation f : X +X' 
of morphisms of d with E' f = ye. A n y  two szcch chain transformations are 
chain homotopic. 

The proof is substantially a repetition of the previous argument for 
the case of modules (Thm.III.6.1). Since X ,  is an allowable projective 
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and E' : Xi +C' an allowable epic, ye: Xo -+C factors as ~ ' f ,  for some fo. 
We next wish to construct f, so that the diagram 

will be commutative. Take a standard factorization a '= l  a as dis- 
played; since X' is allowable, I be'. But E' fO a= y E a= 0, SO fO a factors 
through l ~ k e r e '  as foa=l$ for some p. Now a is an allowable epic 
and Xl an allowable projective, so = a  fl for some fl , and a' fl = l a  f, = 
l p  = fo a, as desired. The construction of f,, f,, . . . and of the homotopy 
is similar. 

Note on injective envelopes. A family {at) of subobjects of A is directed by 
inclusion if each pair of subobjects a,, at of the family is contained in a third 
subobject of the family (in the obvious sense of "contained, as defined in Chap. XI1 
below). An abelian category d satisfies GROTHENDIECK'S axiom AB-5 if for each 
A,  each subobject b, and each family at directed by inclusion, bn(Utat) =Ul(bnal) 
holds in the lattice of subobjects of &and if d h a s  infinite direct sums. An object 
U is a generator of d if to each non-zero morphism a:  A+ B there is a morphism 
5 :  U + A  with 0. Both conditions hold in the category of all A-modules, 
with A a generator. GROTHENDIECK [1957, Thm.l.lO.l] shows that an abelian 
category with AB-5 and a generator has enough injectives; MITCHELL [I9621 
constructs the ECKMANN-SCHOPF injective envelope under these hypotheses. In  
particular this shows that there are enough injectives in the category of sheaves 
over a fixed topological space (though in this case there are not enough projectives) : 
See GROTHENDIECK [I 95 71. GODEMENT [I 9581. 

Exercise 
1. (Characterization of allowable short exact sequences by allowable projec- 

tives [HELLER 19581.) If d is an allowable class of short exact sequences satis- 
fying the condition U B E ~ ~ J  a€&,, and if there are enough allowable projectives, 
show that an epic a: B + C is allowable if and only if hom (P. B) +hom (P, C) 
is an epimorphism for all allowable projectives P. 

5. Relative Abelian Categories 

Let S be a subring of R with the same identity as R. Some short 
exact sequences of R-modules will split when regarded as sequences 
of S-modules. Each R-module A is also an S-module ,A, by pull-back 
along the injection r :  S-tR, and a function which is an R-module 
homomorphism a : A -+ B is also an S-module homomorphism ,a : ,A + , B. 
Thus ( A )  = ,A, (a) = ,a is a functor on the category d of all 
left R-modules to the category A? of all left S-modules; it "forgets" 
or "neglects" part of the structure of an R-module. We have in mind 
many other examples, such as modules over an algebra A and modules 
over the ground ring K, as explained in the introduction of § 4. In each 
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example there will be a similar functor q . Let us state the appropriate 
general properties of such a functor. 

A relative abelian category q will mean a pair of selective abelian 
categories d and A together with a covariant functor 0: &+A 
(write q A =Ao, ~ a = a , )  which is additive, exact, and faithful. 

Additive means that a, BE hom@(A, B) implies (a+B),, =ao +go in 
hornd (A,, B,). I t  follows that 0, = o and that (A@ B), r A ,  @ B, . 

Exact means that allp in d implies a, lip, in A. It follows that x 
monic and a epic in d imply x, monic and an epic in A ,  that 
carries each analysis (2.1) of a in d into an analysis of an and hence 
that XE kerp implies x, E kerp, , and similarly for coker, im, and coim. 
Moreover, q carries exact sequences into exact sequences. 

Faithful means that a, = 0 implies a = 0. I t  follows that A, = 0' 
implies A = o', but AD = B, need not imply A = B. However an  epic 
(or monic) in A implies a epic (or monic, respectively) in d. 

Write objects of d as A, 3, C, . . . and morphisms a: A-rB in Greek 
letters with solid arrows. Write objects of A as L, MI N, . . . and mor- 
phisms t: L---+M in lower case Latin letters with broken arrows. 

A short exact sequence xll a in d is said to be relatively s#lit (or, 
O-split) if the exact sequence x, 11 an splits in A; that is, if an has a 
right inverse k or (equivalently) xn has a left inverse t in A. This gives 
two diagrams 

the first an exact sequence in d, the second a direct sum diagram 
in A. For simplicity, we often replace these by a single schematic dia- 
gram 

x k 
A Z . B G C  

1 0  
(5.2) 

(solid arrows for the & part, solid and broken arrows for A). Similarly 
the equations 

valid in the direct sum diagram (5.1), will be written schematically as 

without the 0 ,  so that a composite t x is short for t xn in A. 
The class of 0-split short exact sequences of d is allowable in the 

sense of § 4; the conditions of Prop. 4.1 then describe certain morphisms 
a of d as allowable (say, 0-allowable). In detail, 
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Proposition 5.1. A mor+hism a :  A-tB with standard factorization 
a=il o i s  0-allowable in the relative abelian category if and only if 
i t  satisfies any  one of the following equivalent conditions: 

(i) 1, has a left inverse and a, a right inverse in A; 
(ii) (im a ) ,  and (ker a )  , have left inverses in A?; 

(iii) There i s  a morfihism u: B ---9 A in A with an u a,  =ag;  
(iv) There i s  a morfihism v :  B ---+ A in A with both 

Condition (ii) may be read: The image of a is an A-direct summand 
of B, and the kernel of a an A-direct summand of A, - or dually. 

Proof. The equivalence of (i), (ii), and the allowability of a is im- 
mediate, by Prop.4.1. If til= 1 and a k =  1, as in 

then v = k t :  B.+A has ava=iloktila=ila=a and v a v = k t l o k t =  
k t  = v ; this proves (i) + (iv) . Trivially, (iv) + (iii) . Finally, to get (iii) + 
(i), assume aua=cc. and set a=Ao. Thus ilouila=ilo with il monic 
(in A!) and o epic implies ou il= 1, so 3, has a left inverse ou in A 
and o a right inverse uil. 

If X is an &-complex in the sense of § 3 (X, objects and a, mor- 
phisms in &) then X is an A-complex; since is exact, it follows that 
q [H, ( X ) ]  =H, (0 X). 

Theorem 5.2. If X i s  a n  d -coq5 lex  (not necessarily fiositive) then 
X has a contracting homotofiy s with as+ s a= 1 (and each s,: X,---9 

X,+, a morfihism of A) if and only if all H,(X) vanish and all boundary 
homomor+hisms 8 are allowable. When  these conditions hold, s may  be 
chosen so that sa = 0. 

Proof. Given s, we know that all q H, (X) H, (0 X) =O. But 
is faithful, so H, (X) =o.  Moreover, a= as  a+ s 8 a= a s a, so each 8 
is allowable by part (iii) of the preceding proposition. 

Conversely, suppose the sequence -. . -tX,+,+X,-+Xn_,-t~ - exact 
and all a allowable. Take a standard factorization a=Ao for each a,. 
Then X factors into 0-split short exact sequences D,-X,-+D,-,, and 
each X,  is an A-direct sum via morphisms t = t, , k = k ,  , as in the sche- 
matic diaaam 

with the usual direct sum identities 
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in A. Now define each s,: X,--*X,,, as s,=kt, so that sa=O and 

Now a complex E : X -t C is allowable if both E : Xo -t C and also each 
a,: X,+X,-, are allowable, and a resolution if E :  H,(X) r C  and 
H, (X) = 0 for n>0. 

Corollary 5.3. A complex E: X- tC  k d over C is a 0-allowable 
reso1utio.n of C if and only if the complex E ~ :  Xu---+Cn in A over Cn 
has a corttracting homotopy. When this is the case, there is szcch a homotopy 
s with sa=O. 

As usual, s consists of morphisms s-,: C-• X,, s,: X,-* X,+, in A 
with 

ES-,=I~, ~ s ~ + s - , ~ = I ~ ~ ,  as+sa=IX,,, n>0. 

The condition sa= 0 means s,s,-, = 0 for all n = 0, 1, . . . . The proof 
is immediate. 

A 0-allowable projective object P in d will also be called a relative 
projective object for 0 . 

Any projective object P in d is a fortiori relatively projective, 
but this does not show that there are enough relative projectives: If 
we write an object as the image P - t A  of a projective, we do not know 
P- tA  to be an allowable epic. 

Exercises 
(The first three exercises deal with the absolute case d=J.) 
I. A complex X in an abelian category d has a contracting homotopy s if 

and only if (im a,+,, coim a,) : *+ X,+ is a direct sum representation of each X, . 
When these conditions hold, there is an s with sa = 0. 

2. A complex X of modules has a contracting homotopy if and only if, for 
each n, the module of n-cycles is a direct summand of X,. 

3. A (not necessarily positive) complex X of free abelian groups has homo- 
morphisms s : X, +X,+l with as + s a = 1 if and only if all H, (X) vanish. 

4. Deduce Thm. 5.2 from the result of Ex. 1. 

6. Relative Resolutions 

To construct enough relative projectives, we further specialize our 
relative abelian categories. By a resolvent pair W of categories we mean 
a relative abelian category n: &-+A together with 

(i) A covariant functor F: A?-+&. 
(ii) A natural transformation e: IM-*o F, for Id the identity functor, 

such that every morphism u : M -.+ An  in A has a factorization u =an e, 
for a unique morphism a: F(M)-tA of d. 
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Thus each M determines F M in d and a morphism eM : M-.+ 17 F M, 
and each u lifts uniquely to F M ,  as in the schematic diagram 

in other words, F M  is the "relatively free" object in d to the given 
object M in A. The lifting property states that e*a=uoe defines a 
natural isomorphism 

e* : hornd (FM, A) =horn, (M, A) ; 

this last property states that the functor F: A+& is a left adjoint 
[KAN 19581 of the functor 0 :  &-+A (see note below). 

Conversely, the conditions (i) and (ii) for a resolvent pair may be 
replaced by the requirement that the functor has a left adjoint F. 
Indeed, this requirement means that there is a natural isomorphism 

(of abelian groups). Take A = F M  in this isomorphism; then I,, in 
the group on the left gives q (IFM) = eM: M--+ 17 FM. That e: I, --• 17 F 
is a natural transformation follows by taking any p:  M-tM' and apply- 
ing g, to the diagram 

homd(F M, F M)% h o m d ( ~  M, ~~ ' )Khorn. . , , (~  M', F M') . 
Next take any A and any a :  F M +A. Since g, is natural, the diagram 

homd(F M, F M)% hornd (M, F M) 

k* k* 
homd(F M, A)  -% hom, (M, 17 A) 

commutes. Take I,, in the group at the upper left; it goes to a below 
and to e, at the right, so commutativity gives a=aoe, .  Since 9 
is an isomorphism, this proves that each u: M---+ A in the group at 
the lower right has the form u=ao eM for a unique a, as required in our 
previous condition (ii) . 

For example, two rings R )  S yield a resolvent pair, denoted W (R, S) 
or just (R, S), with d and A the categories of R- and S-modules, 
respectively, the usual "neglect" functor, and 

Again, for each K-algebra A there is a resolvent pair with d the left 
A-modules, A the K-modules, F(M) =A BK M (Prop. VI.8.2). Other 
examples of resolvent pairs appear in Ex. 2 below. 
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Theorem 6.1. I n  a resolvent flair of categories, each F ( M )  is relatively 
flrojective i n  d. For each object A,  the factorization IA =a eAo yields a 
O-allowable eflimorfhism ci: F ( A D )  -+A. Hence there are enough relative 
flrojectives. 

The proof that F ( M )  is relatively projective is the familiar argument 
(Lemma 1.5.4) that each free module is projective. Indeed, let y : F ( M )  +C 
be a morphism and u :  B+C an allowable epic of d, so that ua has a 
right inverse k. Form the schematic diagram 

The composite k y e, displayed factors uniquely through F M  as ky eM = 
beM for some B:  F M - t B  in d. Hence ageM=ye,; but ye,  factors 
uniquely through e,, so up= y ;  this states that F M  is relatively pro- 
jective. 

The usual comparison theorem maps a projective complex to a 
resolution. The comparison of a relatively free complex to an allowable 
resolution can be put in canonical form. A relatively free complex EX : X-t  A 
over A in d has each X ,  of the form F(M,) for some object M, of A!; 
we write e, for e,,,: M,-+X,. An allowable resolution E,: Y - t B  has 
an 4-contracting homotopy s with sa= 0, as in Cor. 5.3 (in particular, 
s - ~ :  B-+Yo). 

Theorem 6.2. Let 8,: X + A  be a relatively free complex over A 
in d and 8,: Y-t B an allowable resolution. Each morflhism a :  A+ B 
in d lifts to a unique chain transformation 9: X+Y of d-com$lexes 
such that each %en: M,..-,Y, factors through s,-, . This 9 is  determined 
by the recwsive formulas 

We call g, the canonical comparison for the given representation 
X,=F(M,) and the given homotopy s in Y .  In case A is a category 
of modules, the condition that each g,,e, factors through s,-, can be 
written 

~oeoMo<s-lBs %+le,+lMn+l<s,Y,- (6.1) 

We write this more briefly as 9 e M  < s Y .  

Proof. We construct 9,: X,+Y, with E ,  yo=a E X ,  acp,+,=q~,,a 
and show it unique, all by induction on n. If poco factors through s-,, 
then sa = o gives so qoeo = 0 and 
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By the lifting property, there is a unique such yo;  this yo does satisfy 
E ~ ~ ~ = c c  E ~ .  Given vo, . . . , vn-, unique, any p,e, which factors through 
s,-, has s, v,e, = 0 ; hence 

This uniquely determines v, so as to satisfy av,=q,-,a. The proof 
is complete. 

Next, each object C of d has a canonical 0-split resolution. Write 
F C  for F o C E ~ ,  for the n-fold iteration of F ,  and construct the 
objects 

p n ( c ) = p n ( W , c ) = P F c ,  n = 0 , 1 , 2  ,... 

of d. Define morphisms s between the corresponding objects 

i n d  as s-,=e(OC) and sn=e(o/3,C). 

Theorem 6.3. There are unique morfihisms 

of d which make p (92, C )  = {p ,  (92, C)}  a relatively free allowable resolu- 
tion of C with s as contracting homotofiy in d. This  resolution, with its 
contracting homotofiy, i s  a covariant f~nc tor  of C.  

We do not claim sa=O - because it usually isn't so. 

Proof. We wish to fill in the schematic diagram 

at  the solid arrows (morphisrns of d)  to get a contracting homotopy. 
By the properties of e, lc factors uniquely as I c  = E e, ; this gives E 

uniquely and shows E allowable. The boundary operators are now 
defined by recursion so that s will be a contracting homotopy; given E ,  

1 - S-I E factors uniquely as also = I - s-, E for some a,: j3, + l o ,  and 
similarly a,+,s, = I - s,-, a,: pn --+@, determines a,+, , given a,. Using 
this equation, 

so, by induction and the uniqueness of the factorization, ~ a = 0  and 
3=o.  Moreover, an+,sna,+,= a,+, , so a,+, is allowable. 

This resolution p (W,  C )  is clearly functorial; it is called the (unnormal- 
ized) bar resolution; for a concrete example, see § 8 below. 
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A "relative" ext bifunctor may now be defined by 

The comparison theorem shows that we can equally well use any O-split 
relatively projective resolution E : X +C to calculate Extg = ExtL as 

Extg (C, A) s Hn(homd (X, A)) ; (6.4) 

note that, in each dimension n, homd (X,, A) stands for the group of 
all morphisms 6: Xn+A in a2 - not just the allowable ones. In partic- 
ular, Ext; (C, A) =hornd (C, A). Replacement of C by a short exact 
sequence E will give the usual long exact sequence for Extn, as in 
Thm.III.9.1, provided E is 0-split. The analogous result holds if A 
is replaced by a O-split short exact sequence; the proof uses either an 
exact sequence of resolutions (Ex.III.9.1) or the assumption that there 
are enough relative injectives. These long exact sequences are actually 
valid in any relative abelian category without the assumption that 
there are enough relative projectives or injectives. The proof, to be 
given in Chap.XI1, depends on the interpretation of Extb (C, A) as 
congruence classes of n-fold, O-split exact sequences from A to C. 
In particular, Extb , unlike ExtL , depends on . 

Note on Adjoints. If Q and d are categories, a functor T :  Q + d  is called 
a right adjoint of S:  d+ Q if there is a natural equivalence 

horn& (A. T(C)) = hornye ( S  (A), C) ; 

here both sides are bifunctors of A and C with values in the category of sets (or, 
if Q and d are additive, in the category of abelian groups). For example, adjoint 
associativity 

Horn (ABB, C) =Horn (A, Horn (B, C)) 

states for fixed B that T(C) = Hom(B, C) is a right adjoint to  S(A) = A@B. There 
are many other examples [KAN 19581. 

Exercises 
1. If the relative abelian category q is a resolvent pair of categories for two 

functors F and F', show that there is a unique natural isomorphism 7: F-tF' 
with r]  e = e'. 

2. Construct resolvent pairs of categories in the following cases: 

(a) For graded rings R > S ;  d and A as in the text. 

(b) For Q: R'+R any ring homomorphism, d= left R-modules, X= left 
R'-modules, OA=QA the R-module A pulled back along Q to  be an R'-module. 

(c) For A, Z both K-algebras, d= A-Z-bimodules, A= K-modules. 

3. In  case (b) of Ex. 2 show that the allowable exact sequences and the relative 
Ext  functor are identical with those for W =  (R, S) when S = QR'. 
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7. The Categorical Bar Resolution 

The (normalized) bar resolution E : B (2 (IT))+Z for a group ring 
Z(17), as presented in Chap. IV, provides a standard 2-split resolution 
of the trivial 17-module 2. For each 17-module A the cohomology of A 
is defined via the bar resolution as Hn(Homn(B(Z(17)), A)). Hence 

In other words, the cohomology of a group is an instance of both the 
absolute and relative functor Ext. The same (normalized) bar resolution 
will be used in the next chapter in many other cases. I t  may be defined 
in the context of any resolvent pair 

of categories. To each object M E A ,  select h ~ c o k e r  e, and F (M) = 
Coker %. Thus 

M.%+ q FM . P Y + F ~  .-.. + 0 (7.1) 

is exact in A ,  P :  A+A is a covariant functor, and #: F+F is a 
natural transformation. Apply OF to F M  to form the diagram 

the composite sM=e1+ is a natural transformation OF---SO FF. Its 
characteristic property is 

Lemma 7.1. The mor#hisms e = e, and s = s, indzcce for every object 
A a left exact sequence of abelian gro@s, 

O+homd(~FM, A) 5 homA(o FM,  q A) hornn (M, A). 

Proof. Each morphism a :  F F M  +A of a' yields a, : FFM---+ 
A, and s*a is the composite a, s: q FM-• A, a morphism in A. 

Clearly e*s*a=a, s e=a, 0=0. If O=a, s=a,e'#, with fi epic, then 
a,e'=O. But the factorization of 0 through e' is unique, so a = O .  Next, 
if some v : q FM---, q A has e* v = 0, construct the commutative diagram 

as follows. Since ve=O, v factors through p = coker e, as v=zcp. By 
the definition of e', zc in turn factors through e' as sc=a, e' for some a. 
All told, v = an e' # = an s, which gives the asserted exactness. 
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Each object C of d yields a sequence of objects M,=Fn C of A. 
The bar resolution consists of the associated relatively free objects 

of d. Define morphisms s between the corresponding "neglected" objects, 

of A by s-,= e (O C) and 

s,= s (M,) : 0 F M ,  ----• F F  M ,  = B,+, C . (7.5) 

This construction at once gives sa=O. 

Theorem 7.2. There are u n i q w  mw#hisms 

of d which make B ( 9 ,  C) = ( B ,  (W, C ) )  a n  d-com;6lex and a relativdy 
free allowable resolution of C with s as corttracting homoto#y of square 
zero in A. Thi s  resolution, with its contractirtg homoto$y, i s  a covariant 
ficlzctor of  C. 

Proof. We are required to fill in the schematic diagram 

at  the solid arrows (morphisms of d)  so as to satisfy the conditions 

for a contracting homotopy. But I : C +C factors through eCIC =s-, as 
1 = E S - ~ ;  this gives e.  The morphisms a, are then constructed by re- 
cursion. Given al, . . . , a, satisfying (7.7), 

since s,-, = e p  with # epic, (1 - s,-, a,) e = 0. By Lemma 7.1, 1 - s,-, a, 
factors as (I - s,-, a,) =as,, which gives a,,, = a satisfying (7.7). These 
morphisms E ,  a, are uniquely determined, again by Lemma 7.1. More- 
over, (7.7) gives 

so an induction using Lemma 7.1 shows ~a,=0 and as=O. This shows 
B (W, C) a complex over C and completes the proof of the theorem. 

We call B ( 9 ,  C) the bar resolution of C. By the comparison theorem, 
it is chain equivalent to our previous "unnormalized" bar resolution 
@ (B, C) (see Ex. 3). 



272 Chapter IX. Relative Homological Algebra 

To show that this description of the bar resolution agrees with the 
previous usage for a group IT, take a? to be the category of left 17- 
modules, d that of abelian groups, F ( M )  = Z  (IT) @ M ,  and e, (m) = 

1 @m for each mc M .  This gives a resolvent pair of categories. Now the 
sequence Z-Z(I7)  +2(17)/Z of free abelian groups is exact, hence so 
is its tensor product with M :  

Therefore F ( M )  r [Z ( D ) / Z ]  @ M .  Take for C the trivial 17-module Z .  
Then 

Fn (2) = [Z (17)/Z] @. . - @ [Z (IT)/Z] , n factors. 

But Z(IT)/Z is the free abelian group with generators all xS.1 in IT. 
Hence F S ( Z )  may be identified with the free abelian group generated 
by all symbols [x,( . . . I x,], with no xi in l7 equal to 1 .  Then B,  (W, Z )  = 

Z (17) @Fn (2) is the free abelian group with generators all x [x,) . . . I x,] 
with x d 7 ,  while the map s= e p  : B,--+ B,,, defined above becomes 

zero when x = l .  This is exactly the contracting homotopy s used for 
the bar resolution B ( Z ( l 7 ) )  in (IV.5.2). The boundary operators are 
uniquely determined by s (in Chap. IV as here), so must agree. In short, 
we have proved that in this resolvent pair of categories 

The next chapter will develop explicit formulas in other cases. 

Exercises 
I. Show that the long sequence (7.4) is exact in A. 
2. Show that the canonical comparison j3 (9, C) + B (9, C) is epic. 

3. For the case of groups, show that  /? gives the unnormalized bar resolution. 
The following three exercises consider the relative ext functor for the rings 

Z (IT) and 2. 
4. For left I7-modules A, B, and C, make BQC and HomZ(C, A) left IT- 

modules with operators x(b@c) = xb@xc and (xa) c = x[a (x-lc)], a: C +A, 
respectively, and establish a natural isomorphism, 

Homn ( B ,  HomZ (C, A)) E Homn (B Bz C, A). 

5. If A is relatively injective or C relatively projective, show that  HomZ(C, A), 
with operators as in Ex.4, is relatively injective. 

6.  Using axioms for the relative ext functor, establish a natural isomorphism 

Ext;(n),z (C, A) Ext!&n),z (2, Homz (C, A)) .  

With this result the following exercises, suggested to  me by J. SCHMID, will yield 
the cup product reduction theorem as stated in VlII.9 (cf. SCHMID [1963]). 
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7. From a presentation I7= FIR with F a free group obtain a group extension 
E :  Ro n B'+I7, where [R ,  R ]  is the  commutator subgroup o f  R. Ro = R / [ R ,  R ]  
and B'= F / [ R ,  R ] .  

8. The  characteristic class x o f  the  group extension E, described as in  IV.6. 
is a two-fold 2-split extension o f  Ro b y  Z .  Show that  the  intermediate module M 
in  x is free; specifically, let F be the  free group on generators g, S the  free I7- 
module on corresponding generators g' and show that  g'+ [cls g]E M is an isomor- 
phism S z  M .  (Hin t :  Use Lemma IV.7.2 t o  construct an inverse.) 

9. Let A be a IT-module. Show that  the  iterated connecting homomorphism 
for x yields an isomorphism Ex tn(R o,  A )  ~ E x t " + a ( Z ,  A )  for the  relative ex t  
functor and n > o and hence, b y  Ex. 6, isomorphisms 

H n + 2 ( 1 7 , A ) ~ H n ( L 7 , H o m Z ( R o , A ) ) ,  n>O, 
Ha (IT, A )  GE Coker[Homn(M, A )  +Homn(R0, A ) ] .  

10. For n > o and G a right IT-module obtain the  "dual" reduction theorem 

H,+,(n, G) =Hn(R; G&Ro). 

8. Relative Torsion Products 
Let S be a subring of the ring R, with the same identity. This gives 

a resolvent pair W =  (R, S) of categories, with d the left R-modules, 
A the left S-modules, q ( A )  the functor which remembers only the 
S-module structure, F ( M )  = R @, M, and e (m) = 1 @m. A 0-split short 
exact sequence is thus an exact sequence of R-modules which splits 
when regarded as a sequence of S-modules; call such a sequence S-sfllit. 
Label the corresponding allowable homomorphisms (R, S)-allowable, 
and the relative projectives (R, S)-$rojectives. 

Define a complex p (R) of R-modules over R, 

R ~ B O  (R) +A (R) (R) + a  . 
by @n(R)=R@Rn@R=R"+2, with n + 2  factors, ~ ( r ~ @ r ~ ) = r ~ r ~ ,  @ 
short for &, and 

( Y )  = (- l i 0  @ r j r i + l  r .  (8.1) 
i = O  

Theorem 8.1. For R > S ,  E :  p(R) +R is a complex of R-bimodules 
over R with a contracting homoto# y s : Rn+2 -+R"+', defined for n 2 1  by 

s ( ~ o @ . . * @ Y ~ + I ) = ~ @ ~ o @ . . . @ ~ ~ + I *  (8.2) 
which is a homomor$hism of left-S, right-R bimodules. 

Proof. First ~ s r ~ = e ( l @ r ~ ) = r ~ ,  so ~ s = l .  Let u=r0@.. .@rn+,  
with n z  0. The first term of asu  is u ; the remaining terms are - s au  ; 
hence as+ s a =  1, as desired. From the definition i t  follows that E a =  0, 
aa=o.  By symmetry there is also a contracting homotopy 

t ( ~ o @ ~ ~ ~ @ ~ ~ + l ) = ~ o @ ~ ~ ~ @ ~ n + l @ 1 >  

which is an R-S-bimodule homomorphism. 
Mac Lane, Homology 18 
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Corollary 8.2 For each left R-module C, j3(R) @,C is the bar resolu- 
tion P(C) for the resolvent pair (R, S). Symmetrically, for each right 
R-module G, G @, j3 (R) with contracting homotopy t is the (right) bar 
resolution j3 (G) . 

Proof. Since R @, C s C ,  one forms j3 (R) @, C simply by replacing 
the last argument rn+, in (8.1) and (8.2) above by c E C. Then j3, (R) C 
= F F ( C ) ,  the contracting homotopy s of (8.2) is that of (6.2), and a 
is the unique boundary with s as contracting homotopy, by Thm.6.3. 
In particular, j3(R) itself is just the bar resolution (left or right) of the 
R-module R. 

Observe that the boundary operator (8.1) in @(R) is the alternating 
sum of the face operators di: j3,,+/?,-, defined by 

di(ro@...@rn+l)=ro@...@ri-1@riri+l@ri+~@...@rn+l, (8.3) 

i= 0, . . . , n. The corresponding degeneracy operators si: j3n-fBn+l are 

si(~~@...@rn+~)=r~@.*.@ri@l@ri+l@...@rn+l, (8.4) 
the usual identities for di and s j  hold, and j3 (R) is a simplicial R-bimodule 
in the sense of VIII.5. The reader may show that the simplicial normal- 
ization of j3 (R) yields the normalized bar resolution B (R). 

Take R-modules GR andRC. The (absolute) torsion products T o e  (G, C) 
are calculated from a projective resolution E :  X+C as Hn (G g R X ) .  
In the present relative case, j3(R) @,C provides a canonical and func- 
torial resolution, so we define the n-th relative torsion product as: 

ToriR9 S, (G, C) = Hn (G BR j3 (R) @, C) ; (8.5) 
i t  is a covariant bifunctor of G and C, and is manifestly symmetric 
in G and C. Since G @, R = G and R C = C, the group of n-chains of 
the complex G gR j3 (R) @, C is G 8, Rn @, C. The boundary formula 
is obtained from (8.1) by replacing r, by gc G and rn+, by cc C; the com- 
plex may be viewed as a simplicial abelian group. 

If E: A - B a C  is an S-split short exact sequence of left R-modules, 
its tensor product (over S) with G@,Rn is still S-split, hence exact, 
and so is the sequence of complexes 

G@Rj3(R) @RA-G@RB(R) @RB+G@RB(R) @RC. 

The resulting connecting homomorphisms 

En : ToriR, S, (G, C) +Torf5?) (G, A) , n >0, 

are natural in G and E, and yield the exactness of the corresponding 
long exact sequence 

. . +ToriRIS) (GI A) +TorJRIS) (G, B) +TO~! ,~ .~ )  (G, C) 
Em -+Tor!,%:) (G, A)  + . . , 
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just as for the absolute torsion product, except that here E must be 
S-split. If E': G n K -wL is an S-split short exact sequence of right 
R-modules, the same argument (interchanging left and right) gives 
natural connecting homomorphisms 

EA: ToriRpS) (L, C) +Tori%:) (G, C) , n>O, 

and the corresponding long exact sequence in the first argument. 

Theorem 8.3. For rings R > S and modules GR , RC, each (G, C) 
is a covariant bifunctor of G and C with 

ToriR* S, (G, C) G G @R C , (natural) , (8.7) 

ToriR* (P', C) = o = ToriR. S, (G, P )  , n >0, (8.8) 

when P' and P are (R, S)-#rojective right and left modules, respectively. 
If  E' and E are S-split short exact sequences of right and left R-modules, 
respectively, the corresponding connecting homomorphisms are natural and 
yield long exact sequences (8.6)) and symmetrically. 

In particular, this Theorem leads to a characterization of the relative 
torsion products as functors of the second argument, by properties 
(8.7), ( 8 4 ,  and (8.6), just as in Thm.V.8.5; for this purpose we may 
replace "(R, S)-projective" by "(R, S)-free" in (8.8). 

We need only prove (8.7) and (8.8). First Bl (R) +So (R) +R -to is 
exact; since tensor products carry right exact sequences into right 
exact sequences, so is 

The last term is G @,C; this gives (8.7). To prove ( 8 4 ,  use 

Lemma 8.4. For rings R) S, if P is an (R, S)+rojective right R-module 
and E: A n B -wC an S-split short exact sequence of left R-modules, then 
0 + P 8, A+P gR B + P BR C +O is an exact sequence of abelian groufis. 

Proof. Since there are enough relatively free right modules M R, 
each P is an S-split quotient and hence an R-direct summand of some 
M @, R. Hence it suffices to prove the Lemma with P = M @, R. Then 
P @,A = M @,R @,A= M @,A, so the sequence in question is iso- 
morphic to M @, A+ M 8, B + M @, C, which S-splits because E does, 
and hence is exact. 

Now we prove (8.8). The complex p(R) @,C over C has a left S- 
module contracting homotopy s as in (8.2). Hence, by the Lemma, 
P'@R(B(R) @,C) is exact over Pf@,C, so has homology zero in di- 
mensions n >O. 

The relative torsion products can also be calculated from other 
resolutions. 

18' 
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Theorem 8.5. If E :  Y+G is an S-split resolution of the right R- 
module G by (R, S)-projective modules Y,, there is a canonical isomorphism 

natural in C. I f  E is any S-split short exact sequence of left R-modules, 
the connecting homomor~hisms E, of (8.6) are mapped by the isomorphism 
(8.9) into the homology connecting homomorphism of the exact sequence 
Y@, A - Y@, B +Y@,C of complexes. Symmetrically, Tor, may be 
calculated from an S-split, (R, S)-firojective resolution of C by left R- 
modules. 

Proof. The relative comparison theorem gives a right R-module 
chain transformation g, : G @, /3 (R) +Y, unique up to homotopy, which 
induces the isomorphism (8.9). Since each Y, is (R, S)-projective, each 
Y, @,A w-Y, BR B +Y, B R C  is exact by Lemma 8.4. The chain trans- 
formation g, maps the previous exact sequence of complexes onto this 
exact sequence; hence by naturality of the connecting homomorphism 
of a sequence of complexes, this yields the method stated for the cal- 
culation of the connecting homomorphisms E,. 

Since an (R, S)-projective P' has the resolution 0 +PI+ P1-+O, this 
gives an immediate proof of (8.8). We leave the reader to verify the 
other properties of the relative torsion product: Additivity in each 
argument, anti-commutation of E, with EL-, (Ei-, En =- En-, EL, as 
in Thm. V.7.7), and the additivity of E, in E.  

The relative torsion product can be considered as a functor of the 
pair of rings R >  S. More specifically, consider objects (R, S ;  G, C, A) 
consisting of rings R )  S and modules G,, ,C, ,A. A change of rings 
(+ in G and C, - in A) is a quadruple 

X =  (Q, c, y, a) : (R, S; G, C, A) + (R', S'; G', C', A') (8.10) 

where Q : R +Rf is a ring homomorphism with Q (S) < S', while 

are homomorphisms of R-modules (note that the direction of a is opposite 
that for y). These objects and morphisms X ,  with composition (Q, 5, y, a) 
(e', 5'. y', a') = (Q e', c c', y y', a'a) constitute the change of rings category 
W++-; omitting A and a gives a "covariant" change of rings category 
W+ +. Each x induces 

a chain transformation, and thence, by the definition (8.5), a map 

X* : (G, C) -+TorjR'l S') (G', C') 
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which makes the relative torsion product Tor, a covariant functor on 
W+ + to abelian groups. The homomorphism X, can also be calculated 
from S-split relatively free resolutions E :  Y-tG, 8': Yt+G'; indeed, 
by pull-back, E ' :  Yd +G6 is a map of complexes of R-modules with an 
S-module splitting homotopy, so the comparison theorem (relatively 
projective complexes to split resolutions) lifts c :  G+GL to a chain 
transformation pl: Y-tYd. The induced map on homology composed 
with the pull-back map Y:@, ,Cf-+Y'@,, C' gives X, as the composite of 

with the isomorphisms (8.9). 
By analogy with Tor?ls), we write  EX^:^,^, for the corresponding 

relative ext functor. Thus by (6.3) 

where the isomorphism on the right is by adjoint associativity, and 
Hom, (C, A) is an R-bimodule. This Ext is a contravariant functor on 
the change of rings category 9'- (omit G and 5 in (8.10) above). When 
R is fixed and Q = 1, this includes the usual description of Ext&,,) (C, A) 
as a bifunctor, contravariant in C and covariant in A .  

Exercises 
The first six o f  the following exercises are taken from HOCHSCHILD [1956]. 

1. Every (R ,  S)-projective P is an R-direct summand o f  some R B S A .  

2. For each sM, HomS (R ,  M )  is (R ,  S)-relative injective. 

3. Prove: There are enough (R ,  S)-relative injectives. 

4. I f  P is (R ,  S)-projective and a:  A - t B  a homomorphism o f  R-modules 
with HomS(P,  A )  a H o m s ( P ,  B) ,  then HomR(P, A )  a H o m R ( P ,  B) .  

5. For P as in  Ex. 4 and a a map o f  right R-modules, A B S P -  B B S P  monic 
implies A BRP- B B R P  rnonic. 

6. For (R ,  S)-projective resolutions X -t C and Y- t  G which are S-split, prove 
that ~ o r p l ~ )  (G, C) E H, ( Y B R X ) .  

7.  Give a description for elements o f   or(^.$) (G, A )  analogous t o  the elements 
(p, L, v) used in V.7. 

8. Show b y  example that ~ x t b , ~ ) f  Ex tk .  

9. Show that B(R) is the (unnormalized) bar resolution for the resolvent 
pair 9Z' with d = R-bimodules, A = S-R-bimodules, F ( M )  = R BSM and e (m) - 
I Bm.  

10. For 1' as in Ex. 9, show that ExtTR,~) (C, A )  r Ext%,(R, HomZ(C, A ) )  and 
~ o r f . ~ )  (G, C) ~ o r f  (R ,  C QZ G).  Here C BZ G is the bimodule with r (c Bg)  = rc a g ,  
(c Bg)  r = c Bgr. 
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9. Direct Products o f  Rings 

The direct product R=R1xR" of two rings is the ring with the 
additive group R f @  R" and multiplication (r; , r;') (ri , r',') = (ri ri , ryry). 
(This is just the direct product of  R' and R" as 2-algebras, as in (VII. 5 . I ) ) .  
Each left R'-module A' is an R-module ,lA' by  pull-back along the pro- 
jection n,: R ' x  R"+ R', and similarly for R"-modules. In particular, R' 
and R" are left R-modules, while the termwise definition of  the product 
in R shows that R r R 1 @  R" is an isomorphism of R-modules, and 
hence that R' and R" are projective R-modules. 

Lemma 9.1. If the R'-modules C' and G' and the R"-module A" 
are regarded as R = R 'x  R" modules, then 

Gf@,A"=O, HomR(C1, A") = O .  (9.1) 

Proof. Take the element ( I f ,  0) E R .  Then 

Similarly, i f  f :  Cf+A", then 

The correspondence A+ A' = R'@, A ,  a +a' = IR,@a is a covariant 
functor on R-modules to R'-modules which is exact: a ( ( B  implies a'! B'. 
Moreover, 

Proposition 9.2. Each left (RfxR")-module A has a representation 
AS(,~A')@ (*,A") as a direct sum of two R-modules, the first obtained 
by #uZZ-back from an R'-module A' and the second from an R"-module A". 
Thae modules A' and A" are determined up to isomorfihism as A ' z R f @ ,  A,  
AUzR"@,  A. Given such decom+ositions for A and B, each R-module 
homomor#hism a:  A+B has a unique decomfiosition as a=al@ a", 
with a' : A'+ B' and a" : A"+ B" respectively R'- and R"-module maps. 

Proof. Using R s R f @ R "  we get the decomposition 

A = R @, A= (R1$ R"J @,A= (RIBR A )  @ ( R u g R  A )  

I f  A= Af$A" is such a decomposition, (9.1) gives Rf@,A =R'@,A1= 
Rf@,, A ' z A ' .  Given a, a'= lR,@a: R'QR A+R8BR B and a"= 1," @ a 
have agar@ a". 

Corollary 9.3. For left R-modules A and C and a right R-module G,  
each decom#osed as in  Pro$.9.2, there are natural isomorphisms 

Hom, (C ,  A)  gHomR,(C1, A') $ HomRet(C", A"),  (9.2) 
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Proof. Hom, (C, A) is additive in C and A, and Hom, (C', A') 
HomR,(C1, A'), while Hom, (C', A") =O by (9.1). 

Isomorphisms like (9.2) and (9.3) hold for the relative Ext and Tor 
functors. For example, if S1<R' and Su<R" are subrings, then S= 
S'x S" is a subring of R'xR", with nl S = S', z, S = S". We treat the 
more general case of any subring of R'xR". 

Theorem 9.4. I f  S is a subring of R'xR", set S1=z1 S < R', S"= 
z,S<RH. For left R-moddes A and C and a right R-modde G, each 
decontposed as in Prop.9.2, there are natural isomorphisms 

E ~ t y ~ , ~ )  (C, A) rExtk,,., (C', A') $ Ext;,,,,,,,, (C", A"), (9.4) 

TorFs) (G, C) rToriPlS') (G', C') $ Torf"ls') (G", C") I (9.5) 

valid for all n. The same isomor#hisms hold with S, S', and S" omitted. 

Proof. First observe that an (R', S1)-free module R'@s>M' is also 
(R, S)-projective (though not necessarily (R, S)-free). For, the left 
St-module M' is a left S-module by pull-back, and, using the pull-back 
lemma, 

R @, M1rR'@,M' $ R"BS M'gR'@s,M' $ R"@s.. M'. 

Since R @, M' is (R, S)-projective, so is its R-direct summand Rf@,, M'. 
Now choose relatively free split resolutions E' : X'+C1 and E" : X +  C" 

of the components of C. Then E'$ E" :  X'$ X"-+C1$ C" is a resolution 
of the R-module C1$C" which is S-split by the direct sum of the S' 
and S" contracting homotopies for X' and X .  By the first observation, 
each term XA$X: is an (R, S)-projective. By (9.2) and (9.3) for X= 
Xf@ XI', 

Hom, (X, A )  =HomRt(X1, A') $ Hom,,,(X", A"), 

Taking cohomology and homology groups gives the desired isomorphisms 
(9.4) and (9.5). 

In the isomorphism (9.5) , each projection Tor, (G, C) +Tor, (G', C') 
can be described as the map X ,  induced by that change of rings X :  
(R, S ;  G, C) -+(R1, S t ;  G', C') which is obtained by the projections 
R=R'xR"-+R1, G=G1$ G"+G1, etc. In fact, to calculate X, one lifts 
C+C' to a chain transformation v: X+X';  such a g, is the projection 
X =X'$ X"+X' used in deducing (9.5). 

The proof for the same results with S omitted is easier; when XA 
is a free R'-module, it is a direct summand of copies of R, hence is R- 
projective. 

This theorem will be applied in the next chapter to algebras (5 6). 
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Chapte r  t e n  

Cohomology of Algebraic Systems 

1. Introduction 

The homology of algebraic systems is an instance of relative homo- 
logical algebra. 

For a group 17, use exact sequences of 17-modules which split as 
sequences of abelian groups. The cohomology of 17 for coefficients in 
a module is then (cf. IX.7) 

Correspondingly, the homology of 17 for coefficients Gn will be defined as 

For a K-algebra A, use exact sequences of A-bimoduIes which split 
as sequences of right A-modules, or those which split just as sequences 
of K-modules. For a A-bimodule A, the cohomology and homology of 
A will be 

Hn (A, A) =Ext:~-n, K-A) (A, A) rExtG-n, K) (A A) ; (1.3) 

H,  (A, A) = ToriA-", K-A) (A,  A) r  TO^!,^-"^ K, (A, A) . (1 4 
These equivalent descriptions are presented in terms of the bar resolu- 
tion for algebras, which is given explicitly in $ 2 - it is a special case 
of the bar resolution (IX.7) for a resolvent pair of categories. This 
chapter examines the properties of H ,  and H" and develops similar 
(co)-homology for graded and for differential graded algebras, as well 
as for monoids and for abelian groups. 

2. The Bar Resolution for Algebras 

Let A be an algebra over K. The identity element lA gives a K- 
module map I: K+A; its cokernel A/I(K) =A/(K IA) will be denoted 
(simply but inaccurately) as A/K, with elements the cosets A+ K. For 
each left A-module C construct the relatively free A-module (@= 

As a K-module, it is spanned by elements which we write, with a vertical 
bar replacing "@", as 

in particular, elements of B, are written as A [ ] c .  The left factor A  
gives the left A-module structure of B, ,  and [&I . . . I A,] c without the 
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operator A will designate the corresponding element of (A/K)"@C. 
These elements are normalized, in the sense that 

[all ... IA, ,]C=O 
when any one Ai E K. 

Now construct maps as in the diagram 
6 a 

C B, (A, C) .% B, (A, C) .?G 
s-1 So 

The K-module homomorphisms s-, : C ---+ B, and s,: B,---+ B,+, are 
defined by setting s-,c = I [I c and 

By the normalization, s,+,s,=O. Define left A-module homomorphisms 
E:  BO+C and a,: Bn+Bn-, for n>O by ~(il[]c)=Ac, and 

This definition is legitimate because the right side is K-multilinear and 
normalized: If some &= 1, the terms with indices i- I and i cancel 
and the remaining terms are zero. 

