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I ntroduction

Our subject starts with homology, homomorphisms, and tensors.

Homology provides an algebraic "picture” o topological spaces,
assigning to each space X afamily d abelian groups Hy(X), ..., H,(X),
..., toeach continuous map f: X+Y afamily d group homomorphisms
foH (X)—H,(Y). Properties d the space or the map can often be
effectivelyfound from propertiesd thegroups H,, or thehomomorphisms
/.- A similar process associates homology groups to other Mathematical
objects; for example, to agroup I7 or to an associativeagebra A. Homo-
logy in al such casesisour concern.

Complexes provide a means o calculating homology. Each #-dimen-
siona "singular” simplex T in a topological space X has a boundary
consisting o singular simplices d dimension »—1. If K, is the free
abelian group generated by all these z#-simplices, thefunction 2 assigning
toeach T thealternating sum 67 d itsboundary simplicesdetermines a
homomorphism 2: K, - K,,_,. This yields (Chap.IT) a " complex' which
consists d abelian groups K, and boundary homomorphismsg, in the
form

Gl El Gl 2]
0<-—K0<——- 1<—K2<-—K3<—---.

Moreover, =0, so the kernel C o ¢:K,—K, _, contains the image
0K, .,. The factor group H,(K)=C,[0K,,,; IS the n-th homology
group d the complex K or d the underlying space X. Often asmaller
or simpler complex will sufficeto compute the same homology groupsfor
X. Givenagroup|T, thereisa corresponding complex whose homology
is that appropriate to the group. For example, the one dimensiona
homology o I7 is its factor commutator group 7Z/[1, I T].
Homomorphismsd appropriate type are associated with each type
d agebraic system; under composition o homomorphisms the systems
and their homomorphisms constitute a ** category®- (Chap.I). If C and
A are abelian groups, the set Hom(C,A) d all group homomorphisms
f:C-+A isaso an abelian group. For Cfixed, it isa covariant "' functor"'
on the category o all abelian groupsA; each homomorphism «:4-—-A’
induces the map «,, : Hom (C,A) —Hom (C,A") which carries each f into
its composite «f with «. For A fixed, Hom is contravariant: Each
y:C’'—C induces the mapy* in the opposite direction, Hom(C,4)+
Hom(C, A), sending f to the composite fy. Thus Hom(?,A) applied
Mac Lane, Homology 1




2 Introduction

to a complex K=" turns the arrows around to give a complex
Hom (K,, 4) 25> Hom (K;, 4) % Hom (K,, 4) —> ---.

Herethefactor group (Kernel o*)/(Image 2*) isthe cohomology H" (K,A)
of K with coefficientsA. According to the provenance d K, it yields
the cohomology d a space X or d a group 1.

Anextensiond agroup A by agroup Cisagroup B>4 with B/4 = C;
in diagramatic language, an extension is just a sequence

E:0>A—-B—>C->0

d abelian groups and homomorphismswhich is exact in the sense that
the kernel & each homomorphismis exactly the image d the preceding
one. The set Ext!(C,A) d all extensionsd A by C turnsout to be an
abelian group and a functor o A and C, covariant in A and contra-
variant in C.

Question: Does the homology of a complex K determineits cohomo-
logy ? The answer isalmost yes, provided each K,, isafree abeliangroup.
In this case H*(K,A) is determined "up to a group extension" by
H,(K),H,_,(K),and A; specificaly, the " universal coefficient theorem™
(Chap.III) gives an exact sequence

0 — Ext!(H,_, (K),4) - H*(K, A) - Hom (H, (K), 4) ~0

involvingthe functor Ext? just introduced. If the K,, are not free groups,
there is a more complex answer, involving the spectral sequences to be
described in Chap. X1.