Theorem 2.1. For each left A-module C, E: B (A, C) +C is a resolu- 
tion of C b y  (A, K)-relatively free left A-modules which is K-s@it b y  the 
contracting homotofiy s with s2=0. Moreover, B(A, C) is a covariant 
functor of C. 

This can be proved directly from the formulas above. Alternatively, 
apply the resolution of IX.7 for the resolvent pair of categories 9 with 
d= left A-modules, A= K-modules, F(M) =A @ M, e (m) = 1 @m. Since 
K ---+A ---+A/K--+ o is a right exact sequence of K-modules, each K-module 
M yields a right exact sequence 

so F(M)s(A/K)  @ M. Also, s,: F ( M )  ---+FF(M) is given by s (A@m) = 

I @(A+ K) @m. Hence, with B ( 9 ,  C) as in (IX.7.3), 

with s given by (2.4). The formulas for E and a,, provide the unique 
boundaries for which s is the contracting homotopy. Hence B (9, C) = 

B (4 C). 
There are several variants of the bar resolution, as follows. 
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The un-normalized bar resolution /? (B, C) =/? (A, C) (cf. IX.6) has 

where An=A@. @A, with n factors. The contracting homotopy s, E ,  

and the boundary are given by the formulas (2.4) and (2.5) with each 
1 [All . . . ( A,] c replaced by A @A 8.. . @A, @c. In this case the boundary 
may be written, much as in the singular complex of a space, in the form 
a,= I=(- l)'di, where d, : /In+ /?,-, is the A-module homomorphism 
defined by 

(for i=n,  the right side is A,@- -. @A,c). Thm. 2.1 holds with B (A, C) 
replaced by /? (A, C), except that sa need not be zero in /? (A, C). 

The A-module map 11 : /?, + B, defined by 11 (A @ 4 @. . @A, @ c) = 
A [All . . . I A,] c is a A-module chain transformation lifting I,: C +C; 
indeed, it is the canonical comparison map of 8, to B,. Hence, by the 
comparison theorem, 

Corollary 2.2. (The "Normalization Theorem".) The projection 
11 : /? (A, C) -+ B (A, C) is a chain eqzlivalence of complexes of A-modules. 

The kernel of 11 is the A-module generated by the union of the images 
of the A-module maps sl: /?n+/?n+l defined by 

for i=O, . . . , n. With these si and di as in (2.7), /?(A, C) is the associated 
chain complex of a simplicia1 A-module and 11 is the simplicial normaliza- 
tion of Thm. VIII.6.1. 

For the bimodule bar resolution B(A, A), take C above to be A. 
Each B, is then a A-bimodule; formula (2.5) with c replaced by ~ ' E A  
shows that E and each a, is a A-bimodule homomorphism. Similarly, 
s of (2.4) becomes a homomorphism of right A-modules. Hence 

Corollary 2.3. If  A is a K-algebra, E :  B (A, A) +A is a right-A-split 
resolution of the bimodule A by (A-A, right A)-free bimodules, and a 
K-split resolzltion of A by (11-11, K)-free bimodules. 

The last clause does not mean that B (A, A) is the categorical resolu- 
tion for the resolvent pair (A-bimodules, K-modules). Note also that 
B (A, C) B (A, A) @A C. 

The left bar resolution applies to an augmented algebra E :  A+K, 
and is B(A) = B (A, ,K), where ,K is K regarded as a left A-module by 
pull-back along E.  Thus B,(A)=A@(A/K)" is generated by elements 

' A [Al) . . . 1 A,], while s and a are given by (2.4) and (2.5) with c omitted, 
and with the "outside" factor A,c in the last term of (2.5) replaced by 
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s (A,). Thus B (A) +,K is a K-split, (A, K)-free resolution of the left 
A-module ,K. In particular, when K=Z and A = Z ( n ) ,  this is the bar 
resolution of IV. 5. 

The redzcced bar resolution for an augmented algebra A is the complex 
B (A) = K, @,gB (A), so B, (A) = K and 73, (A) = (All<)" for n>O. The 
contracting homotopy does not apply toB, but the formula for the bound- 
ary still applies, with c and the left operator A omitted: In (2.5) replace 
the operator A, by ~ ( 4 )  and A,c by E (A,,). The "reduced bar resolution" 
is not a resolution, but is useful for computations. The left and the re- 
duced bar resolution can also be formed without normalization. 

Exercises 
I. For an augmented algebra A, let X be any relatively free K-split resolution 

of ,K by left A-modules. Show that the canonical comparisons (Thm.IX.6.2) 
q,: B (A) + X, y : X + B (A) over the identity satisfy q, y = 1. - 

2. (CARTAN.) For A as in Ex. I, show that the left bar resolution B(A) is 
characterized up to isomorphism as a K-split resolution X of ,K with a contracting 
homotopy s such that sB = 0 and X, E A@sX,-, . 

3. The normalization theorem can be proved directly. Show that a bimodule 
chain transformation 5: B (A, C) + B(A, C) with 65 = E can be defined recursively 
with [,=I, [,e,=s[,-lae,, where e,=e(FOC). Prove that T ~ = I ,  and by 
similar means construct a chain homotopy [ q a  I ,  all for r]  as in Cor. 2.2. 

4. For left A-modules C and A,  show that the I-cocycles of the cochain com- 
plex HomA(i? (A, C), A )  can be regarded as factor sets for K-split A-module ex- 
tensions of A by G. 

3. The Cohomology of an Algebra 

The n-th cohomology module of a K-algebra A with coefficients 
in a A-bimodule A is the K-module 

Hn (A, A) = Hn(HomA-A (B(A, A), A)), n = 0 I . . . ; (3.1) 

it is a covariant functor of A. Here HornA-,., stands for bimodule homo- 
morphisms. According to the normalization theorem we can replace 
the bimodule bar resolution B(A, A) here by the un-normalized bar 
resolution /? (A, A). Both B (A, A) and /?(A, A) are right A-split (11-11, 
K-A) relative projective resolutions of the bimodule A, and also are 
K-split (A-A, K) relative projective resolutions of A, so HU(A, A) is 
the n-th relative Ext functor in either case, as stated in (1.3). 

We call Hn(A, A) the Hochschild cohomology modules of A, since 
they were originally defined by HOCHSCHILD [I9451 using exactly the 
formulas given by the bar resolution with K a field. 

The complex Horn,,-, (B (A, A), A) used in (3 .I) may be described 
more directly. Consider K-multilinear functions f on the n-fold cartesian 
product A x .  . . x A  to A ; call f rtormalized if f (il, , . . . , A,) = 0 whenever 
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one 4 is 1. For example, the function [All . . . I An] c of (2.3) is K-multi- 
linear and normalized. The universal property of the tensor product 
B, ( A ,  A) =A @ (A/K)" @ A  states that each normalized K-multilinear f 

determines a unique bimodule homomorphism 7:  B n ( A ,  A) -+A such 
that always 

j (m[ i l 1 l  ... /A,I m ) = f ( ~  ..., 2,). 

Hence H O ~ ~ - ~ ( B , ( A , A ) ,  A )  is isomorphic to the K-module of all 
K-multilinear normalized f on the 12-fold product. The coboundary 6 f  is 
the function given, with the standard sign, as 

In particular, a zero-cochain is a constant a c A ;  its coboundary is the 
function f : A +A with f (1) = ail- ila. Call an element a €  A invariant 
if ila= ail for all A, and let A" denote the sub-K-module of all such 
invariant elements of A ;  thus 

H O ( A ,  A)=AA= [a1 ila=aA for all i l € A ] .  (3.3) 

Similarly, a 1-cocycle is a K-module homomorphism f :  A-+A satisfying 
the identity 

f ( ~ 1 ~ , ) = % f ( ~ 2 ) + f ( ~ 1 ) ~ 2 ,  4,12€A; (3.4) 

such a function f is called a crossed homomorphism of A to A .  I t  is a 
coboundary if it has the form f , ( l )=al - -Aa  for some fixed a ;  call f a  
a princifial crossed homomor~hism. Therefore H l ( A ,  A )  is the K-module 
of all crossed homomorphisms modulo the principal ones, exactly as 
in the case of the cohomology of groups (IV.2).  

As in the case of groups, H 2( A ,  A )  can be interpreted in terms of 
extensions by the algebra A. An extension by the algebra A is an epi- 
morphism o :  r + A  of algebras. The kernel J of a is a two-sided ideal 
in r, hence a r-bimodule. For each n ,  let Jn denote the K-submodule 
of F generated by all products j l j a . .  . j, of n factors jic J .  Then J =  
J1> J2> J3> . . . , and each Jn is a two-sided ideal of r. An extension a 
is said to be cleft if a has an algebra homomorphism q ~ :  A -tr as right 
inverse (OF= I n )  ; that is, if r contains a subalgebra mapped isomorphic- 
ally onto A by o. An extension a is said to be singular if J=Kero 
satisfies J2=O. In each singular extension the r-bimodule J may be 
regarded as a A-bimodule, for o y=o y' implies ( y - y ' ) ~  J ,  so Ja=O 
implies y j=ylj for each j €  J .  This defines the left action of each A=o(y) 
on j .  
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Conversely, given any A-bimodule A, a singular extension of A by 
A is a short exact sequence (x, a ) :  A n r + A  where r is an algebra, 
a a homomorphism of algebras, A is regarded as a r-bimodule by pull- 
back along a, and x: A ++r is a monomorphism of T-bimodules. For 
given A and A, two such extensions (x, a) and (x', a') are congruent if 
there is an algebra homomorphism Q:  r+I" with x ' = ~  x, a=afe .  
This gives the familiar commutative diagram which implies that Q is 
an isomorphism. One example of an extension of A by A is the semi- 
direct sum, defined to be the K-module A@A with product defined 
by (a,, A,) (a,, A,) = (a,A,+ A,a,, &A2) ; with xa  = (a, O), a(a, I) = A, it is a 
singular extension of A by A, cleft by cp with cpI= (0, A). Any cleft 
singular extension is congruent to this semi-direct sum. 

Consider those singular extensions ( x ,  a) which K-split, in the sense 
that there is a K-module homomorphism u: A - *r which is a right 
inverse to a. (Any cleft extension is K-split; if K is a field, any extension 
K-splits.) Identify each a €  A with x a ~ r ,  so that x: A + r  is the identity 
injection. The right inverse u can be chosen to satisfy the "normaliza- 
tion" condition %(IA) = IT, for if 21 does not satisfy this condition, 
a,, = u (1 A) - lre'A and %'(I) = u (A) - A a, is a new right inverse which 
is normalized. Moreover, a [u(& I,)] = A, A, = a [u (A,) u (I,)], SO there are 
uniquely determined elements f (A,, I,) E A such that 

Call f the factor set of the extension corresponding to the representatives u. 

Theorem 3.1. I f  A is a K-algebra and A a A-bimodule, each factor 
set of a K-split singular algebra extension of A by A is a 2-cocycle of 
HornA-* (B (A, A), A). The assignment to each extension of the cohomology 
class of any one of its factor sets is a 1-1-corres$ondence between the set 
of congruence classes of K-split singular algebra extensions of A by A 
and HS(A, A ) .  Under this corres$ondence the cleft extensions (in particular, 
the semi-direct sum) correspond to zero. 

Proof. Regard u(I )  as a representative of A in the extension r. 
The description of the r-bimodule structure of A can be written in 
terms of u as 

u ( t ) a = I a ,  a u ( I ) = a I ,  (9 .6) 

for any acA, AcA. Since u is a K-module homomorphism, 

( k , & + k , A z ) = k , ~ ( & ) + k z u ( A , ) ,  k i e K -  (3.7) 

With the factor set f for u defined by (3.9, the rule (3.6) gives 
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As the product in r is associative, 

This is exactly the condition 6f=0 that the factor set be a 2-cocycle; 
moreover the choice u ( l ) = l  implies that f is normalized. A change 
in the choice of ~b to u' by %'(A) = g (A) + u (A) for any K-linear g : A -+A 
with the normalization g (I) =0 gives a new (normalized) factor set 
f+  6g. Thus the extension uniquely determines the cohomology class 
off .  

Any element in the algebra r can be written uniquely as a+  u(A). 
The K-module structure of r and the sum and product of any two such 
elements are determined by the equations (3.5) - (3.7). Given A, A, 
and any 2-cocycle f, these equations construct the extension r; in partic- 
ular, the condition 6 f = 0 suffices to make the product in r associative. 
When f=O, the construction is the semi-direct sum, so the proof is 
complete. 

A two-sided ideal J is said to be nil#otent if JU=O for some n. 

Theorem 3.2. (J. H. C. WHITEHEAD-HOCHSCHILD.) If  K is a field 
and if the K-algebra A has Ha (A, A) = 0 for every A-bimodade A, the% 
any extension of A with a %il#otent kernel is cleft. 

Let the extension a: r + A  have kernel J with ]"=O. The proof 
will be by induction on n. If n=  2, the extension is singular and K-split; 
since Ha(A, J) = 0, the extension is cleft by Thm. 3.1. 

Suppose the result true for kernels with exponent n- 1, and take 
a with kernel J+O, ]"=O. Then Ja is properly contained 
Ja= J would give Ju= J+ 0. From the quotient algebra 
the commutative diagram on the left in 

in J, since 
r/Ja, form 

The projection # has kernel Ja, while a' has kernel J/ J8, hence is a sin- 
gular extension of A. By the case n=2, a' is cleft by some g ~ .  Now 
f1 (p, A) =I" is a subalgebra of r, and # induces fi' : I " + g ~ A n i  with 
kernel Ja. Since (J8)"-l< J" = 0, the induction assumption shows #' 
cleft by some I#, so a is cleft by L~I 'Y.  

This result includes the Principal Theorem of Wedderburn for an 
algebra I' of finite dimension (as a vector space) over a field. Each 
such algebra has a two-sided nilpotent ideal R, called the radical, such 
that r / R  is semi-simple. The Wedderburn Theorem asserts that if r / R  
is separable, then the extension F- t r /R is cleft. This follows from 
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Thm. 3.2, for FIR separable implies (Thm. VII. 5.6) bidim r / R  = 0,  hence 
bidim r / R S  I ,  hence H2(r/R, A) =O for all (r/R)-bimodules A ,  hence 
r + r / R  cleft. 

Note. For algebras of finite dimension over a field, Thm. 3.2 is also valid 
without the hypothesis that the kernel is nilpotent [HOCHSCHILD 1945, Prop.6.11; 
[ROSENBERG-ZELINSKY 19561. The obstruction problem for the construction of 
non-singular K-split extensions with a given kernel [HOCHSCHILD 19471 leads to 
an interpretation of -(A, A) parallel to that for groups (IV.8). Extensions which 
are not K-split require a second, additive, factor set in place of the linearity of u 
in (3.7) ; we return to this question in 3 13. 

The cohomology groups of a fixed K-algebra A are characterized 
by axioms like those for Ext, as follows. 

Theorem 3.3. For each n 20, Hn(A, A) i s  a covariant functor of 
the A-bimodule A to K-modules. H0 i s  given by (3.3). Hn (A, A) =O when 
n>O and A i s  a bimodule of the form A = HomK(A, M) for M a K-module. 
For each K-split short exact seqwence E :  A ++ B+C of bimoddes and 
each n 2 0 there i s  a connecting homomorphism E ,  : Hn (A, C) + Hn+' (A, A), 
natural in E, swch that the long sequence 

i s  exact. These pro+erties determine Hn and the connecting homomorphisms 
E ,  up to natural isommphisms of Hn. 

The proof is left to the reader; note that HomK (A, M) is a "relatively 
injective" bimodule. 

If E :  A+K is an augmented algebra, each left A-module D becomes 
a A-bimodule D, by pull-back on the right along the augmentation. 

Proposition 3.4. For a left module D over a n  augmented algebra 
(A, E )  the Hochschild cohomology of the bimodule D, can be computed from 
the left bar resolution by a natural isomorphism 

Hn (A, D,) G Hn (Hom, (B (A), D)) . (3.9) 
Proof. The canonical isomorphism Hom (K, D) ED of left A- 

modules is also an isomorphism Hom (,K, D ) r D ,  of A-bimodules. Thus, 
for any bimodule B, adjoint associativity yields a natural isomorphism 

When B is the two-sided bar resolution, B @,(,K) is the left bar reso- 
lution; hence the result (3.9). 

Note. Suppose that the K-algebra A is projective as a K-module. Then A* 
is K-projective (Cor.V.3.3), hence/!& (A, A) is a projective A-bimodule (Prop.VI.8.1). 
Hence E :  B(A, A) + A  is a projective bimodule resolution of A. In this case I% 
of (3.1) is therefore given as an "absolute" functor Ext: 

Hn (A, A) , E ~ t z - ~  (A, A )  (if A is K-projective) 
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Using B for p, the same result holds for A/K projective as a K-module. CARTAN- 
EILENBERG define the "Hochschild" cohomology by the absolute Ext  functor 
in all cases, so their definition does not always agree with ours. 

Exercises 
1. Show that A" is a sub-A-bimodule of A when A is commutative. 
2. Construct a "Baer sum" of extensions of A by A so that  the correspondence 

of Thm.3.i maps the Baer sum into the sum in H2(A, A ) .  
3. Show that  *(A, A)  is the group of congruence classes of those bimodule 

extensions A w  B +A which K-split. 

4. Show explicitly that  each short exact sequence A-B +A of bimodules 
which is K-split is also split as a sequence of right A-modules. 

5. If A is an augmented algebra and M a K-module then the cohomology of 
M ,  pulled back to be a bimodule, may be calculated from the reduced bar resolution 
as Hn(A, ,Me) 1. ~ " ( H o m  (B(A), M)). 

4. The Homology of an Algebra 

Two A-bimodules A and B have a "bimodule" tensor product 
ABA-,B; i t  is obtained from the tensor product A B K B  by the identi- 
fications aA@b=a@Ab, Aa@b=a@bA 

(middle associativity and outside associativity, as in (VI. 5 .I 0)). The 
canonical isomorphism A@,J=A has an analogue for bimodules. 
Indeed, if A is a bimodule and M is a K-module, a natural isomorphism 

I 3  ( A )  @=&, (4.1 

may be defined by 13 [a@ (A @m @A1)] = A1aA@m, for the expression 
on the right is K-multilinear and satisfies the middle and outside associa- 
tivity rules. The inverse is given by 8-l (a @m) = a  @ (I @m @I).  

The Hochschild homology modules of a K-algebra A with coefficients 
in a A-bimodule A are defined via the bar resolution to be the K-modules 

( A  A) ( A  B ( A  A)) ,  0 ,  I . . . , . (4.2) 

As for cohomology, this is an instance (1.4) of the relative torsion 
functor, for sequences of A-bimodules split either as sequences of right 
A-modules or as sequences of K-modules. 

In the definition (4.2) we may replace B by the un-normalized bar 
resolutionj3 (A, A) with& (A, A) =A @An @A. By (4.1), A (&I) 
r A @ A n .  Hence Hn(A, A )  is the n-th homology module of the complex 
of K-modules A@An with a boundary a = do- &+ . . . + (- I)"&, where 
the di are "simplicial" faces: 

di(a@Al@...@An)= aAl@A,@..-@An, i = 0 ,  

= a@Al@.-.@AiAi+,@...@A n ,  0 c  i< n ,  (4.3) 

=Ana@Al@-..@A,-,, z=n; I 
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in the last term, A, appears in front in virtue of the "outside" associa- 
tivity rule. In particular a (a @A) = a  A- A a, so that Ho is the quotient 
of A, 

Ho(A, A)rA/{A a-a 21 AEA, UEA), (4.4) 

by the sub-K-module generated by all differences A a-a A. 
Much as in Thm. 3.3 we have 

Theorem 4.1. For a fixed K-algebra A, each H, (A, A) is a covariant 
functor of the A-bimodule A to K-modules, with H, given by (4.4) and 

H , ( A A L A ) = o  n>o,LaK-modzcle. 

If E :  A +, B a C  is a K-s+lit short exact sequence of bimodzdes, there is 
for each n >O a "connecting" homomor+hism E, : H, (A, C) + H,-, (A, A), 
natural in E, such that the long sequence 

- -+H,+, (A, C) 5 H, (A, A) +H, (A, B) +H,(A, C) +. . - 
is exact. These pofierties characterize the H, and E, u+ to natural iso- 
mm+hism. 

The functorial behavior of the homology of algebras is like that for 
groups (IV.2.6). Consider quadruples (K, A, A, C) where K is a com- 
mutative ring, A a K-algebra, and A, C are A-bimodules. A change 
of algebras (+ in A, - in C) is a quadruple 

C= (x, Q, a, y) : (K, 4 A,  C) -+(K', A', A', C') (4.5) 
where x: K+K' and Q: A+A1 are ring homomorphisms such that 
always Q (k1) = (x k) (Q A) and where a:  A+e A: and y : ,C:+C (opposite 
direction!) are homomorphisms of A-bimodules ; i. e., a (Aa) = (e A) (aa) and 
a (a A) = (a a) (Q A). The category with these morphisms 5 is denoted 
@-; here the exponent +- indicates that the change is covariant in 
the first bimodule A and contravariant in C. Omitting C and y gives 
the category a+. We also use the category &, with K =  K' fixed and 
x the identity. 

The complex A@A-AB(A, A) of (4.2) and hence H,(A, A) is a co- 
variant functor on W ;  in particular, this gives the previous result 
that H,(A, A) for A and K fixed is covariant in A. Similarly, the co- 
homology Hn(A, C) is a contravariant functor on A?. The action of 
a change 5 (with a omitted) on a normalized cochain f for A', of the 
form (3 4 ,  is defined by (C* f)  (A ,  . . . , A,) = y f (Q A,, . . . , Q A,). 

Exercises 
1. Show that the isomorphism (1.1) is natural over the category I-. 
2. Let E :  A+ K be an augmented algebra. For M a right A-module and G a 

K-module, prove that 

Hn (-4, $4 = H, ( M  @A B ( 4 ) .  H, (A, ,GJ = H, (G @B (A)). 
Mac Lane, Homology 19 
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5. The Homology of Groups and Monoids 

The cohomology of a group IT was treated in Chap. IV, using the 
functor Hornn for Z(l7)-modules. Now that we have at hand the tensor 
product @z(n) we can define and study the homology of a group IT. 
I t  is just as easy to do this for a monoid M, though the added generality 
is not of great moment. 

A monoid is a set M with a distinguished element I = IM and a func- 
tion assigning to each pair x, y~ M a "product" x  EM in such a way 
that always (x y) z = x (y z) and I x = x = x I .  The monoid ring Z(M), 
like the group ring, consists of all finite sums 2 k,x, with k i d ,  xicM, 
under the obvious product, and with augmentation the ring homo- 
morphism &: Z(M) -4 defined by & (2 kcxi) =C ki.  This ring Z(M) 
may be regarded as the free ring on the monoid M in the sense of Prop. 
IV.I.1. By a left M-module A we mean a left Z(M)-module, and we 
write 8, for a(,,. If M is a free commutative monoid on n gen- 
erators, Z(M) is the polynomial ring in n indeterminates. 

The homology of M with coefficients in a right module GM is now 
defined by the left bar resolution B(Z(M)) as 

Since B(Z(M)) is a Z-split projective resolution of the left M-module 
Z=J, we may also write this definition in terms of the relative torsion 
product as 

H ,  (M, G )  = T o ~ ~ ( ~ ) J )  (G, Z) (G, Z) . (5.2) 

In particular, Ho (M, G) = G BMZ. We leave to the reader the descrip- 
tion of the cohomology of a monoid. 

For a free module the higher torsion products vanish, hence 

Proposition 5.1. For lI a grot@ and F a free IT-modzlle 

Note that if F is the free IT-module on generators {t),  then F&Z is 
the free abelian group on the generators {t @I). 

The commutator subgroup [IT, IT] is the subgroup of lI generated by 
all commutators x y x-l y-l for x ,  y in IT. It is a normal subgroup of IT; 
the factor .group IT/[17, n] is abelian, and any homomorphism of IT 
into any abelian group has kernel containing [IT, ITJ. 

Proposition 5.2. For 17 a grot@ and Z the trivial 17-module 

Proof. The homology of Z is that of the complex Z@,B(Z(IT) 
which is the reduced bar resolution B(Z(l7)) of 9 2, with B,=Z, $ 



5 .  The Homology of GroupsEand Monoids 29 1 

and B, the free abelian groups on generators [x]  and [ X I  y] for x+ I + y, 
and with boundaries a [x]  = 0, a 1x1 y] = [y]  - [ x  y] + [x] .  This gives 
H , r Z  and each [x]  a cycle. By the boundary formula, its homology 
class satisfies cls [ x  y] = cls [x]  + cls [y] .  Hence p, x = cis [x] gives a 
homomorphism p, : 17/[17,IT] +HI (n, 2). Since B, is free abelian, 
[x]  +x [ n ,  n] defines a homomorphism 8 +lI /[ l I ,  II] which annihi- 
lates all boundaries. Thus an inverse of p, may be defined as p,-lcls [x]  = 

x [ l I ,  n], so p, is an isomorphism, as required for the second equation 
of (5 .3 ) .  

The homology of a group (or a monoid) is a special case of the Hoch- 
schild homology of its group ring. 

Proposition 5.3. For a right rnodt.de G over the monoid M there is 
an isomorphism H, ( M ,  G) r H, (Z (M)  , ,G) of the homology of the molzoid 
M to that of the algebra Z (M) .  This isomor#hism is  natural i n  G. 

Proof. Take A=Z(M),  a 2-algebra. For any A-bimodule B an iso- 
morphism ,G @A-A B r G & ( B  @A$') is given by g@b-+g@ (b @ I ) .  
Apply this with B= B (A, A) ; it shows the complex used to define the 
homology of A over ,G is isomorphic to the complex used to define 
the homology of M over G. 

A corresponding result for cohomology is 

Proposition 5.4. For left n-modules A there is a natural isomorfihism 

Hn(n, A ) r  Hn(Z(IT), A,) . 
Proof. This is a consequence of Prop.3.4, for the cohomology of 

the group IT on the left was defined by B(Z(n)) ,  that of the algebra 
z(n) by B ( Z O  J Z V ) )  

These propositions reduce the (co)homology of groups to that of 
algebras. Conversely, the (co)homology of the Z-algebra Z(L7) reduces 
to that of the group IT. This reduction depends on two special properties 
of the group ring Z(l7). First, y x = x@ x defines a ring homomorphism 
y: Z(n)+Z(n) @Z(n) ;  indeed, y is the coproduct which makes Z ( n )  
a Hopf algebra (VI.9). Second, Z ( n )  is canonically isomorphic to its 
opposite ring. Indeed, if the opposite ring Z(17)OP consists as usual of 
elements roP for r € Z ( n )  with product PPsoP= ( S  r)Op, then the function 
5 (x )  = (x-l)OP on IT to Z(n)OP has 5 (1) = 1 ,  5 ( x  y)  = (5 x) (5 y),  hence 
extends (Prop. 1V.I . I )  to a ring homomorphism 5:  Z ( n )  -tZ(1T)OP which 
is clearly an isomorphism. Composition with the coproduct gives a ring 
homomorphism 

it is that ring homomorphism x which extends the multiplicative map 
x (x) = X @ (x-yap. 

19* 
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This map x allows a reduction of the (bimodule) cohomology of the 
algebra Z(17) to the cohomology of the group 17. Each bimodule ,C, 
is a left Z(IT) @Z(17)0P-module and hence also a left IT-module ,C, 
by pull-back along 2. These new left operators of II on C will be denoted 
as xo c for ~ € 1 7 ;  they are not the original left operators, but are given 
in terms of the bimodule operators as xoc=x c x-l. Similarly, C, 
denotes the right IT-module with operators co x = x-lc x. 

Theorem 5.5. For a grozcp I7 a.nd a I7-bimodule C there are natwa2 
isomor~hisms 

Hn (z (n) ,  c) r H n  (a ,C) , H, (IT, C,) =H, (Z(IT), C) (5.5) 

indzlced by the chak transformation h: B (Z(n)) -+ B (Z(n), Z(n)) defi~ed 
as 

hn(x[x1J . . . I  xn])=x[x1J . . . I  x,](xxl ... x,)", xicn.  

In brief, "two-sided" operators in the cohomology of groups reduce 
to "one-sided" operators (EILENBERG-MAC LANE [ I  9471, 3 5). 

For this proof, write BL= B(Z(IT)) for the left bar resolution and 
B = B (Z(n), Z(IT)) for the bimodule bar resolution. Since Bk is the 
free abelian group on generators x [xl( . . . 1 x,], the formula given defines 
h,, as a homomorphism B ~ + B ,  of abelian groups. For a left operator 
y e a  

hn ( y x [xll . - . I xn]) = Y {X . . I x*] ( X  ~ 1 -  . xn) -l} Y-' ; 

this shows h: B~--+,B a homomorphism of left 17-modules. Now con- 
sider the diagram 

with I: Z-+Z(n) the injection. The contracting homotopies s above 
and below are both defined by "moving the front argument inside", 
hence the commutativity hs= s h (with h-,= I). Then E and a above 
and below are uniquely determined recursively by the fact that s is a 
contracting homotopy ; it follows that h a = ah, I cL= E h,, . Alternatively, 
these commutativities may be verified directly; only the initial and 
final terms in the boundary formulas require attention. Thus h: B ~ + B  
is a chain transformation. 

Now let h* be the induced map on the cochain complexes Hom(B, C). 
Composition with the pull-back Hornn-,-+Hornn gives the cochain 
transformation 

h* 
q : H O ~ ~ - ~  (B, C) +Hornn (,B, ,C) --t Hornn (BL, ,C). 
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Explicitly, for an n-cochain f on the left, p , f  is 

But for an n-cochain g of BL an inverse to p, is given by 

Thus p, is an isomorphism on cochains, hence on cohomology. The 
argument on homology is similar. 

The isomorphisms of this theorem may be described in more in- 
variant terms as an instance of change of rings. In homology, regard 
H,(Z(n), C) via (1.4) as the relative torsion product Tor,(C, Z(17)) for 
the pair of rings (Z(17) @Z(n)OP, Z), and H,(D,  C,) via (5.2) as the 
relative torsion product Tor, (C,, J) for the pair of rings Z(lrT), 2. Now 
x and I: Z-tZ(1T) yield a morphism 

in the "change of rings" category W++ of (IX.8.10). The diagram (5.6) 
displays h as the chain transformation found in IX.8 from the comparison 
theorem, so the isomorphism of the present theorem is just the induced 
map (x, I,, I)* for relative torsion products in the change of rings. 

Note. Among explicit calculations of the cohomology and homology of groups 
we cite LYNDON [I9501 for groups with one defining relation; GRUENBERG [I9601 
for a resolution constructed from a free presentation of IiT; WALL [I9611 for a 
"twisted product" resolution for a group extension. 

Exercises 
I. (CARTAN-EILENBERG, p. 201 .) For an abelian group G regarded as a trivial 

IT-module the homology and cohomology can be calculated from the reduced 
bar resolution. Establish the exact sequences 

2, For G an abelian group, show HI (IiT, G) r G @ ( n / [ I ,  m). 
3. Study the effect of conjugation on H,(n, G) (cf. Prop. IV.5.6). 

4. (CARTAN-EILENBERG, Cor. X.4.2.) If the abelian group IiT contains a monoid 
M which generates IiT as a group, then each IiT-module A or G is also an M-module. 
Show that the injection M - + I 7  induces isomorphisms 

~ " ( n ,  A)EP(M, A) ,  H,(M, G ) = H , ( ~ ,  G). 

6. Ground Ring Extensions and Direct Products 

This section will study the effect upon Hochschild homology and 
cohomology of certain standard constructions on algebras: Ground ring 
extensions and direct products. Tensor products will be treated in 5 7. 
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Consider the ground ring extension from K to a commutative K- 
algebra R. Each K-algebra A yields an R-algebra AR= R @A; there are 
ring homomorphisms jK: K+R and jA : A+AR given by jK (k) = k IR 
and jA (A)  = IR@il, so that (jK, jA) : (K, A) -t (R, dR)  is a change of al- 
gebras. Each AR-module or birnodule pulls back along jA to be a 
A-module or bimodule. There is also a passage in the opposite direction. 
Each K-module M determines an R-module MR=R@M and a homo- 
morphism jM: M+MR of K-modules given as jM (m)=l@m. Each 
K-module homomorphism ,u : M-tN determines an R-module homo- 
morphism ,uR: M ~ + N ~  by ,uR(r@m)=r@,um, SO that ,uRjM=jNP. 
Thus TR(M) =MR, TR(,u) =,uR is a covariant functor on K-modules to 
R-modules. This functor preserves tensor products (with @ for @lK, 
as always), since j, and jN yield a natural isomorphism 

with an inverse given by q-l [(r@m) BR (rl@n)] = r  rt@m@n. We 
regard q~ as an identification. 

For any R-module U and any K-module M there is a natural iso- 
morphism 

v: u@Msu@~M~, y ~ ( ~ @ m ) = ~ @ ~ i ~ m  ( 6 4  

of R-modules, where U@M on the left is an R-module via the R- 
module structure of the left factor U. The inverse of y~ is given by 
@(u @, (r@m)) = u r @m. There is a similar natural isomorphism of 
R-modules 

x :  Hom(M, U)sHomR (MR, U) , (X f)  (r @m) = r  f (m) (6.3) 

with inverse defined for each R-module homomorphism g: MR+U as 
(x'd ( 4  = g (1 @m) 

The homology and cohomology of an extended algebra AR with 
coefficients in any AR-bimodule A is entirely determined by that of 
A with coefficients in A pulled back along jA: A+AR to be a A-bimodule: 

Theorem 6.1. For K-algebras A and R, R commutative, and for each 
AR-bimodule A there are natural isomorphisms 

z* : Hn (A, ,.Aj) r H, (AR, A ) ,  a* : H" (AR, A) r Hn (A, ,Aj) 

of R-modules, where H(A, iAj) is an R-module throzcgh the R-module 
structure of A. Here t., is induced by the change of algebras z= (jK, jA, IA) : 
(K, A, ,.Aj)+(R, AR, A) in a+, and a* by o=(jK,j4, 1") in W- (cf. 5 4). 

Proof. On the un-normalized complexes for homology, z, : A @An+ 
A@, (AR)" is just the composite of y : A@A"sA@~ (A")R with q : (A")R 
=(AR)". By (6.1) and (6.2) both are isomorphisms, hence z, is an iso- 
morphism for the complexes and hence for their homology Hn(A, ,Ai), 
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H,, (AR, A). The argument for cohomology is analogous, using x in place 
of p. 

The direct product A = h Z  of two K-algebras may be treated as 
a special case of the direct product of two rings (IX.9). The Hochschild 
cohomology H" (A, A) is Ext?', ,, (A, A), where R =A @AOp is 

while S is the image of I: K+A@AoP; the projection of this image on 
any one of the four direct factors of A@AoP above is then the corre- 
sponding image of K in that factor. Prop.IX.9.2 asserts that each 
A-bimodule A has a canonical decomposition 

A=tAt@lAtl@ttAt@ ,,At' , A ;A;, A A (6.4) 

into the bimodules shown; explicitly, 'A'=I'@AA@Ar, etc. In par- 
ticular, the A-bimodule A is represented as the direct sum A = r @ Z  
of just two non-vanishing components; the r-bimodule r and the 
Zrbimodule Z. Thm.IX.9.4 for the case of four direct factors now 
implies 

Theorem 6.2. For each (fig-bimodule A there are lzatural isomor- 
Phisms 

H*(hZ,A)~Hn(~,r@AA@Ar)@H*(~,Z@~A@~Z), (6.5) 

Hn(fiZ, A)=Hn(r, ~ @ A A  @ A O  @ Hn (x, Z@AA@A.C). (6.6) 
Specifically, the projections rxZ+r and A + r g A  A yield 

a morphism C' in the change of algebras category gi of 5 4, hence a map 
5; : H,, ( h Z ,  A) + H,, ( r ,  rgA A BAT), Replacement of r by Z gives 
5; ; the isomorphism (6.6) is h+(c: h, 5ih). Similarly the isomorphism 
(6.5)' in the opposite direction, is induced by the projection I k Z + r  
and the injection r@,, A@,r+A in A#i. 

Exercises 
I .  If IT is a group and K a commutative ring, give a direct description of the 

augmented K-algebra Z (WK. (It is called the gvou* algeiwa of IT over K.) 
2. I f  A is a A-bimodule, show that there is a unique AR-bimodule structure 

on AR such that (jK. jA, jA) : (K, A, A )  4 (R, AR, AR) is a change of rings in d+. 
Derive a natural homomorphism H,,(A, A)  +H, (nR, AR) and show by example 
that it need not be an isomorphism. Note also that pulled back by j~ to be a 
A-bimodule is not identical with A .  

7. Homology of Tensor Products 
Consider the tensor product A@A1 of two K-algebras A and A'. 

If A and A' are bimodules over A and A', respectively, then A@A1 
is a A @A1-bimodule, with left operators given as (A @A1) (a @a1) = 
A a@A'al and right operators similarly defined. In certain cases we 
can compute the homology of A@A' from that of A and A'. 
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Proposition 7.1. If E :  X+A and E' : X1+A' are K-split resolutions 
of left A- and A'-modules, respectively, then E BE': X@X'+A@A1 is  
a K-split resolution of the left (A@A1)module A@A1 .  If X and X' are 
relatively free, so is  X @XI.  

Proof. The hypothesis that X is K-split means, as in Cor.IX.5.3, 
that there is a K-module contracting homotopy s o f  square zero. These 
homotopies for X and X' combine, as in  (V.9.3), t o  give a K-module 
contracting homotopy for E@E' :  X@X1+A@A',  also o f  square zero. 

I f  X and X' are relatively free, Xp=A@Mp and X i  =A1@M; for 
K-modules M p  and M i ,  so ( X @ X 1 ) , ~ 2  (A @A1)  @ ( M p  @ M i ) ,  with 
direct sum over p+q=n, is also relatively free. 

Applied t o  the bar resolution this gives 

Corollary 7.2. For modules " A ,  *,A' there i s  a chain ~qzcivalettce 
E 

B (A, A )  @ B (A', A') 7 B (A @A1,  A @ A 1 )  (7.4 

i n  which the maps are chain transformations of complexes of left A@A1-  
modules cornmzcting with e and E'. 

Proof. B y  Prop. 7.1, both sides are K-split relatively free resolutions 
o f  the le f t  A @A1-module A @ A 1 ;  apply the comparison theorem. 

An  explicit chain transformation is given b y  the following natural 
map 

f{l@ll [&@&I ..- IA,@Gla@a') 
u 

= 2 l [A,/ . . . I li] &+l .. . &a @All; . . . 1: [1:+11 . . . I &] a'; 
} ( 7 4  

i= 0 

indeed, the reader may  verify that this is the canonical comparison. 
Alternatively, f is the Alexander-Whitney map (VIII.8.7) defined on 
B ( A ,  A )  =& (A, A )  b y  the simplicia1 structure o f  /I (A, A ) .  

For A =A, A1=A',  this corollary yields a chain equivalence 
.s 

B (A, A) @ B (A', A') B (A @A1,  A @A1)  (7.3) 

o f  A @A'-bimodules; the map f is again given as in (7.2). 

Theorem 7.3. The homology and cohomology products induce homo- 
morphisms 

f i ~ :  Hk (A, A )  @Hm(A1,  A1)+Hk+rn(A @A', A @ A 1 )  (7.4) 
#A:Hk(A,A)@Hrn(A' ,A' )+Hk+rn(A@A',A@A')  (7.5) 

of K-modules, natural i n  the bimodules A and A' and commzcting with 
connecting homomorphisms for K-split short exact sequences of bimodules 
A or A'. For k = rn = 0, these products are induced by the identity map 
of A @  A'. The products are associative. 
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Proof. The homology Hk(A, A) is defined as Hk(ABQB), where 9 
is short for A@AoP and B short for B(A, A). The homology product 
of (VIII.1.2) is the natural map 

The right hand side is isomorphic to Hk+,(A@A1, A@A1) under the 
equivalence g, of (7.3), so the product +A of (7.4) is defined as g,&; 
in dimension zero (cf. (4.4)) it cames cls a @cls a' to cls (a @a1). If E 
is a K-split short exact sequence of A-bimodules, the tensor product 
sequence E @KA' is also short exact, as a sequence of A-bimodules, 
so appropriate connecting homomorphisms are defined. They commute 
with pH by Thm.VIII.1.3 and with the natural map g,, and hence 
with pA. 

In the above definition of this homology product, the bar resolution 
B = B (A, A) may be replaced by any K-split resolution of A by relative 
projective A-bimodules. 

The cohomology case is analogous. Write Hk(A, A) as Hk(Hom,(~, A)), 
use the cohomology product 

of (VIII.1.3), and compose with the isomorphism f* induced by the 
chain equivalence f of (7.3) to define p" as f*+H. Since f is the Alexander- 
Whitney map, pA may be regarded as a simplicial cup product. If 
k= m= 0, HO (A, A) is the K-submodule A" of A consisting of the 
invariant elements of A, as in (3.3). Now a €  A" and ~'EA'"' imply that 
a@al€ (A@A1)"@"' SO the identity induces a K-module homomorphism 

The formula above for f in dimension zero shows that this map is pA. 

Theorem 7.4. I f  A and A' are algebras over the same field, the homo- 
logy product for bimodules A and A' yields for each n a natural isomorphism 

If in addition A and A' are K-moddes of finite type the cohomology pro- 
duct is a natural isomorphism 

Proof. The first isomorphism is an immediate application of the 
Kiinneth tensor formula, as restated in Thrn.VIII.1.1. If A is of finite 
type, each Bn(A, A) is a free A-bimodule of finite type, so the Horn-@ 
interchange is an isomorphism and Thm.VIII.1.2 applies. 
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This theorem was first proved by ROSE [I9521 before the techniques 
of resolutions were known, so his proof depended essentially upon a 
direct construction of the chain equivalence (7.9), using shuffles to 
describe the map g. 

For algebras over a field, H" (A, A) = ExtZ-, (A, A ) .  
Using bidimA to denote the homological dimension of A as a bi- 

module, this theorem shows, for algebras of finite type over a field, 
that bidim (A @At) 2 bidimA+ bidim A'. Similarly, Thm. 6.2 above 
shows 

bidim ( h Z )  =Max (bidim I', bidim Z) . 
This yields a fancier proof of the result (Prop. VII.S.2) that bidim r= 
o = bidim Z implies bidim (TxZ) = 0. 

Exercises 
1. For G a right module and A a left module over A, the k-th relative torsion 

product is Hk (G @AB a A A ) ,  with B short for B (A, A). The external product for 
the relative torsion functor is the map 

PT: TorLAlK) (G, A)    tor^^ K, (G', A3 -+~orL"+$9,"3 K)(G @G', A@A1) 

defined as the composite of the homology product for complexes, the chain trans- 
formation 

given by two applications of the middle-four interchange, and the chain equi- 
valence g of (7.3). Show that PT is natural, commutes with connecting homornor- 
phisms in all four arguments, and reduces for k = m = 0 to the middle-four inter- 
change. 

2. For K a field, show that the relative torsion product of Ex. i gives an iso- 

3. Show that the product of the text is (via (4.4)) a special case of the external 
product for the relative torsion product. 