Tensors arise from vector spaces U, V, and W and bilinear functions
B(«, V) on U=V to W. Manufacture the vector space U ® V generated
by symbols #«®v which are bilinear in #eU and v€V and nothing
more. Then #®wv is a universal bilinear function; to any bilinear B
there is a unique linear transformation T: UQV-->W with B(%,v)=
T(» ®v). The elementsd V@V turn out to be just the classical tensors
(in two indices) associated with the vector space V. Two abelian groups
A and G have a tensor product A ®G generated by bilinear symbols
a®g; it is an abelian group, and a functor covariant in A and G. In
particular, if K isa complex, s0isAQK:ARQK«~ARQK<«-:-.

Quedtion: Does the homology d K determine that d AQK?
Answer: Almogt yes; if each K isfree, there is an exact sequence

0—->AQ®H, (K)—H,A ®K)—Tor,(4, H,_, (K))—0.

Here Tor, (A,G) isa new covariant functor o the abelian groupsA and
G, called the "torsion product™; it depends (Chap.V) on the elements
d finiteorder in A and G and is generated, subject to suitable relations,
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by pairs d elementsac 4 and geG for which there is an integer m with
ma=0=mg.

Take the cartesian product X=<Y d two spaces. Can we calculate
its homology from that o X and Y ? A study d complexes constructed
from simplices (Chap. VIII) reduces this question to the calculation o
the homology o a tensor product K &L o two complexes. This calcu-
lation again involves the torsion product, via an exact sequence (the
Kiinneth Thm, Chap.V)

0 —>P+Z Hy(K)QH,(L)~>H,(KQL) ;: » ’l;orl(H‘,(K),Hq(L)) - 0.
gm=n g=n—
But woe, if A isasubgroup d B, A®G is not usually a subgroup
d B ®G; in other words, if E:0—->4 —B —C —0 isexact, the sequence
d tensor products

05>4QG>BRG>CRG—0,

is exact, except possibly at A @G. Happily, the torsion product repairs
thetrouble; thegiven sequenceE definesa homomorphismE, :Tor, (C,G
A ®G with image exactly the kernel & AQG--BRXRG, and the
sequence

0 — Tor, (4, G) - Tory (B, G) » Tor,(C,G) 3 4 G >B QG

is exact. Cdl E, the connecting homomorphism for Tor, and &.
But again woe, if A isa subgroup d B, a homomorphismf:A -G
may not be extendable to a homomorphism B->G; in other words,

the exact sequence 0+A —B-—+C—0 induces a sequence (opposite
direction by contravariance!)

0 - Hom(C, G) - Hom (B, G) - Hom (4, G) -0

which may not be exact at Hom(4,G). Ext! to the rescue: Thereis a
"*connecting" homomorphism E* which producesalonger exact sequence

0 — Hom (C, G) - Hom (B, G) - Hom (4, ) =
E} Ext1(C,0) — Ext1(B, G) — Ext! (A.G) — 0.

Now generalize; replace abelian groups by modules over any com-
mutative ring R. Then Ext!(A,G)ist still defined as an R-module, but
the longer sequence may now fail o exactness at Ext!'(A,G). There is
anew functor Ext2 (A,G),a new connectinghomomorphismE* :Ext! (A,G)
—+Ext?(C,G), and an exact sequence extending indefinitely to the right
as

... — Ext" (C,0) - Ext" (B,G) ~ Ext" (A, G) & Ext"+1(C,G) — ...

1%
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The elements d Ext*(C, G are suitable equivalence classes o long
exact sequences
0—>G—>B, ;—>--—>By—>C—0

running from G to C through » intermediate modules. Similarly for
the tensor product; there are functors Tor, (A, G), described viasuitable
generators and relations, which enter into a long exact sequence

—>Tor,,,(C,G) & Tor, (A,G) —Tor, (B, G) = Tor, (C, G) —...

induced by each E: 04 —-B —>C—0. They apply dso if theringis
not commutative — and A, B, and C are right R-modules, G a left
R-module.

These functors Tor, and Ext* are the subject d homological algebra
They give the conomology o various algebraic systems. If I7 isagroup,
take R to bethe group ring generated by I7 over theintegers. Then the
group Z d integersis (trivially)an R-module; if A isany other R-module,
the groups Ext}(Z, A) are the cohomology groups H"*(/1, A) o the
group 7 with coefficients in A. If #=2, H3(II, A) turns out, as it
should, to be the group o all extensions B d the abelian group A by
the (non-abelian) group 17, where the structure & A as a 17-module
specifieshow A isa normal subgroup d B. If n=3, H3({1, A) isagroup
whose elements are " obstructions™ to an extension problem. Similarly,
Tor, (Z, A) gives the homology groups o 17. Again, if A is an agebra
over the field F, construct Ext* by long exact sequencesd two-sided
A-modules A. The algebra A isitself such a module, and Ext*(4, A) is
the cohomology o A with coefficients A ; again Ext2 and Ext3 correspond
to extension problemsfor algebras.

A module Pis projective if every homomorphism P-— B[4 liftsto a
homomorphism P—B. Any free moduleis projective; write any module
in terms d generators; this expressesit as a quotient d a free module,
and henced a projective module.

How can Tor, and Ext" be calculated? Write A as a quotient d a
projective module £,; that is, write an exact sequence 0<-A4<F,. The
kernel d B,—A isagain a quotient d a projective . This process con-
tinues to give an exact sequence 0<A<«Fy<«F< .... The complex P
is caled a "projective resolution’”™ o A. It is by no means unique;
compare two such

0«<A«B &B B«
Il 3/.3% i
0« A<« B B« B «--.

Since 2, is projective, the map B,—A4 liftsto f,: B,—~P,. The composite
map P,—P, liftsin turn to an f,: B, —P/ with 38f,=/,8, and so on by
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recursion. The resulting comparison f,: B, —P, of complexesinduces a
homomorphism H, ( PQG) —H, (P' @G). Reversingtherolesd Pand P
and deforming P — P’ — Pto theidentity (deformationsare called homo-.
topies) shows this an isomorphism H, (RRG)=2H, (P'®G). Therefore
the homology groups H, (P ®G) do not depend on the choice d the
projective resolution P, but only on A and G. They turn out to be the
groups Tor, (A,G). Similarly, the conomology groups H" (P,G) are the
groups Ext"(A, G), while the requisite connecting homomorphisms E*
may be obtained from a basic exact homology sequence for complexes
(Chap.II). ThusTor and Ext may be calculated from projective resolu-
tions. For example, if I7 is a group, the module Z has a standard ™ bar
resolution™ (Chap.|X) whose cohomology is that o I1. For particular
groups, particular resolutionsare more efficient.

Qualitative considerationsask for the minimumlength o a projective
resolution o an R-module A. If there is a projective resolution of A
stopping with B, , =0, A is said to have homological dimension at
most n. These dimensions enter into the arithmetic structure o the
ring R; for example, if R isthe ring Z o integers, every module has
dimension at most 1; again for example, the Hilbert Syzygy Theorem
(Chap.V11) deals with dimensionsd graded modulesover a polynomial
ring.

Two exact sequencesO+A —-B-—+C—0 and 0—»C—D —F -0 may
be "spliced™ at C to give alonger exact sequence

0—>A—->B->»D-—-F->0;
NS

in other words, an element & Ext'(C, A) and an element o Ext!(F, C)
determine a two-fold extension whichisan element o Ext2 (F,A),called
their product (Chap. III). These and similar products for Tor can be
computed from resolutions (Chap. V111).