4. Construct the analogous external product for the relative Ext functor. 

8. The Case of Graded Algebras 
If GA and AA are modules over a graded K-algebra A, their tensor 

product G @A A, as described in (VI. 5.7), is a graded K-module. More- 
over, the functor G @A A is right exact : Each K-split short exact sequence 
A H B a  C of left A-modules yields a right exact sequence 

of graded K-modules. To continue this exact sequence to the left requires 
the (A-K)-relative torsion products Tor, (G, C), each of which, like 
G@,A, must be a graded K-module T~r,={Tor,,~l#=~, 1, ...). We 
now describe how this comes about. 
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The bar resolution applies to any graded K-algebra A, using the 
general process of IX.7 for the resolvent pair of categories with d 
the category of (automatically graded) left A-modules C, A that of 
graded K-modules M, F(M) =A 8 M, e (m) = 1 g m ,  both categories 
with morphisms of degree 0. Note that A =  {Afi}, C= {Cfi}, and M =  {Mfi} 
are all graded K-modules. The explicit formulas for the bar resolution 
in 5 2 still apply, with the understanding that each A-module B,(A, C) 
is graded; indeed, the degree of a generator of B, is given by 

This element has also dimension n as an element of B, (A, C) ; in other 
words, B (A, C) is bigraded by the submodules Bn,# (A, C) of dimension 
n and degree f i  in the sense (8.1). 

In consequence, the relative torsion functor Tor("pK) is bigraded. 
Indeed, if G is a right A-module, this torsion functor is calculated as 
the homology of the complex X=G 8, B (A, C), where each X, = 
G 8, B, is a graded K-module. Specifically, X, is generated by elements 
g [All . . . I A,] c with the degree given by (8.1) (with iZ there replaced 
by g). The boundary homomorphism a : X, +X,-, is of degree 0 in 
this grading. For each dimension the homology Tor, (G, C) = H, (X) 
is therefore a graded K-module, so may be written as a family { H ,  fi (X)} 
of K-modules: The relative torsion functor is the bigraded K-module 

The first degree n is the resolution dimension; the second degree # is 
the "internal" degree, inherited from the gradings of G and C. The stand- 
ard long exact sequences for Tor, have maps which are of degree 0 
in the internal grading p, hence may be regarded as a family of exact 
sequences in Tor,, fi,  one for each # and variable n. 

Similar remarks apply to the relative functor Ext(,,~). I t  is the 
cohomology of the complex HOmA(B (A, C), A), which is a complex 
of 2-graded K-modules: That is, a family of complexes {Homs(B, A)}, 
one for each integer #. Therefore 

Ext?>fK) (C, A) = Hn(Hom$ (B( A, C). A)) 

is a bigraded K-module, in which the second grading (by P) is a 2- 
grading. 

It suffices to know this functor for all modules C and A and second 
grading p=O. This we prove by shifting degrees. For each graded 
K-module M we denote by L(M) the same module with all degrees 
increased by 1; formally, L(M),+,=M,. The identity then induces 
an isomorphism I :  M+L(M) of graded K-modules, of degree 1, with 
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inverse I - l :  L(M) + M .  A homomorphism ,u: M +M' of degree d is 
a family of K-module homomorphisms ,u, : M,  +- MA+, ; the corresponding 
L(p)  : L(M)  +L(Mf)  of the same degree d is defined by L(p),+,= 
(- ~ ) ~ , u , :  L(M),+,+L(M'),+,+,; in other words, 

L(p) lm= (- ~ ) ~ " g " l p m ,  mcM,, l m L ( M ) n + l .  (8.3) 

The sign is the usual one for the commutation of morphisms L(p) and 
I of degrees d and 1 .  Since L(pf  p) = L(,ul) L(p) ,  L is a covariant functor 
on the category of graded K-modules with morphisms of degree 0, 
while I :  M +L(M) is a natural transformation. A left A-module A 
is a graded K-module with operators A @ A + A ,  so L(A)  is also a left 
A-module with operators 

L is a covariant functor on A-modules to A-modules, I :  A+LA is a 
homomorphism of A-modules of degree 1 and a natural transformation 
of the identity functor to L. The sign in (8.4) is exactly that required 
by the rule 1  ( A  a) = (- ~ ) ~ ~ g ' ~ ~ g ~ A  ( 1  a) for a homomorphism of degree 1 .  

Composition with I yields a natural isomorphism 

Horn$ (C, A )  =Horn3-'(C, L A)  

and by iteration a natural isomorphism 

Hom4 (C, A )  E Homi (C, LP A)  . 
With C replaced by the complex B(A, C), this yields the natural iso- 
morphism 

Ex~T~!~) (C, A) ~ExtYh!'~) (C, LP A) , (8.5) 

which for lz=0 includes the previous isomorphism. Similarly 

These functors Ext have proved useful for the Steenrod aIgebra for a 
fixed prime number f i ;  this is the algebra over the field ZP of integers 
modulo f i  consisting of all primary cohomology operations, modulo # - 
ADAMS [1960], LIULEVICIUS [ I  9601. 

Exercise 

I. For A graded, regard the corresponding internally graded algebra A, =&I, 
simply as  an ungraded K-algebra. Similarly A-modules G and C yield &-modules 
G* and C,. Prove that 

~ort;l*. K) (G* , C*) E 2 ~ori&K) (G, C) . 
P 
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9. Complexes of Complexes 
In any abelian category we may construct complexes; in particular, 

there are complexes in the category whose objects are themselves 
complexes and whose morphisms are chain transformations. These will 
occur in our study of DG-algebras in the next section. 

A complex X of complexes may be displayed as a diagram 

with additional rows below and above. Each row Xp is a complex with 
boundary d ,  while the successive rows form a complex under another 
boundary a' which is a chain transformation a': Xp+Xp-,. Hence 
a'd=dal. Adjust the sign of d by setting aWxp,,= (- 4)f'dxP,,. This 
gives two families of boundary operators 

a': X+,,+X~-,,~, at': X ~ , ~ + X ~ , ~ - ,  

with a' a' = 0, a'' a'' = o, and a' a"+ a" a' = o. These imply formally 
that (a1+ a") (a1+ a'') =o. Thus the family XO, a* defined by 

(x0),= 2 x*,,, p = a l + a u  
P+q=n 

is a (single) complex. We say that XO is obtained from X by conden- 
sation; its degree is the sum of the two given degrees; its boundary 
a0 the sum of the two given boundaries, with sign adjustment. This 
sign adjustment may be made plausible by a more systematic presen- 
tation. 

Let & be any abelian category. Recall that a (positive) &-complex 
X is a family (Xp} of objects of d with Xp=O for # < 0, together with 
morphisms a: Xp +Xp-, of d such that aa= 0. These X are the objects 
of the category I(&) of &-complexes. The morphisms of % ( d )  are the 
chain transformations f :  X+Y; they are families {f*: Xp+YP) of d- 
morphisms with afp= fp-,8 for all +. A chain homotopy s: f=  f ' :  X+Y 
is a family sp : Xp -tYp+, of d-morphisms with as+ s a = f - f'. We also 
use chain ma+ h: X+Y of degree d ;  that is, families {hp: Xp +YP+,) 
of d-morphisms with ah = (- a. We do not explicitly introduce 
the category with morphisms all such chain "maps" because our dis- 
cussion of abelian categories is adapted only to the case of morphisms 
of degree 0. 

The lifting functor L of § 8 gives a covariant functor on I ( & )  to 
X ( d ) ,  which assigns to each complex X the complex L(X) with L(X),+, 
=Xn and differential L(a). The identity induces a chain map I: X-t 
L(X) of degree 1 ; as in (8.3), L(a)l=-la. In brief, L raises all degrees 
by 1 and changes the sign of the boundary operator. 
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Theorem 9.1. Condensation is a covariant functor S(S(&)) +S(d). 

Proof. Let X be a positive complex of positive complexes, in the 
form 

a, o ~ X , ~ X , + - . . . + - X ~ - ~ + - X ~ ~  .... 
Each X p  is a complex, each aP a chain transformation of complexes. 
Replace by the diagram X', 

where each is a chain map of degree - 1. More formally, set Xi= 
Lfi (X,,) . The chain maps 

define as Z-lLP(ap) = LP-I (ap)  1-I. Then ail$+, =o. Each X i  is an 
&-complex with a boundary operator which we denote as a". There- 
fore X m = x  X i  is an &-complex with boundary a". On the other hand, 
a; : X i  has degree - I ,  hence gives another boundary operator 
in Xm. Now a' is a chain map of degree - 1 for the boundary a", so 
a'' at= - a' a". Therefore P= a'+ a" satisfies P P =O, so (X m,  P)  is 
an &-complex, called the condensation of X .  This description of Xm 

agrees with the initial description, since the boundary a" of X i  is that 
of X,, with + sign changes due to p applications of L. Since X~,,=O 
for #>n, only finite direct sums are involved in the construction of Xm. 

Now let f :  X - t Y  be a chain transformation. I t  is a family of chain 
transformations {f,,: Xp+YP) and determines f ' :  X'+Yf as the family 
f' - LP(f,,) : Xi+Yi.  Thus fia"= a'' f ;  and a'f;= fi-,a'. Hence p=x fi PT satisfies Pp = p P ,  so is a chain transformation f? Xe-+ Ym. This shows 
condensation a functor, as stated. 

Proposition 9.2. Each chain homotopy s: f*g : X - t  Y i n  S(S(d)) 
determines a chain homotop y sm: r=f: Xm-+ Y m of the condensed com+Zexes. 

Proof. We are given a family is,,: X,,-+Y,,+J of morphisms of 
$(&) with a,,+,s,,+ s,-, a,,= f p -  g, . Each s,, is a chain transformation, 
so determines a chain map si: Xi-+Y;+, of degree I .  Specifically, s' = 
Lp+l (sp) 1 = Z L* (s,,) : Lfi (X,,) -f L++l (Y,,+,). Since si has degree 1, a" si = 
-s;al'. On the other hand, by lifting, a's'+sla'=f'-g'. Adding, 
so= 2 si gives sm: Xm+ Y m  of degree 1 with Psm+ s mP  = f.- gm; hence 
so is a chain homotopy, as asserted. 

We also consider the effect of condensation upon tensor products 
of complexes. In the initial category d, assume a tensor product which 
is a covariant bifunctor on d to d, A tensor product is introduced 
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in the category $(d)  of d-complexes X,Y by the usual formulas, 
with (X @ Y),= 2 XP 8% and 

P+4-, 

In particular, if d is the category of modules over some commutative 
ground ring these formulas introduce tensor products in the category 
%($(A)) of complexes of complexes. 

Proposition 9.3. There i s  a natzcral isomorphism p: ( X @ Y ) @ r  
XO@Y*. 

Proof. For K and K' single complexes in $(d), and any p, q there 
is a chain isomorphism yP, , : LP+q(K @ K') LPK @ Lg K', given by 

Now let X and Y be complexes of complexes (i.e., in $($(at))). The 
complex of complexes X @  Y has (X@ Y),=2 Xp@Y,, so the yP,, for 
p+ q=n give a chain isomorphism of single complexes 

The complex (X @ Y)* is the direct sum of the Lu((X @ Y),) ,with bound- 
ary a'+ a". The complexXe @ Ye is (2 LPXp) @ (2 LqT) with boundary 
determined by the usual tensor product formula (9.1) from the bound- 
aries P= a'+ a" in Xe and in Ye. By construction, y, commutes with 
the a'' part of the boundary; a straightforward calculation shows 
that it commutes with a', and hence with the total boundary P. 

Note. The notion of a complex of complexes is not usually distinguished 
from the closely related notion of a "bicomplex", which will be discussed in XI.6. 
The superficial difference is just one of sign, in the formula (- l)f'dxp,,. 

10. Resolutions and Constructions 

From algebras A we now shift to DGA-algebras U. When a U- 
module A is resolved, two boundary operators arise: One from that 
in A, the other from the resolution. Suitable combination of these 
boundaries make the resolution into a single U-module, called a "con- 
struction"; in particular, the canonical resolution of the ground ring 
yields the "bar construction" B(U). This might be described directly 
by the string of formulas (10.4)-(10.8) below, which yield the basic 
properties of B (U), as formulated in Thm. 10.4, as well as its relation 
to the "reduced" bar construction of Cor. 10.5. Instead, we first describe 
the bar construction conceptually by condensing the canonical reso- 
lution for a suitable relative category. 
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Let U be a DGA-algebra (differential graded augmented algebra) 
over the commutative ring K. Each left U-module A (as defined in 
(VI.7.3)) is by neglect a DG_module (i.e., a positive complex of K- 
modules). I t  follows that U determines a resolvent pair of categories 

d = all left U-modules A, with morphisms of degree 0 ,  

A = all DG-modules M, with morphisms of degree 0, 

F ( M )  = U@M, and e(m) = 1 @meF(M). Write E: U+K for the aug- 
mentation of U; by pull-back, ,K is a left U-module. An augmentation 
of A or of M is a morphism 

Proposition 10.1. Each left U-module A determines a DG-modzcle 

where J is the kernel of E: U+K. If A is augmented, so is A. 

Proof. Recall (VI.7) that the tensor product of U-modules is a 
DG-module. Since J - U-s K is an exact sequence of right U-modules, 

is a right exact sequence of DG-modules. But U g U A r A ,  so the module 
A on the right is isomorphic to the quotient of A by the image JA of 
J@,A. If A is augmented by E,, define an augmentation of A by 
u(k@a)=keA (a). 

Call A the reduced module of A and fi: A+& A/ JA its firojection. 
The U-module A is like a "fiber bundle" with "group" U acting on A 
and "base" A obtained by "dividing out" the action of U. The corre- 
sponding analogue of an acyclic fiber bundle is a "construction". (Warn- 
ing: This terminology does not agree with that of CARTAN [1955].) 

A construction for U is an augmented left U-module EC: C+,K 
which has a DG-module contracting homotopy of square zero. This 
homotopy may be written as 

t-, is a morphism of DG-modules, t=  {tnl n 2 0) is a homomorphism 
of graded K-modules, of degree 1, and 

A construction C is relatively free if there is a graded K-module D 
and an isomorphism U@D=C of modules over the graded algebra U. 
The definition of the reduced module then reads 
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hence D may be identified with c, so a construction is relatively free 
if there is an isomorphism 

p : U @Z;=C (of modules over the graded algebra U) . 
To repeat: 9, commutes with the operators by U E  U, but not necessarily 
with the differential. Moreover, the projection +: C+c  = C/ JC of 
Prop.10.1 is given by fip(u@) =e(u)F.  Hence i(C)=pl(i@F) is a 
monomorphism i: C-tC of graded K-modules with P i  the identity - 
C +c. We can and will use i to identify C, as a graded K-module (not 
as a DG-module) with a submodule of C. 

Theorem 10.2. Condensatiorz is a covariant functor on A-s@it reso- 
lutions X of ,K by U-modules to constructions XO for U. I f  X i s  relatively 
free, so is XO. 

Proof. Let E X :  X+,K be a resolution by U-modules Xp. By neglect 
each U-module Xp is a DG-module; that is, a positive complex. By the 
same neglect, X is a complex of complexes, so has a condensation XO= 
2 LP(Xp) which is a DG-module under boundary operators a', a", 
and aO=a'+ a". But if A is a U-module, then L(A) is a U-module 
with zl (lm) = (- l)deg"l (um). Hence LP (Xp) is a U-module with differ- 
ential a", while a': LP(Xp) +LP-'(Xp-,) is a map of U-modules of 
degree -1, so that, writing a u  for the differential of U E  U, 

The augmentation E, of X condenses to an augmentation 8.: XO-t,K. 
The contracting homotopy of X (present because X isd-split) condenses 
by Prop.9.2 to a contracting homotopy so of square zero in XO. This 
so satisfies the analogue of (10.1); in particular 

If X is relatively free, each X, has the form U@M, for some DG- 
module M, . Thus LP (Xp) r U Q9 LP (M*), so X O s  U Q9 Lp (Mp) shows 
XO relatively free. 

Next we condense the canonical comparison (Thm.IX.6.2). 

Theorem 10.3. (Comparisort theorem.) I f  X+,K is a relatively free 
resolution and Y+,K arz d-s#lit  resolution, both by U-modules, there 
is a uniqzce homomor#hism p:  XO+YO of augmented U-modules with 

where so is the contracting homoto$y of Yo. 
The proof is by (IX.6.1); the submodule e M  of X is here XO<XO. 

Mac Lane, Homology 20 
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The left bar resolution B(U) is an .&-split resolution of ,K by rela- 
tively free left U-modules, so its condensation Bm(U) is a construction 
called the bar construction. Specifically, Bm(U) is the graded K-module 
2 U@Lp((U/K)f') ; as a tensor product, it is generated by elements 
which we write in the usual form as 

for u and uie U. By normalization, this element is zero if any uicK. 
The degree of such an element is 

an element is multiplied by U'E U by multiplying its first factor by u'. 
The augmentation is 

E: (u [Im) = E (21) , (10.5) 

and the contracting homotopy is determined by s_,(l) =1 [Im and 

The normalization insures that smsm=O. The formulas for the two 
boundary operators a' and a" are most easily found from that for sm 
by recursion on @, using (10.3) and (10.2); they are 

with the exponents ei of the signs given for i=O, . . . , fi by 

Except for sign, a" is the boundary of a tensor product, and a' like 
that of the bar resolution. Incidentally, the signs in (10.7) and (10.8) 
can be read as cases of our usual sign conventions. 

Thus Thm. 10.2 gives 

Theorem 10.4. For each DGA-algebra U the condensed left bar 
construction Bo(U)=& U@(U/K)* is an augmefited left U-module with 
augmentation E:, grading given by (10.4), boundary ir = a'+ a" by (10.7) 
and (10.8), and contracting homoto$ y by (10.6). 
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This theorem can also be proved directly from the formulas above, 
with proofs of (10.2), ( I o . ~ ) ,  and atat'+ al'a'=o en route. 

In the sequel we use only the condensed bar construction for a 
DGA-algebra, so we shall drop the now superfluous dot. The curious 
reader may note that the signs occurring in this boundary formula 
are not those arising in the bar resolution of $ 2  for an algebra. The 
change of signs can be deduced from the lifting operation LP; we have 
avoided the meticulous control of this change by deriving the signs from 
(10.2) and (10.3). 

As for any U-module, the reduced bar construction B(U)  has the 
iorm K, @I~B(U) ,  and B(U) is regarded as a graded K-sdbmodule of 
B (27). 

Corollary 10.5. For each DGA-algebra U the reduced bar construc- 
tion E(U) i s  a DG-module over K with B(U) =z L*((U/K)P). If elements 
are denoted by [ull . . . Iu*] for uic U, the degree of these elements i s  given 
by  (10.4) with u omitted, the boundary a=at+af t  by (10.7) and (10.8) 
with u= 1 and with u ,  refilaced by  E (a,) in the first term on the right of 
(1 0.8). 

Note also that the projection fi : B (U) +B ( U ) r  B (U)/ JB (U) is 
given by P (u [ull . . . I up])  = E (u) [yl . . . 1 lip] ; it is a morphism of DG- 
modules of degree zero. The isomorphism tp: B (U) G U @B (U) is given 
by p, (u [y 1 . . . I up]) = u @ [u,] . . . I u p ]  ; it is an isomorphism of modules 
over the graded algebra of U, but does not respect the differential, 
because tp a'+ 89. 

The bar construction has the convenient property 

in words, the image of the contracting homotopy is exactly the reduced 
bar construction, regarded as a graded submodule of B. 

Corollary 10.6. Both B(U) and B(U), the latter with its contracting 
homotopy, are covariant functors of the DGA-algebra U with values in 
the category of DG-modules over K. Moreover, f i :  B + B  and i :  B-t B 
are natural transformations of fulzctors. 

Proof. If p :  U- tV is a homomorphism of DGA-algebras, then 
B (V) pulled back along p is a U-module, still with a K-module contract- 
ing homotopy. Hence the canonical comparison of Thm.10.3 gives a 
unique homomorphism 

B(P):  B(U)-tpB(V) (10.11) 

of U-modules with E' B (p) = E .  Moreover, J B (U) is mapped into 
c(J) B (V), so B (p) induces a homomorphism B(p) such that p B (p) = 
B (p) f i .  These maps make B and B functors, as asserted. 

20* 
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Exercises 
1. Describe the bar construction explicitly when K = Z g  is the field of integers 

modulo and U= E ( x )  is the exterior algebra on a generator of odd degree. 

2. Obtain a resolution of ,K when K = Z g ,  U= P [ x ] / ( x f i ) ,  the ring of polynomials 
in an indeterminate x  of even degree, modulo xP. 

3. (Uniqueness of comparison.) If X+,K is a relatively free resolution, while 
C is any construction for U with contracting homotopy t, there is a t  most one homo- 
morphism p: X* -+ C of augmented U-modules with p (x*)< t - l K u t  C .  

11. Two-stage Cohomology of DGA-Algebras 

The cohomology of a DGA-algebra U with coefficients in a (trivially 
graded) K-module G can be defined in two ways or "stages". For stage 
zero, regard U, by neglect, as a complex (= a DG-module); so that 
HomK (U, G) and G BK U are complexes with (co)homology the K- 
modules 

Hk (U, 0 ;  G) =Hk(HOmK (U, G)) , 

For stage one, the left bar construction B (U) with its total boundary 8. 
is a left U-module while G is a U-module by pull-back, so Hom, (B(U), ,G) 
and G, B (U) are DG-modules with (co)homology the K-modules 

Hk (U, 1 ; G) = Hk (Hom, (B(U), ,G)) , (1 1 .I) 

Since B (U) +,K arises from a resolution, the definition of Hk (U, 1 ; G) 
resembles that of the (U, K)-relative torsion product Tork(Ge, ,K), but 
i t  is not a relative torsion product because it uses the total boundary 
operator a* of B(U) and not just the boundary operator a' arising 
from the resolution. 

A homomorphism p : (U, E) -t (V, E') of two DGA-algebras over a 
fixed K is a homomorphism of DG-algebras with ~ ' p =  E: U-+K. 
Thus B (V) is an augmented U-module by pull-back, and p induces 
B (p) : B (U) +,B (V), a homomorphism of augmented U-modules which 
commutes with the contracting homotopy. I t  follows that Hk(U, I +  G) 
is a covariant bifunctor of U and G and that HA (U, 1 ; G) is a bifunctor 
covariant in G and contravariant in U. The reduced (condensed) bar 
construction is also a covariant functor of DGA-algebras to DG-modules. 

The (co)homology modules of U may be expressed by the reduced 
bar construction. Indeed, since G is a K-module, each U-module homo- 
morphism B (U) +,G must annihilate JB(U), where J is the kernel 
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of the augmentation E :  U+K, hence induces a K-module homomor- 
phism B (U) = B (U)/ JB (U) +G. This gives the natural isomorphism 

Similarly G, @, B (U) = (G @ K,) @, B (U) r G @,B (U), so 

Hk (U, I ; G) z H k  (G @KB (U)) . (1 1.4) 

If X+,K is anyd-split resolution by relatively free U-modules, stand- 
ard comparison arguments give 

and similarly for the functorial behavior and for homology. 
"Suspension" maps stage zero homology to that on stage one. 

Let S: U+B(U) be defined by S(u) = [u]; note that S is just the 
contracting homotopy restricted to the subcomplex U of B(U). Thus 
S is a homomorphism of degree 1 of graded K-modules with a S = - S a, 
hence induces similar maps G @ U +G @B ( U) and Hom (B ( U) , G) + 
Hom(U, G) and thus the homomorphisms 

S*: Hktl(U, I ;  G)+Hk(U, 0; G), (1 1.6) 

called suspension, and to be used in the next section. 
To study the dependence of H(B(U)) on H(U) we use a filtration 

of the complex (DG-module) B. Let Z$=Z$(B(U)) denote the sub- 
module of B spanned by all elements w = [%\ . . . 1 u,] with k s p ;  we 
say that such an element w has filtration at most p. 

Proposition 11.1. For each DGA-algebra U the associated co@lex 
B (U) has a canonical family of subco~lexes Ffi, with F, <F,  < . -. <Fp < 
. . . < U Fp= B (U). T h  elem& sin. B (U) of total degree n lie in F, . For 
P = 0, F,G K, with trivial grading and differential, while if # >O, there 
is a natural isomor#hism of chain comfdexes 

FpIFfi-l~L(U/K) @ . . a  @L(U/K) (p factors). (1 1.7) 

Only the last statement needs verification. The "internal" boundary 
operator a" of B carries an element of filtration p to one of filtration p, 
while the "external" boundary operator a' maps one of filtration p 
to one of filtration p- 1 ; Fp is indeed closed under the total boundary 
a=at+al'. Moreover, the formation of the quotient 6/Fprl drops all 
the a' terms from the total boundary, so the boundary m Fp/Fp-, is 
given by a" as in the formula (10.7), with u=  1. This is exactly the for- 
mula for the boundary in the tensor product of # copies of L(U/K), 
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for the sign exponent ei is that of the tensor product boundary formula, 
and the minus sign in front of the summation is that introduced in 
L(U/K) by the definition L(a) 1 u=-- Z au. 

A chain transformation p : X -t Y of complexes is called a homology 
isomorphism if, for each dimension n, H, (p) : H,, (X) H,, (Y) . 

Theorem 11.2. (EILENBERG-MAC LAKE [I 953 b] .) Let p : U+ V 
be a homomorphism of DGA-algebras over K which i s  a homology isomor- 
phism. Moreover, assume that K i s  a field or that K=Z and each U,, and 
each V ,  i s  a free abelian group (i.e., a free K-module). Then the induced 
map B (p) : B (U) -B (V) i s  a homology isomorphism, and for each K- 
module G 

The proof is an exercise in the use of filtration and the Five Lemma. 
First, p carries f U  to I", hence induces a chain transformation 

U/K+ V/K. We claim that this map is a homology isomorphism. Indeed, 
the special assumptions (K a field or K=Z, Uo free) show that I: K+U 
is a monomorphism ; hence K - U + U/K is an exact sequence of complex- 
es, which is mapped by p into the corresponding exact sequence for V. 
Therefore ,LL maps the exact homology sequence of the first into that of 
the second. For n 2 2,  Hn-, (K) = 0 and the exact homology sequence 
reduces to the isomorphism H,, (U) GH,, (U/K). For n = 1 i t  becomes 

with Ho(K)zK. This is mapped by p into the corresponding sequence 
for V. Two applications of the Five Lemma give Hl(U/K)rHl (V/K), 
Ho (UIK) r H o  (V/K), so p : U/K -t V/K is indeed a homology isomorphism. 

Next consider the map B(p) : B(U) +B(V), given explicitly as 

This map respects the filtration, so carries Fp=Fp(B(U)) into the 
corresponding I$ =l$ (B (V)) . We claim that the induced map l$/l$-, -f 
$/I$'-, is a homology isomorphism. Indeed, the quotient l$/l$-, is just 
an n-fold tensor product (11.7), and the induced map is p @ . . -  @ p  
(n factors). If K is a field, this is a homology isomorphism by the Kun- 
neth tensor formula (Thm. V.10.1). If K=Z and each U' and each V ,  
is a free group, this is a homology isomorphism by a consequence of the 
Kunneth formula for this case (Cor. V.11.2). 

Finally, we claim that p :  $+I$ is a homology isomorphism. The 
proof is by induction on +. For p = 0 i t  is obvious, since F, = K =  F,'. 
For larger p, p maps the exact sequence I$-, -l$ +l$/I$-, of complexes 
into the corresponding exact sequence for 2$'. The corresponding l a g  
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exact homology sequences give a commutative diagram with the first 
row 

&+I (414-1) +Hk (3-1) +Hk (5) +Hk (qq-1) +ITk-1(4-1) 

and vertical maps induced by p. By the induction assumption and 
the previous result for Fp/Fp-l, the four outside vertical maps are iso- 
morphisms, so the Five Lemma proves Hk ( 5 )  -> Hk (I$') an isomorphism 
for every k. 

Since in each total dimension N, 4 B  gives all of IS for f l  large, it 
follows now that B(p) : B(U) +g(V) is a homology isomorphism. 
The isomorphisms (1 1.8) then follow by an application of the appropriate 
universal coefficient theorem (K a field or K=Z with B free). 

Exercises 
1. (The contraction theorem of EILENBERG-MACLANE [1953 b, Thm. 12.11.) 

If p :  U-+ V, v :  V+ U are homomorphisms of DGA-algebras with pv= I  and a 
homotopy t with at + t a  = v  p  - I ,  pt = 0, tv = 0, show that there is a homotopy 
i w i t h  a s + S a = B ( ~ ) B ( ~ ) - i ,  B ( ~ ) s = o ,  SB(v)=o.  

2. Obtain the filtration of Prop. 11.1 for an arbitrary A'-split relatively free 
resolution of ,K by U-modules. 

12. Cohomology of Commutative DGA-Algebras 

Let U and V be two DGA-algebras over K. Their tensor product 
U @ V is also a DGA-algebra, while the tensor product of a U-module 
by a V-module is a (U @ V)-module. In particular, the bar constructions 
B (U) and B (V) yield an augmented (U @ V)-module B (U) @ B (V) . 
Now B(U) @B(V) is a construction, with a contracting homotopy t 
given in dimension - 1 by s-, @IS-,: K - t  B @ B and in positive dimen- 
sions by the usual formula t = s @ I +  s-,s @s for the tensor product 
of homotopies. Moreover, B (U) @ B (V) is relatively free. Indeed, 
B (U)zU@B(U)  is an isomorphism of modules over the graded 
algebra of U, so 

B(U) @ B ( l " ) = ~ @ B ( U )  @V@B(V)=~@V@B(U)  @ B ( V  

is an isomorphism of modules over the graded algebra of U@ V, and 
B (U) @ B (V) is relatively free. One may show that its reduced DG- 
module is exactly the tensor product B (U) @ B (V) of the DG-modules 
B(U) and B(V). Finally, by Prop.9.3, the construction B (U) @ B ( V  
could also be obtained as a condensation - specifically, as the condensa- 
tion of the tensor product of the original bar resolutions. Hence we can 
apply the comparison theorem to obtain homomorphisms of augmented 
(U @ V)-modules 

B(u@v)+B(u)@B(v) .  (12.1) 
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Let us choose for f and g the canonical comparisons (Thm.1O.g) with 

f B ( U @ V )  < t-iK u t (B(U)@B(V)) ,  

g[B(U)@B(V)] < s-,K u s B ( U @ V ) .  

By the comparison theorem again, there is a homotopy 1 e g f .  On the 
other hand, by (10.10), s-,K u s B(U@V) =B(U@V), so 

This shows that f g  is the canonical comparison of B (U) @ B (V) to 
itself, so fg=  1. Since f and g, as canonical comparisons, are unique, 
they are natural in U and V. 

A DGA-algebra U is commutative if up€ Up and uq E Uq have upuq= 
(-l)f'ququp; that is, if n z = n :  U@U+U,  where z: U@V+V@U 
is the usual interchange and n the product map for U. Now the tensor 
product U @ U is also a DGA-algebra; a diagram shows that when U 
is commutative its product mapping n :  U@ U-t  U is a homomorphism 
of DGA-algebras. Therefore the "external" product g of (12.1) in this 
case gives an internal product in B(U) as the composite 

Here B (U) is a U@ U-module by pull-back along n :  U @ U + U, while 
B (n) is the canonical map, as in (10.1 1). Therefore the product nB of 
(1 2.2) can be described as the canonical comparison. 

Theorem 12.1. I f  U is a commutative DGA-algebra, then B(U) is 
a commutative DGA-algebra with identity [I under the product n,. 
Also nB is a homomorphism of augmented modules over U@U. This 
product induces a #roduct B (U) @ B  (U) +B (U) such that B (U) is a 
commutative DGA-algebra, and the projection B (U) -+ B (U) a homo- 
morphism of DGA-algebras, while inclusion B(U) -+ B (U) is a homo- 
morphism of graded K-algebras. 

Proof. The identity element of U is represented by the map 
I: K - t  U. With B (K) = K, form the composite map of U-modules 

Here we regard B @ B as a U-module by pull-back along I @ 1 : K @ U 
+ U @ U and then B (U) as a U-module by pull-back along nu (I @ 1) = 1. 
Hence the composite map is the canonical comparison of B (U) to itself, 
so is the identity map. This shows that B ( I ) I K =  [I is the identity 
element of B (U) for the product n, . Similarly 
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are both canonical, so must be equal. This gives associativity, and 
makes B(U) a DGA-algebra. There is an analogous proof that the 
product is commutative. 

By definition, B= B/ J B, where J is the kernel of E :  U+ K; there- 
fore, by Lemma VIII.3.2, the kernel of + @+: B@B+B@B is the 
union of the images of J B @ B and B @ J B. Since nB is a homomor- 
phism of (U@U)-modules, it carries this union into J B and thus 
induces a unique map z: B @ B-+B with n (+ @+) =+ n, . From the 
uniqueness of this factorization it follows readily that B is a DG-algebra 
under the product ?i with augmentation given by B,zK, and that + 
is a homomorphism of augmented algebras. 

It remains to show that i: B-t B is a homomorphism for the product : 

Since n, is canonical, the image of nB(i @i) lies in B< B; on this sub- 
module i+ is the identity, and 

as desired. This completes the proof. Note that the products in B and 
U determine that in B; indeed, since nB is a homomorphism of (U@ U)- 
modules, we have 

ZB [(ul @ 81) @ (u2 @ 52)] = (- I ) ( ~ ~ ~ % )  (deg61) % ~ u ~ z ~  (J1 @ Ja) (1 2.3) 
for any two elements El, 5 , ~  B (U). 

Since g is canonical, it can be given by an explicit formula; the for- 
mula is (except for signs) just the explicit map g of the EILENBERG- 
ZILBER theorem, as given by the simplicia1 structure of B(U). As in 
that case (VIII.8), let t be a (+, q)-shuffle, regarded as a suitable per- 
mutation of the integers {I, . . . , + + q}. For elements 

- - 
bi=[%l Iufi], h2=[~11 Iv,] E B(V), 

define a bilinear map (the shuffle product) * : (U) @ B  (V) +B (U @ V) 
by labelling the elements u, @I,  . . . , ufi @ 1, 1 @vl , . . . , l @vq of U@ V 
in order as wl, . . . , wfi+, and setting 

[~i(...1~pI*[~il...(~~]=C(-1)~(*)[wt-~(i)(...(~rl(p+~)] (12.4) 
t 

where the sum is taken over all (+, q)-shuffles t and the sign exponent 
e(t) is given in terms of the total degrees as 

e( t )=; I : (deg[ui ] ) (deg[v j ] ) ,  t(i)>t(++j) i i P , j S q .  (12.5) 

This sign is exactly that given by the sign convention, since the sum 
is taken over all those pairs of indices (i, j )  for which ui of degree 
deg[ui] has been shuffled past vi of degree deg[vj]. 
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Theorem 12.2. The canonical com$arison g of (12.1) is given, for 
elements Fl and 8, of B(U) a d  B(V), respectively, by 

g [(u Zl) @ (V Z2)] = ( - l)(degv) (deg6J (u @ v) (El* Z2) ' 

Proof. The formula is suggested by (12.3). I t  is clearly a homo- 
morphism of modules over the graded algebra of U @ V, and it carries 
B(U) @ B(V) into B(U @ V), so is canonical. The proof is completed 
by a verification that ag=ga. This is straightforward, using the defi- 
nition of g and of a= P= a'+ a'' in the bar construction. We leave 
the details to the reader, or refer to EILENBERG-MACLANE [I953 b], 
where the proof is formulated in terms of a recursive description of the 
shuffle product *. 

Note that the formula (12.4) together with (12.3), in the form 

completely determines the product in B(U). For example, 

again, with an evident "shuffle", 

[HI * [vl wl = [ 4  vl wl dz [vl4 wl Evlwl ~ 1 .  

Corollary 12.3. If U is commwtative, the algebra B(U) is strictly 
commutative. 

Proof. For F = [ul( . . . I up], each term in 6 *F occurs twice for two 
shuffles t, t', where 

When deg 6 is odd, the signs are opposite, so 6 * 6= 0, as required for 
strict commutativity. 

The essential observation is that each commutative DGA-algebra U 
yields a commutative DGA-algebra B(U), so allows an iteration to 
form a commutative DGA-algebra p ( U )  for each positive n. This 
gives an n-th stage cohomology (or homology) of U with coefficients 
in the K-module G as 

Hk (U, n ;  G) = Hk (Hom (B"(U), G)) . 

This may be applied when U=Z (17) is the group ring of a commutative 
multiplicative group 17. The fi-th stage homology and cohomology 
groups of this group 17, with coefficients in the abelian group GI are 
thus 

Hk(n, f l ;  G)=Hk(G@B‘'(Z(n)))l (1 2.6) 

Hk (17, n ; G) = Hk (Hom (B" (Z (n)), G)) ; (1 2.7) 
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for % = I ,  these are the homology and cohomology of 17 as treated in 
Chap. IV. Note that the suspension S:  En of (1 1.5) gives homo- 
morphisms 

S*:  Hn+@, 12; G) + H n + ~ + p ( n ,  fi+ 1 ; G) 3 (12.8) 

S* : Hn+l+fi (17, n + 1 ; G) _t Hn+p (17, n ; G) . (1 2.9) 

The direct limit of Hn+#(17, n; G) under S, gives another set of "stable" 
homology groups Hp(17; G) for the abelian group 17. They have been 
studied by EILENBERG-MAC LANE [I95 1, 195 51. 

For general n, the groups Hk (17,n; G) have a topological interpreta- 
tion in terms of the so-called Eilenberg-MacLane spaces K(17, n). Here 
K(17, n) is a topological space whose only non-vanishing homotopy 
group is nn=17 in dimension n. It can be proved (EILENBERG-MACLANE 
11953 b]) that there is a natural isomorphism 

Hk(K(17, n), G)rHk(17, 12; G) ,  

with the corresponding result for homology. 
Explicit calculations of these groups can be made effectively by 

using iterated alternative resolutions X, so chosen that X has an algebra 
structure (CARTAN [195 51). 

Exercises 
1. Show that the image of the contracting homotopy in B (U) @ B (V) properly 

contains B(u) @B(V). 
2. Prove Thm. 12.1 from the explicit formula for the product s. 

3. Show that Bn(Z(IT)) vanishes in dimensions between 0 and n, and hence 
that H P ( I I , n ; G ) = o = H , ( I I , f l ; G )  for o < p < n .  

4. Show that Hn (IT, n ;  G) E Horn (IT, G) for n 2 1 and that, for n 2 2, 
H " + ~  (I7, n ; G) E Ext i  (IT, G) . 

5. (The suspension theorem [EILENBERG-MACLANE 1953b, Thm.20.41.) For 
p <  n, show that S* and S ,  in (12.8) and (12.9) are isomorphisms, while for p = n, 
S* is a monomorphism and S ,  an epimorphism. (Hint: Compare the complexes 
B"+l(U) and En(U) in the indicated dimensions.) 

6. For any K-split relatively free resolution X+,K, written as X = U@X as 
in Thm. 10.2, let j: U-tX be given by j(u) = % @ I  (assume iEU=X,). Show 
that the composite psi: U - t x  with s the contracting homotopy, gives the 
suspension. 

7. For any X as in Ex.6 find a product X @ X + X  associative up to a homo- 
~ O P Y .  

13. Homology of Algebraic Systems 

For groups, monoids, abelian groups, algebras, and graded algebras 
we have now defined appropriate homology and cohomology groups. 
A leading idea in each case is that the second cohomology group re- 
presents a group of extensions (with given operators) for the type of 
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A Lie algebra L over K is a K-module together with a K-module 
homomorphism x @ y -t [x, y] of L@L into L such that always 

a typical example may be constructed by starting with an associative 
algebra A and setting [x, y] = x y - y x. Conversely, each Lie algebra L 
defines an augmented associative algebra LC as the quotient of the tensor 
algebra T(L) of the module L by the ideal generated in T(L) by all 
elements x @ y - y @ x- [x, y], for x, y E L. The algebra LC is called the 
envelopilzg (associative) algebra of L. The homology and cohomology 
of L are now defined for modules GL* and ,.C as 

though, as in the case of algebras, it may be more appropriate to use 
the relative Tor and Ext functors for the pair (Le, K). This theory is 
developed in CARTAN-EILENBERG, Chap. XI11 ; cf. JACOBSON [1962]. In 
case K is a field, the POINCARB-BIRKHOFF-WITT Theorem may be 
used to give an alternative description of these cohomology and homo- 
logy groups in terms of a standard complex constructed directly from 
the bracket product in L. Indeed, this is the approach originally used 
in the first treatment of the cohomology of Lie algebras (CHEVALLEY- 
EILENBERG [1948], K o s z u ~  [1950 b]) . The 2-dimensional cohomology 
group H2(L, C) corresponds to a K-split extension for Lie algebras 
(CARTAN-EILENBERG, X1V.S). In certain cases the elements of the 
?-dimensional cohomology group H3(L, C) are the obstructions to ex- 
tension problems (HOCHSCHILD [1954]). Analogous results apply to 
the analytic Lie groups (MACAULEY [1960]), and Lie triple systems 
(YAMAGUTI [ I  9601, HARRIS [1 9611). Shuffle products have been applied 
to Lie algebras by REE [1958]. 

Just as the cohomology of rings starts with factor sets for both 
addition and multiplication, it is possible to construct a cohomology 
of Lie rings such that H 2 will involve factor sets for both addition and 
bracket products. Such a theory has been initiated by DIXMIER [1957]; 
it is to be hoped that subsequent investigation might simplify his for- 
mulation. 

Topologically, the bar construction starts with a "fiber" U, constructs 
an acyclic fiber bundle B (U) with the group U and the corresponding 
base space B(U). The converse problem of constructing (the homology 
of) the fiber from a given base is geometrically important. To this end, 
J. I?. ADAMS has introduced the cobar construction F(W), where W is 
a graded coalgebra over K. This is a formal dual of the bar construc- 
tion; for details, see ADAMS [1956], [1960, p. 331. 
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Notes. The reduced bar construction B ( U )  is due to E~~ENBERG-MACLANE 
[1950b]. CARTAN [I9541 made the essential observation that B could be obtained 
from the acyclic bar construction B and developed an efficient method of carrying 
out calculations by "constructions" 

Chapter  eleven 

Spectral Sequences 

If r is a normal subgroup of the group Il, the homology a ~f lT can 
be calculated by successive approximations from the homology of r 
and that of n/r. These successive approximations are codified in the 
notion of a spectral sequence. In this chapter we first formulate the 
mechanism of these sequences and then proceed to several applications, 
ending with another general theorem (the comparison theorem). Other 
applications will appear in the next chapter. 

In this chapter, a "module" will mean a left module A over the 
fixed ring R - though in most cases it could equally well mean a A- 
module or an object of a given abelian category. We deal repeatedly 
with subquotients S/K of A, where K < S < A: Recall (11.6.3) that each 
module homomorphism a:  A-+A1 induces for given subquotients S/K 
and S1/K' an additive relation or#: S/K- S1/K' consisting of all those 
pairs of cosets (s+ K, as+ K') with s~ S, a s €  S'. If S, T, and U are 
submodules of A, the moddar law asserts that Sn (Tu U) = (Sn T) u U 
whenever S > U. I t  follows that IA induces an isomorphism (the moddar 
Noether isomorphism) : 

Indeed, S/[UU (Sn  T)] = S/[Sn (Tu U)] ; by the Noether isomorphism 
(1.2.9, this is isomorphic to (SU TU U)/(Tu U) = (SU T)/(Uu T). 