Every R-moduleis also an abelian group; that is, a module over the
ring Z o integers. Cdl an extension E: A B —C d R-modules Z-split
if the-middle module B, regarded just as an abelian group, is the direct
sum d A and C. Construct the group Extg, »(C, A) using only such
2-split extensions. This functor has connecting homomorphismsE* for
those E which are 2-split. With the corresponding torsion functors and
their connecting homomorphisms,it isthesubject o relative homological
algebra (Chap. 1 X). Thecohomology of agroupissuch arelative functor.
Again, if Aisan algebra over the commutative ring K, all appropriate
concepts are relative to K; in particular, the cohomology o A arises
from exact sequences d A-bimodules which are split as sequences o
K-modules.
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Modulesappear to bethe essential object o study. But the exactness
d aresolution and the definition o aprojective are propertiesd homo-
morphisms; all the arguments work if the modules and the homo-
morphisms are replaced by any objects A, B, ... with "morphisms”
a: A - B which can be added, compounded, and have suitable kernels,
cokernels (Bfx4), and images. Technically, this amounts to developing
homological algebrain an abelian category (Chap. I X). From thefunctor
T, (A)=A ®G we constructed asequenced functorsZ, (A)=Tor, (A,G).
More generdly, let T, be any covariant functor which is additive
[To(y+a) =T, +Tyay] and which carries each exact sequence
0-+A —B —C -0 intoaright exact sequence T (A)-+&(B)~T, (C)—0.
We again investigate the kernel d T (A)->T,(B) and construct new
functorsto describeit. If thecategory has' enough' projectives, each A
has a projective resolution P, and H,(T,(P)) is independent d the
choice d P and defines a functor T, (A) which enters into along exact
sequence

> T(A) > T,(B) > T,(C) BT, 4 (4) -

Thus T, determines a whole sequence d derived functors T, and o
connecting  homomorphisms E,:T,(C)—T,_,(A). These "derived"
functors can be characterized conceptually by three basic properties
(Chap. X11):

(i) The long sequence above is exact,

(ii) If Pis projective and » >0, T, (P)=0,

(iii) If E—~E’isahomomorphismd exact sequences, the diagram d
connecting homomorphisms commutes (naturality!):

L(C)>T,,(4)

y v
L(C) =T, (4").

In particular, given T, (A)=A &G, these axiomscharacterize Tor, (A,Q)
as functors & A. There is a similar characterization o the functors
Ext*(C,4) (Chap.III). Alternatively, each derived functor 7, can be
characterized just in termsd the preceding 7, _,: If E:S (C)—~S,_1(A)
is another natural connecting homomorphism between additivefunctors,
each "natura™ map o S,_, into T,_, extends to a unique natural map
d S into T, This"universa" property d 7, describesit as the left
satellite of 7, _,; it may be used to construct products.
Successiveand interlocking layers d generalizationsappear through-
out homologica algebra. We go from abelian groups to modules to
bimodules to objects in an abelian category; from ringsto groupsto
algebras to Hopf algebras (Chap. V1); from exact sequences to Z-split
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exact sequences to a ""proper’ class d exact sequences characterized
by axioms (Chap. X11). The subject isin processd rapid expansion;
the most general formulation is yet to come. Hence this book will
proceed from the specia to the general, subsuming earlier results in
the concluding treatment (Chap. X11) d additive functorsin an abelian
category relative to a proper classd exact sequences.

As each concept is devel oped, we take time out to stressitsapplica-
tions. Thus Chap. IV on the cohomology d groups includes the topo-
logical interpretation d the cohomology groupsd /7 as the cohomology
d an aspherical space with fundamental group 77, as well as Scuur’s
Theorem that every extension d a finite group by another finite group
d relatively prime order must split. Chap. VII, on dimension, studies
syzygies and separable algebras. Chap. X on the cohomology o alge-
braic systems includes the Wedderburn principal theorem for algebras
and the cohomology (at various levels) d abelian groups. Chap. X1
includesthe standard construction o the spectral sequencesd afiltra-
tion and d a bicomplex, used to construct the spectral sequence d a
covering and d a group extension. (Thelatter is due to Lynpon and
not, as often thought, to the subsequent work d HoCHSCHILD-SERRE).
Much d the general development of homologica algebrain the other
chapters can be read independently o these results.