1. Spectral Sequences 

A 2-bigraded module is a family E={Ep,,} of modules, one for 
each pair of indices p,  q = 0, f I ,  f 2, . . . . A differential d: E +E of 
bidegree (- r, r-  4 )  is a family of homomorphisms{d: Ep,q -+ Ep-,, q+r-l}, 
one for each p, q, with da=O. The homology H(E) =H(E, d) of E under 
this differential is the bigraded module {H,,,(E)} defined in the usual 
way as 

Hp,q(E)=Ker[d: Ep,q+Ep-,,q+r-ll/dEp+r,q-,+I. (1.1) 

If E is made into a (singly) 2-graded module E = (En} with total degree 
n by the usual process E n = x  EP,,, the differential d induces a differ- 

P+PP* 
ential d: E,+E,-I with the usual degree - I ,  and H({En}, d) is the 
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singly graded module obtained from the bigraded module Hp,, ( E )  as 
Hn=C Hp,q. 

p+q=n 
A spectral seqzlence E ={Er,  dr) is a sequence Ea, E8, . . . of 2-bigraded 

modules, each with a differential 

: , q + r , q + , ,  r = 2 , 3 ,  .. . , (1 4 
of bidegree (- r ,  r-  I), and with isomorphisms 

More briefly, each Er+l is the bigraded homology module of the pre- 
ceding (E', 6). Thus Er and d' determine Er+l, but not necessarily 
dr+l. The bigraded module Ea is the initial term of the spectral sequence 
(occasionally it is convenient to start the spectral sequence with r =  4 
and initial term El) .  

If E' is a second spectral sequence, a homomorphism f :  E +E' is 
a family of homomorphisms 

f :  Er-+E", r = 2 ,  3, ... 
of bigraded modules, each of bidegree (0, 0), with drf'= f'dr and such 
that each f'+' is the map induced by /' on homology (use the isomor- 
phisms (1.3)). 

It is instructive to describe a spectral sequence in terms of submodules 
of Ea (or of El, if this be present). First identify each Er+' with H(Er, dr) 
via the given isomorphism (1.3). This makes E8= H(Ea, da) a subquo- 
tient Ca/Ba of Ea, where Ca=Ker d2 and Ba=Im da. In turn, E4= 
H (E3, ds) is a subquotient of Ca/Ba and so is isomorphic to Cs/B" where 
C3/Ba= Ker d8, B8/Ba= Im d3, and B3 < Cs. Upon iteration, the spectral 
sequence is presented as a tower 

of bigraded submodules of Ea, with ET+l = CT/Br, where 

has kernel CT/Br-' and image B'/BV-l. In informal parlance, 

Cr-l is the module of elements which live till stage r ,  

B'-I is the module of elements which bound by  stage r. 

The module of elements which "live forever" is 

Cw = intersection of all the submodules C', r =  2 , 3 ,  . . . , 
while the module of elements which "eventually bound" is 

Bw = union of all the submodules B', r =  2, 3, . . . . 
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Then Bw < Cw, so the spectral sequence determines a bigraded module 

We regard the terms Er of the spectral sequence as successive approxi- 
mations (via successive formation of subquotients) to Em. In this 
representation (1.4),  a homomorphism f :  E + E f  of spectral sequences 
is a homomorphism f :  E a 4 E ' a  of bigraded modules, of bidegree (0, o), 
such that f (Cr) < C", f (Br)  < Bw, and such that all the diagrams 

are commutative. Also f :  E +Ef induces f m :  EW-+E'". 
A first quadrant spectral sequence E is one with E;, , = 0 when fi< 0 

or q < ~ .  (This condition for r =  2 implies the same condition for higher r.)  
I t  is convenient to display the modules E;,,  at  the lattice points of the 
first quadrant of the $, q plane: 

The differential dr is then indicated by an arrow. The terms of total 
degree .n all lie on the 45" line $ + q = n ;  the successive differentials 
go from a lattice point on this line to one on the next line below, At 
each lattice point of E;,,  the next approximation E;:: is formed by 
taking the kernel of the arrow from that lattice point modulo the image 
of the arrow which ends there, as in 

The {outgoing dr ends outside the quadrant if r > p ,  the incoming d' 
starts outside if r>q+ I ,  so that 

In words: For fixed degrees $ and p, E;,, is ultimately constant in r .  
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The terms EP,, on the p-axis are called the base terms. Each arrow 
dr ending on the base comes from below, hence from 0, so each E;? 
is a submodule of E;,, , namely the kernel of 6: E;,, +E;-,,-, . This 
gives a sequence of monomorphisms 

The terms E,,, on the q-axis are called the fiber terms. Each arrow 
from a fiber term ends to the left at  zero, hence E;,, consists of cycles 
and the next fiber term is a quotient of E;,, (the quotient by the image 
of a 6). This gives a sequence of epimorphisms 

These maps (1.8) and (1.9) are known as edge homomor~hisms (monic 
on the base, epic on the fiber). 

A spectral sequence E is said to be bounded below if for each degree 
n there is an integer s=s(n) such that E;,,=O when $< s and p+q=n. 
This amounts to the requirement that on each 45" line (p+q=n) the 
terms are eventually zero as p decreases; thus a first quadrant or a 
"third quadrant" spectral sequence is bounded below. 

Theorem 1.1. (Mapping Theorem.) I f  f :  E +E' is a homomorphism 
of spectral sequences, and if f :  Et=E" is an isomorphism for some t ,  
then f' : E r r E I r  is  a% isomor+hism for r 2 t. If also E and E' are bounded 
below, fOO: E W r E r m  is an isomor~hism. 

Proof. Since is a chain isomorphism and E t f  = H(Et, b), the first 
assertion follows by induction. When E and E' are bounded below and 
( p ,  q) are fixed, dT : E;, , -+E;-, ,++, has image 0 for sufficiently large r. 
Hence C;,,= C r ,  and Ci:,= Cipo4 for r large. Thus a'~CApo4 lies in C;,',, 
so f' an epimorphism makes fOD an epimorphism. If a€Cm has fa€ BPm = 

U B", then f a€ B" for some r. Hence f' a monomorphism for all r implies 
that f w  is a monomorphism. 

\ 

it Exercises 
1. Show that a tower (1.4) together with a sequence of isomorphisms Or: Cr-l/Cr 
'/Br-l of bidegrees ( -  r, r - 1) for r = 2, 3, . . . determines a spectral sequence 

with F= cr-l/Br-' and dr the composite C' -~ /B~-~- ,C ' -~  .I J C ~ - . B ~ I B ~ - ~ - ,  cr-l/~r-l, 
and hat every spectral sequence is isomorphic to one so obtained. 

2. If E' and E" are spectral sequences of vector spaces over a field, construct 
a spectral sequence E = Ef@E" with E;,, =x E?, ,t @ E;,rq", where the sum is 
taken over all p'+ pf'= p, ql+ q"= q, and dr is given by the usual tensor product 
differential. 

3. If E is a spectral sequence of projective left R-modules, C a left R-module 
and G a right R-module, construct spectral sequences HomR(E, C) and G O R E  
and calculate the terms Em. 

Mac Lane, Homology 21 
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2. Fiber Spaces 

Before studying various algebraic examples of spectral sequences 
it is illuminating to exhibit some of the formal arguments which can 
be made directly from the definition of a spectral sequence. For this 
purpose we cite without proof the important topological example of 
the spectral sequence of a fibration. 

Let I denote the unit interval and P any finite polyhedron; recall 
that a homotopy is a continuous map H :  P x I + - B .  A continuous 
map f : E -t B of topological spaces with f (E) = B is called a fiber map 
if any commutative diagram of the following form 

h P -+E 
p 4..* if i (x) = (x, 0) for X E  P, 

P X I ~ B ,  

(all maps continuous) can always be filled in at L so as to be commu- 
tative. This is the "covering homotopy" property for f :  Any homotopy 
H  of P in B whose initial values H(x, 0) can be "lifted" to a map h: P + E  
with fh(x)=H(x, 0) can itself be lifted to a homotopy L of P in E 
with f L = H  and h ( x )  = L(x, 0). If b is any point in BJ its inverse image 
F= f-lb is called the fiber of f over b. If B is pathwise connected, it 
can be shown that any two such fibers (over different points b) have 
isomorphic (singular) homology groups. Hence one may form the singular 
homology groups Hp(B, Hq(F)) of B with coefficients in the homology 
groups Hq(F) of "the" fiber. Strictly speaking, we should use "local 
coefficients" which display the action of the fundamental group of 
B on Hq (F) ; this we avoid by assuming B simply connected. Since B 
is path* connected, its Odimensional singular homology is 

\ 

spectral sequence has been constructed by SERRE 
LERAY'S construction [1946, 19501 for the case of 

Theorem (LERAY-SERRE). If f :  E- tB is a fiber map with base B 
pathwise cmnected and s i w l y  connected and fiber F pathwise con~cted, 
there is for each n a nested family of s u b g r e s  of the singdar homology 
group H" (EL 

and a first quadrant spectral sequence such that 
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If  e, is the iterated edge homommflhism on the base, the comflosite 

is the homomor~hism induced on hmology by the fiber mafl f :  E +  B. 
I f  e, is the iterated edge homomorphism on the fiber, the com;bosite 

H, (F) s H o  (B, H, (F)) SE;, , E;, +- H, (E) 

is the homomorphism induced on homology by the inclusion F (E. 
This spectral sequence relates the (singular) homology of the base 

and fiber, via Ea, to the homology of the "total space" E, with Em 
giving the successive factor groups in the "filtration" (2.1) of the homo- 
logy of E. 

The universal coefficient theorem (Thm. V.ll .1) expresses the first 
term of (2.2) as an exact sequence 

In particular, if all H,,-, (B) are torsion-free, E:, , = H,, (B) @ H, (F) . 
Assuming this result, we deduce several consequences so as to 

illustrate how information can be extracted from a spectral sequence. 
The LERAY-SERRE theorem holds when all homology groups (of B, 

F,  and E) are interpreted to be homology groups over the field Q of 
rational numbers. Write dimV for the dimension of a Q-vector space 
V over Q. For any space X the n-th Betti number bn(X) and the Eder 
characteristic x (X) are defined by 

is defined if each b,(X) is finite and there is an 
=O for n>m. If X is a finite polyhedron, x(X) is 

Corollary 2.1. I f  f :  E + B  is a fiber space with fiber F ,  with B and 
F connected as in the Leray-Serre theorem, then if x(B) and x(F) are 
defined, so is x (E) and x (E) =X (B) x (F) . 

Proof. For any bigraded vector space F, define a characteristic as 
x (E') = 2 (-  dim E;,, . By (2.3) for vector spaces, 

P. 9 

E:, ,r HP (B) @ H, (F) , dim E:, , = bP (B) b, (F) < 00 , 

and x(Ea) =x(B)x(F). Write Cis, and q,, for the cycles and the 
boundaries of E,,,, under C. The short exact sequences 
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define C', Br, and Er+l=H(ET). In each sequence the dimension of 
the middle term is the sum of the dimensions of the end terms, so 

dim EL:: = dim EL, ,- dim Bi,  ,- dim B;- ,  ,+,-, . 

Here the last term has total degree 9-r+ q+r- 1 = (p+ q)- 1, so 
x (E'+') = X  (Er)  ; by induction x (Er) = X  ( E 2 )  Since EL, , vanishes for p 
and q large, Ew= Er for r large, and x (Em) = X  (E2) .  NOW b y  (2.1) and 
(2 .4 ,  

dim H, ( E )  = r, dim (Hp ,  ,/Hp-,, ,+,) = 2 dim EE, , 
~+q=n $+q=n 

so x ( E ) = X ( E w ) = ~ ( E 2 ) = ~ ( 6 j ~ ( F ) ,  as asserted. 

Theorem 2.2. (The WANG sequence.) If f : E -+ Sk is  a ~iber  space 
with base a k-sphere (k 1 2 )  and pathwise connected fiber F ,  there is an 
exact sequence 

dk ...+ H,(E)+H,-,(F)--+ H,-l(F)-+H,-l(E)-+-... 

Proof. The base Sk is simply connected and has homology H , ( S k ) s  
Z g H ,  ( S k)  and H p  ( S k)  =0, for ++O, k ;  hence by (2.3) 

The non-zero terms of E:, , all lie on the vertical lines + = 0 and $ = k,  
so the only differential dr with r >= 2 which is not zero has r = k. There- --__ 
fore -. = Ek,  Ek+l= Ek+a= .. .=Em. The description of 
E~+'= E" as the homology of (ER,  dk) amounts to the exactness of the 
sequence dk 

O-tEcq-tE:,q-+ E~,q+k-l-fEOq)4+k-1 -+o. 
On the other hand, the tower (2.1) has only two non-vanishing quotient 
modules, so collapses to 0 <Hop,= Hk-l,,-k+l< Hk,,-,= H,  . With the 
isomorphisms for Ew in (2 .4 ,  this amounts to a short exact sequence 

with H,(E) in the middle. Now set q=n- k in (2.4), put in the values 
of E2 in terms of H(F) and splice the sequences (2.4) and (2.5) together: 

The result is the desired long exact sequence. By LERAY-SERRE, the 
homomorphism H,-,(F) +H,-,(E) is that induced by the inclusion 
F < E .  
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Spectral sequences may be used to calculate the homology of certain 
loop spaces which are used in homotopy theory. Let b, be a fixed point 
in the pathwise connected space B. The space L(B) of paths in B has 
as points the continuous maps t: I + B  with t (0)= b,; here I is the 
unit interval, and L(B) is given the "compact-open'' topology. The map 
p: L(B) + B with p (t) = t (I) projects each path onto its end point in 
B; it can be shown to be a fiber map. The fiber 52 (B) =p-l (b,) consists 
of the closed paths t [with t (0) = b,=t (I)]; it is known as the loop space 
of B. 

Corollary 2.3. The loop space QSh of a k-sphere, k 2 2 ,  has homo- 
logy 

H,(QS")rZ, n= 0 (mod k- I ) ,  

Proof. Since k > f ,  Sk is simply connected. so each loop can be 
contracted to zero; this implies that 52(Sk) is pathwise connected, so 
that H,(QS~) =Z. The space E = L(B) of paths is contractible, as one 
may see by "pulling" each path back along itself to the origin. Hence 
E is acyclic (Ex.II.8.1). Thus every third term Hn(E) in the WANG 

sequence is zero, except for H, (E), so the sequence gives isomorphisms 
H,-, (Q s') SH,-, (52 s'). With the given initial value H,=Z this 
gives the values stated above. 

q 4 
is instructive to exhibit the 

diagra of this spectral sequence for 
k=3. \ ee the attached diagram.) 
The heavy dots denote the terms 
Ep,,)rZ, and all others are zero. The nS3 

only non-zero differential is d3; these 
differentials applied to the elements 
on the line p = 3 "kill" the successive 
elements in the homology of the fiber. 
This diagram may be constructed 
directly, without using the WANG 

sequence. We are given the base with 
I + generators I E E:,, and x E Ei, ,,.; all ele- P 

ments lie on the vertical lines p=o s 
and 9 = 3. Since Em = 0, every element 
must be killed (i. e., become a boundary or have non-zero boundary) by 
some differential. But d3 is the onlynon-zero differential. Therefore d3x= 
y=+ 0 in Eb, , on the fiber. The element x @I YE E% , must then also have a 
non-zero boundary d3 (x @I y) = y' in E:, , on the fiber, and so on. 
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Theorem 2.4. (The GYSIN sequence.) If f : E + B i s  a fiber space 
with s i w l y  cownected base B a d  with fiber F the k-s#here Sk with k h 1, 
there i s  an exact seqwflce 

rptl - -.+ H,,(E) H,,(B) - Hn-,-,(B) +Hn-, (E)  - t o . - .  

Proof. Since Hq (F) = Hq (S k)  = 0 for q+ 0, k ,  the term EP is 

The spectral sequence then lies on the two horizontb lines q=O and 
q= k ;  the only non-zero differential is d kf  l ,  and we obtain two exact 
sequences 

awl 2 
0 ~ ~ , q b ~ ~ ~ , o - - - * ~ u - k - l , k ~ ~ ~ - k - l , k ~ 0 t  

which splice together to give the sequence of the Theorem. 

Exercises 
I. If f :  Sm+ sk is a fiber map with k z 2  and with fiber a sphere S' prove 

that one must have m = 2k - I and I = k - I .  (For k  = 2, 4, and 8 there are indeed 
such fiber maps; they are the Hopj fibvations; HOPF [1931, 19351, STEENROD 
[19511, Hu r-1959, p.661.) 

In the following three exercises, f :  E - t  B is a fiber space with B pathwise 
connected and simply connected and fiber F pathwise connected. 

2. If H j ( F ) = o  for O<j< t  and H i ( B ) = O  for O<i<s, obtain the exact 
sequence 

H,+t-1 (F) --%+,-I (El +Hs+t-1 (B)  +Hs+t-,(F) +... 
+H, (B)  +Hx(!,(F) +%(El +H, (B)  +o - 

3. If Hi ( B )  = 0 for all i# prove that H,, (F) H,, ( E )  for all n. 

4. I f  Hi(- = 0 for a l H >  0, prove that H,,(E) = H n ( B )  for all n. 
5 .  Given the LER&-SERRE spectral sequence E and Q the field of rational 

numbers, define a s$ectral sequence E'= Q @ E  of vector spaces over Q and show 
that E& =.Hp(B,  Q)  @ H (F,  Q) and E i z  = Hi,q/Hi- l ,q+l ,  where the H' appear 
in a tower hke (2.1) with d,, (E)  replaced by H, (E,  Q) . 

3. Filtered Modules 
A fiZtyation F of a module A is a family of submodules F p A ,  one for 

each p €2, with 
. .  C F ~ - ~ A < I $ A < F ~ + ~ A <  a * . .  ( 3 - 1 )  

Each filtration F of A determines an associated graded modwle GFA= 
{(GFA)@ = 4 A/%-, A ) ,  consisting of the successive factor modules in 
the tower (3 .1 ) .  If F and F' are filtrations of A and A', respectively, 
a homomorphism a :  A-tA' of filtered modules is a module homomor- 
phism with a (%A) < $ A 1 .  A filtration F of a differential 2-graded 
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module A is a family of sub-DG,-modules $ A ,  as in ( 3 . 1 ) ~  with the 
corresponding definition of a homomorphism. This filtration induces a 
filtration on theZ-graded homology module H(A) ,  with (H(A) )  defined 
as the image of H ( 3 A )  under the injection FpA-tA. Since A itself is 
2-graded by degrees n, the filtration F of A determines a filtration 
FpA, of each A,, and the differential of A induces homomorphisms 
a :  FpA,-tFpA,-, for each p and each n. The family (FpA$ is a 2- 
bigraded module; it is convenient and customary to write the indices 
of the grading as (#, q), where p is the filtration degree and q=n-# 
the complementary degree; the 2-bigraded module then has the form 
{FpAp+,}. We use "FDG,-module" to abbreviate "filtered differential 
2-graded module". 

A filtration F of a DG,-module A is said to be b o d e d  if for each 
degree there are integers s=s (n)<t=t (n)  such that cA,= 0 and 
EA,=A,. This amounts to the requirement that the filtration of each 
A, has "finite length" : O= 4 A, < E+, A, < .- <&Am= A,. 

A spectral se uence (EL, 6) is said to converge to a graded module H 9 bols, E:*H) if there is a filtration F of H and for each p iso- 
mo hisms E ~ z  I$, H/l$-, H of graded modules. Here, for given r and 

E; denotes the 2-graded module E;={E;,,, q=O, f l ,  ...) (graded :"." by the complementary degree q) .  

The associated spectral sequence of a filtration may now be defined. 

Theorem 3.1. Each filtration F of a differential 2-graded module A 
determines 3 spectral sequence (E', u?), r= I ,  2, . . . , which is a covariant 
functor of (f;, A ) ,  together with natural isomorphisms 

E;sH(l$A/Fp-,A); i.e., E $ , , E H ~ + , ( F ~ A / F ~ _ ~ A ) .  (3.2) 

If F is bounded, E;*H(A); more explicitly, there are natural isomor- 
phisms 

E,"=l$(HA)/Fp-,(HA); i.e., E~qrFp(Hp+,A)lF,-l(Hp+qA). (3.3) 

For the proof we introduce the submodules 

Zlp=[ala~FpA, aa~Fp-,A],  r=O, I , ... (3 -4) 

of FpA. An element of Z;, may be regarded as an "approximate cycle 
of level r"; its boundary need not be zero, but lies 7 stages lower down 
in the filtration. In particular, = F p  A.  Each 2; is 2-graded by degrees 
from A,  so we may regard 2' as the bigraded module with 

q, q= [a[ FpAp+, r a a ~  Fp-vAp+q-J. (3.5) 
Given this notation, the spectral sequence of the filtration F of A 

is defined by taking 

E l p = ( Z l p ~ F p - ~ A ) l ( a 2 ; : ~ - ~ ~ ~ - ~ A ) ,  r=I ,2  ,... 
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while a': E$ +E;-, is the homomorphism induced on these subquotients 
by the differential a :  A-tA.  From these definitions the proof of the 
theorem is fussy but straightforward. In detail: 

Set E:=l$,A/l&,A and let qp:  l$,A+E; be the canonical projec- 
tion. Consider the additive reIations 

a, a E;+? - E; -i- Ei-, 

induced on these subquotients by a :  A-tA.  Thus a, consists of the 
pairs (vpa, %-,aa) for acZi (indeed, this is exactly why we need 
2;). Moreover qpa lies in the kernel of 8, if a a ~  Fp-,-,A, so (where 
"Def" means the "domain of definition") 

-. 
Next, a, cons% of the pairs (qp+? b, qp  ab) for ~EZ;$+, , while b= 0 
if also b~2$,+,_,A; that is, if ~ E Z & ; _ ,  . Hence (where "Ind" means 
the "indeterminacyJ') 

I = ( Z )  Ind al=qp (aZ;;f-,) . 
In view of the inclusions aZ;;T1,-, < aZ;+, (22' < 2; we can introduce 
for each p and r a subquotient of EOp as 

the formulas above show that induces homomorphisms 

Thus we have a spectral sequence. When r = 0, $ = l$, A and LP : E; 4 E; 
is just the differential of the quotient complex E;=F,A/$-,A. This 
gives (3.2). 

This spectral sequence can also be derived from the towers 

The tower on the first line, taken modulo l&,A, gives that on the 
second line, with B;=% aZ;;T;-, and Ci=qpZg. By  11.6 the additive 
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relation a,: 6 A/F,-, A- I$-, A/l$-,-, A amounts to an isomorphism 

Def a,/Ker a, r Im a,/Ind a,. 
But this isomorphism is just C; /C i+ l z  B$?;/B;-,. This gives dr as the 
composite 

with n the projection, L the injection. This yields the spectral sequence, 
much as in Ex. l .I (except that C' there is Cr+' here). 

To describe FpHIFp-,H, write C = Ker a and B= a A  for the cycles 
and boundaries, respectively. in A.  Then F induces on C and B filtrations 
FpC=CnF,A, FPB= BnFPA. By definition, FP(HA)  = (FPCuB)/B.  
Hence 

by a modular Noether isomorphism. Another such, 

represents FP HI&-, H as a subquotient of F9 A/FPV1 A .  
The numerator of Ei in (3.6) is ( Z ~ U I $ - ~ A ) / I $ - , A < F ~  A/I$-,A ; 

the denominator is (aZi7:-luF,-1A)/Fp_,A, so 

Now suppose F bounded, and consider a fixed ( f i ,  q) corresponding 
to a total degree n = f i  + q. In the numerator of Ei, , , an element a EZ;, , 
for r large has sac 5- ,Ap+,- ,=O,  hence acFpCP+, . Thereafter the 
numerators are F,CP+q~F, - lAP+q .  AS for the denominator, for r large 
every element in FpBp+, is the boundary of an element in FP+,-,A; 
that is, of an element in ZZ- , .  Thereafter the denominators equal 
FP Bp+,uF,-, AP+,. But Em is defined as intersection of numerators 
divided by union of denominators, so 

which is exactly FP H/FP-, H as given in (3.7). This proves ( 3 . 3 ) .  
In the literature, Em is usually defined from H ( A )  by the formula 

(3.9), so the "convergence" isomorphism (3.3) asserts that this defini- 
tion agrees with ours. 

The convergence ( 3 . 3 )  holds under weaker conditions than bounded- 
ness (for a thorough study, see EILENBERG-MOORE [1962]). For example, 
call a filtration F of the DG,-module A convergent above if A is the 
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union of all FpA and bouded below if for each degree n there is an 
integer s=s(n)  such that F,A,=O. 

Proposition 3.2. If F is  bounded below and convergent above, then 
(3.3) holds and the spectral sequence of F is  bounded below. 

Proof. Since F is bounded below, the intersection of the numera- 
tors of E; is FpCuFp-,A. Each element of FpB is a boundary aa for 
some a c A = U l j A ,  hence a c l j A  for some t .  Then acZ;;f-, for r= 
t-p+ 1, so FpBuFp-,A again is the union of the denominators 
aZ;;~_,vFp-,A, and we have (3.3). 

In the formula (3.8) the numerator term Z; gives "approximate" 
cycles of level r ;  while aZ;;f-, in the denominator is a submodule 
of the boundaries (boundaries from r levels up). The proof has so chosen 
these approximations in this quotient that each has the next as its 
homology. An alternative formula (for the same spectral sequence) 
appears in Ex. 1 .  

The filtration F of a DG-module A is canonically bounded if F-, A =O 
and F, A ,  = A ,  in each degree n.  

Theorem 3.3. I f  F is  a canonically bounded filtration of a (positively 
graded) DG-module A ,  t b  spectral sequertce of F lies i n  the first quadrant 
and the induced filtration of H A  is  finite, of the form 

O=F-lH,A<F,H,A<F,H,A<~-~<F,H,A=H,A 

d t h  successive quotiertts l$ H,/l$+, H,zEE,-,, , under isomor+hisms 
induced by iA.  For exattqble, the LERAY-SERRE theorem arises from a 
canonically bounded filtration of the singular chains of a fiber space. 

Proof. Since El A = 0,  E i  = H(Fp All$-, A )  = o for p< 0. Since 
F, A,= A,, q< 0 implies F p  Fp-I AP+q and hence E:,, = o for q< 0. 
Therefore all non-zero E;,, lie in the first quadrant of the (p ,  9)-plane. 
and the induced filtration of H,(A) is finite as displayed. 

For n=1 the filtration of HI amounts to a description of HI as the 
middle term of a short exact sequence 

For each n ,  the filtration of H, yields a monomorphism EoS,,+H,(A) 
and an epimorphism H,  ( A )  -t EEo. Combined with the edge homomor- 
phisms we get maps 

, + A  Hn(A)  +E:o* (3.10) 

each induced by iA. In general, the spectral sequence of F determines 
not H ( A )  but its subquotients FpH/Fp-,HI asserting that each is in 
its turn a subquotient of Ei= H(FpA/Fp-,A). 
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Theorem 3.4. (The mapping theorem.) Let A ,  A' be DG,-modules 
with filtrations F and F' bounded below and convergent above. If a :  (F, A )  -+ 
(F', A') is  a homomorphism such thud for some t the induced map 

a': Ei(F, A)=E'i(F1, A') 

is an isomorphism, then ar is  an isomor~hism for a, 2 r 8 t and moreover 
a, : H(A)-+ H(A 1)  is  an isomorphism. 

Proof. Since both spectral sequences are bounded below, the previous 
mapping theorem (Thm. 1 .1) shows ar and a": E" +Elw isomorphisms. 
Consider the induced map a,: H,,(A) -+H,,(Af) on homology for a fixed 
degree n, and the corresponding a#,,,: l$ H,+$ HL . Since both filtra- 
tions are bounded below there is an s with F, H,, = o =F,' H; . The con- 
vergence isomorphisms (3.3) give the horizontal sequences in the com- 
mutative diagram 

,/ 'o-+ (A)  -+FpH,(A) +EOO,-p-+O /' 1+1.. 14. fim , o+Fd_, H,, (A') -+Z$'H,, (A1)-+ E;yn-, -to. 
Since am is an isomorphism, induction on p and the Five Lemma show 
a+,, an isomorphism. Now the filtration F is convergent above, so 
H, ( A )  = U F p  H, ( A )  ; it follows that a, is an isomorphism, as required. 

For t = l  the hypothesis of this theorem requires that the induced 
map H, ( F p  A/+, A )  -+H, (4' A'/ql-, A') be an isomorphism for all n 
and p. This special case of the theorem was proved in Thm.V.9.3 and 
again in Thm. X.11.2. 

Let a, /?: (F,  A )  -+(F1, A') be homomorphisms of FDG,-modules. 
A chain homotopy s : a e  /? is said to have order 5 t if s (4 A )  < Fd,, A' 
for all p. 

Proposition 3.5. I f  s: a=/? is  a homotopy of order S t ,  then 

ar=p:  Er(F, A )  -+EW(F', A') 

for r>t, and a, =/?*: H(A)  -+H(A1). 

Proof. The result a*=/?* follows from the existence of the chain 
homotopy (irrespective of its "order"). For the rest, it suffices to consider 
y =aM/?,  s : ya: 0 and prove yr= 0. Write E;, , as the subquotient (3 3). 
If a€Z;p, then ya=asa+saa, where a a ~ F p - ~ A ,  SO saa~Fi- ,A'  
since t<r, w h i l e s a ~  a , - , A 1 ,  a ~ a = ~ a - s a a d $ A '  so sa~Z;,7:-,(A'). 
Thus y a€  aZ;;rf-,uFb_, A' is in the denominator of E y ,  so determines 
zero there. 

Exercises 
I. Show that Ez = ~z/(aZz~$-~uZ;=:), with fl: E;+E'p-, induced b y  a: A+ 

A ,  gives a spectral sequence isomorphic to that of Thm.3.1. (These formulas are 
often used as the definition.) 
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2. If the filtration F of the differential graded module A is canonically bounded, 
show that its spectral sequence yields an exact sequence 

If E$,!= o for O<q<t and all p, show that eg: Hp(A) E E$,, for 0 d p <  t and 
establish the exact sequence 

3. (The exact sequence of "terms of low degree"; cf. Ex.2.2.) In Ex.2 suppose 

E ~ , ~ = O  wheneither o<q<t or o<p<s. 

Establish an exact sequence, with Hi short for Hi(A), 

4. (The two-row exact sequence.) In Thm. 3.3 suppose there are two indices 
0 4 a < b such that E;, = o for q a, b and all p. Derive the exact sequence 

with r = b - a + I. (Hint: cf. the WANG sequence of Thm. 2. I .) 

5. Establish a "two-column" exact sequence analogous to Ex.4. 

6. If A' and A" are FDG-vector spaces over a field, and if a filtration of A'@A" 
is defined by Fp(Af@A") = 2 Fp.(A')@ Fp,.(AU) for pl+p"=p, prove for the 
associated spectral sequences that E (A1@A") E E (A') @E (A"). 

7. In the spectral sequence of a filtration F of A, show Ei tq  isomorphic to 
the image of the homomorphism 

Hp+g(FpAIFp-rA) +Hp+q(Fp+r-lAIFp-lA)> 2 I 
induced by the identity. (This description may be used to define the spectral 
sequence of a filtration; see FADELL-HUREWICZ [1958, p. 3181.) 

4. Transgression 

In a first quadrant spectral sequence E the last possibly non-zero 
differential on a term E;,, in the base is the differential dp: E$, , +E&-, 
which goes from the base all the way to the fiber. With the edge homo- 
morphisms e,, + this yields a diagram 

with exact row and columns. When (as we have assumed here) the 
spectral sequence starts with r = I, the additive relation 
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is called the transgression. Any additive relation (Prop. 11.6.1) is a homo- 
morphism from a submodule of its domain (here called the module of 
transgressive elements) to a quotient module of its range; in this case, 
(4.1) represents z as the homomorphism & from the submodule E$,, 
of E;,, to the quotient module Egf'- ,  of E:,,-l. Replacing El by E2 
in this definition of z gives an additive relation z': E : , o y  Ei, #-,, also 
called transgression. Each transgression uniquely determines the other 

2 via the edge homomorphism e: E$,*-, +Eo, p - l ,  for z = e-lt ';  since e 
is an epimorphism, e e-l= 1, so z' = e t. 

Proposition 4.1. The transgression i n  the sfiectral sequence E of a 
canonically bounded filtration of A is  the additive relation 

z: E;,,,-E$,,-~ 
induced b y  a :  A + A .  

Proof. Here E is a first quadrant spectral sequence. Its edge terms 
can be written explicitly from (3.8). Since aAp+l < A, = F, A, ,  A,+, = 
2'-1 

,+r-I, - ~ + 2  for any 72 2,  so, on the base, (3.8) becomes 

The denominator is independent of r ;  this verifies the fact that the edge 
homomorphisms e, are monic. Also Z;,, is F,C, when r 2 1 and C is 
the kernel of a. Hence on the fiber (3.8) is 

The numerator is independent of 7 (edge homomorphisms eF are epic). 
The transgression is the composite relation z = e;'df'ei1, where e;' 

and e i l  are induced by .1, and df' is induced by a. The composite z is 
then the additive relation induced by a, as one sees by calculating z 
as the set of all pairs of cosets (a+ D;, o ,  aa+ D:, for ~ E Z $ , ~  and 
Ds, , the denominator of E;, , , or by applying the composition principle 
for additive relations (Prop. 11.6.3). 

The edge maps (3.40) and the transgression can be computed directly 
from A and two subcomplexes defined by the filtration, without using 
the whole spectral sequence, but using a generalization of the familiar 
homology connecting homomorphisms. 

If L and M are subcomplexes of a (not necessarily positive) complex 
K, the connecting relation 

is defined to be the additive relation induced by a :  K-tK. Here each 
homology group is to be regarded as a subquotient of K;  for example, 



334 Chapter XI. Spectral Sequences 

where C,(K, M) is the module of relative cycles (all ~ E K ,  with ak€ 
Ms.-.,). Thus Q consists of the pairs of homology classes (k + (a K,+, u M,), 
ak+ aL,) for all kc C, (K, L n  M). If M = L, the connecting relation Q 
is just the usual connecting homomorphism $ for the short exact 
sequence L n K -3 K/L of complexes. More generally, 

Proposition 4.2. I f  L and M are subcomfilexes of the complex K, 
with L,-, < M,-, and L, < M, , then Q = Q (K ; L, M) can be described via 
connecting homommphisms as th.e composite relation 

where B and y are indwed by  the identity in tlze commutative diagram 

Proof. The hypotheses L,-,< M,-, and L,< M, show that the 
identity induces homomorphisms /I and y as displayed. By the equi- 
valence principle (Prop.II.6.2), /I-I and y-I are the additive relations 
induced by 1. By the composition principle (Prop.II.6.3), each of 
8, B-I and y-I 8, turns out to be the additive relation induced by a 1 = la; 
hence the result. 

This result shows that Def Q = Im B and Ind Q = Ker y. 
In 8 10 we need information as to the effect of a chain equivalence 

on the connecting relations, as follows. 

Lemma 4.3. Let f :  K +Kf be a chain transfmmation which induces 
homology i somm~hisms  f ,  : H, (K) H, (K') , while L, M are subcom- 
plexes of K and L', M' subcow@lexes of K' with f (L) < L', f (M) < M', 
so that f induces chain transformations g : L -+ L', h :  KIM +Kf/M'. 
Assume that g, and h,  are homology isomor+hisms and that L,<M,, 
L;< Mi for k = n -  1, n, as in Prop.4.2. Then the diagram 

i s  commtative. 
This result computes Q' from e as ef=g, Q h;l, or conversely. 

Proof. Since f ,  and g, are homology isomorphisms, the exact 
homology sequences for L, K, K/L and L', K', K'IL' show that f induces 
a homology isomorphism y : K/L +K'/Lf. By Prop. 4.2 we may compute 
the connecting relations Q = aL B-1 and Q' = & B'-l from the rows of 
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the commutative diagram 

Since the diagram commutes, B'F, = h,B, or B-l h;' = i&l/?'-'. But h* 
and y ,  are isomorphisms, so e)* B-I =,9' -l h* . NOW g* Q = g* aL B-l = 
aL. o)*B-l= aL. B' -l h, = e'h,, as desired. 

Theorem 4.4. If F i s  a canonically bounded filtration of a DG-module 
A the "edge effects" in the sfiectrd sequence of F can be com+uted from A 
and its subco@lexes L=F, A and M, where M,=F,-, A,v~F,A,+, . 
Specifically, the edge homomorfihisms 

are induced by the injection F, A+ A and tlze firojectiolz A+ AIM, respec- 
tively, while the transgression z i s  tlte connecting relation Q (A; &A, M). 

By (4.2) and the definition of H,(A/M) by relative cycles, 

But the maps (., and e, are induced by the identity, whence the first 
result. Similarly, each of z and Q is the additive relation EE,o--E;, ,-, 
induced by a, so z = Q, as desired. 

The situation may be visualized in terms of the complexes 

J 
AIM. 

Since M,) (F, A), for n 2 1, the transgression can also be described in 
terms of ordinary connecting homomorphisms, as in Prop.4.2. This 
theorem shows how additive relations clarify a result of SERRE (loc. cit.. 
1.3 ; his notation R=F,A, S= AIM). In the case of a fiber map f :  E + B, 
H(A) = H(E), H(F,A) is the homology of the fiber, HP (AIM) = Eip0= 
H,,(B, 2) that of the base. Thus Prop.4.2 gives for transgression the 
following "geometric" description (in which it originated) : A homology 
class of the base is transgressive if it can be represented by a cycle z 
such that z= fc, for c a chain of the total space with ac  in the fiber. 
An image of cls z under transgression is then the homology class, in 
the fiber, of any such ac.  
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5. Exact Couples 
An alternative description of spectral sequences can be given via 

"exact couples" (MASSEY [I 9521). Though not necessary to the sequel, 
they throw some light on the origin and nature of spectral sequences. 

An exact coufile &= {D, E ; i, j, k}  is a pair of modules D, E together 
with three homomorphisms i, j, k ,  

which form an exact triangle in the sense that kernel = image at each 
vertex. The modules D and E in an exact couple may be graded or 
Z-bigraded; in the latter case each of i, j, k has some bidegree. 

The exactness of & shows that the composite j k :  E - tE  has square 
zero, hence is a differential on 
for this differential. Construct 

E. Form the 
the triangle 

module 

i' 
i D ------+ i D 

k\ K 4  ( 5 4  
W E ,  j k )  

where i' is induced by i and j' and K' are given by 

Observe that id=O implies d c  k E, so j dc  jk E and j' is well defined. 
Similarly jke= 0 implies k e c i  D, so k' is well defined. Call &' the 
derived cou+Ze of &; it is a functor of & under the evident definition 
of homomorphisms for exact couples. A diagram chase proves 

Theorem 5.1. The derived cou+le of a n  exact cou#le i s  exact. 
There is a whole sequence of derived couples. Iterate i ( r -  1)-times 

Here il-': D- D and jil- 'are additive relations, with 

Then i, jil-', and k induce homomorphisms i,, j,, k ,  in the triangle 
D? 2 Dr 

6' & Jr , r = 1 , 2  ,..., 
E' 

called the r-th derived cou#Ze of &. 
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Theorem 5.2. The r-th derived cozlple 6' is exact with Q1=Q, Qa= Q', 
and Q'+l is the derived cozlple of Qr. 

Proof. For r = l ,  E1=E. For r=2, exactness of Q gives iD=j-lo, 
ker i= k E, hence Ea= k-l j-lO/jkE = H(E, jk) and thus Qa the derived 
couple of 6. For r>2, D'+l=iD'=i,D'; we need only show that 
E'+I is the homology of E' under the differential j, k,: Er +ET. To ex- 
hibit this differential, write the definition (5.3) of Er as 

Ef=C/B, C=k-l(iT-lD), B=j(Kerir-l). 

An element of E' is a coset c+ B, where kc = if-'d for some d, and 

j,k,(c+B)=j,(kc)=jd+B, kc=ir-ld. (5.4) 

I t  will suffice to prove 

Ker (j, k,) = k-l (i' D)/ B , Im (j, kt) = j (Ker ir)/ B . 
First j, k, (c+ B) = 0 gives jd= ja for some a €  D with ;'-la =o. By the 
exactness of Q, d-a=id' for some a', so kc=iTd' and c~k-l( irD).  
Conversely, k c = i'd' gives j, k, (c + B) = 0; the kernel is as stated. 
Similarly Im (irkr) consists by (5.4) of elements jd+ B with i'd = i k c = 0, 
and conversely i'd =O implies ir-la= kc for some c; this gives the 
stated image. Since Qr+l is the derived couple of Q', it is exact by 
Thm.5.1. 

Corollary 5.3. An exact couple of 2-bigraded modules D, E with 
maps of bidegrees 

degi=( l ,  -I),  degj=(O,O), degk=(--1,0) (5.5)  
determines a spectral sequence (E', 6) with d' = irk,, r = f , 2 ,  . . . . 

Proof. Given (5.5), the couple 6' has maps of the following bide- 
gees 

degi,=(l, - I ) ,  degj ,=(-r+l ,r-I) ,  degk,=(-I,o). 

It follows that deg (irk,) = (- r, 7- I),  so each Er+' is the homology 
of Er with respect to a differential d' of the bidegree appropriate to a 
spectral sequence. 

An exact couple Q with bidegrees (5.5) may be displayed as 

ji i i  
k i k i 

... -fEp,q+i --' DP-i,q+l + E p - - ~ , ~ + i  -j DP-a,q+i+ '.. 
k .li k .li i 

0 . .  +Ep+l,q + DPjq A EPPq -+ DP-l,q + . .' 
k .li i k .li i 

" ' -+EP+2,g-1+ DP+l,g-l+ EP+l,q-l-j DP,g-l + ... - 
.li Li 

Mac Lane, Homology 
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Each sequence consisting of a vertical step i, followed by two horizontal 
steps j and k, followed by a vertical step i, . . . is exact; indeed the dia- 
gram may be regarded as the intercalation of these various exact se- 
quences, which have the terms D in common. The description of the 
r-th derived couple at  indices (9, q) is visible in the diagram: Form 
E;,, as a subquotient of Ep,,with numerator obtained by pulling back 
(along k) the image of the composite vertical map ir-l, and denominator 
obtained by pulling forward (along j) the kernel of the corresponding 
ir-l (see (5.3)). 

Each filtration F of a 2-graded differential module A determines 
an exact couple as follows. The short exact sequence of complexes 

n Fp A-+q A/Fp-, A yields the usual exact homology sequence 

where i is induced by the injection, j by the projection, and k is the 
homology connecting homomorphism. These sequences for all $ com- 
bine to give an exact couple with 

and with degrees of i, j, k as in (5.5). Call this the exact cou#Ze of the 
filtration F. 

Theorem 5.4. The s$ectral seqwence of F is isonzor$hic to that of the 
exact cm$Ze of F. 

Proof. The spectral sequence of the exact couple (5.6) of F has 

Er = k-1 (Im ir-l)/j (Ker ir-I ) i: H(I$-,A) -+H(%A). 

Regard Ep=E;=H(Fp/I$-,) and hence also each E i  as a subquotient 
module of l$/q-,. Consider the numerator of Er. Each homology class 
of E; is represented by a "relative cycle" ccFp with accFp-,, while 
k ( c l s c ) = c l s ( ~ c ) ~ H ( F p ~ ~ )  lies in ir-lH(l$-,)<H(Fp-,) if ac=a+ab for 
some bcFp-, and some acFp-,. Then c-b is in the module 2; of (3.5) 
and c= (c-b)+ b E Z;uFp_,A. This is the numerator of (3.8). 

On the other hand, the denominator of Er is given by j(Ker ir-l). 
The kernel of iT-l: H(I$.A)+H(f&+-,A) consists of the homology 
classes of those cycles ce FpA with c = i3b for some b c  Fp+,-lA, hence 
for be~L;:-~. Then j (cls c) =CIS (a b) has 8 bc ~ Z & ~ - , U F ~ - ,  . This is the 
denominator of (3.8). All told, E; is given by the formula (3.8) used to 
define the spectral sequence directly from the filtration. In both cases, 
dr is induced by a : A+ A .  

Corollary 5.5. I n  the sfiectral sequence of an FDG-module the first 
differential dl may be described in terms of the mafis j and k of the exact 
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h o ~ o l o g y  seqzlence for FpA/Fp-,A as the comfosite dl= jk 

Note that the sequence of derived couples contains more information 
than the spectral sequence alone, since it involves not only the Er, but 
also the Dr and the maps i,, j,, kr which determine the successive differ- 
entials d'. 

An exact couple need not arise from a filtration. An example is the 
Bockstein exact couple (BROWDER [1961]; cf. also Ex.II.4.2) for a 
complex K of torsion-free abelian groups. Let I be a prime number, 
2, the additive group of integers modulo 1, and 2-Z+Z, the corre- 
sponding exact sequence of abelian groups. Since each K,, is torsion free, 
K w K +K @Z, is a short exact sequence of complexes. The usual exact 
homology sequence is an exact couple 

of 2-graded (not bigraded) abelian groups. 
Another instance arises from tensor products. The tensor product 

applied to a long exact sequence yields an exact couple and hence a 
spectral sequence. Indeed, factor the long exact sequence 

of left R-modules into short exact sequences 

For a right R-module G and each 9 we obtain the usual long exact 
sequence 

k i 
+ Tor, (G, KP)  ?- Torq (G. Ap) -+ Torq (G, KpWl) -) Torq-l (G. Kp) + -. - 
with connecting homomorphisms i. These assemble into an exact couple 
with 

DPPq = Torq (GI Kp) , Ep, =Tor, (G, Ap)  

with the degrees of i, j, k as in (5.5) ; moreover d =  j k :  Tor, (G, Ap) 
+Torq(G, A#-,) is the homomorphism induced by the given mapping 
Ap+Ap-, . Similarly, if C is a left R-module we obtain an exact couple 
with 

Dp,,= Ext-q(C, Kp) , EP,q= Ext-q(C, Ap) 

and with the degrees of i, j, and k as in (5.5). 
22* 
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Exercises 
I. For an exact couple 6 with "first quadrant" term E, show that Dp-l,q= 

Dp,p-l for p < 0 and q < 0. Describe the upper and lower edges of the corresponding 
diagram for 6. 

2. Show that the exactness of the derived couple 6' can be deduced from 
the Ker-coker sequence for the diagram 

The following sequence of exercises describe spectral sequences in terms of 
additive relations and is due to D. PUPPE [1962]. 

3. A differential relation d on a module E is an additive relation d: E2E 
with Ker d > I m  d. Define H(E, d). 

4. Show that a spectral sequence can be described as a module E together 
with a sequence of differential relations d,, r = 2. 3, . . . such that d,+,O = drE, 
d ~ 4 ~ E  = dr lo .  (Hint: define E,+l = H(E, d,).) 

5. Show that the spectral sequence of an exact couple a is E together with 
the differential relations d, = ji-,+lk, r = 2, 3, . . . . 

6. Show that the spectral sequence of a filtration F is that of the module 
EO= E$ with E$ =Fp/Fp-, and differentials the additive relations dT: Fp/f&lA 
Fp-,/Fp-,-l induced by (r = 0, 1, . . .). 

6. Bicomplexes 

Many useful filtrations arise from bicomplexes. A bicomfilex (or, a 
"double complex") K is a family {KP,,) of modules with two families 

of module homomorphisms, defined for all integers # and q and such that 

Thus K is a 2-bigraded module and a', a" are homomorphisms of bi- 
degrees (- 1, 0) and (0, - I ) ,  respectively. A bicomplex is fiositive if 
it lies in the first quadrant (Kp, ,=O unless f i  2 0, q 2 0). A homomor- 
phism f :  K -+L of bicomplexes is a homomorphism of bigraded modules, 
of degree 0, with f 8' = a'f and f a "  = a" f. The objects Kp,, in a bicom- 
plex may be R-modules, A-modules, graded modules, or objects from 
some abelian category. The secolzd homology H" of K is formed with 
respect to a" in the usual way as 

Hi:, (K) = Ker (a" : KP,, +K9,q-1)/a11 K,,,,; (6.3) 

it is a bigraded object with a differential a': H~, -+Hr- , , ,  induced 
by the original a'. In turn, its homology 

HaHr (K) = Ker (a': H;, +H~- l , q ) / a 'H~+ l , q  (6.4) 
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is a bigraded object. The first homology H f ( K )  and the iterated homology 
H"H'K are defined analogously. 

Each bicomplex K determines a single complex X = T o t ( K )  as 

X,=Z K ~ , ~ ,  a=af+ a f t :  x,+x,-,. 
fi+q=n 

(6.5) 

The assumptions (6.2) imply that a2=0; if K is positive, so is X ,  and 
in this case each direct sum in (6.5) is finite. This totalization operator 
has already been used. Thus, if X and Y are complexes of K-modules 
with boundary operators a' and a", respectively, X @ Y  is naturally 
a bicomplex ( X f i  @YJ with two boundaries 

which satisfy (6.2); the tensor product of complexes, as defined in 
Chap. V, is Tot ( X  @ Y). Similarly Hom ( X ,  Y) is a bicomplex. 

The first filtration F' of X=Tot (K) is defined by the subcomplexes 
F,' with 

The associated spectral sequence of F is called the first spectral sequence 
E' of the bicomplex. 

Theorem 6.1. For the first spectral sequence E' of a bicomplex K 
with associated total complex X there are natzlral isomorphisms 

I f  Kfi,,=O for #<O, E' Z*H(X).  If K i s  positive, E lies in the first 
quadrant. 

In other words, this spectral sequence shows how the iterated 
homology H'H" approximates the total homology of X. 

Proof. Let E = E' be the first spectral sequence. As in (3 .2 ) ,  E; ,~=  
He+, (FdX/Fb_,X). But the definition (6.6) of the filtration F' shows that 
(l$X/Fd_lX)p+q GK,,~.  Therefore E;,,= H x q  ( K ) .  Moreover, dl: El +El 
is induced by a= a' + a", which under the isomorphism E 1 s  H"K 
corresponds to a'. Therefore Ea= H(E1, dl) = H' H"K, as asserted in 
(6.7). 

Since each X ,  is the union of all q X , ,  the first filtration is conver- 
gent above. When Kfi,,=O for #<O, F_I,X=O, and the filtration is 
bounded below. This gives the convergence E' H ( X ) .  For K positive, 
(6.7) shows that E lies in the first quadrant. 

I t  is instructive to give a proof of the theorem directly from the 
definition 
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An element a €  FpX, has the form 

where we have grouped terms of the same bidegree. Hence a&':,, if 
af fa , ,=o and acZ;,, if 

Therefore E$,= Lp,q/Mp,q, where 

In L the first condition on a,,, makes it a a"-cycle, so that i t  determines 
cls" a*,, E HK , ; the second condition asserts that this homology class 
lies in the kernel of a': HX,-+H;-,,, . The term aff bp,,+, in M can vary 
a,,, by a a"-boundary, leaving cls"ap,, unchanged; the term afb?+,,, 
can vary cls" a,,, by af(cls" bp+,,,). Hence the correspondence given 
by a$,, +clsf (cls" aP,,) provides the desired isomorphism E;, ,S H i  Hy.  

The second filtration F" and spectral sequence E" are defined 
similarly. To keep p as notation for the filtration degree, write the 
bicomplex as K = (K,, so that a': Kq,* +Kq-l,p: Then F" is defined 
by (FyX),= 2 K,-,,, for h s p  and has an associated spectral sequence 
E" with E ~ ~ ~ H ~ H ~  ({K,,~)). When K,,?=O for p ( O ,  this converges 
to the filtration F" of H(X). If K is positive, both spectral sequences 
lie in the first quadrant and converge to different filtrations F' and F" 
of the same graded module H(X). 

Exercises 
I .  Let X and Y be complexes of abelian groups, with each X, a free group. 

In the first spectra1 sequence of the bicomplex K = XBY, show that E L ~ ~  
Hp(XgHq(Y)). Use the KWNNETH formula, with the explicit generators of V.6 
for Tor, applied as in Prop.V.10.6, to show that @ = ds= ... = 0 and hence that 
F = Em in this case. 

2. Describe E;,, by a quotient LIM, as in the second proof of the text. 

7. The Spectral Sequence of a Covering 
If a group I7 operates properly, as in IV.4 1, on the right on a path- 

wise connected space X, then X is a "regular covering" of the quotient 
space (= orbit space) X/I7 under the canonical projection 

f :  X+X/IT. 

Each u in 17 carries singular simplices of X into such, so the total singular 
complex S (X) and its homology H(S (X), C) are both right l7-modules. 
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Theorem 7.1. If 17 eerates  properly on the pathwise connected space 
X while C i s  any abelian group, there i s  a first quadrant spectral sequence 
E with 

Ei, ,=HP (IT, Hq ( X ,  C ) )  H(XI17, C) . (7.1) 

As always, the convergence means that there is a filtration F of 
the graded group H,(X/IT, C) and an isomorphism of EZq to the associ- 
ated (bi)-graded group G;H~+, (XIIT, C) . 

For the proof, first recall how the various homologies are computed. 
The singular homology H ( X ,  C )  is that of the complex C @ S ( X ) .  For 
any right IT-module A ,  such as H ( X ,  C) ,  the homology Hp (17, A )  is 
that of A@nB(17), where B(17) is the bar resolution for 17 - any 
other projective resolution of the trivial 17-module Z would do as well. 
Finally the homology of the orbit space XI17 is computed from its 
singular complex S (X /n ) .  There is an isomorphism of complexes 

g, : S ( X )  @,Z r S (X/17) (7.2) 

defined as g,(T1@l) = f T' for each singular simplex T' in X .  Indeed, 
since Z is a trivial 17-module, T'u @ 1 = T'@ 1 for each %€IT, so g, is 
well defined on Bn. By Lemma IV.11.3, each singular n-simplex T 
in XI17 can be lifted to a singular n-simplex T' in X and these T' ,  one 
for each T ,  are free II-module generators of S ( X ) .  Thus S,(X) @,Z 
is the free abelian group with generators T'@IT1,  f TI= T, and g, is an 
isomorphism. The bicomplex 

has two filtrations F' and F" and the corresponding spectral sequences 

each converging to the associated graded group of H(Tot K) under 
the corresponding filtration F' or F". 

For the first spectral sequence, HKq (K) = Hq (C @ S p  ( X )  8, B (17)) 
is the homology H, (IT, C @ S p  ( X ) )  of 17. If C =Z, this is just the homo- 
logy of 17 with coefficients in the free I?-module S p  ( X ) ,  which has been 
calculated to be S p  ( X )  @,Z for q= 0 and zero for q>O. Since S p  8, B 
is a complex of torsion free abelian groups, the universal coefficient 
theorem gives 

H;,(K)=C@Sp(X)@,Z, q = o ,  

By (7.2), the complex on the right is C @ S (XIIT). Therefore 
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Hence the spectral sequence "collapses" - it lies on the horizontal 
axis q=O, has all differentials zero, so is equal to its limit with 

H, (Tot K) g Hn (Xl17, C) . (7.3) 

In the second spectral sequence we write the indices of K as Kg,?= 
C 8.5, BnBp, so that f l  will still denote the filtration degree. The first 
homology Hi uses only the boundary in S, (X) ; since each Bp is a free 
lT-module, this gives 

The second homology H y  is then the homology of the group I7 with 
coefficients in H, (X, C), so that 

This gives the spectral sequence of the theorem. As for any canonically 
bounded filtration, it converges to H(Tot K) as given in (7.3) by the 
first spectral sequence. Hence the conclusion (7.1). 

This proof is a typical case of two spectral sequences, one of which 
collapses so as to determine the limit of the second. 

Corollary 7.2. If 17 oflerates #roflerZy on the flathwise connected 
acyclic sflace X there is a natural isomorflhism H,(D, C)rH,(X/lT, C) 
for each f l ,  where C is any abelian groufl regarded as a trivial IT-module. 

Proof. Since X is acyclic, Hq (X, C) = o for q j  o and is C for q = 0,  
so the (second) spectral sequence collapses, so has E2 isomorphic to the 
limit, as asserted. 

This result is the homology parallel of Thm. IV.11.5 on the cohomo- 
logy of Xl17. As in that case, this corollary could be proved directly 
without the use of spectral sequences. Put differently, the spectral 
sequences allow us to generalize Thm. IV.11.5 to apply to spaces which 
are not acyclic. For example: 

Corollary 7.3. If the sflace X has Ho ( X ) s Z  and Hq (X) = 0 for 
O<q<t and if 17 operates flroperly on X ,  then 

For n= t there is an exact sequence 

Proof. The universal coefficient theorem gives Ho (X, C) GC and 
H,(X, C) = O  for O<q<t. The spectral sequence of the theorem then 
has E:, , = o for O<q< t,  and hence ~r~ = E: ,=H, (17, C). The filtration 
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of Ht (XIIT, C) amounts to the exact sequence 

o +EFt -+Hi (XIIT, C) -+ Er0=Ht (IT, C) +O , 

while the description of EEt as the homology of E:,, under dt+l is the 
exact sequence 

Replacing E;+l,, by its value Ht+, (IT, C), using (X.5.2) to calculate 
E$,,=H,, (17, Ht (X, C)) r H t  (X, C) @,Z, and splicing these sequences 
gives the result. This exact sequence is a particular case of the "exact 
sequence of terms of low degree" (Ex. 3.3). 

This result determines H, (X/W for n< t and Ht (XI17) up to a certain 
group extension. A complete determination of Ht(X/IT) in terms of 
H(17) and H(X) requires an additional invariant, a cohomology class 
k E Ht+ l (IT, H, (x)), as introduced by EILENBERG-MACLANE [I 949,19501. 

The spectral sequence of a covering is due to CARTAN-LERAY [I9491 and to 
CARTAN [I9481 For further applications, see CARTAN-EILENBERG, p.356; Hu 
[1959], p. 287ff. ; HILTON-WYLIE [1960], p. 467. 

Exercise 
1 .  Show that the use of the first spectral sequence in the proof above may 

be replaced by proving that 1 BE: C @ S (X) BnB (n) -+ C @ S (X) BnZ is a homo- 
logy isomorphism, where &: B -+Z is the augmentation (use the first filtration 
and Thm. 3.4). 

8. Cohomology Spectral Sequences 

For cohomology it is customary and convenient to write a spectral 
sequence with upper indices and the usual change of signs as E?q= 
ELp,-, (the sign of r is not changed). The same spectral sequence E 
then appears as a family E, of bigraded modules, r=2,  3, . . ., with 
differentials 

dr: E?Q+.E?+~,P--~+~ @.I) 

of bidegree (r, I-r) and with H(E,, d,)=E,+,. Comparing this with 
the previous d': Ei+r,q-,+l +Ei, , , we see that the formulas for spectral 
sequences in the upper indices are obtained from those in the lower 
indices by reversing all arrows and moving each index up - or down, 
as the case may be - without a sign change. The limit, E, , is defined 
as before. 

A third quadrant spectral sequence E is one with E;,,=O when 
p>o or q>O; equivalently, all non-zero terms lie in the first quadrant 
of the upper indices, and the diagram is simply (1.6) with arrows re- 
versed (differential from fiber toward base, increasing the total degree 
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by I). The edge homomorphisms on the base are epimorphisms 

on the fiber are monomorphisms 

The transgression z: E~,,-,--E~,, is the additive relation (fiber to base) 
induced by dq, and defined by (4.1) with all arrows reversed. 

Let A be a DG,-module, written with upper indices (An=A-,) 
and a boundary operation 6: An+Anfl. A filtration F of A, written 
with upper indices FP= E l ' ,  appears as a tower of differential 2-graded 
submodules 

. . .>F+~A>FPA>P+~A).  . . (8.2) 

- often called a descending filtration, though it's really the same fil- 
tration in a different notation. Thm. 3.1 applies directly (only the nota- 
tion is changed): Each such F yields a spectral sequence {E,, d,) with 
@= H(FPA/FP+~A) and 

where Z?¶= [a\ a E ~ A P + ~ ,  6 a€ FP+'AP+gf '1, and d, is induced by 6. 
If F is bounded, there are natural isomorphisms E L ~ F P H  A/P+'HA, 
where p H  denotes the filtration of HA induced by F. These isomor- 
phisms also hold if F is convergent above (U P A  =A) and bounded 
below (for each .n there is an s with FSAn=O). Note that bounded 
"below" appears as a bound at the right in the descending filtration (8.2). 

The filtration F is canonically cobounded if P A  =A and F"+ 'An= 0 
(note that this is not the same as canonically bounded). This implies 
that the complex A is positive in upper indices (An=O for n<O). An 
argument like that for Thm. 4.4 proves 

Theorem 8.1. A canonically cobounded filtration of a DGZ-module 
A yields a "third quadrant" s#ectral sequence. The initial edge terms 
are given in  terms of the subcom#lexes F1A and L, where Lp=ZpO, as 
E;sn = Hn (A/FIA) and E? O = Hn (L), and the edge homomorphisms Hn (A) 
-+ E t *  and E? O + Hn (A) are iduced by the identity IA . The transgression 
z: EOrn-l- 1 EZ0 for n)= 2 is the additive relation induced by 6, and is 
also the connecting relation e = e (A ; L, FIA) 

Explicitly, the edge terms are given for r 2 2 by 
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Similarly, exact couples and bicomplexes may be written in upper 
indices. Many cohomology spectral sequences have an (exceedingly 
useful) product structure, arising from the cup product in cohomology. 

Exercises 
I. Under the hypotheses of Thm. 7.1,  obtain a third quadrant spectral sequence 

E@ q E HP (lI, Hq ( X ,  C)) p j  Hn (X/17, C )  . 
2. Prove Thrn. 8.1. 

3. If EZtq is a spectral sequence of vector spaces over some field, and V is 
a vector space, describe Hom (EZ, q ,  V) as a spectral sequence with upper indices. 

9. Restriction, Inflation, and Connection 

Our next example of a spectral sequence deals with the cohomology 
of a group 17 with a given normal subgroup r. Certain preliminary 
concepts relating the cohomology groups of ll and P are needed. 

If r is a subgroup of 17 and A a left I7-module the injection x: r+17 
gives a change of groups (x, I*) which induces a homomorphism 

called restriction, which is natural in A. Also A < r < 1 7  gives res; resg= 
resz. Let Ar denote, as usual, the subgroup of those elements a in A 
with t a= a for every t ~ r .  If r is a normal subgroup of 17, Ar is a left 
(17/r)-module. The projection a :  ll-+17/r and the injection j :  Ar+A 
give a change of groups (a, j) : (a A) +(17/r, Ar) which induces a 
homomorphism 

i n g r  : H" (II/T, A 3  -+ H" (ll,  A) (9.2) 

called inflation, which is natural in A. Moreover, there is an additive 
relation 

Q&: H" (r, A)  A H*+I (I7/r,A?, n>0 (9.3) 

called connection, and to be defined below. 
Recall that H" (n, A) = Hn(Homn (B(I7), A)), where B (17) = B (2 (17)) 

is the bar resolution. Each f cHomn(B,(17), A) can be written as a 
homogeneous cochain; that is, as a function f (x,, . . . , x,) EA of n+ 1 
arguments x i d 7  with f (x xo, . . . , x x,) = x f (x,, . . . , x,), normalized by 
the condition that f (x,, . . . , x,,) = 0 if xi= xi+, for any i .  Moreover 

Then restriction is induced by the chain transformation to given by 
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For g E Hornnlr (B, (ITIT), A ) ,  inflation is induced by the cochain trans- 
formation a* with 

These transformations a* and y may be recorded in the diagram 
of chain transformations 

of complexes denoted as L, K, Sr, S. Note that the (17/r)-module 
B(17/r) is also a 17-module by pull-back along a, so the complex L 
at  the left is canonically isomorphic to Homnlr(B(IT/lr), A') with 
cohomology Hn (17/r, A? and a* is B (a) * where B (a) : B (17) -t B (17/r). 
Each IT-module is also a r-module, by pull-back along the injection 
x: r + D ,  so each IT-module homomorphism is a T-module homomor- 
phism. This monomorphism i : Hornn -+ Hom, gives the vertical chain 
transformation i: K-+Sr in the diagram (9.6), while x induces 
B (x)* : S ' 4 S  there. Clearly y= B (x)*i. 

The chain transformation B(x)* is a cohomology isomorphism 

B (x)* : H" (Hornr (B(17), A ) )  =Hs(Homr (B( r ) ,  A))  = H" ( r ,  A) . (9.7) 
Indeed, since 17 is a union of cosets r y  of r ,  the free l7-module Z(17) 
on one generator is the direct sum of the free r-modules Z ( r )  y. Hence 
any free l7-module is also a free r-module, so E :  B (IT) -+Z is also a 
free r-resolution of the trivial r-module Z. The map B (x) : B ( r )  -+ B (17) 
is a chain transformation lifting the identity hence by the comparison 
theorem gives an isomorphism (9.7). 

Next, if r i s  a normal subgroup of 17 and A a I7-module, each H" ( r ,  A) 
is a (17/r)-module. First, for any =B, Hom,(B, A )  is a (17/r)-module 
under the definition (Hopf algebra structure!) 

(xf) (b)=xf(xlb)  forf:  B+A, ~€17, ~ E B .  (9.8) 

Indeed, x f so defined is a r-module homomorphism when f is, for, 
with t ~ r ,  ( x  f )  (t b) = x f (x-lt b) = x (x-lt x) f (x-l b) = t [(x f )  b] by the 
normality of r .  This makes Hom, a l7-module, but since t f =  f for 
t ~ r ,  it may be regarded as a (l7/r)-module. This module structure is 
natural in B, so Hom,(B(U), A) is a (ITIF)-module. By the isomor- 
phism B (x)* of ( 9 4 ,  H" ( r ,  A) becomes a (17lr)-module, as asserted. 
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An explicit formula for this (17/r)-module structure in terms of cocycles 
of B (r) is given in Ex. 3 -5 below. 

Lemma 9.1. For F normal in 17, the image of the restriction lies ilz 

H" ( r ,  A)". 

Proof. By (9.6), restriction is the composite y =  B(x)*i. For each 
17-module homomorphism f :  B(17) +A,  (9.8) gives x f = f for each 
x d 7 .  Hence, if f is a cocycle, cls f in H" ( r ,  A) is invariant under each 
operator of 17. 

In the diagram (9.6), the definitions (9.5) and (9.4) show a*: L-tK 
a monomorphism and y :  K +S an epimorphism, with composite y a* 
zero in dimensions greater than 0. Hence we are in the situation of 
a complex K with two given subcomplexes a* L and M= Ker y,  with 
(a*L)"<Mn for n>0 and S r K / M ;  in this situation (4.4) defines a 
homology connecting relation 

e = e ( K ;  a*L, Kery) :  Hn(S)-Hn+l (L) 

Take this to be the connection e;!, of (9.3). Explicitly, Q is the additive 
relation consisting of all pairs of cohomology classes 

The last condition implies that 6g=0 and 6y  f=O. 

Lemma 9.2. The module Def e for the connection e lies in H" ( r ,  A)". 

Proof. Take (cls,y f ,  cls,g) E e as above, and define a cochain 
h~ S'" for x , d l  by 

where the second term on the right in effect implicitly uses the contracting 
homotopy in B(17/r). Since the values of g lie in Ar, this function h 
is indeed a r-module homomorphism h : B, (17) A. A calculation 
with the boundary formula in B (U), using G f = a* g and dg = 0, shows 
6 h = 0. Moreover, B (x) : B (r) + B (17) carries h in Sf into y f in S, 
so any clss y f in Def Q is represented by clss,h in H" (Sf). In this complex 
Sf we can compute the action of any ~€17. Let k, be the cochain with 
k, (x,, , . . . , xn-,) =g (a x, I ,  a x,, . . . , a x,-,). The coboundary formula 
and the definition (9.8) show that 

Hence x h- h is the coboundary of k,, so the cohomology class of h 
in Sf is invariant under x, as asserted. 

By Lemmas 9.1 and 9.2 we may rewrite restriction and connection as 

res : H" (17, A) -t H" ( r ,  A)n and Q : H" ( r ,  A)"- Hn+l (17/T, A) . 
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Two minor observations will be needed in the next section. For 
modules (nlrlC, =B, and nA there is a natural isomorphism 

HomnIr (C, Hom, (B, A)) =Hornn (C @ B, A), (9.9) 

where Hom, has operators as in (9.8) and C @ B has "diagonal" opera- 
tors x (c @ b) = (x c @ x b). The map in (9.9) is given by adjoint associa- 
tivity. To check that it respects the operators indicated, consider any 
group homomorphism f :  C @ B-tA. This lies in Hom, on the right if 

f(xc@xb)=xf(c@b), CEC, bcB, XEIT. (9.1 0) 

For fixed c, f (c @--) lies in Hornr on the left if 

f (~@tb)= t f (c@b) ,  t € r ,  (9.1 1) 

while the condition that f yield a map in Hornnlr is 

Now (9.12) with bf=xb is (9.10)~ while (9.10) with x = t e r  has tc=c, 
hence gives (9.1 1). Thus the conditions left and right on f are equivalent. 

Lemma 9.3. For arty free 17-module F artd arty IT-module A, 

Proof. (Cf. Ex. 6.) I t  suffices to take for F the free 17-module Z (17) 
on one generator. The cohomology in question is that of the complex 

An n-cocycle f of this complex has f ((u,, . . . , u,) @ x) E A for % €IT/r. 
Define an (rt - 1 )-cochain h, using a :  17+17/T, by h ((u,, . . . , un-,) @ x) = 

f ((u, , . . . , un-, , ax)  @ x) . Then h is a IT-homomorphism and the condi- 
tion 6 f ((u,, . . . , u,, ax) @ x) = 0, when expanded, gives f = 6 h. Hence 
every cocycle of positive dimension rt is a coboundary, q.e.d. 

Exercises 
1 .  Show how the restriction homomorphism may be calculated from any free 

L7-module resolution of Z. 

2. If L7=TxA, identify l I /A  with r and show that infyAresF= 0. 

3. For a change of groups Q = (c, a)  : (r, A,  q) -+ (F', A', q') show that the 
homomorphism Q* : H" (T', A ' )  -t Hn (P, A )  of (IV.5.9) may be calculated from 
free resolutions e: X + Z  and E' :  X ' d Z  of Z as a trivial r -  or T'-module, respec- 
tively, as the composite 

Q* = f*u*: P(Homp(X',  A')) -tHn(Homr(X', A ) )  - t P ( ~ o r n ~ ( ~ ,  A ) ) ,  

where f :  X+X'  is a F-module chain transformation lifting Iz. 
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4. For r normal in 17, each 17-module A is a r-module under the induced 
q': r+ Aut A. For each ~ € 1 7 ,  show that the definitions 5,t = r l t  x for t e r  and 
a,a = xu yield a change of  groups 

ex=(5,,a,): ( r . A , v ' ) - t ( r , A , q ' l  

with ex = eye, For X + Z  a 17-module resolution and f as in Ex.3 show that 
cc, f * : IZbmr(x, A )  - tHomr(X,  A )  is the module operation of  x on Hornr, as 
defined in the text. 

5.  Use Exs.3, 4 to  prove that the module operation of  ~ € 1 7  on HS(P,  A )  is 
given on a (non-homogeneous) cocycle hE Hom (B, ( r ) ,  A )  by  cls h cls h', where 
h' is defined by  conjugation as 

hf(tl ,  . . . , t,) = x f  (x-Itl%, . . . , r l t , x ) ,  ti e r ,  x €17. 

6. Using (9.9), show that nF free implies Homr(F, A )  relatively injective, 
for the pair of  rings Z(17/r) ,  Z. Hence give a second proof of  Lemma 9.3. 

10. The Lyndon Spectral Sequence 

Theorem 10.1. For r a normal subgrozc~ of 17 and A a 17-module 
there is a third qzcadrant s#ectral seqzcence {E,, d,}, rtatural in A, with 
natural isomor#hisms 

E$.q= HP(17/r, Hq(r, A)) HP+q(17, A) ; 

converging as shown to the cohomology of 17. 
Here Hq(T, A) is a (n/r)-module with operators as described in 

$9. This spectral sequence thus relates the cohomology of the subgroup 
T and of the factor group IT/r to that of the whole group 17. 

Proof. Using the bar resolutions, form the bicomplex K with 

KPlq = Homn/r (Ba ( n / r )  Homr (Bq ( n ) ,  A)) 

=Homn(B* (Wr) @ Bq (U), A) 8 

as by (9.9), and with two differentials given, with the standard signs 
for a coboundary and a differential in B, @ Bq, for f e Kf'lq by 

The condition 6'6"+ 6"6'=0 is readily verified. The first and second 
filtrations of this bicomplex yield corresponding spectral sequences E' 
and E", both converging to H(Tot K). 

For the second spectral sequence E" the filtration index is still to 
be denoted as p, so we write Kqlf'= Homnlr(Bq, Homr(Bp, A)) for the 
terms of K, with second degree labelled as p. As for any bicomplex, 
EiP1q=H"pH'q(K). But H1q(K) is the cohomology ot n/P with co- 
efficients in Homr(Bp, A ) .  By Lemma 9.3, this is zero for q>O; it is 
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[Hom, (Bp, A)lWr= Homn (5, A) for q= 0, this because any H0 (a M) 
is the group Mn of 17-invanant elements of the I?-module M. Next, 
calculating Ht'p of Homn(Bp, A) gives the cohomology of 17, so that 

The non-zero terms all lie in the base q=O, so the spectral sequence 
collapses. For each total degree n there is only one non-zero quotient 
in the filtration of Hn(Tot K), hence an isomorphism 

Hn ( n ,  A)  G Hn (Tot K) . (10.1) 

The proof shows that this isomorphism is induced by the chain trans- 
formation 

(: Homn(B (D), A )  +Tot K 

which assigns to each f :  B,(L?)-+ A the element c ~ E K O I "  defined by 

For the first spectral sequence, Ei*,qsH'pH"q(K). Let St denote 
the complex Homr(B ( n ) ,  A), as in (9.6) ; the cohomology of S t is 
H ( r ,  A). Now KP= Hom ,/,(Bp (17/r), S') , with Bp ( W r )  a free (17IT)- 
module, is exact as a functor of S', so 

Hft4(Kf') =Hornnlr (Be (mr) , Hq (S t ) )  ~ H o m ~ ~ ~  (Bp (17/r), Hq ( r ,  A)) . 
Taking H'fi gives the cohomology of 17/r, hence an isomorphism I 
This spectral sequence converges, as for any positive bicomplex, to 
H(Tot K),  which by (10.1) just above is H n ( n ,  A),  q.e.d. 

Proposition 10.2. In the L y h n  sflectral seqztence E = E' the edge 
terms are 

Ee0~Hfi(17/I',AA3, E O , , ~ S H ~ ( ~ , A ) ~ / ~ = H ~ ( ~ , A ) ~  (10.3) 

and EFqrHq(r ,  A). The edge homomorflhism 

H" (lT, A) -+ E>"= Hn (r, A )  

on the fiber is the restriction homomor#hism re$. The edge homomor@ism 

H" (17/r, A 3  E2 O +- Hn (IT, A) 

on the base i s  the inf1atio.n infyr. The transgression z is the connecting 
relation Q of (9.3), 

T = Hn-l ( r ,  A) - Hn(17/T1 Ar) , .n > 1. (1 0.4) 
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The isomorphisms (10.3) are special cases of (10.2). Note that the 
edge homomorphism on the fiber has its image in E2n=H"(I', A)? 
exactly as for the restriction map (Lemma 9.1) and that the transgression 
z has its domain of definition contained in Hn-' ( r ,  A)n, exactly as for 
the connecting relation p (Lemma 9.2). 

Proof. For the spectral sequence E of the first filtration the edge 
effects are calculated by Thm.8.1 from the subcomplexes F IK and L 
of Tot K,  where LP=ZPO, using the injection L :  L-tTot K and the 
projection n: Tot K-tTot K/FIK. This gives the first line of the follow- 
ing diagram, in which the second line presents the complexes used in 
5 9 in the calculation of res, inf, and Q: 

L 
L + Tot K 5 (Tot K)/FIK 

i" J;, (1 0.5) 
 om=(^ (17/r), A) 2   om,(^ (IT), A )  -% H O ~ , ( B  (r), A ) .  

The maps A, 17, p, comparing these two lines will be defined in terms 
of the homogeneous generators (xo , . . . , x,) of B (m. Specifically, 
Lp=ZPO < P K  consists of all gc K9.O with G ~ E  Kfi+l*O; that is, with 
dUg=0. Since B1(IT) is the free abelian group on generators (x, y) with 
a(% y)= (Y)- ( 4 ,  

Therefore g(bf@ (x)) is independent of x d I ,  and (A g) bl=g (bf@ (1)) 
defines a chain isomorphism A : L s H o m n  ( B  (1T/r), A). An element of 
degree .n in Tot K is an ( n f  1)-tuple h = (hO, hl, . . . , hn) with h f i ~  Kfipn-P. 
I t  lies in F I K  if hO= 0. But Bo (ITIT) =Z  ( n / r ) ,  so 

Thus (9 h) (b") = hO ((1) @ b") defines a chain isomorphism g, on the right 
in (10.5). Finally, a straightforward calculation shows that the definition 

with a: 17-+17/r, h= (hO, . . . , hn), gives q:  TotK-+Homn(B ( n ) ,  A), a 
chain transformation which makes the diagram (10.5) commutative. 
Now <: Hom,(B (IT), A) +Tot K as described under (10.1) has 17 <= 1 ; 
since < induces a cohomology isomorphism (10.1), so does 7. 

The vertical maps in (10.5) are thus all cohomology isomorphisms. 
In the spectral sequence, the edge homomorphisms on base and fiber 
are (Thm.8.1) induced by r and n respectively; under these isomor- 
phisms they correspond to the inflation, as induced by a*, and the 

Mac Lane, Homologv 23 
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restriction induced by y. Similarly, Lemma 4.3 shows that the trans- 
gression, regarded as the connecting relation for the top line, agrees 
with the group-theoretic transgression computed (as in 9 9) from the 
bottom line. 

The terms of low degree in this spectral sequence yield an exact 
sequence 

In higher degrees the spectral sequence provides a more refined analysis 
of the kernels and images of the maps inf and res, in terms of a whole 
sequence of functors E?4(17, r ,  A) which may be regarded as "mixed" 
cohomology groups of the two groups II and r. 

As an application, we prove 

Corollary 10.3. If r is a normal subgrou@ of a finite groufi 17 with 
index k =  [n: I'] prime to its order h= [r: I ] ,  then for each IT-module A 
and each n>O, there i s  a sfilit exact sequence 

which thus gives an isomor~hism Hn (17, A) g H n  (WI', AT) @ H" ( r ,  A)n 

Proof. By Prop. IV.5 .j we know that each element of Hq(r, A) 
for q>O has order dividing h, while each element of Hf'(17/F, M), 
for @>O and M any (17lI')-module, has order dividing k. Therefore 
EkqrHf'(l7/I', Hq(r, A)) for p>O and q>O consists of elements with 
order dividing both h and k, hence is zero. The non-zero terms of the 
spectral sequence thus lie on the edges (@=O or q=O), and the only 
non-zero differential is the transgression (fiber to base) 

This is a homomorphism of an abelian group with elements of orders 
dividing h into one with elements of orders dividing k, where (h, k) = 1 ; 
hence dn is zero. Thus all differentials in the spectral sequence are zero, 
E,=E,, and there are only two terms (those on the edges) in each 
total degree n. The filtration of Hn(17, A) thus amounts to the exact 
sequence stated. This sequence splits; indeed, a standard argument 
using the Euclidean algorithm will show that any exact sequence 
B H C -+ D of abelian groups with k B = 0, h D = 0, and (h, k) = 1 must 
split. 
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Exercises 
(All the exercises refer to the Lyndon spectral sequence) 

I. In the filtration of Hn (R; A) show that p H n  may be characterized as 
the image of the inflation map, and FIHn as the kernel of the restriction. 

2. Establish the exact sequence 

O + P H ~ F = H = - + E $ ~ - + E ~ O - + H S ( ~ ,  A ) .  

3. (HOCHSCHILD-SERRE [1953].) Suppose m 2 1 and H" ( r ,  A) = 0 for 0 < n < m. 
Show that inf: ( U r ,  A 3  Hn (n, A) is an isomorphism for n < m, that the 
transgression r in dimension m is a homomorphism 7 :  Hm(r, A)=+ Hm+l (17/T, Ar), 
and that the following sequence is exact 

4. (HOCHSCHILD-SERRE [I9531 ; HATTORI [1960].) Suppose m 2 I and I% ( r ,  A) 
= 0 for I < n t m. For O <  n < m establish the exact sequence 

5. For C a right I7-module, establish a first quadrant spectral sequence con- 
verging to the homology of n, 

H p  (Wr, H ,  (r, c)) = E;, 0 ?H(n ,  c) . 

11. The Comparison Theorem 

In the manipulation of spectral sequences it is useful to be able to 
conclude from limited data that two spectral sequences are isomorphic. 
The comparison theorem now to be established does this for first 
quadrant spectral sequences E of modules over a commutative ring, 
provided there is a short exact sequence 

for the term Ea. This hypothesis frequently holds. For example, in the 
LERAY-SERRE spectral sequence of a fiber space with simply connected 
base space, (2.2)  gives E;,,=Hp(B, Hq(F)) ,  which by the universal 
coefficient theorem yields the exact sequence 

Since B and F are both pathwise connected, E;,,=Hp ( B ,  2) = H, ( B )  
and E ; , ~ ~ H ,  (B, Hq (F) )  g H q  (F) ,  and the sequence reduces to (1 1 . I ) .  

Theorem 11.1. (Comparisolz Theorem.) Let f : E +E' be a homo- 
morphism of first quadrant spectral sequences of modztles over a commutative 

23* 
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ring, each of which satisfies (11.1), such that f commutes with the ma#s 
x ,  o, x' ,  a' in (1 1 .I). Write G,,: EL,, +Egg.  Then any  two of the following 
conditions imp ly  the third (and hence that f i s  a n  isomor#hism) : 

(i) f;,,: E~,,+E;:, i s  a n  isomor#hism for all 9 2 0 ,  

(ii) 6, ,: E:,, +Ei:, i s  a n  isomor#hism for all q T_ 0,  

(iii) fr,:  Erq+E;: i s  a n  isomor#hism for all 9,  q. 

In view of the geometric applications, we read (i) as " f  is an iso- 
morphism on the base", while (ii) is "f is an isomorphism on the fiber", 
and (iii) is " f  is an isomorphism on the total space". 

Proof. That the first two conditions imply (iii) is elementary. By 
hypothesis, the diagram 

has exact rows and is commutative. Conditions (i) and (ii) imply that 
the outside vertical maps are isomorphisms. By the short Five Lemma, 
so is the middle vertical map f;,,. This isomorphism of the complexes 
(E2, d2), (Eta, dl2) implies that of their homologies E3, Ef3,  and so on 
by induction to give (iii), since each Ei,, is ultimately constant. 

The other cases of the proof exploit the fact that a spectral sequence 
can be regarded as an elaborate congeries of exact sequences in the 
bigraded modules 

ET, CT = ker d', BT = im d' and G' = E'/ B'. 

In the application of the Five Lemma (in its refined form, Lemma 1.3.3) 
we shall write down only the first row of commutative diagrams like 
(11 - 2 ) .  

To prove that (i) and (iii) imply (ii), consider the property 

(ii,) f$,,: E~,,-+E~:, is an isomorphism for O s q g m .  

Since E;,,= E?,, (iii) implies (ii,). Hence i t  will suffice to prove 
by induction on m that (i), (iii), and (ii,) imply (i&+,). Given (ii,), the 
diagram (11.2) shows that fi,, is an isomorphism for q s m .  By a sub- 
sidiary induction on 7 2 2,  we prove that 

a monomorphism for q S  m and all # , 
an isomorphism for q 5 m- r+ 2 and all # . 
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This holds for r = 2 ;  assume it for some r .  The Five Lemma for the 
commutative diagram on the exact sequence 

dr 
O--+C;,q+E;,q -+ EL-r,q+r-I 

which defines the kernel Cr of d' shows for the map cr induced by f' that 

a monomorphism for q l  m, 
c;, , : C;, , --+ C;lq is 

an isomorphism for q s  m- r+ 1. 

Now d' gives an epimorphism E ; + ,  + B;,, . If q s  m, f ; + ,  ,-,+, 
is also an epimorphism, hence so is the map b induced by f :  

b q q - B  isanepimorphismforqSm. (11.5) 

Next, Er+l is defined by the short exact sequence 

Form the corresponding two-row diagram. For q s m  the first vertical 
map is an epimorphism by (1 1.5), and the second a monomorphism by 
(1 1.4) ; hence by the Five Lemma the third vertical map 6:; is a mono- 
morphism. If, moreover, q 5 m- (r+ 1) + 2 = m- r + I ,  the second 
vertical map is an isomorphism by (1 1.4), hence so is 6:;. This completes 
the inductive proof of (1 1.3). 

Next we claim that 

c + is an epimorphism for r 2 + 2 2 .  (1 1.7) 

For r>+,  dr :  E; -+E; - ,  has image zero, so E i =  C i ,  fi= c i .  For r large, 
p, ,- f p , ,  , so c;, , in (1 1.7) is an isomorphism by the hypothesis (iii). f' - "  

We may then prove (1 1.7) by descent on r. Assume (1 1.7) for r+ 1 
and take the diagram on (11.6) with q=m-++2. The first vertical 
map is epic by (1 1.5) ; since = Ci:l, the third is epic by the case 
of (1 1.7) assumed. Hence, by the short Five Lemma, c;, , is epic, proving 
(11.7). 

Finally, we prove by descent on r that G,,+, is an isomorphism for 
r 2 2. I t  holds for large r by (iii) ; assume it for r+ 1 and consider the 
two-row diagram with first line 

df 
0--+C:,m-r+2--+E:,m-r+2--z E&rn+1--+Ek$+l+o- 

The first vertical map is an epimorphism by (1 1.7) for r=  +, the second 
is an isomorphism by (11.3), and the fourth is an isomorphism by the 
assumption of descent. Hence the third &,,+, is an isomorphism. For 
r=  2, this completes the induction on m in the proof of (ii,). 

The proof that (ii) and (iii) imply (i) is analogous. 
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Notes. .Spectral sequences were discovered by LERAY [1946, 19501 for the 
case of cohomology ; their essential features were noted independently by LYNDON 

[1946, 19481 in the case of the spectral sequence for the cohomology of a group. 
The algebraic properties of spectral sequences were effectively codified by K o s z u ~  
[1947]. Their utility in calculations for the homotopy groups of spheres was deci- 
sively demonstrated by SERRE [1951]. The equivalent formulation by exact 
couples is due to MASSEY [I9521 ; for still another formulation see CARTAN-EILEN- 
BERG, XV.7. The LERAY-SERRE theorem has been proved by acyclic models 
[GUGENHEIM-MOORE 19571 ; for other proofs see Hu [1959, Chap. 1x1, HILTON- 
WYLIE [1960, Chap. XI. and, with a slightly different notion of fiber space, FADELL- 
HUREWICZ [1958]. LYNDON'S spectral sequence was originally defined by a fil- 
tration of Hom(B(II), A ) ;  his sequence satisfies Thm.lO.1, but i t  is a t  present 
not known whether i t  is isomorphic to the spectral sequence we define, which 
uses a filtration due to HOCHSCHILD-SERRE [1953]. These authors established the 
edge effects (Prop. 10.2) only for the Lyndon filtration; our proof direct from the 
Hochschild-Serre filtration depends upon our description of connecting relations, 
which was concocted for this purpose. The LYNDON spectral sequence has been 
used by GREEN [I9561 to prove for a finite p-group II of order pn that H, (II, Z) 
has order p k  with k 5 n (n - 1)/2. For lI finite, VENKOV [I9591 proved topologically 
that the cohomology ring H(II, Z) is finitely generated as a ring; the algebraic 
proof of this result by EVENS [1961] uses the product structure of the LYNDON 

spectral sequence. Among many other applications of spectral sequences, we 
note BOREL'S [I9551 proof of the SMITH fixed point theorem and FEDERER'S 
application to function spaces [I9561 In the comparison theorem, due to MOORE 
[CARTAN seminar 1954- 195 51, we follow the proof of KUDO and ARAKI [ I  9561 ; 
a closely related proof by ZEEMAN [I9571 includes the case where the given iso- 
morphisms are assumed only up to specified dimensions. EILENBERG-MOORE [I9621 
study convergence and duality properties of spectral sequences in an abelian 
category. 