For the expert we note a few special features. The basic functors
Ext and Tor are described directly: Ext, following YONEDA, by long
exact sequences, Tor by an improved set d generators and relations.
Resolutionsare relegated to their proper place as a means d computa-
tion. All the varieties d algebras (coalgebras, Hopf Algebras, graded
algebras, differential graded algebras) are described uniformly by com-
mutative diagramsfor the product maps. Relative homologica algebra
is treated at two levelsd generdlity: First, by a "*forgetful" functor,
say one which regards an R-module just as an abelian group, later by
a suitable proper classd short exact sequencesin an abelian category.
Thecohomology d groupsisdefined functorially by the bar construction.
This construction later appears in conceptual form: For a pair o cate-
gories with a forgetful functor and a functor constructing relative pro-
jective~(Chap.1X, $7). The proper definition d connecting homo-
morphisms by additive relations (correspondences) is indicated; these
relations are used to describe the transgression in a spectral sequence.
This gives a convenient treatment d the transgression in LYNDON's
spectral sequence. Diagram chasing works in an abelian category with
subobjects or quotient objects replacing elements (X1I.3).

Notations are standard, with the following few exceptions. A com-
plexisK (latin), acommutative ringisK (greek). A *graded” module M
isafamily M,, M, ... d modulesand ot their direct sum 337, while
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afamily...,M_;, M,, M,, ...issaid to be" Z-graded". A monomorphism
is written x:A4>>B, an epimorphism a:B-»C, while x]o states that
0+A —B->C-—0isexact. A dotted arrow A--> B isa homomorphism
to be constructed, a dashed arrow 4---B is a group homomorphism
between modules, a haf arrow 4— B is an additive relation. We
distinguish between a bicomplex (X1.6) and a complex d complexes
(X.9); we "augment™ but do not "supplement™ an algebra. The dual
d aresolutionisa' coresolution™. If »isacyclein the homology classh
o H,(X),uceH, isshort for ucheH,, while h iswritten h=cls . The
coboundary d an n-cochainf is 8f==(—1)*"1f ¢, with a sign (11.3).

A referenceto ThmV.4.3 isto Theorem 3 d section 4 o Chap. V;
if the chapter number is omitted, it is to a theorem in the chapter at
hand. A reference such as BourBaki [1999] is to that author's article,
as listed in the bibliography at the back d our book and published in
the year cited; [1999b] is to the second article by the same author,
same year. The influential treatise by H. CArRTAN and S. EILENBERG
on Homologica Algebraishonored by omittingitsdate. The bibliography
makes no pretense at completeness, but isintended to provide a guide
tofurther reading, assuggested in the notesat the ends d some chapters
or sections. These notes also contain occasiona historical comments
which give positive—and perhaps prejudiced—views d the develop-
ment o our subject. The exercisesare designed both to give elementary
practice in the concepts presented and to formulate additional results
not included in the text.

Chapter one

Modules, Diagrams, and Functors

Homology theory deals repeatedly with the formal properties d
functions and their composites. The functions concerned are usually
homomorphismsd modulesor o related algebraic systems. The formal
properties are subsumed in the statement that the homomorphisms
constitute a category. This chapter will examine the notionsd module
and category.

1 The Arrow Notation

If X and Y are sets, the cartesian product X><Y is the set o al
ordered pairs (x, y) for xe X and yeY.

Thenotationf: X+Y statesthat fisafunctionon X to Y. Formally,
such afunction may bedescribed as an ordered triplef =(X, F, Y), with
Fa subset o X><Y containing for each x¢X exactly one pair (x,Y).
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Actually wewritef (x)=Yy, asusual, for thevalue of f at the argument x.
Notice that we normally write the function f to theleft o its argument,
asinf (x). Noticealso that eachfunction f carrieswithit adefinite set X
asdomainand a definite set Y asrange.

If f:X+Y and g Y-Z are functions, the composte function gf,
sometimes written gof, is the function on X to Z with the value
of) (x)=g(f (x)) for each x<X. Sincefunctionsarewritten ontheleft, gf
means first apply f, then apply g. This compositeis defined only when
Range (f) =Domain (g);in particular, we do not define the composite
when Range (f) is a proper subset d Domain (g).