C h a p t e r  twelve  

Derived Functors 

This chapter will place our previous developments in a more general 
setting. First, we have already noted that modules may be replaced 
by objects in an abelian category; our first three sections develop this 
technique and show how those ideas of homological algebra which do 
not involve tensor products can be carried over to 'any abelian category. 
Second, the relative and the absolute Ext functors can be treated to- 
gether, as cases of the general theory of "proper" exact sequences 
developed here in $5 4-7. The next sections describe the process of 
forming "derived" functors: Horn, leads to the functors Extft, @, 
to the T o e ,  and any additive functor T to a sequence of "satellite" 
functors. Finally, an application of these ideas to the category of com- 
plexes yields a generalized KUNNETH formula in which the usual exact 
sequence is replaced by a spectral sequence. 
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1. Squares 

Many manipulations in an abelian category depend on a construction 
of "squares". Let a and j9 be two coterminal morphisms and consider 
commutative square diagrams 

formed with the given edges a and j9. Call the left hand square couni- 
versal, for given a and j9, if to each right hand square there exists a 
unique morphism y:  DU+D with p=j9'y, a"=afy. A couniversal 
square (also called a "pull-back diagram), if it exists, is unique up 
to an equivalence of D, so that a and j9 together determine ar' and p' 
up to a right equivalence. GABRIEL [I9621 calls D a fibred product. 

Such couniversal squares are familiar in many branches of Mathe- 
matics and under more general assumptions (than those made in an 
abelian category). In the category of sets, if a and j9 are injections, 
D is just the intersection of the subsets A and B of C. In the category 
of topological spaces, if /I is a fiber map and a:  A+C a continuous 
map into the base space of j9, then j9' is the so-called "induced" fiber 
map. In any abelian category, the couniversal square for C = 0 is 

Theorem 1.1. (Sqware Construction.) To given coterminal mor- 
phisms a, p in an abelian category there exists a couniversal sqware (1.1). 
In terms of the direct sum A @  B with its projections nl and n,, D may 
be described as the domain of v E ker (a nl- 8 n,), with a' = n,v, p' = nlv. 

Proof. For D, v, a', and /If as described, consider 

The two triangles are commutative, by definition of a' and j9'. The 
square (better, the diamond) on D is commutative, for 

Moreover, for any second commutative square on a and p, with upper 
corner D" as in (1 .I), the couniversality of A @  B provides : D"+ A@ B 
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with n15=#?", n2(=~".  Therefore O=a B"-B a''= (anl-@ n,) 5, so 5 
factors through v E ker (a nl -/3 n,) as 5 = v y for some y (see (1 2)).  Then 
P 1 = q v  y=B1y and a"=aly. If yo: D " 4 D  is another morphism with 
B1'=@'yO, C C " = U ' ~ ~ ,  then n jv  yo=njv y for j = l ,  2, so v yo=v y. But 
v is rnonic, so yo= y, and y is unique, as required for couniversality. 

For modules A ,  B, C, the corner D might have been described as 
the module of all pairs (a, b)  with a a=/? b ;  our argument has shown 
how to replace the use of the elements a, b by the difference a nl-,!l n2 
and the formation of kernels. 

Theorem 1.2. I n  a couniversal square, B monic implies /I' monic, 
B epic implies B' epic, and symmetrically for a. 

The proof uses the direct sum A@ B, with projections n, and in- 
jections t j .  First take ,!I rnonic. Suppose B1w=O for some w. Then 
/ ? n , v w = ~ a ' w = u ~ ' w = O ;  as /I is monic, n,vw=O. But also n1vw= 
/I' w = 0, SO v w = 0 and v monic gives o = 0. Therefore B' is left cancel- 
lable and thus rnonic. 

Next take ,!I epic. Suppose w (a nl- n,) = 0 for some w. Then 
o=w(un1--Bn,)  L ~ - - U ) / ~ ~ ~ L ~ = - C O B ,  SO w=O. Hence a n l - B n ,  is 
epic, thus is the cokernel of its kernel v. Now suppose that 5 B1=O 
for some 5. Then 0=5/3'=5 nlv, so 5 nl factors through a nl-,!I n , ~  
cokerv as 5 nl=['(a nl-B n,). Therefore O = t  nlt2=--E',!I n,r,=-E'B, 
so /3 epic gives 5' = 0,  hence 5 nl= 0,  5 = 0,  and B' is epic. 

Under duality (reverse arrows, interchange "rnonic" and "epic", 
etc.) the axioms of an abelian category are preserved. The dual square 
construction starts with coinitial morphisms a, B and constructs the 
commutative square on the left in 

so as to be universal (or a "push-out" diagram). Here, universal means 
that to any other such commutative square with a lower right corner 
DM there exists a unique y :  D-tD" with . . . . For instance, in the 
category of groups (not an abelian category) with a and /? monic, such 
a universal square exists with corner D the free product of the groups 
A and B with amalgamated subgroup C (NEUMANN [1954], SPECHT 

[1956]). 
Exercises 

1. If t a  is defined with t, a epic, then t c  coker[a (ker t a)]. 

2. For x rnonic, o epic, and x,  a coterminal, prove that x' and a' in the square 
construction are determined by the explicit formulas x'E ker e, a'€ coim (a x' ) ,  
with Q = (coker x )  a. (Use Ex. 1 .) 
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3. If Q (ker a) = 0 with Q epic, show that there is a monic p  and an epic a with 
p Q = a u .  

4. In  a commutative diagram 
e tl 

iTi .*.+. 
let both squares be couniversal. Show that the square with top and bottom edges 
r]  E ,  y is also couniversal. 

5 .  Construct a couniversal diagram t o  n given coterminal morphisms. 

2. Subobjects and Quotient Objects 

A subobject of A is determined by a rnonic x :  + A ,  and is the right 
equivalence class (all x0l0 an equivalence) of this x. The class A, of all 
subobjects of A may be treated as a set (axiom at  end of IX.1). 

The ordinary inclusion relation for submodules is matched by the 
definition that cls x 1 5  cls x, if and only if there is a morphism o with 
x,=x,o; this o is necessarily rnonic. The set A, is partly ordered by 
this relation s and has a zero OA with OA 5 CIS x for each x; namely, OA is 
the class of any zero morphism 0 :  O1+A, where 0' is any zero object 
of the category. 

In an abelian category, each morphism a with range A has a stand- 
ard factorization a =  ?, o ( A  rnonic, a epic) and im a=  cls ?,€ A,. We 
may thus describe A, as the set of all images of morphisms u with 
range A ;  then equality and inclusion are given by 

Proposition 2.1. I n  a n  abelian category, morphisms a,, a, with the 
same range A have (when "H" stands for "if and only i f" )  

im a, 5 im a, M al o = a,o for some epic a and some o ; 

Proof. The standard factorization of a,a,=a,a, gives im a, =im alal 
= im a,. Conversely, if a, and a, both have image cls x, they have 
standard factorizations al=x el,,, a,=% Q, with and Q, epic. The 
square construction on el and Q, yields, by Thm.l.2, epics a, and a, 
with Q,u,= eZaz, hence cr,a,=u,a,. The rest of the proof is similar. 

An element of A, will be written as a6AS or as im a for some a 
with range A ,  according to convenience. 

Each morphism 5 :  A+ B gives a map 5,:  A, + B, of sets, defined by 

The correspondence A+A,,  [ + [ ,  provides a "representation" of each 
abelian category by partly ordered sets with zero. We may also treat 
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A, a "pointed set". By a pointed set U is meant a set with a distin- 
guished element, say Otle  U. A map f :  U+ V of pointed sets is a function 
on U to V with f Ou=OV; in particular, f = O  means that f u=Ov for 
every uc U.  Pointed sets with all these maps f as morphisms constitute 
a category, in which we can define many familiar notions as follows: 
For every f : U -+ V : 

Image f=[allvJf  u=v for some UEU], 

f is surjective if and only if Image f = V, 

f is injective if and only if f u, = f u, implies u, = u,. 

If (f, g) : U-t V+ W, call (f, g) exact if Image f = Kernel g. As in abelian 
categories, (f, g) is exact if and only if g f = 0 and Kernel g < Image f, 
where "<" denotes set-theoretic inclusion. 

The fundamental properties of the subobject representation can be 
formulated in these terms: 

Theorem 2.2. I f  5: A-tB is a morphism in an abelian category. 
then 5, : A, +B, is a map of partly ordered sets with zero; that is 5,0, = 0, 
and a a' in A, im@ies ls a 1  5, a'. Also 

(i) 5=0 @ 5,=0; 

(ii) 5 is epic @ 5: is surjective; 

(iii) 5 is monic @ 5, is injective @ Kernel 5, = 0. 

I f  the com#osite q 5 is defined, (q E), =qs 5, and 

(iv) (5, q) is exact @ (5,, q,) is exact. 

Proof. If im a ,S  im a, in A,, then by Prop. 2.1 ala=a,o for some 
o and some epic a, so 5 a,a=5 a,o and im (5 a,) 5 im (5 a,). Hence 5, 
respects the partial order. Property (i) is immediate. 

If 5 is epic and imp€  B,, the square construction provides 5' and 
with 5' epic and 5 p1=B t', whence 5, im /?'=im /? and 5, is surjective. 

Conversely, if 6, is surjective there is an a with range A and im (5 a) = 
im l B ,  SO 5 a al = a, for epics a, and a,, whence 5 is epic. 

If 5 ismonic, 5,ima=5,ima' i m p l i e s ~ a u = ~ a ' a l ,  hence aa=a la '  and 
im a=im a', so 5, is injective. If 5, is injective, Kernel 5, is evidently 
zero. Finally, if Kernel & = 0, 5 a = 0 implies im (6 a) = 5, (im a) = 0, 
hence im a = 0 and a = 0, so 5 is monic. This proves (iii). 

For q : B +C, the definition of ker q E B, shows that 

Kernelq,=[blb~B, and bskerq] ;  (2.1) 
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in other words, ker q is the maximal element of the subset Kernel q, ; 
note that we write "ker" for a morphism in an abelian category, "Ker" 
for module homomorphisms, and "Kernel" for pointed sets. Similarly, 
for 5: A+B, 

Imaget ,=[b(b~B,  and bSimE].  (2.2) 

Indeed, if a has range A, 5, im a = im (5 a) 5 im 5 ; conversely im ,!? 5 im 5 
implies p a = 5 a for some epic a and some a with range A, so 5, im a = 
im (5 a) = im p. This proves (2.2). 

For q 5 defined, (q 5),=q,& follows by definition, and (2.1) and 
(2.2) give part (iv) of the theorem. 

Quotients are dual to subobjects. In detail, let Bq denote the set 
of all quotients of the object B ;  that is, the set of all left equivalence 
classes of epics a with domain B. The set Bq is a partly ordered set 
with zero; the zero is the class of 0 : B -4; the inclusion cls a 2 cls t 
is defined to mean t = p  a for some /I, necessarily epic. For modules, 
this inclusion has its expected meaning: If a :  A+A/S, t :  A-tAIT, 
then cls a 2 cls t means S < T, and hence A/T=(A/S)/(T/S). 

Each 5 : A+ B induces k : Bq + AQ (reverse direction !) by 5 4  (cls a) - 
coim(a 5). By the duality principle we do not need to prove the dual 
of Thm.2.2. Recall that the dual of a theorem is formulated by reversing 
all arrows and leaving unchanged the logical structure of the theorem. 
Thus "domain" becomes "range", and 5, becomes 5q. The set-theoretic 
notions are part of the logical structure of the theorem, so "E, injective" 
becomes "54 injective". 

Theorem 2.3. If 5: A+B i s  a morphism in a n  abelian category, 
then t q :  B4-tA4 i s  a map of Partly ordered sets with zero. Also 

(i) 5=0  w tq=O; 

(ii) 5 i s  monic w % i s  swjective; 

(iii) 6 i s  epic e 54 i s  injective e Kernel 5q=0. 

If the cowqbosite 5 q i s  defined, (5 q)q =qqtq and 

(iv) ( 5 , ~ )  i s  exact e (74, k) i s  exact. 

These properties have a more familiar form when stated in terms 
of the "inverse image" of subobjects (Ex. 5 ,  6). 

Exercises 
1 .  Verify directly that each of the assertions of Thm.2.3 holds in the abelian 

category of all R-modules. 

2. If r]  l is defined, show that im 5 5 ker r]  if and only if coker l z  coim r]  

and that ker r]  5 im if and only if coim r]  2 coker 5. 
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3. An anti-isomorphism g,: S+ T of partly ordered sets S and T is a 1-1 cor- 
respondence such that  s 5 s '  implies g, s zg, sf. Prove A, anti-isomorphic to  A9 
under the correspondence cls x +coker x.  

4. Prove that  A, is a lattice (1.8). with (CIS A)n(clsp) given in the notation 
of the square construction by cls (A p 3  = cls ( p  A'), and with (cls I)u (cls p) given 
by duality. 

5. For 6:  A+ B define E S :  B, -t A, by ES im j? = ker [Eq (coker j?)] (in the notation 
of Ex. 3, ES = g,-lPg,). Prove that ES is characterized by the properties E, (5' im B) 5 
im j?, E, im a $ im j? implies im a 5 6' im 8. For modules, conclude that SS (im /?) 
is the inverse image of the submodule im j? under 5. 

6. Restate Thm.2.3 in terms of the maps ES. 
7. Show that  im a is the greatest lower bound of the monic left factors of a. 

3. Diagram Chasing 

Various lemmas about diagrams (Five Lemma, 3x3 Lemma, etc.) 
hold in abelian categories. The usual proofs by chasing elements can 
be often carried out by chasing subobjects or quotient objects instead. 
We give three examples. 

Lemma 3.1. ( T h e  Weak  Four Lemma.) In a n y  abelian category 
a commutative 2 x 4  diagram 

with exact rows (i.e., with rows exact at B ,  C ,  B' ,  and C')  satisfies 

(i) 5 epic, 7 and w mo?zic i m p l y  5 monic, 

(ii) o monic, E and c epic i m p l y  q epic. 

Proof. Consider the corresponding diagram for the sets of subobjects, 
and write a €  A,, b'e Bi , etc. To prove (i), consider cc C, with c,c = 0 
(or, more briefly, take c which goes to 0 in C:). Let c go to d in D,. 
Then c and hence d go to o in Di; since w ,  is injective, d =  0. By exactness, 
there is a b which maps to c ;  this b maps to some b ' ~  B:. Both b' and 
c map to 0 in C:, so, by exactness, there is an a' which maps to b'. 
Since 5, is epic, there is an a which maps to a' and thus to b'. Let a map 
to b, in B,. But b and b, in B ,  have the same image in Bl; since 7, is 
injective, b=b,. Then a maps to b to c, which is zero by exactness of 
A+B+C. We have shown that Kernel(, is 0; by Thm.2.2, part (iii), 
c is monic. 

This proof of (i) is exactly like a chase of elements in a diagram 
of modules. The dual proof, using quotient objects, gives (ii). 
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There is a proof of (ii) by subobjects. Given any b ' ~  Bj, a simple 
chase gives a b~ B, with the same image in C: as b'; thus Q), q, b=g,, b'. 
With elements, we could subtract, forming q,b- b' in Ker g,. Instead, 
write b = im B, b' = im B'; then im (g, q B) = im (g, B'). By Prop. 2.1, there 
are epics a,, a, with g,qBa,=qB'a,, and hence pl,im(qBal-Bfa2)=0. 
Exactness a t  B' and 5 epic yield a new element b,=irnB,~ B, which 
maps to im (q a,-B'a,) in Bj . Prop. 2.1 again yields epics a,, a, with 
7 181°3=q B 01a4-B'a2a49 so 

bl=im (j?'a,a,) =q, (im (B a , ~ , - ~ ~ a ~ ) )  

shows b ' q ,  B, , so q is epic. In this fashion, Prop. 2.1 can be used to 
"subtract" two subobjects with the same image, much as if they were 
elements of a module. 

The weak Four Lemma also gives the Five Lemma (Lemma 1.3.3). 
Recall that x 11 a means that ( x ,  a) is a short exact sequence. 

Lemma 3.2. (The  3 xg Lemma.) A 3 x 3 commutative diagram in 
an abelian category with all three columns and the last two rows short 
exact sequences has its first row a short exact sequence. 

We prove a little more. Call a sequence (a, B): A+B+C left exact 
if @-+A+ B +C is exact (i. e., exact a t  A and B). Thus (u, j3) left exact 
means that U E  ker B. 

Lemma 3.3. ( T h e  shar# 3 x 3  Lemma.) A 3 x j  commutative diagram 
with d l  three columns and the last two rows left exact has its first row 
left exact. If in addition the first column and the middle row are short 
exact, then the first row i s  short exact. 

Proof. Consider the diagram (zeros on the top and sides omitted) 

By assumption, Af+B is monic and has u: Af+B' as right factor; 
hence u is rnonic. Since Af+C'+C is zero and C'+C is monic, /? u=O. 
To prove exactness a t  B', take b' in Bi with image 0 in Cj, and let b' 
map to b in B,. Then b' and b map to 0 in C,; by left exactness of the 
row a t  B, there is an a which maps to b. Then a maps to 0 in By and 
hence to 0 in A;. By left exactness of the first column, there is an a' 
which maps to a. Then u,af and b' have the same image in B,; since 
Bf--+B is monic, u,a'=bl. This shows the row exact a t  B'. Again the 
proof is like a chase of elements. 
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Now make the added assumptions and use the diagram of the 
corresponding sets of quotient objects, with all mappings reversed. To 
prove epic, by Thm. 2.3 part (iii), consider c ' ~  C'q with image 0 in B'q. 
By (ii) of the same theorem, there is a c which maps to c'. Let c also map 
to be  Bq. Since b then maps to 0 in B'q, exactness of the middle column 
at  B gives a b" with image b. But b and hence b" go to 0 in A.  By the 
short exactness of the first column, b" already goes to 0 in A". Exact- 
ness of the row at  B" gives a c" with image b". Let c" map to c, in Cq. 
Then c and c; have the same image in Bq, so c,=c by exactness. The 
original c', as the image of c", is now zero, so /? is epic as desired. 

Again, the proof uses quotients to avoid subtraction. For complete- 
ness, we adjoin 

Lemma 3.4. (The symmetric 3 x3 Lemma.) If a commutative 3 x3 
diagram has middle row and middle column short exact, then when three 
of the remaining four rows and columns are short exact, so is the fourth. 

Proof. Use duality and row-column symmetry of Lemma 3 .2 .  

Note. There are several other ways of establishing these and similar lemmas 
in an abelian category. 

The representation theorem (LUBKIN [I 9601) asserts that for every small abelian 
category d there is a covariant additive functor T on d t o  the category of abelian 
groups which is an exact embedding - embedding means that distinct objects or 

'1 morphisms go to distinct groups or homomorphisms; exact, that a sequence 
h c t  in d if and only if its image under T is an exact sequence of abelian groups. 
FREYD'S proof [1960] of this theorem studies the category of all functors T and 
embeds a suitable functor in its injective envelope, as constructed by MITCHELL 

[I 9621 following the methods of ECKMANN-SCHOPF. Using this important represen- 
tation theorem, the usual diagram lemmas can be transferred from the category 
of abelian groups (where they are known) to the small abelian category d .  

An additive relation r :  A- B in an abelian category can be defined to be a sub- 
object of A @  B, much as in 11.6. Under the natural definition of composition, 
the additive relations in d constitute a category with an involution r -+ r-l. PUPPE 
[I9621 has developed an efficient method of proving the diagram lemmas by means 
of such relations (which he calls correspondences) ; moreover, this provides the 
natural definition of the connecting homomorphisms for exact sequences of com- 
plexes in d. Also, PUPPE has achieved a characterization of the category of addi- 
tive relations in d by a set of axioms, such that any category satisfying these 
axioms is the category of additive relations of a uniquely determined abelian 
category. 

Exercises 
The first two exercises use the "subtraction" device noted in the proof of 

the Four Lemma. 

1. Prove the strong Four Lemma (Lemma 1.3.2) in an abelian category. 

2. Prove the middle 3 x 3  Lemma: If a commutative 3 x 3  diagram has all 
three columns and the first and third rows short exact, while the composite of the 



4. Proper Exact Sequences 367 

two non-zero morphisms in the middle row is zero, then the middle row is short 
exact (cf. Ex. 11.5.2). 

Note. Unpublished ideas of R. G. SWAN give a method of chasing diagrams 
using morphisms a: P + A  with projective domain in place of the elements of A .  
This method applies to an abelian category which has barely enough projectives, 
in the sense that for each non-zero object A  there is an a: P+A with projective 
domain P  and a + 0. Let A p  denote the class of all such a (including zero) ; each 
E :  A+ B  induces a map Ep A p +  Bp  of pointed sets defined by E p  (a)  = E a: P-t  B.  
The method is fomulated m terms of these maps E p ,  as in Exercises 3-9 below. 

3. An epic t is zero if and only if its range is O', and dually. 

4. For x, l monic, y x = o and y IZ = o imply y (xul) = 0. 

The remaining exercises use Ex. 3 and 4 and chase diagrams in an abelian category 
which is assumed, as in the note, to have "barely enough" projectives. 

5. Prove: 5 :  A  + B is epic if and only if E p  ( A p )  = B p .  

6. Prove : E :  A + B is monic if and only if Kernel E p  = 0. 
7. If 77 ( =  0, then ker q = im E if and only if Kernel q9 = Image t p .  

8. Using the principles of 5- 7, prove the weak Four Lemma. 

9. By the same methods, prove the 3 x 3  Lemma. 

1 4. Proper Exact Sequences 

In a number of cases we have dealt with a special class of exact 
sequences in an abelian category and with the corresponding Ext 
functor; for example, in the category of modules over a K-algebra A, 
Ext(,jK) uses those exact sequences of A-modules which split as sequences 
of K-modules. 

Another example arises in the category of abelian groups. An abelian 
group A is said to be a $ w e  subgroup of the abelian group B if a=m b 
for an integer m implies a = m a' for some a'€ A ; that is, if m A = m Bn A .  
Equivalently, A is pure in B if and only if each element c of finite 
order in the quotient group C = B / A  has a representative in B' of the 
same order. By Extf (C, A )  we denote the set of (congruence classes of) 
pure extensions of A by C. Topological applications of Extt appear 
in EILENBERG-MAC LANE [ I  9421, algebraic applications in HARRISON 

[1959], NUNKE [I959], F u c ~ s  [1958], and MAC LANE [1960]. That 
Extf is a bifunctor to abelian groups, entering in suitable exact sequtnces, 
will be a consequence of our subsequent theory. 

In any abelian category d let B be a class of short exact sequences; 
we write x P a  to mean that (x ,  a )  is one of the short exact sequences 
of 9, x@,,, to mean that x B a  for some a ,  and a c B e  to mean that x B a  
for some x .  Call B a #ro$er class (and any one of its elements a proper 
short exact sequence) if it satisfies the following self-dual axioms. 
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(P-1) If xpa ,  any isomorphic short exact sequence is in B; 
(P-2) For any objects A and C, A -A@ C +C is proper; 
(P-9) If xil is defined with xeBm, ileBm, then xAeBm; 
(P-3') If a z  is defined with acBe, zeB6, then a t €  Be; 

(P-4) If x and A are monic with x il cBm, then il cgm;  
(P-4') If a and z are epic with a z € B e ,  then a € p e .  

These axioms hold in all of the examples adduced above. They hold 
if B is the class of all 0-split short exact sequences of a relative abelian 
category 0: &+A, or if B is the class of all short exact sequences 
of the given abelian category. 

Note some elementary consequences. The first two axioms imply 
tha B is an allowable class in the sense of 1 x 4 ,  so B is determined 
by Pm r Be. Also, any left or right equivalent of a proper x is proper; 
when x as range A, cls x consists of proper monics and is called a 
proper \ subo 'ect of A. By (P-z), 0' n o'@ A +A is a proper short exact 
sequence, and dually; hence I A  and 0:  O'+ A are proper monic, and 
0:  A-tO' proper epic. A morphism a: A+ B is called proper if ker a 
and coker a are proper; as in Prop. IX.4.1, this amounts to the require- 
ment that im a and coima be proper. Any equivalence 8 has both 
ker 8 and coker 8 proper, hence is proper and in both Bm and Be. 

Proposition 4.1. The direct sum of two proper short exact seqzcences 
i s  #roper exact. 

Proof. Morphisms a,: Ai + Bi have a direct sum 

cc,@a2=r,cc,nl+r2a2n2: A,@ A2-tBl@ B,, (4.1 

where ni: A,@A2+Ai and l j :  Bj+Bl@ B,. If xlla and 1112, an easy 
argument shows (x@il)ll (a@z) .  Hence it is enough to show that 
x, AeBm imply x@AeBm. Since x@ il= (x@ 1 )  (1@ A), it suffices by 
(P-3) to prove x@ 1 ~ 9 ~ .  Thus we wish to prove for each D that 
(%,a): A-B+C proper exact implies ( x @ l , a l ) :  A@D-B@D+C 
proper exact. Here we have a' =a n ,  where n: B @ D + B is a pro- 
jection of the direct sum, hence proper by (P-2). Therefore al=a n 
is proper by (P-37, hence x@ 1 Eker a' proper, as required. 

Two proper short exact sequences E= (x, a) and E'= (x', a') from 
A to C are called congruent if there is a morphism 8 with 8 x = x', a' 8 =a. 
By the short Five Lemma, any such 8 is necessarily an equivalence. 

Proposition 4.2. If the proper short exact sequence E = (x, a) : A - 
B -+ C splits by a morphism a: C + B with a a = Ic, then a i s  a #roper 
monic and E i s  congruent to the direct sum. Conversely, a n y  sequence 
congruent to the direct szcm splits. 
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Proof. Since o(1 - a  a) =0,  1 - a  o factors through x ~ k e r  o as 
1 - a o = x p ,  and pa=() ,  @%=IA.  The resulting diagram A Z B Z C  
may be compared with the direct sum diagram by the usual equivalence 
8: A@ C -t B with a= 8 1, and 1, the injection C +A@ C. Now 8 is an 
equivalence and hence proper. Also a= 0 1, is the composite of proper 
monics, hence is a proper monic. The converse proof is easier. 

For any objects C and A, EX~>(C, A) is now defined as the set of 
all congruence classes of proper short exact sequences E: A - B +C; 
by the axiom (IX. l )  on sets of extensions, we may take Ext; to be a 
set. Now Ext> has all the formal properties found for Ext i  with R a 
ring : 

Theorem 4.3. For each proper class 9' of short exact sequences in 
an abelian category d, Ext>(C, A) is a bifunctor on d. The addition 
El+ E, = & (El@ E2) AC makes it a bifunctor to abelian groups. 

The proof is like that for R-modules. The essential step is the de- 
monstration that ~ x t >  is a contravariant functor of C; as in Lemma 
111.1.2, we must construct to each proper E and each morphism y :  C1+C 
of d a unique commutative diagram 

with first row E' proper exact (here 0 is the zero object 0'). First build 
the right-hand square by the square construction of Thm. 1.1. By 
Thm. 1.2, o' is epic. Form a second square 

The couniversal property of the first square provides x': A+D with 
Bx'=x and o'xl=O. The diagram (4.2) is now constructed and is 
commutative. 

To prove E' exact, consider any t with a'[ = O.  Thus o p 5 = y 0'5 = 0, 
so 5 factors through x~ ker a as /3 5=x a=p x'a for some a. But also 
o1,$=0=o'x'a, so the couniversality of D for the coinitial maps 5 and 
x'a with range D gives 5=x'u. Since any 5 with 0'5=0 factors through 
x',  and a'%'= 0, we have x ' ~  ker a'. 

The proof that E' is proper uses a direct sum. By the square 
construction, D, p, and o' are defined by the left exact sequence 

on - y n ,  
O + D ~  B@C1- C,  n,v=p, n,v=ol.  

Mac Lane, Homology 24 
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This v need not be proper, but 

By axiom P-2, L ~ E P ~ ;  then axiom (P-4) shows x l ~ P m ,  and thus E' 
proper. 

From the couniversality of the square on D it now follows that the 
morphism (1, /?, y): E'+E of proper short exact sequences is couni- 
versa1 for morphisms (al, a, y) : El +E, exactly as stated in Lhmma 
111.1 .?. 

Now define E y to be E':  This gives a right operation by y on E ;  
from the couniversality of E' it follows that ExtL is a contravariant 
functor of C. The proof that ~ x t > ( C ,  A) is covariant in A is dual, so 
need not be given; the proof that it is a bifunctor can be repeated 
verbatim (Lemma 111.1.6) ; a similar repetition, using Prop. 4.1, shows 
that ~ x t > ( C ,  A) is an abelian group. 

A long exact sequence is #ro#er if each of its morphisms is proper. 
An n-fold exact sequence S starting at  A and ending at  C can be written 
(via standard factorization of its morphisms) as S = E, o .. . o El, a com- 
posite of n short exact sequences. By Prop.IX.4.1, S is proper if and 
only if each of its factors Ei is a proper short exact sequence. Call two 
n-fold sequences S and S' from A to C congruent if the second can be 
obtained from the first by a finite number of replacements of an Ei by a 
congruent El or of two successive factors by the rule (E a) o F= E o (a F) 
or E o (a F) = (E a) o F, where E and F are both proper and a is any 
matching morphism. Now the set Ext%(C, A) has as elements these 
congruence classes of such n-fold sequences S, with addition and zero 
as before. The properties of Extg are exactly those summarized in 
Thm. 111.5.3. 

These properties may be restated in different language. A graded 
additive category '3 is a category in which each homg(C, A) is the set 
union of a family of abelian groups {hom* (C, A), n =  O,1, . . .) in which 
composition induces a homomorphism hom (B, C) @horn (A, B) -+ 
hom (A, C) of degree 0 of graded abelian groups, and such that 3 becomes 
an additive category when only the morphisms homo(C, A) are con- 
sidered. In particular, each morphism of a graded additive category 
has a degree. Now regard a proper n-fold exact sequence S starting 
a t  A and ending at  C as a morphism of degree n from C to A, while 
the original morphisms from C to A are taken to have degree 0. The 
properties of ExtB may now be summarized by 

Theorem 4.4. Each #roper class B of short exact sequences in an 
abelian category d determilzes a graded additive category c?B(d) with 
objects the objects of d and hom; (A, B) = Ext",A, B) ; in #articular, with 
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horn: (A, B) = homd(A, B). In coqbosition is given by  Yoneda 
coqbosition of ProPer lolzg sequences and of homomorfihisms with long 
sequences, while addition is defined by  cls (Sl+ S,) = cls (VB (Sl @ S,) A,). 

If B is any proper class of short exact sequences in the abelian 
category d, then congruent proper long exact sequences S and S' are 
also congruent as improper long exact sequences. This gives a natural 
transformation Ext%(C, A) -+Ext%(C, A) of bifunctors. Prop. 4.2 asserts 
that this transformation is a monomorphism for n = l .  This may not 
be the case when n > l ;  in any event, in an elementary congruence 
(E a) o FI E o (a F )  in d, a F is proper does not imply F proper. 

Note. The idea of systematically studying exact sequences of R-modules 
which S-split is due to HOCHSCHILD [1956], with hints in CARTAN-EILENBERG 

[I9561 Homological aspects of the case of pure extensions of abelian groups were 
noted by HARRISON ([I9591 and in an unpublished manuscript). Possible axioms 
for proper exact sequences were formulated by BUCHSBAUM [1959, 19601, HELLER 

[1958], and YONEDA [I9601 Our axioms are equivalent to those of BUCHSBAUM. 
BUTLER-HORROCKS [I9611 consider the interrelations of several proper classes in 
the same category; instead of the proper class they treat the subfunctor 
~xt><Ext ' .  The functors Ext for the category A=Morph (d) of morphisms 
of d appear to have a close relation with those for d [MAC LANE 1960bI. 

Exercises 

I ,  [BUCHSBAUM.] Show that (P-2) may be replaced by the requirement that 
u /? = 1, implies PEPm. 

2. [HELLER.] If %EPm and x u  is a proper morphism, u is proper. 

3. Construct an example of two pure subgroups in Z4 @Z2 to show that x,  I€@',,, 
need not imply x + & P m .  

4. Construct an example of an impure extension F of abelian groups and an 
u with u F pure. 

5. If 9 and 9' are proper classes of short exact sequences, so is Bn 9'. 

6. [HARRISON.] If S is a fixed module, show that the class of all short exact 
A H- B + C with Hom (S, B) 4 Hom (S, C )  an epimorphism is a proper class. 

5. Ext without Projectives 

If d has enough proper projectives for the given proper class 9, 
each object C has a proper projective resolution e :  X-tC.  Then the 
natural isomorphism Ext%(C, A) Y Hn(Homd(X, A ) )  holds, just as for 
modules (Thm.III.6.4). As in that case, we can establish the standard 
long exact sequences for Ext;. Instead, we give a direct proof, using 
neither projectives nor inj ectives. 

24* 
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Theorem 5.1. For B a proper class of short exact sequences i n  an 
abelian category a?, E = (x, a)  : A - B +C a proper short exact sequence, 
and G any object there i s  an exact sequence of abelian groups 

2%'' E" 
+Ext'&l (A, G) E"-l. Ext%(C, G) 5 Ext$ (B, G) -+ Ext% (A, G) + . . . 

with ma@ given by composition; i n  ~ar t icular ,  En (cls S )  = (- 1)" cls (So E) . 
The dual of this theorem asserts the exactness of the usual long 

sequence with E placed in the second argument, as in Thm. 111.9.1. 

Proof. I t  is immediate that onEn-l=o, xnon=O, and Enxn=O. 
Write "onlxn" for "(6, xn)" is exact. We must prove 

For n = 0 and for EOl d, the proof is that for modules, with minor va- 
riants. 

To show ollxl, consider E'EEx~>(B, G) with E'x-0. This states 
that E'x splits, so the definition (4.2) of E'x amounts to a commutative 
diagram 

E'X: O + G ~ ' - G @ A % A + O  

with p monic by the square construction (Thm. 1.2). Moreover, o o ' ~  
coker p, for a o'p = a x n, = 0, while if 5 p = 0 for some 5, then 5 x'= 
5 p il = 0, whence 5 = q  o' for some q with 0 = q  o'p =q x n, . Since n, 
is epic, q x = 0, and q thus factors through o as q =[ o. Hence 5 factors 
through o o', so p E ker (o o') is proper by (P-3'). 

To fill in the dotted portion of the diagram, use the proper injection 
1,: A+G@ A, take e~coker (p  1,) and a = @  x'. Since o o'p i,=o x n2i2= 
o 1, = 0, o o' factors through Q as a o' = t Q with t proper epic by (P-4'). 
Now replace both G's in the top row by 0, n, by 1, and p by p L,. The 
resulting 3 x 3  diagram has proper exact columns and the first two 
rows exact; by the 3 x 3  Lemma the third row is exact, and proper 
as t is proper. This row is therefore an E,E Ext>(C, G); the diagram 
states that E o a  E'. Hence dl xl. 

Lemma 5.2. If xnl E" for all proper E ,  the% En] on+' and on+'l xn+l. 

In the proof, we omit the subscript B on ExtB and write xE and 
oE for the two non-zero morphisms of a short exact sequence E =  
(x, , 0,). This gives the convenient congruences (Prop. 111.1.7) 
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First suppose that SecExtn+l (C, G) has d + l S = 0 .  Write S as a 
composite S = To F for Tc E Extu. Hence O= S o= T(Fa) ; the hypo- 
thesis (with E replaced by Fo)  gives UE Ext" with T= U x,,, hence 
S= U(x,,F). But (x,, F) o xF,(Fo) = 0, so the assertion EOl o1 pre- 
viously proved gives a morphism u with xF,F= aE.  Thus S -  U(xF,F) = 
(U u) E - f En (U a), as desired. 

Second, we wish to prove that S ~ e E x t " + l  (B, G) with S x=O can 
be written as SE Va for some V c ~ E x t ~ + l .  The proof is similar, using 
olI x1 instead of EOl 0'. 

The proof of the theorem is now reduced to showing xnl E" for all 
rill. 

Next consider xl( El, which asserts that if FEE Extl (A ,  G) has F E r 0, 
then F r F 1 x E  for some F'. To deal with this we must enter into the 
several-step definition of the congruence relation FE=O. We actually 
prove a little more : 

Lemma 5.3. For FE Extl (A, G) and E E Extl (C, A ) ,  the followirzg 
three properties are equivalent: 

(i) F ~ F ' x E f o r ~ o m e F ' ~ E x t l ;  

(ii) E= oFEf for some E'eExtl; 
(iii) FE=o.  

To prove that (i) implies (ii), write the commutative diagram for 
the morphism F+Ff defining FfxE as 

i .. Lo, 1%. 
F': o-tG-+*--+ B-tO 

with last column E. Here ,LL is monic by the square construction for 
F'xE. Insert oEol at the dotted arrow. This morphism is proper epic and 
also in coker p, by a proof like that for oo' in the previous diagram. The 
middle column is now a proper short exact sequence E', and the 
diagram states that oFE1=E, as required. The proof that (ii) implies 
(i) is dual to this one. 

The hypotheses of the lemma insure that FE€cExt2(C, G) is de- 
fined, and (i) implies that F E  = (F' xE) E = Ff(xE E) = F ' O  = 0, which is 
(iii). Dually, (ii) implies (iii). To prove the converse, let F # E  denote 
the property of F and E given by the equivalent statements (i) and (ii). 
Now the zero of Ext2(C, G) has the factorization O=F,E,, with 
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and F,#Eo, since F,=x&F' with F': GnG@C+C.  Assume FE=O 
as in (iii) ; this congruence is obtained by a finite number k of applica- 
tions of the associative law F'(y El)= (Ffy)E' to F,E,=O. We now 
show that F#E,  by induction on the number k of such applications. 
Since F,#Eo, we need only show that Fy#Ef  implies F# y E', and 
conversely by duality. Now, by (ii), Fy#Ef  states that Ef=aF,E" 
for some E". The diagram defining Py, 

yields y aF,=aF B for some B. Therefore y E'= (y oFy) E" = aF@ E") ; 
by (ii), this states that F# E'. The converse proof uses (i) in place 
of (ii) for the relation #. We have completed the proof that (iii) implies 
(i) and (ii). 

Lemma 5.4. Condition (ii) of Lemma 5.3 is equivalent to: 
(ii') For some morfihism u and some E', Fa -  0 and E u E'. 

Proof. Since FaF= 0, (ii) implies (ii') . To prove the converse, write 
F as G n  D+A. For any object L, the dual sequence induced by F 
begins 

0 +hom (L, G) +hom (L, D) -% hom (L, A) %- EX~>(L, G )  ; 

we already know this portion to be exact. Therefore F a s O  with 
a :  L +A gives u = a, b for some B: L +D. Thus, given (ii'), we get 
E r  u E' r OF (j3 E'), which is (ii) of the Lemma. 

These lemmas are the first step of an inductive proof of 

Lemma 5.5. For n>O, SEEEX~"(A,  G), and EcExtl (C, A) the 
following three #rofierties are equivalent 

(i) For some Sf EEEx~",  S =  Sf xE; 
(ii) For some mor@hism u and some E', S u s  0 arad E =  a E'; 
(iii) S E O .  

The implication (iii) + (i) will show xnl En and complete the proof 
of the theorem. 

To prove that (i) implies (ii), write Sf as a composite TF', with 
F'E Extl. This gives S- SixE= T(F1xE). Apply Lemma 5.3 to F= FixE 
and E ;  it proves E- a,Ef with S a,- T ( F u ~ )  = 0, which is (ii). 

To prove that (ii) implies (i), use the induction assumption. Given 
E E U  E' and S a=O, write S as a composite T F  with T~cExt"-l.  
Now T(Fu)-0, so by induction [(iii) implies (i)] there is a T f ~ ~ E x t n - l  
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with T= T1xFa. Thus S = TF= T1(xFaF) and (xFaF) a=  xFa (Fa) = 0, 
so (xFaF)E=O. By Lemma 5.3 [(iii) implies (i)], this gives xF,FrF1xE 
for some F', so S =  (T'F') x,, which is (i). 

Both (i) and (ii) imply (iii); to get the converse implications, let 
S # E  again stand for the relation between S and E given by the equi- 
valent statements (i) and (ii). Then S E r O  implies S#E, by induction 
on the number of steps in the congruence S E r 0, just as in the proof 
of Lemma 5.3 

Note that the condition (ii) of this lemma may be interpreted to 
say that the congruence S E z  0 may be established by one associativity 
S E  = S (a E') - (S  a) E' involving E, with the remaining associativities 
all applied within S a. 

Note. The theorem thus proved was established by BUCHSBAUM [1959]; the 
above arrangement of the proof is wholly due to STEPHEN SCHANUEL (unpublished). 

6. The Category of Short Exact Sequences 

Let B be a proper class of short exact sequences in an abelian cate- 
gory d. Construct the category SesB(d) (brief for short exact sequence 
of d) with 

Objects: All +roper short exact sequences E = (x, a) of d ,  

Morphisms r: E +El: All triples r= (a, @, y) of morphisms of d 
which yield a commutative diagram 

k , P ,,, b 
E': O+Af+ B'-+ C1+O. 

Under the evident composition and addition of morphisms, Ses9(d) 
is an additive category. However, SesB(d) is never an abelian category. 
To see this, note that a morphism (a, j3, y) with a =/? = 0 necessarily 
has y = 0, for y a =  a1j3 = a'o = 0 with a epic implies y = 0. The composi- 
tion rule (a, /?, y) (a1, j3', 7') = (a a', j3 @', y yl) shows that a and /? monic 
in d imply (a, j3, y) monic in Ses9(d). Dually, j3 and y epic in d imply 
(a, j3, y) epic in Ses9(d). For the zero object 0' and any object 
G+ 0' in d construct the morphism r= (0, 1, O), 

of short exact sequences. Since 0 and 1 are monic, P i s  monic; since 
1 and 0 are epic, r i s  epic. But r is not an equivalence, as it must be 
in an abelian category. 
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The cause of this phenomenon is not difficult to see. If we take 
the "termwise" kernel of this morphism r, we get the short sequence 
o1+O'+G which is not exact; the same applies to the "termwise" 
cokernel G+O'+O'. Indeed, the Ker-Coker sequence of Lemma 11.5.2 
indicates that these two sequences must be put together with I G :  G +G 
to get an exact sequence. (Using additive relations, one may obtain 
the ker-coker sequence in any abelian category.) 

Now embed SesB(d) in the category 9'(.d) with 

Objects : All diagrams D :  A+B+C in d (no exactness re- 
quired), 

Morphisms r: D +Dl: All triples r= (a, B, y) of morphisms of d 
which yield a commutative 2x3  diagram, as above. 

Since 9(d) is a category of diagrams in an abelian category, it is 
abelian; moreover, (a, p, y) is epic in 9(d) if and only if a, p, and y 
are all epic in d, and likewise for rnonics. A short exact sequence 
D' H D +D" in Y ( d )  then corresponds to a commutative 3 x 3  diagram 

in d ,  with columns exact in d. Call D' H D +D" allowable in 9(d) 
if all rows and columns in this diagram are proper short exact sequences 
of d .  This defines an allowable class of short exact sequences in Y(d),  
in the sense of IX.4, and hence defines allowable morphisms of Y ( d ) .  

Proposition 6.1. A morphism r= (a, B, y) : D+D" of Y(d)  i s  a n  
allowable epic [an allowable monic] of Y(d)  if a.nd only if D and D" 
are proper short exact sequences of d and a, B, and y are proper epics 
of d [respectively, proper monics of d l .  

Proof. The condition is clearly necessary. Conversely, given a, B, 
and y proper epic, form the 3 x 3  diagram with second and third rows 
D and D", first row the kernels of a, B, and y with morphisms induced 
by those of D. By the 3 x 3  lemma, the first row is short exact; by the 
axiom (P-4), the first row is proper. Hence all rows and columns are proper 
exact, so r is allowable. 

Now "proper" projectives are defined as were "allowable" projec- 
tives (IX.4). Given a proper class B, an object P of d is called a proper 
projective for Bif it has the usual lifting properties for the proper epics; 
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that is, if each proper epic a:  B -+ C induces an epimorphism Hom (P ,  B) 
+Hom(P, C). We say that there are enough proper projectives if to 
each object A there is a proper epic z: P+ A with P proper projective. 

Theorem 6.2. If P and Q are pro+er projective objects of the abelian 
category d ,  then F :  P + P@ Q + Q i s  a n  allowable projective object in 
Wd)' 

Proof. Given any commutative diagram in d, 

with exact rows and r: E+E1 allowable epic, we are required to find 
a morphism Z': F- tE  of the first row to the third so that r Z 1 = Z :  
F+E1. By Prop.6.1, a, j3, and y are proper epic in d ;  thus yu is proper 
epic. Since P and Q are proper projectives in d, 5 can be lifted to 
5': P+A with a5'=5 and 5 to o: Q+B with y om=[. Take 6,: Q+ 
P@ Q. Nowo'@w--7 L2)=yd0--[n2La=c-5=o, SO Po-7 L, factors 
through x ' ~  ker u' as o- 7 L, =x1o', for some o' : Q -t A'. Since u is 
proper epic and Q proper projective in d,  o' lifts to y :  Q- tA with 
a y = or, and 

0-7 L ~ = ~ ' u  Y=P x y .  

Define 7 ' :  PCB Q+B and c':  Q+C, using nl: PCB Q+P, by 

Then Z'= (5', q', C') : F +E is the required morphism. 

We now show that there are enough allowable projectives, not for 
all the objects of 9'(d), but for the objects in S e s B ( d )  < 9(d). 

Theorem 6.3. If the abelian category d has enough proper projec- 
tives, the% to each proper short exact seqzcence E :  A - B+C of d there 
i s  a n  allowable projective F and a n  allowable epic Z= (5,7,5) : F+E 
of q d ) .  

We will construct an F of the form given by Thm. 6.2. Since d has 
enough proper projectives, we can find proper projectives P and Q 
and proper epics 5 :  P - t A ,  w:  Q-tB. The composite 5 = o o :  Q+C 
is proper epic, while 7 = x 5 nl+ o n, : P @ Q + B provides a morphism 
Z= (5, 7 ,  c ) :  F+E. But 5 and c epic, by the short Five Lemma, imply 
7 epic. Hence Z is allowable by Prop. 6.1, provided only that 7 is proper. 
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But 7 is determined by 7 ~ , = x  5 ,  q ~ , = w ,  so may be written as the 
composite 

VB P ~ B Q % A @ B ~ B @ B - B .  

Both factors f @  w  and 6 ( x @  1) are proper epics, the latter because 
it is equivalent to the (proper) projection n, of a direct sum, as in the 
diagram 

VB (U 0 1) A @ B - B  

with 9, and y automorphisms of A @. B  defined by 

(with elements, tp (a, b) is (a, b- x a) and y (a, b) = (a, b+ x a)). The 
proof is complete. 

This theorem constructs allowable projective resolutions: 

Theorem 6.4. Let B be a proper class of short exact sequences in the 
abelian category d .  To each +roper short exact sequence E of d there 
is an allowable projective resolution E:  K + E  in Y ( d ) ,  represented by a 
commutative diagram 

in d, with each row a proper projective resolution in d, each column 
of K  a p.oper short exact sequence (of proper firojective objects) in d, 
and each W, = X, @ Y, . 

Proof. Thm.6.3 constructs E: K + E  by recursion, with each K,  
an allowable projective of Y(d)  of the form F of Thm.6.2. Thus K ,  
is a proper short exact sequence X,  -W, +Y, with X,, W,, and Y, 
proper projective (and W,= Xn@ Y,). Each a : K ,  +K,-, and E : KO +E 
is an allowable morphism of Y ( d ) ,  so the rows of the diagram above 
are exact and proper in d. Observe that K  may be regarded either 
as a complex of short exact sequences, or as a short exact sequence 
X  n W-sY of complexes of d. Observe also that X  H W-x Y ,  though 
split as a sequence of graded objects, need not be split as a sequence 
of complexes (= graded objects with boundary a). 
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Exercises 
1. If A is the category of all left R-modules, show that every monic in Ses (A) 

has a cokernel in Ses(d) ,  and dually. (Use the Ker-coker sequence.) 

2. A morphism r= (a, p, y) : D +D' is allowable in Y ( d )  if and only if D 
and D' are proper short exact sequences of d and the induced map ker B -+ ker y 
is proper epic in d (or, dually, the induced map coker a-tcoker is proper 
monic in d).  

7. Connected Pairs of Additive Functors 

The systematic treatment of functors T: d - + W  in the next sec- 
tions ($5 7-9) will assume 

(i) d is an abelian category, 
(ii) B is a proper class of short exact sequences in d, 
(iii) W is a selective abelian category ( 1 x 4 .  

This formulation includes both relative homological algebra (e.g., with 
B the class of suitably split exact sequences) and "absoluteJ' homological 
algebra, with B all short exact sequences in d. In W we use the class 
of all short exact sequences. For the applications intended, W might as 
well be the category of all modules over some ring or algebra. 

An additive functor T: d+W is a functor (covariant or contra- 
variant) with T(a+/?) = T(u) + T(B) whenever ct+/? is defined. This con- 
dition implies T(0) =O,  T(- a) =- T(u), and T(A@ B) = T(A)@ T(B). 
Henceforth we assume: all fzlnctors are additive. 

Study the effect of a covariant T upon all the firofier short exact 
sequences (x ,  o) : A w B -+ C of d. Call T 

9-exact if every 0 -+ T(A) -+ T(B) -+ T(C) -+O is exact in 9, 

right @exact if every T(A) -+ T(B) -+ T(C) +O is exact, 

left 9-exact if every 0 -+ T(A) -+ T(B) -+ T(C) is exact, 

half 9-exact if every T(A) -+ T(B) -+ T(C) is exact. 

If T is 9-exact, it carries proper monics to monics, proper epics 
to epics, and proper long exact sequences to long exact sequences. 
Moreover, for any proper morphism a, a Sexac t  functor has 

T(ker a) = ker (T a) ,  ( u ) = i m ( T )  } 
T(coker a) = coker (Tor) , T (coim a) = coim ( T u) . 

Right exact functors can be described in several equivalent ways. 
By a proper right exact sequence in the category d we mean a sequence 
(u, a) : D +B +C +O exact at B and C with u and o proper. 



380 Chapter XII. Derived Functors 

Lemma 7.1. A covariant additive functor T is right 9-exact if and 
only if either 

(i) T carries proper right exact sequences in d to right exact sequences 
i n  W, or 

(ii) T(coker a)  = coker (T a)  for every firofier a in  d .  

Proof. Since coker a = o  states that (a, o) is a right exact sequence, 
(i) and (ii) are equivalent, and imply T right B-exact. Conversely, 
let T be right B-exact. Each proper right exact sequence D + B +C +O 
in a2 yields two proper short exact sequences 

K 

T carries each to a right exact sequence in 9 ,  so T(D) -+ T(B) + T(C) 
is right-exact. 

Similarly, T is left 9-exact if and only if T(ker a) = ker ( T  a) for 
a proper. 

If T: d + W  is a contravariant functor, then, for all proper short 
exact sequences A H B + C of d, T is 

9-exact if every 0 +T(C) +T(B) -+T(A) +O is exact in 9 ,  

right B-exact if every T(C) +T(B) +T(A) +O is exact, 

left 9-exact if every 0 +T(C) -+T(B) +T(A) is exact, 

half 9-exact if every T(C) +T(B) +T(A) is exact. 

The analogue of Lemma 7.1 holds; in particular. T is right 9-exact 
if and only if it carries each proper left exact sequence in d into a 
right exact sequence in 9. 

A 9-connected pair (S, E,, T) of covariant functors is a pair of 
functors S, T: d + W  together with a function which assigns to each 
proper exact E :  A n B a C  in d a morphism E,: S(C) +T(A) of 9 
such that each morphism (a, p, y): E+E f of proper short exact se- 
quences yields a commutative diagram 

S (C) 3 T(A) 

(in the indicated category 9). Call E, the connecting morfihism of the 
pair. The condition (7.2) states that E, is a natural transformation of 
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functors of E. This condition may be replaced by three separate 
requirements : 

If E is congruent to E', E, = E i  , (7.2a) 

If a :  A+A1, then (a E),=a,E,, a,= T(a). ( 7 . 2 ~ )  

Indeed, (7.2) with a =  I and y = I gives (a). If (I,  /?, y) : E +El, then 
E'y is by definition E,  so (7.2) gives (b). Dually, (7.2) with y = I  gives (c). 
Conversely, given (a), (b), and (c) with (a, p,  y) : E +El, the congruence 
a E =  E'y of Prop. 111.1.8 gives (7.2). 

If E, splits, then (E,), = 0. For, if E, splits, the morphism (IA, nl , 0)  
maps E, to the sequence A-A+O. Since S is additive, S(0) =O, so 
(7.2) gives O =  S (0) =T(I)  (E,), = (E,), . 

For each proper E: A - B + C, the long sequence 

is a complex in W (the composite of any two successive maps is zero) 
and a functor of E. Indeed, write E = (x, a) ; both x E and E o split, 
so T(x) E,=O and E,S(a)=o, while S(o)S(x)=S(ox)=S(O)=o.  

For example, if d is the category of R-modules, with B all short 
exact sequences, the functors S (A) =Tor,+, (G, A) and T(A) =Tor, (G, A) 
for fixed G and n constitute a connected pair with the usual connecting 
homomorphism. 

A morfihism (f, g) : (St, E#, T') +(S, E, , T) of connected pairs is 
a pair of natural transformations f :  S1+S, g: T'+ T of functors on d 
such that the diagram 

S1(C) 5 T1(A) 
p) J g ( 4  (7.4) 

S (C) 3 T(A) , 9, 

is commutative for each proper E .  In  other words, a morphism ( f ,  g) 
assigns to each A morphisms f (A) : S1(A) -+ S (A) and g (A) : T1(A) +T(A) 
of W which taken together form a chain transformation of the com- 
plexes (7.3). These conditions on f and g may be summarized as 

where a# is short for S1(a) or T'(a), a, short for S (a) or T(a). 
A connected pair (S, E,, T) is left 9-couniversal if to each connected 

pair (St, E#, T') and each natural g: TI-+ T there is a unique f :  S'+S 
such that (f, g) is a morphism of connected pairs. Briefly, (S, E,, T) 
left-couniversal means: Given g, (7.4) can be filled in with a unique 
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natural f .  Similarly, (S, E, , T) right 8-couniversal means that to a given 
f there is a unique g. Also, (Sf, E#, T') is right 8-universal if, given 
( S ,  E, , T) and f, there is a unique g which satisfies (7.4). 

Given T, the usual argument shows that there is at  most one left 
couniversal pair (S, E,, T) up to a natural equivalence of S. This 
pair - and, by abuse of language, this functor S - is called the left 
satellite of T. Note the curious fact that if (S, E,, T) is the left satellite, 
so is (S, - E,, T) - just change the signs of every E, and f in (7.4). 

Theorem 7.2. If d has enough proper firojectives, the following con- 
ditions on a 9-connected pair (S, E,, T) of covariant functors are 
equivalent : 

(i) (S, E, , T) i s  left 9-couniversal, 

(ii) For each proper short exact sequence K n P + C  the sequence 

0 -+ S (C) -+T(K) +T(P) , 9, (7.5) 

i s  left exact whenever P i s  proper projective. 
Since there are enough projectives, there is for each object C of d 

a proper epic a :  P-t tC with P a proper projective; this gives a proper 
exact sequence 

I t  is the first step in the construction of a proper projective resolution 
of C; we call it a short projective resolution. 

To prove that (ii) implies (i) we must construct f to a given g in 
(7.4). For E = Ec the commutative diagram : 

with top row a complex, has its bottom row exact, by hypothesis. 
Hence E, is monic, so that f (C), if it exists, is unique. On the other 
hand, T(x) g(K) E#=g(P) Tf(x) E#=O, so g(K) E# factors through 
E, E ker (T(x)) as g (K) E#= E, E for some unique f : Sf (C) + S (C). Take 
f (C) = f .  This fills in the dotted arrow to make the diagram commute. 

Now take any proper short exact sequence E f =  (x', a'): A'-Bf+C' 
and any morphism y: C +C' of d. The diagram 

E :  o + K + P + C + O  

k (7.8) 
El: o+A'+B'-+C'-+O, d. 



7. Connected Pairs of Additive Functors 383 

in d has P proper projective, so may be filled in (comparison theorem!) 
to give a morphism (a, 8,  y): E-tE'. We claim that 

EL S (y) f (C) =g (A') EkS'(y) : S1(C) +T(A ') , W. (7.9) 

Indeed, uE= E'y and, in the notation (7.4a), EL f =a,E, f =a, gE#= 
ga#E#=g Eky#. We specialize this result (7.9) in two ways. 

First, let y: C+C1 be any morphism of d. Choose for E' the short 
projective resolution Ec, used to define f (C') by g ( K t )  E k =  EL f (C'), 
as in (7.7). Then A'=Kf and E i  is monic, so (7.9) gives S(y) f (C) = 

f (C') S1(y). This asserts that f : St+ S is natural. With C = C' and 
y = 1, it shows that f (C) is independent of the choice of Ec. 

Second, let E' be any proper short exact sequence ending in C1=C. 
Take y = 1. Then (7.9) becomes E i  f (C) =g (A') E k ,  which states that 
f and g commute with the connecting homomorphisms and hence, as 
in (7.4), constitute a morphism (Sf, E#, T') +(S, E,, T) of pairs. 

Before proving the converse, note that (7.7) suggests that S(C) 
might be defined as the kernel of T(K)+T(P). Regard each proper 
short exact sequence E :  A - B + C as a complex in d, say in dimensions 
1, 0, and - 1. Then T(E): T(A) -+T(B) +T(C) is a complex in 9; 
its one dimensional homology HI (T(E)) is the (selected) object of W 
which makes 

O+H,(T(E))~T(A)  +T(B) , 9, (7.10) 

exact. Each morphism r= (a, /?, y) : E +E' of proper short exact 
sequences in d gives a chain transformation T ( r )  : T(E) +T(E1) and 
hence induces a morphism 

which is characterized by p' Hl (r) = T(a) p. Moreover HI (r) depends 
only on y, E, and E', and not on a and P. For, let r, = (a,, Po, y) : E +Ef 
be any other morphism with the same y. In the diagram 

d(B--Po)=O, SO ~-#Io=x's for some s: B+A1. Also xl(a-a,)= 
@-Po) X=X'S  X, SO all told s %=a-a,, x's=/?-Po. Thus s is a homo- 
topy r e P o .  Since T is additive, T(s) is a homotopy T ( r )  *T(r,) : 
T(E) +T(E1), so Hl (r) =HI (r,). Now there exists : 

To each object C of JZ' a short projective resolution E,, 
To each y: C+Cf in d a morphism I+(-, -, y): Ec+Ec,, 
To each proper exact E in d a morphism A,= (-, -, 1) : Ec +E. 
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We now have 

Lemma 7.3. Given T: d +W covariant and the data above, 

define a covariant additive functor S :  d + W ,  while, for ,u as ifi (7.10), 

defines a natural transformation which makes (S, E,, T) a 9-connected 
pair satisfyilag (ii) of Thm. 7.2. 

Proof. By the observation on H1(r), S(C) is independent of the 
choice of E, . Also S (I) = I ;  by composition, S (ylyz) = S (yl) S (yz). 
If r= (a, B, y) : E -+Et is a morphism of proper short exact sequences, 
FAE and AEnq: Ec-+E1 agree at y, so E,  is natural. Property (ii) 
holds by construction. 

This proves that (i) implies (ii) in the theorem, for any left couni- 
versa1 (So, E#, T) must agree with the one so constructed, which does 
satisfy (ii). This construction also gives an existence theorem: 

Theorem 7.4. If d has enough proper projectives, each covariant 
additive functor T: d + W  has a left satellite ( S ,  E,, T). 

Corollary 7.5. Let (S, E,, T) be a 9-connected pair. If to each 9- 
connected pair (St, E#, T) with the same T there i s  a unique natural 
transformation f : St+ S such that ( f ,  I )  : (St, E#, T) +(S, E ,  , T) i s  a 
morphism of pairs, then (S, E ,  , T) i s  left-9-couniversa1. 

Proof. Use the hypotheses to compare (S, E,, T) to the left satel- 
lite of T, which is known to exist and to be couniversal. 

The dual of Thm. 7.2 is 

Theorem 7.6. If d has enough proper injectives, the% a @connected 
pair (T, E,, S) of covariant functors i s  right 9-universal if and only if 
each proper short exact sequence 

with J #ro#er injective induces a right exact sequence 

Moreover, given T, the S with this property is uniquely determined; 
it is called the right satellite of T. Each T thus has a left satellite (co- 
universal) and a right satellite (universal). 
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Proof. Dualization reverses all arrows, both in d and in W, replaces 
"projective" by "injective", gives E, from T to S, and leaves T and S 
covariant. 

A @connected pair ( T ,  E*, S) of contravariant functors consists 
of two such functors T ,  S:  d + W  and a function which assigns to 
each proper short exact E: A  ++ B +C in d a complex 

which is a functor of E. The pair is right universal if and only if to each 
natural f :  T+T1 and each connected pair (TI, E#, S'), there is a unique 
g: S+Sf  such that ( f ,  g) is a morphism of pairs. 

Theorem 7.7. I n  the presence of enough proper projectives, the contra- 
variant pair (T ,  E*, S) i s  right 9-miversal  if and only if each proper 
K  ++ P +C with P proper projective induces an exact sequence 

T ( P )  +T(K)  +S(C)  + O ,  9. 

Example: For D a fixed module, T(C) = Extn(C, D) ,  S  (C) = 

Extn+l (C, D). 

Proof. This reduces to the previous result if we replace & by the 
opposite category d O P .  Recall (1.7) that d O P  has an object A* for each 
object A of d and a morphism a*: B* +A* for each a :  A- tB  in d, 
with (a @)*=!*a*. Thus monics in d become epic in dOP, the opposite 
of an abelian category is abelian, and the opposites of a proper class 
B of short exact sequences of d constitute a proper class in dOP. 
Each covariant T :  d + W  gives a contravariant T*:  dOP+W with 
T* (A*) =T(A) .  Moreover, "enough injectives" becomes "enough pro- 
jective~''. All arrows in &-diagrams are reversed, those in W-diagrams 
stay put, and Thm. 7.6 becomes Thm. 7.7. 

A similar replacement in Thm. 7.2 shows that a contravariant pair 
( S ,  E*, T )  is left couniversal if and only if O-tS(C)+T(K)+T(J)  is 
exact for each C ,+ J + K .  Then S is a left satellite of T .  

Exercises 
I. Call a diagram A,=B=A2 "cartesian" if it satisfies the usual direct sum 

identities q ~ ,  = 1 = z2 and Llnl + t2na = 1 .  Prove that an additive functor takes 
every cartesian diagram into a cartesian diagram, and, conversely, that any functor 
with this property is additive. 

2. Let T: .d+ 9, not assumed to be additive, be half %exact. Prove it addi- 
tive (cf. Ex. I and Prop.I.4.2). 

3. If T is covariant and left Sexact ,  show its left satellite zero. 

4. If (S, E,, T) is left couniversal and T half @-exact and covariant, prove 
(7.3) exact, provided has d enough proper projectives. 

5. Derive Thm. 7.6 from Thm. 7.2 by replacing both .d and 9 by their opposites. 
Mac Lane, Homology 25 
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8. Connected Sequences of Functors 

A @connected sequence {T,,, En} of covariant functors is a sequence 
(. . . , T,, En, T,-,, . . .) of functors T,: d + W  -in which each pair 
(T,, En, T,-,) is @connected; in other words, such a sequence assigns 
to each proper short exact E of d a complex 

which is a covariant functor of E. The sequence is positive if T,=o for 
n<O or negative if Tn=O for n>0;  in the latter case we usually use 
upper indices. 

Positive connected sequences may be described more directly in 
terms of graded additive categories. Recall (Thm.4.4) that d can be 
enlarged to a graded additive category rf9(d) with the same objects 
and with the elements of Ext%(C, A )  regarded as the morphisms of 
degree n from C to A .  From the range category 9 we can construct 
the category W+ of graded objects of 9, with morphisms of negative 
degrees. In detail, an object R of W+ is a family {R,,) of objects of 9, 
with Rn=Of for n<O; while an element of homk(R, 8') is a morphism 
,u : R + R' of degree - k ; that is, a family of morphisms {,urn: Rn +RL-k} 
of 9, with the evident composition. Then W+ is a graded additive 
category. If 9 is the category of modules over some ring, W+ is the 
category of graded modules over the same ring, with morphisms of 
negative degrees. 

For graded categories, functors are defined as usual, with supple- 
mentary attention to the degrees of morphisms. Thus if B and &' are 
graded additive categories, a covariant functor S :  B +&' assigns to each 
object G of B an object S(G)  of &' and to each morphism y :  G,+G, 
of degree d in B a morphism 5 (y)  : %(GI) +S(G2) of the same degree 
in &', with the usual conditions 5 (IG) = 1 z ( ~ ,  and S (yly,) = 5 (y,) 5 (y2) 
whenever yly2 is defined. The functor 5 is additive if S(y,+ y,) = 

S (y,) + S (y,) whenever yl+ y2 is defined. A natwal transformation 
f : S'+ 5 of degree d is a function which assigns to each GEB a morphism 
f (G) : T ( G )  + 5 (G) of degree d in &' such that 

5E (y)  f (GI) = ( - 1 (deg f, f (G,) 51 (y)  

for each y :  G, +G2 in 9. 

In particular, consider such functors on 19(d) to W+. 

Proposition 8.1. There is  a 1 -I corresponde~ce between covariant 
additive functors 5 : g9(d)  + W+ and positive &connected sequences 
{T,, En} of covariant additive functors T,: sit +W. 
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Proof. Let 5: &@(d)  +W+ be given. The object function of 5 assigns 
to each object A an object {T,(A)} of W+. The mapping function of 5 
assigns to each mo~phism of g 9 ( d )  a morphism of W+. In particular, 
each morphism a :  A+ A' of d is a morphism of degree 0 in &@(d) ,  
so 5 assigns a family of morphisms {T,(a): T,(A) +T,(A1)} of 9; these 
make each T, an additive functor T,: d + W .  Moreover, each proper 
E: A - B+C in d is a morphism E :  C+A of degree 1 in g 9 ( d ) ,  so 
the mapping function of 5 assigns to E a morphism of degree I in W+; 
that is, a family of morphisms {E,=T, (E )  : T,(C) +T,-, ( A ) }  in W .  
The composition rules 5 ( E  y) = 5 (E)  5 (y)  and 5 (a E )  = S (a) S ( E )  show 
that these morphisms E, satisfy the conditions (7.2a), (7.2b), ( 7 . 2 ~ )  
which make (T,, E,, T,-,) a connected pair. Thus 5 determines a posi- 
tive 8-connected sequence of functors {T,: d - t W } .  

Conversely, each such connected sequence of functors determines 
the object function S ( A )  = {T, ( A ) )  and the mapping functions 5 (a), 
5 (E)  for morphisms of degree 0 and I in g9. Now a morphism of higher 
degree in &@ is just a congruence class of long exact sequences S.  Each 
such is the Yoneda composite of short exact sequences E,  so the S ( E )  
determine each S ( S ) ;  the rules (7.2b) and ( 7 . 2 ~ )  show that two con- 
gruent long exact sequences have the same S ( S )  ; indeed, this 5 ( S )  
is the "iterated connecting homomorphism" determined by the long 
exact sequence S.  Finally, to show this functor 5 additive we must 
prove that 5 (E + E') = 5 (E)  + 5 (E').  This follows from the definition 
E+E1=G7,(E@E') A ,  of addition and the rule (E@E'),rE,@Ek 
for connecting morphisms, which is a consequence of the condition 
(7.2) for a connected pair. 

This gives the asserted I - I  correspondence. The same applies to 
maps : 

Proposition 8.2. I f  S', 5: g 9 ( d )  +W+ are two covariant functors, 
a natural transformation f :  S1+5 of degree d is a family of natural 
transformations {f,: Ti+T,+d: d + W }  which commute with all connecting 
mor$hisms : 

In other words, for d=O, f is a chain transformation of the complex 
(8.1) for 5' to that for 5. 

A covariant functor 5: g9(sQ) +W+ is called couniversal if to each 
covariant S': &&d) +W+ and each natural transformation f,: Ti+T, 
in d of the components of degree 0,  there exists a unique natural 
transformation f :  5'+5 of degree 0 extending f , .  In other words, a 
couniversal positive connected sequence of covariant functors is such 
a sequence starting at  To, extended to the left, and couniversal for all 

25' 
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such connected sequences. Thus To uniquely determines S ,  up to a 
natural isomorphism. 

Theorem 8.3. Let d have enough $roper projectives. A covariant 
functor S: gg(d)+W+ i s  couniversal if and only if, for each proper 
short exact sequence K B P + C of d with P proper projective, the sequence 

i s  exact for every n>0. 

Proof. Given this condition, some other 5': &g(d) +W+, and some 
fo: T&To we construct by recursion on lz the requisite natural trans- 
formations /,: T;+T,. If f o ,  . . . , fn - ,  are already constructed to commute 
with the connecting homomorphisms, the condition (8.3) shows by 
Thm. 7.2 that (T, , En,  Tn-,) is left couniversal, so will construct a unique 
f n  : T;+T, with En f ,  = f,-, EL. Hence S is couniversal. 

Conversely, suppose that 5 is couniversal. From To we construct 
the left satellite S,, and construct in turn each S,: d + W  as the left 
satellite of S,-, . The resulting connected sequence satisfies (8.3), hence 
is couniversal, so must agree with the unique couniversal S for the 
given To. Therefore any couniversal S satisfies (8.3). This argument 
also proves an existence theorem: 

Theorem 8.4. Let d have enough #roper projectives. Each covariant 
functor To: d + W  i s  the component of degree 0 for a couniversal functor 
S :  rfg(d) +9+ in which the n-th component T, i s  the n-th iterated left 
satellite of To. 

Since o - P+ P is exact for each proper projective, condition (8.3) 
implies that T, (P) = 0 for each n>0. Thm. 8.3 includes the weaker result : 

Corollary 8.5. If S satisfies T,(P) =O for each projective P and 
for each n>O, and if the long sequence (8.1) i s  exact for each proper exact 
E of d ,  then 5 i s  couniversal. 

In particular, if d is the category of all left modules over some ring 
R and G is a fixed right R-module, Thm.V.8.5 asserts that the functors 
T, (A) =Tor: (G, A) satisfy this condition. 

Corollary 8.6. If U: W+Wf i s  exact and covariant, while {T,, En} 
i s  a couniversal #ositive connected sequence, so i s  {UT,, UE,}. 

Proof. Since En: T, (C) +T,-, (A) is a morphism of W while U is a 
functor, UE,: UT, (C)+ UT,-, (A) is a morphism of 2'. Since Upreserves 
exactness, condition (8.3) for couniversality is preserved. 

Note. If U is not exact, the description of the left satellite of the functor U To 
in terms of U and To involves an important spectral sequence [CARTAN-EILENBERG, 
XVI, 5 3 ; GROTHENDIECK 1957, p. 1471. 
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To handle negative connected sequences 

of covariant functors T n:  d + W ,  use the graded additive category W - ;  
its objects {Rn} are families of objects of W ,  with Rn=O for n < 0 ;  its 
morphisms p of degree k Z O  are the families {,un: R"-+R'n+k} of mor- 
phisms of 9. A covariant functor S :  &&zZ)- tW-  is then a negative 
connected sequence of functors P: d + W ,  much as in Prop. 8.1.  

Contravariant functors require attention as to sign. Thus if 9 and 
2 are graded additive categories, a contravariant S: S - + 2  assigns 
to each object G an object S (G) in 2, and to each morphism y :  GI -+G, 
of 9 a morphism S ( y )  : S(G,) +%(GI) of the same degree in 2, with 
5 ( 1  G )  = %(G) and 

S (y ly2)  = (- l)(degn) ( d e g ~ a )  S (  72) S (YI )  J (8.4) 

in accord with the sign conventions. A natural transformation f :  5'+5 
of degree d is a function which assigns to each object G of S a  morphism 
f (G):  Sr(G)+S(G) of degree d in .%' in such wise that 

5E (y )  f (G,) = ( - I ) cdeg" (deg f, f (GI) T ( y )  

- just as usual, except for sign. 

Exercises 
1. Show that the condition Tn (P) = 0 cannot be dropped from Cor. 8.5 : Use 

T i ( A )  =Tn(A)  63Tn-,(A). 
2. Describe a contravariant additive functor 8: 69(d) +5%+ as a suitably 

connected sequence of functors on d to 5%. 

9. Derived Functors 

A standard method is: Take a resolution, apply a covariant functor 
T :  d + W ,  take the homology of the resulting complex. This gives a 
connected sequence of functors, called the derived functors of T .  

In detail, let d have enough proper projectives. Each object A thus 
has a proper projective resolution E :  X +  A.  If 6': Xr+A' is a second 
such, the comparison theorem lifts each a: A+Ar to a chain transfor- 
mation f :  X + X r ,  and any two such are homotopic. Since T is additive, 
it carries homotopies to homotopies, and so the induced chain transfor- 
mation T(f )  : T ( X )  +T(Xr)  in W is determined up to a homotopy. There- 
fore Ln(A)=Hn(T(X))  defines a function of A, independent of the 
choice of X ,  and L,(a) = H,(T(f))  : L,(A) -+Ln(A1)  makes each L, 
a covariant functor d + W .  I t  is the n-th left derived functor of T .  
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Now let E :  A - B+C be any proper short exact sequence in d. 
Take an allowable projective resolution e :  K - t E  in the category of 
short exact sequences of a?, as in Thm.6.4; this amounts to a short 
exact sequence X -  W+Y of complexes in a? with X+A, W+B, 
and Y-t C proper projective resolutions; moreover, W,= X,@Y, for 
each n. As T is additive, this last shows that T ( X )  n T(W)  +T(Y)  is 
a short exact sequence of complexes in 9, so gives connecting homo- 
morphisms H,(T(Y)) +H,-, ( T ( X ) )  for n>0. Since X is a resolution 
of A and Y one of C, this is a homomorphism E, = L,(E) : L,(C) -+ 
L,-, (A) .  The general comparison theorem for allowable resolutions 
(Thm.IX.4.3) shows this independent of the choice of the resolution K 
and shows that L,(E) is a natural transformation of functors of E. 

Theorem 9.1. For each additive covariant functor T: d+W, the left 
derived functors L, : d-+W and the connecting homomor~hisms L, ( E )  
constitute a positive connected sequence of functors with Lo right &exact. 
Th i s  sequence i s  couniversal for the ilzitial covqbonent Lo. If T  i s  right 
9'-exact, Lo = T.  

Proof. If P is proper projective, the resolution P+P shows 
L,(P) = O  for n>o. For each proper exact E,  the exactness of the long 
sequence (8.1) for L,=T, follows from the usual long exact sequence 
for the homology of T ( X )  n T(W)  +T(Y) .  In particular, Lo is right 
exact. The connected sequence (L,, L,(E)) satisfies the conditions of 
Cor.8.5, hence is couniversal. 

Suppose that the original T is right 9-exact. In any resolution, 
the portion X, +Xo-+A+O is right exact; hence so is T(X,) +T(X,) 
+T(A) +O. This gives Lo (A )  =Ho( T ( X ) )  E T(A) ,  a natural isomor- 
phism. 

This theorem is of interest when T is right exact. I t  can then be 
read either as a characterization of the sequence of left derived functors 
of T as the couniversal sequence for Lo= T ,  or as the statement that 
the left satellites of T and their connecting homomorphisms can be 
calculated from resolutions. 

To have a definite derived functor L, one must choose a resolution 
X for each A. This sweeping use of the axiom of choice is legal in small 
categories d and possible in all those relevant examples of categories 
in which there is a canonical way of choosing a projective resolution. 
If the range category W is not a category of modules, but any abelian 
category, the proof above requires that we know the exact homology 
sequence, with its connecting homomorphisms, for an abelian category. 
We have indicated only too briefly in $ 3  how this could be accomplished, 
using additive relations. 
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Let us summarize the properties of the derived functors in this case. 
I. A covariant functor 5: ~ ? ~ ( d ) - t W +  is a positive connected 

sequence {T, , En) consisting of covariant functors T,: d -+ 92 and homo- 
morphisms En: T,(C) +Tn-,(A) natural in E. I t  assigns to each proper 
E :  A n B-wC a complex 

T,(A) +T,(B) +T,(C)~T,-,(A) +... (9.1) 

in W. Suppose that d has enough proper projectives. Each right 9-exact 
covariant T: d + W  has a left derived functor 5 : &9(d) +W+ which is 
determined by T, up to natural isomorphism, by any one of the following 
three conditions : 

(I a) To= T and 5 is couniversal, 

(Ib) To= T, (9.1) is exact, and T,(P) = O  for n>O and P proper 
projective, 

(I c) T, (A) = H,(T(X)) for some proper projective resolution E : X -+ A, 
while En is similarly calculated from short exact sequences of such 
resolutions. 

These considerations may be dualized: Replace one or both of the 
categories d and W by its opposite. For example, replacing d by 
d O p  gives 

11. Let T: d+W be a right 9-exact contravariant functor and 
suppose that d has enough proper injectives. For each object A take 
a proper injective coresolution E: A+Y. This Y is a negative complex 
YO+Yl+ . ; application of the contravariant T yields a positive com- 
plex T(Y) : T(YO) t T(Y1) t . . . ; that is [T(Y)],= T(Yn). Its homology 
H,(T(Y))=T,(A) is the n-th left derived functor T, of T. For each 
proper E, coresolutions of E give a corresponding connecting homo- 
morphism En: T,(A) +T,-,(C), natural in E. They constitute a posi- 
tive connected sequence {T,, En) of contravariant functors which assigns 
to each proper E: A n B +C a complex 

in 9. This sequence {T,, En) may also be described as a contravariant 
functor 5: +Wf. Given the right exact functor T: d + W ,  its 
left derived functors may be characterized by their construction from 
injective coresolutions or by either of the properties: 

(Ha) To= T and 5 is couniversal; that is, given 5': 13~(d) +9+, 
each natural fo: Ti -+To extends to a unique natural f : 5'+5, 

(I1 b) To= T, (9.2) is always exact, and T, (J) = 0 for n>0 and each 
proper injective J. 
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The categorical dual of I (replace d by dOp, W by P P )  is 
111. Let T: d + W  be left 9-exact and covariant (sample, T(A) = 

Hom, (G, A)). Its right derived functors are Tn ( A )  = Hn(T(Y)), where 
E: A+Y is a proper injective coresolution (assume enough injectives). 
With the corresponding connecting homomorphisms they constitute a 
negative connected sequence of covariant T": d + W  which assigns to 
each E a complex, 

... + T " - ~ ( c ) % - ~ A ) + T " ( B )  +T"(c)+ ... (9.3) 

in 9; that is, a covariant T: rf9(d) -9-. The Tn are characterized 
in terms of T by either of the properties 

(IIIa) TO=T and 5 is universal; that is, given 5': g9(d) +W-, 
each natural fO : TO + T O  extends to a unique natural f : 5 +St, 

(IIIb) TO=T, (9.3) is exact, and Tn(J)=O for lz>0 and each 
injective J. 

Finally, replace W in case I by P p  

IV. Let T: d + W  be left 9-exact and contravariant (sample: 
T(A) = Hom, (A, G)) . Suppose that d has enough proper projectives. 
A projective resolution E: X+A gives a negative complex T(X) in 9 ,  
hence derived functors Tn (A) = Hn (T(X)) and connecting homomor- 
phisms which constitute a negative connected sequence (Tn, En) and for 
each E a complex 

. .  -+T"-~(A)% T"(c)-+F(B)+T~(A)+ ...; (9.4) 

that is, a contravariant S: gB(d)  +W- characterized by either 

(IV a) TO = T and 5 is universal, or 

(IVb) TO= T, (9.4) is exact, and T" (P) = O  for lz>0 and each pro- 
jective P. 

To summarize (examples with G a fixed module): 

To Variance Derived T Resolution Type, Tn (A) 
-- - - - - 

I Right exact Co Left couniversal projective Tor,, (G, A )  
I1 Right exact Contra Left couniversal injective ? 

I11 Left exact Co Right universal injective Extn(G, A) 
IV Left exact Contra Right universal projective Extn(A, G )  

Thus a change in variance or a change from left to right switches the 
type of resolution used. 

For example, if A is a K-algebra, d the category of left A-modules, 
9 the class of K-split short exact sequences of A-modules, and W the 
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category of K-modules, then HomA(C, A)  is left exact. As a functor 
of C it is contravariant (case IV); its right B-derived functors are 
ExtYA, K, (C, A ) .  As a functor of A ,  Hom, is covariant (case 111) ; its 
right 9-derived functor is again given by the sequence of functors 
ExtYA, K, (C, A ) ,  this time with the connecting homomorphisms in the 
second argument A .  

Notes. Characterization of functors. For categories of modules, right or left 
exact additive functors are often given just by the usual functors @ and Hom. 
Specifically (WATTS [1960], EILENBERG [1960]), if C is a fixed S-R-bimodule, 
the tensor product with C gives a covariant functor TC (A) = C BRA of & which 
is right exact and carries (infinite) direct sums to direct sums. Any functor T 
on the category of R-modules to the category of S-modules with these properties 
has this form for some C; namely, for C = T(R). Again. any left exact contravariant 
functor T on R-modules to S-modules which converts (infinite) direct sums into 
direct products is naturally equivalent to the functor T(A) =HomR(A,C) for 
some left (R@S)-module C (to wit, C =  T(R)). Finally (WATTS [1960]) any co- 
variant left exact functor from R-modules to abelian groups which commutes with 
inverse limits has the form T(A) = HomR (C ,  A) for a suitable C. MITCHELL [I 9621 
has generalized these theorems to suitable abelian categories. 

Bifunctors. Let To(C, A) be a bifunctor, additive and right exact in each 
variable separately. Replacing both arguments by projective resolutions, taking 
the total complex of the resulting bicomplex and its homology gives the left derived 
functors T,(C, A) - as for example for Tor, (C, A) as a bifunctor (Thm.V.9.3). 
This and related cases, with difference in variance, are treated in detail in CARTAN- 
EILENBERG. This theory is not needed for C@A, because this bifunctor becomes 
exact when either of the variables is replaced by a projective, so the derived func- 
tors can be constructed by the one-variable case. A relevant example is the tri- 
functor C@B@A for three modules over a commutative ring, which must be 
treated as a functor of a t  least two variables. Its derived functors, called Trip,, 
occur in the KUNNETH formulas for the homology of the tensor product of three 
complexes (MACLANE [1960]). At present, there appears to be no way of charac- 
terizing derived functors of two or more variables by "universal" properties or 
by "axioms". For example, a suitable definition of a tensor product of two abelian 
categories would allow the reduction of bifunctors to functors of one variable. 

Other constructions of derived functors. If To is right exact and covariant on 
the category of all modules, each SEEEX~'(C, A) gives an iterated connecting 
homomorphism S, : T, (C) +To (A), so each tE T, (C) yields a natural transformation 
Extn(C, A) +To (A) of functors of A .  Indeed, T,(C) may be defined [YONEDA 

1960, HILTON-REES 19611 as 

T, (C) = Nat homA(ExtS (C, A ) ,  T(A)) 

This provides another definition of the torsion products. We have already remarked 
that an additive category d is a "ringoid" (usual ring axioms, but compositions 
not everywhere defined). In the same sense, each covariant additive functor T 
on d to the category of abelian groups is a left "d-moduloid (axioms for a left 
module over a ring; compositions not always defined), while a contravariant S 
is a right at-moduloid. YONEDA [I9603 has defined a corresponding tensor product 
S@&T and used i t  to construct satellites. Again, let T be a contravariant additive 
functor. The short exact sequences E: AwB*C ending in a fixed C may be 
partly ordered by E ' s  E if there is a morphism (a, B, lc) : E'-+E; these E then from 
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a "directed" class; the direct limit of the kernels of T(A) -+ T(B) taken over the 
directed class gives the right satellite of T [BUCHSBAUM 19601, defined in this 
way without assuming that there are enough projectives. This construction has 
been studied further by AMITSUR [I9611 ; ROHRL [I9621 gives an existence theorem 
for satellites of half exact functors, with applications to the theory of sheaves. 
For any additive functor which is not half-exact one must distinguish the derived 
functors, the satellites, and the cosatellites; their interrelations are studied in 
BUTLER-HORROCKS [I 9611. 

Derived functors of non-additive functors have been studied by DOLD-PUPPE 

[I9611 using iterated bar constructions. Indeed, the homology groups H,+k (17, n;  G) 
of provide many examples of non-additive functors (EILENBERG-MACLANE 
[1954 a]). The classical example is the functor r of J. H. C. WHITEHEAD [1950]. 
For each abelian group A, r ( A )  is the abelian group with generators [y(a) / aEA], 
relations y (- a) = y (a) and 

y(a+b+c)-y(a+b)-y(a+c)-y(b+c)+y(a)+y(b)+y(c)=o. 

These are the relations valid for a "square" y (a)= as. 

10. Products by Universality 

The universal properties of derived functors may often be used to 
construct homomorphisms, such as the cup product for the cohomology 
of a group n. In the notational scheme of 5 7, take W to be the category 
of abelian groups, d the category of all left 17-modules, and B the 
class of 2-split short exact sequences of 17-modules. We first show that 
there are enough proper injectives in d. 

To each abelian group M construct then-module & = Homz(Z(II), M )  
with left operators defined for each f E JM by (x f )  r =  f (r x), with ~ € 1 7 ,  
rcZ(I7). These are the left operators induced by the right 17-module 
structure of the group ring 2 (17). Define a homomorphism e = eM : JM---+ M 
of abelian groups by setting e (f) = f (I) for each f : Z (17) -+ M .  This has 
the usual couniversal property, dual to that of Prop. V1.8.2: 

Lemma 10.1. I f  A is a left 17-module and h: A---+ M a homomorfihism 
of abelian gro~fis, there exists a uniqzte 17-module homomorphism y: A+ JM 

with e y = h. 
h 

Proof. Consider A--* M+!- JM . The condition e y = h requires for 
each a €  A and x ~ 1 7  that 

h(xa)=e[y(xa)]=[y(xa)] I=[x(y a)] I= (y  a)x. 

Conversely, if one defines y by (y a) x = h (x a), y is a I7-map and satisfies 
ey=h. 

A standard argument now shows that each JM is relatively injective. 
Moreover, if A is any 17-module, the Lemma gives a unique 17-module 
homomorphism y : A -+Hornz (Z(17), A )  = J,  with e y = I, . Hence y is 
proper monic and y: A+J, embeds each A into a proper injective. 
Therefore there are enough proper injectives. 
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For each 17-module C let C" denote the subgroup of 17-invariant 
elements of C. The covariant functors 

have connecting homomorphisms for each proper E ,  

defined (say) by Yoneda composition, and giving the usual long exact 
sequence. Moreover, HP(J)  =O for $>O and J proper injective (any 
extension of a proper injective splits). Hence the Hf'(C) are the right 
derived functors of HO (C)  = C". 

Lemma 10.2. For each fixed integer q and each fixed 17-module C',  
the functors HP(C) @Hq(C1) constitute the coqbonents of a universal 
sequence of functors with 9-connecting homomor#hisms E ,  @ I .  

Proof. Let E,: A - J +K be any 2-split short exact sequence with 
J proper injective. For $ >O, HP-I ( J )  +HP-l ( K )  +HP(A) +O (= HP(J))  
is exact. As the tensor product over Z is right exact, so is the sequence 

HP-I ( J )  @ Hq (C') + HP-l ( K )  @ Hq (C') -+ HP ( A )  @ Hq (C') -+O . 

This is the condition parallel to (8.3) in the dual of Thm.8.3; hence 
HP (C)  @ Hq(C1) is the universal sequence for its given initial component 
HO (C)  @ Hq (C') . 

Lemma 10.3. If C @C' has the diagonal n-module structure [ x  (c @ c f )  
= x c @ x  c' for x d l ] ,  then for fixed q and C' the functors HP+Q(C@C1) 
of C constitute a 9-connected sequence of functors with connecting homo- 
mor#hisms ( E  @ C'),  . 

Proof. Since E is 2-split and exact, the tensor product 

is exact and 2-split, hence gives the required (natural) connecting maps. 
Similarly, for 9 and C fixed, the functors HP(C) @Hq(C1) constitute 

a universal 9-connected sequence, when the connecting homomorphisms 
1 @ E; are defined with the usual sign : 

Moreover, the Hp+q (C @C1)  constitute a @-connected sequence of func- 
tors of C' with connecting homomorphisms (C B E ' ) ,  . 

For #= 0, H0 (C)  = C" is the subgroup of 17-invariant elements of C. 
Now ceCn and c ' E C ' ~  give c BC'E (C @C1)", so the identity induces 
a homomorphism Cn @ Cfn+ (C @ C')". 
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Theorem 10.4. There exists a unique family of group homomor~hisms 

ffilQ: Hfi (C) @ HQ (C') -+ HP+Q (C @ C') (10.2) 

defined for all fi 2 0 ,  q 2 0  and all 17-modales C and C', such that 

(i) is the map induced by the identity, as above, 

(ii) fP.4 is natural in C and C', fi 2 0, q 2 0. 

(iii) fP+llq(E* 8 1 )  =(E @C'), fP IQ,  p 2 0 ,  9 2 0 ,  

(iv) fAQ+l (I BE:) = (C BE'), fP lq ,  fi 1 0 ,  q 2  0 ;  

the latter two for all 2-sfilit short exact sequences E and E'. 

The last two conditions assert that the maps f commute with the 
connecting homomorphisms. 

Proof. We are given /"PO. For q=O and C' fixed, the left hand 

agree for fi = O  and hence for all 9. 
Now hold 9 and C fixed. In (10.2), f0.Q is given for q=O, and by 

(iv) must be a natural transformation of a universal to a connected 
sequence. Hence it exists and is unique; as before it is also natural 
in C. 

Our construction gives (iii) only for q=O; it remains to prove it 
for q>O. For + fixed, let qP be the left-hand side and yQ be the right- 
hand side of (iii). Both are maps 

yQ, yQ : HP (C) @HQ (C') -+ HP+Q+l (A C') 

of a universal to a connected sequence of functors of C'. They both 
anticommute with the connecting homomorphisms given by E'. Indeed, 
by (iv), 

( A @ E ' ) , ~ p q = ( A @ E ' ) , f f i + l ~ Q ( E , @ l )  = ffi+l?Q+'(~ BE;) (E* @I), 

@+I (I BE',) = ffif1?q+l (E, 8 1 )  (I BE',), 

and (I @E',) (E, €3 I )  =- (E, @ 1) (I BE',) by the definition (10.1). Also 

and (A@ E') o (E @C') is congruent to - (E @A') o (C @El) by the 
3 xj  splice lemma (VIII.j.l). Since yo= yo, the uniqueness of the maps 

side of (10.2) is 8-universal, while the right hand side is @connected. 
Hence the maps fP,O, natural in C, exist and are unique subject to (iii) 
for q=O. These maps are also natural in C'. For consider y: C1+D'. 
Then yf*>O and ff i>Oy  are two natural transformations of the 8-universal 
functor HP (C) @ HO(C') to the 8-connected functor HP (C @ D') which 

- 
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on a universal sequence gives 9~Q=yq in all dimensions. This completes 
the proof. 

Now the cup product (as defined - say - by Yoneda composites 
of long exact sequences) for the cohomology of groups satisfies exactly 
the conditions for the maps f f ' 1 Q  of our theorem. Thus we have still 
another construction of these cup products (VIII.9). This construction 
may be used to "calculate" these products for 17 cyclic. 

A similar argument in H, (IT, C) = T O ~ ~ ( ~ ) . ~ ) ( Z ,  C) will construct a 
product which agrees with the internal product for the relative torsion 
functor. If 17 is finite, these two products can be combined in a single 
product [CARTAN-EILENBERG, Chap. XII]. 

11. Proper Projective Complexes 

Let X be the abelian category of positive complexes K (of left mo- 
dules over some ring), with morphisms all chain transformations 

f f : K +L. Call a short sequence of complexes ~4 LAM firofier exact 
if, for all lz,  

(i) O-+K,+L,+M,+O is exact, and 
(ii) 0 -t C, (K) + C, (L) + C, (M) + 0 is exact, 

where C,(K) denotes the module of n-cycles of K. Since (i) implies 
that (ii) is left exact, (ii) may be replaced by 

(ii') C, (L) +C, (M) is an epimorphism for all n .  

In other words, a chain epimorphism g: L + M  is proper if to each 
mcM with a m = o  there exists an ZEL with g l = m  and al=0. Equi- 
valently, a chain monomorphism f :  K-tL is proper if to each ZEL 
with a1 E f K there is a k c  K with a1 = a f k .  With these characterizations, 
the reader may verify that this class of proper short exact sequences 
satisfies the axioms of $ 4  for propriety. Since a long exact sequence 
is a Yoneda composite of short exact sequences, we have 

Lemma 11.1. A sequence of comfilexes ... +K +L -+M +N -+. . . i s  
firofier exact if and only i f ,  for every dimension n 2 0 ,  both . .. +K,+ 
L,+M,+N,+... and .-.+C,(K)-+C,(L)-+C,(M)+C,(N)+.-- are 
exact. 

Proposition 11.2. If K n L +M i s  a firofier short exact sequelzce 
of comfilexes, then each of the following sequences i s  exact for all n: 

(iii) 0 -+ B, (K) -t B, (L) + B, (M) +O, 
(iv) o +Hn (K) +Hn (L) -tH, (M) +O,  

(v) 0 +KnIBn (K) +Ln/Bn (L) +MnIBn (M) 4 0 ,  
(vi) o +K,/C, (K) -tL,/C, (L) +M,/C, (M) 4 0 .  
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Proof. The modules B,-,(K) = aKn of boundaries are defined by 
the exactness of the short sequence C, (K) H K, -s B,-, (K). These 
sequences for K, L, and M form a 3x3 diagram with rows (ii), (i), 
and (iii), so the 3x3 lemma gives (iii). The homology Hn(K) is defined 
by the exactness of B, (K) w C, (K) +Hn (K) ; the 3 x3 lemma gives (iv). 
The proofs of (v) and (vi) are similar, via B, H Kn+ Kn/Bn (K) and 
the dual description of the homology modules by the exact sequences 
Hn (K) * KnIBn (K) *Kn/Cn (K) 

Next construct proper projective complexes. To each module A and 
each integer n introduce the special complex U= U(A, n) with Un= A 
and Urn= 0 for m+n. If K is any complex, each module homomorphism 
a : A -t C, (K) defines a chain transformation h = h (a) : U(A, pa) +K 
with hn the composite A+C,(K)+K,; all chain transformations 
h : U - tK have this form. 

To each module A and each integer pa introduce the special complex 
V= V(A, n) with %=%+,=A, all other chain groups zero, and 
a : %+, +% the identity I A  . Then H, (V) = 0 for all m. If K is a complex, 
each module homomorphism y: A+K,+, defines a chain transformation 
h=h(y): V(A,n)+K with h,+,=y, h,=ay; all h: V+K have this 
form. 

Lemma 11.3. For a projective module P ,  the special complexes 
U(P, n) and V(P, n) are proper projective complexes. 

Proof. Let g : L + M be a proper epimorphism of complexes and 
h= h (y) : V(P, n) +M any chain transformation. Now g,+, : L,+, +-M,+, 
is epic, so y : P+M,+, lifts to 8: P-+L,+, with g,+,B= y. Therefore 
h (7) lifts to h @) : V+L. The corresponding argument for U uses the 
fact that C, (L) +C, (M) is epic. We then have 

Lemma 11.4. If Pn alzd Q, are projective modules, then 

is a #roper projective complex with H, (S) Y P, , B, (S) CI Q, . Any cotqblex 
K with all H,(K) and B,(K) projective has this form. 

Proof. The direct sum of proper projectives is proper projective. 
Set Q-,=O. The complex S has the form 

with a induced by the identity Q,+Q,, so H(S) and B(S) are as stated. 
The last assertion follows by induction from the fact that every ex- 
tension by a projective module splits. 



11.  Proper Projective Complexes 399 

We can now prove that there are enough proper projective complexes. 

Lemma 11.5. For each com#lex K there exists a poper projective 
complex S of the form (11.1) and a proper epimorphism h :  S+K of 
complexes. 

Proof. For each n, there is a projective module P, and an epimor- 
phism Q,: P, + H ,  (K) ; lift Q,  to a homomorphism u,: P, +C, (K). This 
u, determines h(cr,): U(P,, n)+K. For each rt, there is a projective 
module Q, and an epimorphism a,: Q,+ B,(K) ; since K,+,-> B, is 
epic, lift a, to a homomorphism y,: Q,+K,+,. This y, determines 
h(y,): V(Q,, a)+K. For S as in (11.1), these chain transformations 
h(a,) and h(y,) combine to give h :  S+K. If s,=q,+#,+q,-,ES,, 
then hs ,=~y ,qn+u ,~+yn_ lqn~ l ,  so h is epic. To show it proper 
epic, we must show that ahs,=O implies as,=as; for an s: with 
h s:=o. But ah s, is ay,-,q,_,. Since y,-,q,_, is a cycle of C,(K) 
while a, and en are epic, there are pk in P, and q: in Q, with y,_,q,,-,= 
u,p:+aynqi. Then s :=-~~- -~ :+~ ,_ ,ES ,  has as,=as:=q,_, and 
h s; = 0, as required. 

These results combine to give 

Proposition 11.6. For each (positive) complex L there exists a proper 
projective reso2ution 

in  which each Y ,  is a proper projective complex of the form ( 1 1  . I ) .  

Here Y = {Y,) is a complex of complexes; each Y ,  is a graded module 
{Y,,,} with a boundary homomorphism a": Y,,,+Y,,,_, with ar'a"=o. 
The resolution itself provides chain transformations a with af'a=a a''. 
Change the sign of a (just as in the process of condensation, X.9) by 
setting a '=( -1 )qa :  T,,+Y,-,,,. Then (Y ,  a', a") is a positive bi- 
complex. 

For positive complexes K and L of right and left R-modules, re- 
spectively, we now introduce certain "hyperhomology" modules. Take 
a resolution Y of L, as above, and form K BY, where @ is @I,. This is 
a trigraded module {Kp@Y,,,), with three boundary operators given 
by +=a,: Kp@Y,,,+Kp-l@IY,,,, 

it is a tricomplex (each a of square zero, each pair of a's anticommutative). 
The corresponding total complex T = Tot ( K @ Y )  has T,=z Kp @ Y,, , 
for p+ q+ r =tz, a= a,+ a,,+ a,,, . An application of the comparison 
theorem for proper projective resolutions shows H,(T) independent of 
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the choice of the resolution Y .  We define the hy*erhomology modules 
of K and L to be 

%,,(K, L)  = Hn(Tot (K B Y ) )  . (1 1.4) 

Remark. The often used fact that the tensor product of two complexes 
is a bicomplex applies to functors other than the tensor product. Let 
T ( A ,  B) be a covariant bifunctor of modules A and B with values in 
some additive category%. If K and L are positive complexes of modules, 
T applies to give a bigraded object T(K*, L,) in % and the boundary 
homomorphisms of K and L induce morphisms 

at=T(%, 1 ) :  T ( K p ,  L,)-+T(K*-l, L,), 

a t 1 = ( - 1 ) @ ~ ( ~ ,  a,): T(K,, L,)+T(K,, L,J 

which satisfy a' a' = 0, at' a" = 0, and a' a'' = - atla', the latter because 
T is a bifunctor. Therefore T ( K ,  L)  = (T(K9 ,  L,), a', a") is a bicomplex 
in V with an associated total complex Tot [T(K,  L)] .  If homotopies 
are to be treated, one assumes T biadditive; that is, additive in each 
variable separately. When T is the tensor product, T ( K ,  L) is the fami- 
liar bicomplex K @L. 

Exercises 
f g  

1. Let K-+L-M be a sequence of complexes with gf = 0. Show that it is 
a proper short exact sequence if an only if both (iii) and (iv) of Prop. 11.2 hold, 
and also if and only if both (ii) and (iii) hold. Find other sufficient pairs of conditions. 

2. Show that every proper projective positive complex has the form given in 
Lemma 11.4. 

3, Show that Zlt,(K, L) is independent of the choice of the resolution of L, 
and prove that it can also be computed from a proper projective resolution of K, 
or from resolutions of both K and L. 

4. Study proper exact sequences for complexes not necessarily positive. 

5. Let 4" be a proper class of short exact sequences in an abelian category d. 
Study the corresponding proper class in the abelian category of positive complexes 
in d .  

6. Each additive functor T: d-4 induces a functor T on d-complexes K 
to 9-complexes. For S left exact and T right exact, construct natural maps 

Extend to bifunctors, and obtain the homology product as a special case for T= 8. 

12. The Spectral Kiinneth Formula 

Spectral sequences provide a generalization of the KUNNETH formula. 

Theorem 12.1. If K artd L are $ositive cowq5lexes of right artd left 
R-modades, res$ectively, artd if 

H(Tot [Tor,,, (K, L ) ] )  = 0 for all m >O , (12.1) 
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there is a first quadrant spectral sequence {E;,,, d,} with 

The hypothesis (12.1) for this theorem requires that each of the 
complexes Tor, (K, L), defined as in the remark of 9 11, has zero homo- 
logy for m>o. The stronger hypothesis that each K, is flat would 
imply that each Tor, (K, L) = 0 for m>O, hence (12.1). 

For positive complexes, the previous KWNNETH Theorem (Thm. V.10.2) 
is included in this one. In detail, the hypotheses of that theorem required 
that C, (K) and B,(K) be flat; i.e., that Torp(C,, G) =O=Torp (B,, G) 
for all G and 9 >O. Since C, (K) H K, + B,-, (K) is exact, the following 
portion of the standard exact sequence for the torsion product 

Tor, (C, , G) +Tor, (K, , G) +Tor, (B,-,, G) 

is exact, so each Tor,(K,, G) =O, K, is flat, and (12.1) holds. Moreover, 
B, (K) - C, (K) + H, (K) is exact, so Torp (C, , G) -+Tor* (H, , G) -+ 

Torp-, (B,, G) is exact, and therefore Tor* (H, (K), G) = 0 for p>1. 
The spectral sequence (12.2) thus has E;,,=o for 9+0,1,  hence con- 
sists of two columns only, and so has zero differential. The filtration 
of H,(K@L) amounts to an exact sequence with Et,, and E:,,-,, as 
follows : 

This is the usual KUNNETH exact sequence. In other words, the present 
theorem shows that higher torsion products of H(K), H(L) affect 
H(K @L) via a suitable spectral sequence. 

This theorem will be derived from a more general result. 

Theorem 12.2. If K and L are positive com$lexes of right and left 
R-modules, respectively, with hyperhomology 8, (K, L) defined as in 9 1 1, 
there are two first quadrant spectral sequences 

E;:, = H* (Tot [Tor, (K, L)]) , EX: = 2 Tor* (Hs (K), H, (L)) . (1 2.4) 
s+t=q 

Under the previous hypothesis (1 2. I),  the first sequence collapses 
to the base, gives 8, s E::,, = H, (K @ L), hence yields the result of the 
first theorem. 

Proof. Choose a proper projective resolution Y of L and form the 
triple complex K BY of (1 1.3) with three boundary operators aI , aII ,  a I I I .  

Mac Lane, Homology 26 
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By totalizing the first and third indices, construct a double complex with 

Then Tot X=Tot(K@Y) has homology %(K, L). The two spectral 
sequences of this double complex will yield the result. 

In the first spectral sequence, E:,=H~H~(x). In each dimension t, 
-. . +Y,,, +. . +Y,,,-tL, +O is a projective resolution of L,, so the 
torsion product Tor, (K, , L,) may be calculated from this resolution 
as Hil(K @Y) ; the remaining boundary a'= a,+ aIII is then the bound- 
ary operator of the complex Tor,(K, L). Hence E f 2  is as stated. 

For the second spectral sequence, write X with renamed indices 
as XqBp, so that p is the filtration index for the (second) filtration, and 
EK;=H:H;(X). For fixed P ,  X,,p=z K,@%,, with s+ t=q  is just 
the complex Tot (K @ %) with boundary a' = 8, + a,,,. In each complex 
Yp the modules of cycles and of homologies are projective, by construction, 
so the KUNNETH tensor formula (Thm.V.IO.1), with hypotheses on the 
second factor, applies to give 

Now each % has the form S of (11.1), so each H,(q) is projective, 
while the definition of proper exact sequences of complexes shows that 
for each t 

...+ H,(%)+Ht( 5-,)+...+H,(Y,)+H,(L)+O 

is a projective resolution of H,(L). Taking the tensor product with 
H,(K) and the homology with respect to a" is the standard method of 
computation for Tor (H, (K), H, (L)). Therefore we get the formula of 
(12.4) for EX:. 

This theorem can be regarded as the formation from K and L of 
a large collection of "hyperhomology invariants": The modules % (K, L), 
the two filtrations of %, and the two spectral sequences converging, as 
above, to the graded modules associated with these filtrations. For 
example, if the ground ring R is the ring of integers, the result becomes: 

Corollary 12.3. If K artd L are positive coqblexes of abeliart groups 
with hy$erhomology groups % (K, L), there is a diagram 

with (long) exact row and short exact columns. 
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Here Tor, (K, L) is short for Tot [Tor, (K, L)].  

Proof. Over 2, Torp vanishes for + > I ,  so the first spectral sequence 
has only two non-vanishing rows (q=O, q= 1) and only one non-zero 
differential d2: E:,, + E:-a, ,; hence the exact sequence 

d' 
o-+E:$--+H,(K @L) -, H,-,(Torl (K, L) )  -+EkE2, ,-to. 

Spliced with the exact sequences expressing the filtration of %,, this 
yields the long horizontal exact sequence above. The second spectral 
sequence has only two non-vanishing columns (fi = 0, f i  = l ) ,  hence has 
all differentials d2= ds= . . . = 0; this yields the vertical exact sequences. 

The reader may show that the composite map 

in this diagram is the homology product; the composite map 

is a corresponding "product" for the left exact functor Tor,, as defined 
in Ex.11.6. 

Note. The hyperhomology modules are due to CARTAN-EILENBERG; the treat- 
ment in terms of proper exact sequences is due to EILENBERG (unpublished). 
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List of Standard Symbols 

-t Homomorphism 
H Monomorphism 
a Epimorphism 
..., Homomorphism after "neglect" of 

some structure (IX.5.2) 
..... j Homomorphism to be constructed 
-- Additive relation (11.6) 
+ Implies; convergence of a spectral 

sequence (XI.3) 
If and only if 

3 There exists 
& And 
a Boundary 
6 Coboundary (11.3.1) 
*. # Induced homomorphism (subscript 

or superscript) ; (1.2.4) ; (1.6.1) ; 
(111.631 
Hornoldgous (11.1.2) ; (11.2) 
Homotopic (11.2.3) 
Isomorphic 
Contained in (XII.2) 
Congruent (of extensions) ; 
(111.5.2) 
Composition 
Member of 
Null set 
Inclusion 
Base element of bar resolution 
(IV.5.1) ; (X.2) 

n, fl Intersection 
w, U Union 
u Cup product (VIII.9.5) 
V Wedge product (VIII.4.1) 
x Cartesian product 
@ Tensor product z, @ Direct sum (1.4) 

Direct product (1.4) 

I I Short exact sequence (IX.1.12) 
0 Functor neglecting some structure 

(IX.5) 

v, PA Codiagonal map (111.2. I ') ; (IX. I .6) 
0 Zero element or mapping 
0' Zero object of a category (IX.1) 
1, In Identity element of a group, ring, 

or algebra 
1, IA Identity mapping A +A 

d, Q, 2 Category 
d O P  Opposite category 
AR Category of right R-modules 

E Exact sequence; exterior algebra 
EK Exterior algebra over K 
F Free module; Field 
H Homology or cohomology 
I "Identity element" map K-tA 
K Complex 
L Complex; projective module; Left 

ideal (1.2) 
P Projective module 
PK Polynomial algebra over K 
Q Field of rational numbers 
R Ring 
ROP Opposite ring 
S Long exact sequence; Ring 
S (X) Singular complex of X 
T Functor; Singular simplex; Ring 
U DGA-algebra 
V Vector space; Hopf algebra 
X, Y Complex ; Topological space 
Z Ring of integers 

a,  r Elements a E A.  r E R, etc. 
di Face operator (simplicial set) ; 

(VIII.5) 
p. pA,'pH ~ d m o l o ~ ~  products (VIII.1) 
s, t Homotopy 
s i  Degeneracy operator (simplicial 

set) ; (VIII.5) 

Abbreviations (Caps for modules, lower case for categories) 

bidim Dimension as a bimodule 
(VII.5) 

cls (Homology) class of 
Coim, coim Coimage 
Coker, coker Cokernel 

De f Domain of definition (of an 
additive relation) ; (11.6) 

deg Degree of an element or mor- 
phism 

Ext, ext Group of extensions 
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h. dim Homological dimension 
(VII.1) 

Hom, hom Group of homomorphisms 
Im, im Image 
Ind Indeterminacy (of an addi- 

tive relation) ; (11.6) 

r Morphism of diagrams (1.7) ; 
(XII.6) 

A, An Simplex, n-dimensional (affine) 
simplex (11.7) 

A, AA Diagonal map (111.2. I) ; (IX.1.6) 
K Commutative ground ring 
A Algebra 
17 Multiplicative group 
.E Algebra 
$2 Algebra 

u Associative map for tensor pro- 
duct (VI.2.3); (VI.8.3) 

T,I Adjoint associativity (V.3.5) ; 
(VI.8.7) 

Ker, ker Kernel 
1.gl.dim. Left global dimension of a 

ring (VII.1) 
Tor Torsion product 

0 Isomorphism; Equivalence in a 
category (IX. 1) 

L Injection of direct sum (1.4.1) 
x Monomorphism 
A Monomorphism 

ni Projection of a direct sum (1.4.1) 
n, n~ Product map of an algebra (VI. $2) 
Q Epimorphism 
a, z Epimorphism 
z Middle four exchange (VI.2.4); 

(VI.8.4) 
y Codiagonal map of coalgebra or 

Hopf algebra (VI.9) 
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Abelian category 254 
Relative - - 263 
Selective - - 256 

Abelian group I 0 
Divisible - - 93 

Acyclic space 5 7 
Additive 
- category 249 
- functor 23, 71, 263, 379 
- relation 51, 366 (Note) 
Adjoint associativity 95, 144, 194 
Adjoint, left 266, 269 (Note) 
Affine independence 54 
- simplex 54 
- transformation 54 
Alexander-Whitney map 241 
Algebra 173 

Augmented - 180 
Bigraded - 180 
Exterior - I 79, 183 
Graded - 1 77 
Hopf - I 9 8  
Opposite - 182 
Polynomial - 179, 182 
Separable - 214 
Symmetric - 184 (Ex.) 
Tensor - 179 
Total matrix - 21 4 
Ungraded - 180 

~llowable class (in a category) 260 
Analysis (of a morphism) 254 
Annihilator 146 
Anti-isomorphism 364 (Ex.) 
Associative law I 73 
- -  for diagonal map I 97 
- -  for tensor product 142, 145, 194 
Associativity 25, 249 

Adjoint - 95, 144, 194 
Middle - 138, 186 
Outside - 187 

Augmentation 180 
- of DG-algebra 192 
- of DG-module 304 
- of graded algebra I 80 
- of group ring 104 

Augmentation 
- of singular complex 57 
Automorphism 104 

Inner - 124 
Outer - 124 
- class 124 

Axioms 
- for cohomology of algebras 287 
- for cohomology of groups 11 7 
- for Ext 99, 101, 269 
- for homology of algebras 289 
- for Tor 162, 275 

Baer Sum 69, 85, 113 (Ex.) 
Bar construction 306 
Bar resolution 1 1 5, 280 

Bimodule - 282 
Categorical - 268, 271 
Left - 282 
Reduced - 283 
Un-normalized - 11 5, 282 

Barycentric coordinates 54 
Base (of spectral sequence) 321 
Betti number 42, 323 
Biadditive 
- function 138 
- functor 400 
Bidegree 176 
Bifunctor 31, 393 (Notes) 

Additive - 7 I 
Bigraded 
- algebra 180 
- module 176 
Bilinear function 141 
Bimodule 143 
- bar resolution 282 
- tensor product 187 
Binomial coefficient 183 
Bockstein cohomology operator 49,339 
Boundary 35, 39. 56 

Invariant - 45, 61 
Relative - 61 

Bounded below (spectral sequence) 321 
Bounded filtration 327 

Canonically - 330, 346 



Index 

Canonical map I I 
- comparison 267 
Cartesian product 18 
- - of modules 18 
-- of sets 8 
- - of simplicia1 sets 238 
Category 25 

Abelian - 254 
Abstract - 28 (Ex.) 
Additive - 249 
Graded additive - 370 
Opposite - 28 
Preadditive - 250 
Selective - 256 
Small - 26 

Cauchy's Theorem 13 1 
Center of a group 124 
Chain 35 
- complex 39 
- equivalence 40 
- homotopy 40 
- transformation 40 
Change 
- of algebras 289 
- of groups 108 
- of rings 90, 276, 293 
Class 26 

Automorphism - 124 
Characteristic - 120 
Conjugation - 224 

Cleft extension 284 
Coalgebra 197 
Coboundary 42, 43, 116 
Cochain 42 
Cocycle 43 
Codiagonal map 68, 251 
Codimension 21 8 (Note) 
Cohomology 42 

Equivariant - 136 
- of agroup 115 
- product 222, 296 

Coimage 12, 41, 255 
Coinitial maps 17 
Cobounded filtration 346 
Cokernel 12. 41, 252 
Commutation rule for signs 164 
Commutative 

Skew and anti - 178 
Strictly - 179 
- coalgebra 179 
- DGA-algebra 312 
- diagram 13 

Commutator subgroup 290 

Comodule 198 
Comparison Theorem 87, 355 

Allowable - - 261 
Canonical - - 267 
Condensed canonical - - 305 

Complex I, 39 
Chain - 39 
Cochain - 42 
Complete semi-simplicial - 236 

(Note) 
Elementary special - 42 (Ex.) 
Free - 87 
Injective - 95 
Negative - 41 
Positive - 41 
Projective - 87, 261 
Quotient - 41 
Singular - 56 
Special - 42 (Ex.) 
- of complexes 301 
- over a module 87 
- under a module 95 

Composite 
Yoneda - 82 
- extension 65, 82 
- function 9 
- homomorphism 10, 195 
- morphism 25, 249 
- relation 52 
- sequence 82 

Composition principle 53 
Condensation 302 
Congruence 
- of extensions 64, 109, 285, 368 
- of n-fold sequences 83, 370 
Conjugate module 146 
Conjugation 124, I 3 I 
Connected 
- DG-algebra 192 
- pair of functors 380 
- sequence of functors 386 
Connecting homomorphism 45, 5 1, 96, 

I 6 2  
Iterated - - 97 

Connecting relation (for complexes) 333 
Connection (cohomology of groups) 347, 

349 
Construction 304 

Relatively free - 304 
Contractible space 58 
Contravariant functor 22, 29 
Convergence (of spectral sequence) 327, 

329 
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Converse (of a relation) 52 
Convex hull 54 
Coresolution 95 
Correspondence (additive relation) 

366 (Note) 
Coset (of a subgroup) 11 
Coterminal homomorphisms 16, 359 
Counit of coalgebra 197 
Couniversal 1 7 
- functor 381, 387 
- square 359 
Couple, exact 336 
Covariant functor 28, 386 
Cycle 35, 39 

Relative - 61 
Cyclic module 20 
Cylinder 59 

DG-Algebra 190 
DGA-Algebra I 92 
Degeneracy operator 235 
Degree 175 

Complementary - 327 
Filtration - 327 
Total - 176, 318 

Derived 
- couple 336 
- functor 389, 393 (Note) 
Diagonal 

Simplicid - 244 
- homomorphism 68 
- map 197 
- morphism 251 

Diagram 33 
Category of - 257 
Commutative - I 3 
direct product - 27 
direct sum - 27 
Schematic - 263 

Diagram chasing 14, 364 
Differential 35, 318 
- graded algebra 1 go 
- graded augmented algebra 192 
- graded module 189 
- group 35 
- module 10 
- on Hom (K, L) 43, 190 
- on Hornu 191 
Dimension 39 

Finitistic - 203 
Homological - 201 
Krull - 220 
Left global - 202 
Mac Lane, Homologie 

Dimension 
Left injective - 203 
Right - 203 
Weak - 203 

Direct product 27, 32 
Semi - - 105 
-- of algebras 212, 295 
-- of morphisms 33 

Direct sum 15, 27 
External - - I 5, 18 
Internal - - 19 
Semi - - 286 

Divisible abelian group 93 
Domain 
- of definition of relation 52 
- of function 9 
- of homomorphism 10 
- of morphism 25 
Dual 27 
- basis 147 
- module 146 
- statement 27 

Edge homomorphisms 321, 335 
Eilenberg-Zilber Theorem 239, 241 
Endomorphism 10, 143 

Ring of - 21, 143 
Enough projectives 261, 367 (Ex.), 

377 
Envelope, injective 103 
Enveloping algebra 31 7 
Epic 252 
Epimorphism 10, 251 
Equivalence 25, 252 

Chain - 40 
Left - 252 
Right - 252 
- principle 53 

Equivariant cohomology 136 
Essential extension 102 
Euler characteristic 323 
Exact 
- couple 336 
- functor 263, 379 
- homology sequence 45 
- sequence 11, 256 
- triangle 193 (Ex.), 336 
Half - functor 379 
Left - functor 379 
Left - sequence 23, 365 
Proper - sequence 367, 

3 70 
Right-sequence 23, 379 

27 
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Excision axiom 62 
Extension 

Algebra - 284 
Central group - 1 12 
Cleft - 284 
Crossed product - 125 
Essential - 102 
Ground ring - 21 3, 294 
Group - 108 
Module - 63 
Morphism of - 63, 109 
Operator - 108 
Singular - 284 

Exterior algebra 174, 179, 183 

Face operator 23 5 
Factor set I 11, 285 
Factor system 69 
Factorization, standard 254 
- through 12, 66, 252 
Fiber 
- map 322 
- terms (of spectral sequence) 321 
Fibred product 359 
Filtration 165, 309, 326 

Bounded - 327, 330 
Canonically bounded - 330 
Convergent - 329 
Descending - 346 
First - 341 
Second - 342 
- of bar construction 309 
- of bicomplex 341 
- of tensor product 165 

Finite type (module) 20, 21 9 
First quadrant spectral sequence 320 
Five Lemma 14, 365 . 
Flat module 163 
Four Lemma 14, 364 
Free 
- graded module 195 
- group 122 
- module 19 
- ring (over a group) 104 

Relatively - module 196 
Function 8 

Mapping - 29, 31 
Object - 28, 31 

Functor 28 
Additive - 23, 71, 263, 379 
Contravariant - 22, 29 
Covariant - 22, 28, 379, 386 
Exact - 263, 379 

Functor 
Faithful - 263 
Forgetful - 262 
Half exact - 3 79 
Left derived - 389 
Left exact - 379 
Normalized - 259 
Right exact - 3 79 

Generators (of a module) 20 
Graded algebras I 7 7 

Internally - 180, 21 5 
Tensor product of - I 8 1  

Graded modules 1 7 5 
Associated - 326 
Internally - 177 
Positively - 175 
Trivially - 175 

Graded object 177 (Note) 
Graded set 177 (Note) 
Graph of homomorphism 52 
Group 

Change of - 108 
Cohomology - 11 5 
Differential - 35 
Free - 122, 123 
Relative homology - 61 
Singular cohomology - 57 
- algebra 199. 295 (Ex.) 
- ring 104 

Group extension 108 
Pure - - 367 

Gysin sequence - 326 

Hilbert Syzygy theorem 21 7 
Hochschild (co)homology modules 283, 

288 ' 
Holomorph of a group 105 (Ex.) 
Homogeneous 
- elements 177 
- generator 119 
- ideals 178 

non - generator 1 18, 1 19 
Homological dimension 201 
Homologous cycles 35, 40 
Homology 3 5 
- classes 35, 39 
- group 35, 57 
- isomorphism 310 
- modules 39 
- product 166, 221, 296 
Homomorphism 10 

Boundary - 35, 56, 235 
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Homomorphism 
Composition of - 1 I, 195 
Connecting - 45, 5 I, 96 
Crossed - 105, 284 
Diagonal - 68 
Edge - 321 
Induced - 13, 36 
Principal crossed - 106, 284 
- of algebras 177 
- of bimodules 143 
- of coalgebras 197 
- of DGalgebras 190 
- of differential groups 36 
- of graded algebras I 77 
- of graded modules 175 
- of Hopf algebras I 98 
- of A-modules 184 
- of modules 10 
- of spectral sequences 319 

Homotopy 39. 57 
Chain - 40 
Contracting - 41, 265, 267 

Homotopy classification theorem 78 
Hyperhomology groups 400, 402 

Ideal 10 
Graded (two-sided) - I 78 
Graded left - I 78 
Graded right - 178 
Homogeneous - I 80 
Nilpotent - 286 
Prime - 21 8 
Proper - 21 8 

Identity 
- element 9 
- function 9, I 0  
- morphism 25, 249 
Image 10, 255 

Inverse - 13, 363 
- of morphism 255 

Indeterminacy 52 
Induced 
- additive relation 53 
- homomorphism 13, 36, 255 
- relation 53 
Inessential extension I 0 2  
Inflation homomorphism 347 
Injection (identity) 9 
Injective 

Allowable - 261 
- complex 95 
- envelope 103 
- function 251, 362 

Injective 
- module 92 
- object (in a category) 261 
- resolution 95 

Interchange 
Hom-8 - 195 
Middle four - I 94 

Internal 
- direct sum 19 
- grading 177. 180, 215 
- homology product 221 
Intersection 13, 18, 364 (Ex.) 
Invariant element 122, 284 
Inverse 11, 25 

Left - I I 
- image 13 

Isomorphism 10 
Modular Noether - 3 18 
Natural - 29 
Noether - 13 

Iterated connecting homomorphism 97 

Ker-coker sequence 50 
Kernel 10, 252, 362, 363 

Abstract - 124 
Koszul Resolution 205, 21 8 (Ex.) 
Kronecker product I 82 
Kiinneth 
- Formula 166 
- Formula for abelian groups 168 
- spectral sequence 400 

Left 
- derived functor 389 
- equivalence 252 
- exact functor 3 79 
- exact sequence 23, 265 
- module 9 
- satellite 382 
- universal pair 381 
Leray-Serre Theorem 322 
Lie algebra 3 I 7 
Lifted map 20, 87 
Lifting functor 301 
Line segment 54 
Loop space 325 
Lyndon spectral sequence 351 ff., 358 

Map 
Alexander-Whitney - 241 
Diagonal - 197, 244 
Monotonic - 233 
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Map 
Simplicia1 - 23 5 

Mapping 
- cone 46, 47 
- cylinder 46 
- function 29, 31 
- theorem 321 
Middle 
- associative 138 
- four interchange 194 
- linear 138 
Module 9 

Bigraded - 176 
Cyclic - 20 
Differential graded - 189 
Flat - 163 
Free - 19, 195 

Relatively - - 196 
Free graded - 21 5 
Graded K- - 175 
Graded U- - 191 
Injective - 92 
Internally graded - 1 77 
Left A- - 184 
Left R- - 9 
Monogenic - 20 
Projective - 20 
Quotient - 11 
Reduced - 304 
Relative projective - 265, 273 
Right - 9, 138 
Semi-simple - 203 
Simple - 203 
Simplicia1 - 233 
Submodule - 10 
Trigraded - 176 
Trivial - 105 
Trivially graded - 175 
Unitary - 9 

Monic 251 
Monogenic module 20 
Monoid 2 w  
Monomorphism 10, 25 1 
Monotonic maps 233 
Morphism 25, 249 

Allowable - 260 
Connecting - 380 
Null - 259 
Proper - 368 
- of connected pairs 381 
- of exact sequence 63, 83 
- of group extension 109 

Multiplicator 13 7 (Note) 

Natural 
- isomorphism 29 
- transformation 29, 30, 32, 386 
Negative complex 41 
n-fold exact sequence 82, 83 
Nilpotent ideal 286 
Noether, Emmy 63 (Note) 
Noether isomorphism 13, 3 18 
Noetherian module 219 
Norm 110 
Normalization I 14 
- Theorem 236, 282 
Normalized 
- function 281, 283 
- functor 259 
- simplicia1 complex 236 
Null 
- morphism 259 
- object 258 

Object 25 
Allowable projective - 261 
Null - 258 
Quotient - 252, 363 
Relatively projective - 265 
Simplicia1 - 233 
- Function 28, 31 

Obstruction 
- of abstract kernel 126 
- of homomorphisms 72, 74 
Opposite 
- algebra 182 
- category 28 
- ring 157 
Orbit 131 
Order (of homotopy) 331 

p-Group 132 
Pair of spaces 61 
Pairing 148 (Ex.), 247 
Partly ordered set 33. 362 
Pathwise connected space 57 (Ex.) 
Poincarb 63 (Note) 
Pointed set 362 
Positive 
- bicomplex 340 
- complex 41 
- grading 175 
peadditive category 250 
Product 173 

Crossed - 125 
CUP - 245, 394ff. 
External - 220, 221 
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Product 
Fibred - 359 
Homology - 166, 221, 296 
Hopf wedge - 231 
Internal - 221, 232 
Kronecker - 182 
Relative torsion - 274, 275 
Semi-direct - 105 
Simplicia1 cup - 245 
Tensor - I 38 
Torsion - 150, 154 
Wedge - 228 

Projection 
- of cartesian product 18 
- on quotient 11 
Projective 

Allowable - object 261 
Relative - 265, 273 
- equivalence I01 (Ex.) 
- module 20 

Proper 
- class 367 
- long exact sequence 370 
- morphism 368 
- open set 134 
- operators 134 
- projective object 376 
- right exact sequence 379 
- sequence of complexes 397 
- short exact sequence 367, 379 
- subobject 368 . 
Pull-back 90, 143 
- Lemma 140 
Pure subgroup 367 

Quotient 
- algebra 178 
- group I I 
- module 11 
- object 252, 363 
- space 134 

Range 
- of a function 9 
- of a homomorphism 10 
- of a morphism 25 
Reduced 
- bar resolution 283 
- module 304 
Relative 
- abelian category 263 
- boundary 61 

Relative 
- cycle 61 
- ext functor 269 
- homology group 61 
- projective object 265 
- torsion product 274, 299 
Relatively free 
-- complex 267 
- - module 1% 
Residue field (of a local ring) 219 
Resolution 87 

Allowable - 261 
Allowable projective - 261, 378 
Bar - 115, 268, 271, 280 
Free - 87 
Injective - 95 
KOSZU~ - 205, 218 (EX.) 
Minimal 21 7 
Projective - 87 
Short projective - 382 

Resolvent pair (of categories) 265 
Restriction homomorphism 347 
Right 
- equivalent 252 
- exact functor 379 
- exact sequence 23, 379 
- module 9, 138 
- satellite 384 
Ring 

Change of - 90, 276 
Integral group - 104 
Local - 21 9 
Opposite - I 5 7 
Regular - 220 
Semi-simple - 203 
- of quotients 219 

Ringoid 250 

Satellite 
Left - 382 
Right - 384 

Selective abelian category 256 
Semi-direct product I05 
Sequence 

Allowable exact - 261 
Left exact - 23, 365 
Negative ana positive - 386 
Proper exact - 3 70, 3 75 
Right exact - 23, 379 
s-split - 275 
Short exact - 12, 16 
Split exact - 16, 260 
Weakly split - 260 
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Sets 
Category of - 26 
Pointed - 362 
Simplicia1 - 233 

Sheets of a covering 134 
Short Five Lemma 13, 256 
Short projective resolution 382 
Shuffle 243, 313 
Signature (of a shuffle) 243 
Signs (commutation rule) 164 
Simplex 54 
Simplicia1 
- cup product 245 
- map 235 
- module 233 
- object 233 
- set 233 
Singular 
- complex (of a space) 56 
- extension (of an algebra) 284 
- homology 57 
Space 

Acyclic - 5 7 
Contractible - 58 
Covering - 134 
Pathwise connected - 57 (Ex.) 
- with operators 134 

Spanned 181 (Ex.) 
Spectral sequence 31 8ff. 

Cohomology - 345 
Convergent - 327, 329 
First - of a bicomplex 341 
First quadrant - 320 
Second - of a bicomplex 342 
Third quadrant - 345 
-- of a covering 343 
-- of a filtration 327 
- - of an exact couple 33 7 

Split 
Relatively - 263 
s - 273 
Weakly - 260 
- extension 67, I 0 8  
- sequence of complexes 47 
- short exact sequence 16, 260 

Squares 359 
Standard affine simplex 54 
Strong Four Lemma 14, 366 (Ex.) 
Subalgebra 1 78 
Subcomplex 41 
Submodule 10 

Graded - 1 75 
Subobject 252, 361 

Subobjekt 
Proper - 368 

Subquotient 13 
Subring 273 
Summands (direct) 18 
Surjective function 25 1, 362 
Suspension homomorphism 309, 

315 (Ex.) 
Switchback 45, 52, 98 
Symmetric algebra I 84  (Ex.) 
Syzygy, Hilvert Theorem 21 7 

Tensor product 138 ff. 
- - of algebras 295 
- - of bimodules 143, I 8 7  
- - of complexes I63 
- - of DG-algebras 190 
- - of graded algebras 181 
- - of graded modules I 7 6  
- - of modules 138, I86  
3 x 3  Lemma 49, 365, 366 
3 x 3 splice 227 
Torsion coefficients 42 
Torsion product 150, 154, 224 

Relative - 274, 299 
Transformation 

Chain - 40 
Natural - 29, 386 
- of bifunctors 32 

Transgression 333 
Tricomplex 399 
Trilinear function 142 

Union of submodules 13, 18 
Unitary module 9 
Universal 
- Coefficient Theorem 77, 1 '/Off. 
- covering space 135 
- diagram 16, 27 
- pair of functors 382, 384 
- square 360 

Vertices of simplex 54, 57 (Ex.) 

Wang Sequence Theorem 324 
Weak Four Lemma 14, 364 
Weakly split sequence 260 
Word (in free group) 122 

Yoneda composite 82 

2-graded 
- algebra 180 
- module 175 
Zero 
- object 249, 250 
- in partly odered set 33 