For any set X, the identity 1 or 14 is the function 1: X+X with
1(X)==«foradl x. If Sisasubsetd X thefunctiony: S—X with values
i(s)=s for all seS iscaledthe ("identity")injection d Sinto X. For
any f: X+Y the composite fj: S—Y (sometimeswritten f|S) is the
function f **cut down™ to thesubset Sd itsdomain. Similarly, when Y
isasubset d W and k: Y+W istheinjection (with k(y)=y), the com-
posite kf: X—W isthefunction f with itsrange expanded from Y to W.
Notice that the functionsf and kf have the same vauesfor each argu-
ment x, but they are different functions, since the range is different.
This digtinction, apparently pedantic, will pay off. (See Example2 in
I1.1.).

We use the usual notations d set theory, with X~Y denoting the
intersection d the sets X and Y and with @ the empty set.

2. Modules

Let R bearing with identity 14=0. A left R-module A isan additive
abelian group together with a function p: R<A—>A4, written s (r, a)=ra,
such that always

r+7rYa=ra-tra, (rvYa=r(ra),
r(@+a)=ratra, 1la=a.

It follows that 0@ =0 and {—1)a=—a. Some authors define an R-
module without requiring that 14 =a, and call a module with this
property unitary. In this book, every ring has an identity and every
module is unitary.

Our treatment o left R-modules will apply, mutatis mutandis, to
right R-modules. They are abelian groups A with ar € A defined so asto
satisfy the correspondingfour identities; for examplea(rr')= (ar)r'.

Modules appear in many connections. In case R isafield or a skew
field, a left R-moduleis a left vector space over R. If Fisafield and
R=F[x] the polynomia ring in one indeterminate x with coefficients
in F, then an R-moduleis simply a vector space V over Ftogether with
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afixed linear transformation T: V-V ; namely, T isthe transformation
given by left multiplication by xeR. Consder Z-modules, where Z
denotestheringd integers. For eachpositiveinteger m, ma=a + ... *a
(mtimes); hencea Z-module A is just an abelian group, with the usua
meaning for integral multiples ma, meZ. If Z, isthe ring o integers
modulo k, a Z,-module A isan abelian group in which every element has
order adivisor of k. Finally, take R to bea commutative ring generated
by | and by an element d with d?= 0, sothat R consistsd all m+ s d for
integer coefficientsm and n; an R-module is then an abelian group A
together with a homomorphism d: A—+A4 such that d=0; such a pair
(A,d) is cdled a " differential group™ (IL.1).

A subset S d an R-module A is a submodule (insymbols, SC4), if S
isclosed under addition and if r¢R, se S imply rse S; then Sitself isan
R-module. Thering R isitself aleft R-module. A submoduled Risa
subset L o R closed under addition and with each »L{L ; such a subset
isdsocaledaleftideal in R. If L isaleftideal in R and A aleft R-
module, the set

LA ={al finitesums X 7; a, for /;cL, a;cA)

isasubmoduled A, called the product o theideal L by the module A.
In particular, the product LL' o two left ideals is a left ideal, and
(LLYA=L(L'A4).

f A and B are both R-modules, the notation a: 4—B or A% B
statesthat a is an R-module homomorphism d A to B; thatis, afunction
on A to B such that aways

a(gta)=aatoaa’, a(ra)=r(xa)

When a: A-»B, call A the domain and B the range d a. The image
Im(a)=ua4 consistsd al elementsaafor acA;itisasubmoduled the
range B; the kerndl Ker («) consistsd all ain A with aa=0; itisa
submoduled thedomain A. If « A=B, wesay that aisan epsmorphism
and writea: A-»B, whileif Kera=0 we say that a is a monomorphism
andwritea: A>B. Findly, aisanisomorphismif and only if aisboth a
monomorphism and an epimorphism. For each module A, the identity
function 14: A—A4 is an isomorphism. For any A and B, the zero or
"trivial™ function 0 with every 0(2)=0 is a homomorphism 0: 4—B.
A homomorphismw: 4-»A4 with range and domain equal is called an
endomorphism.

If «,,a, : A—B are homomorphismswith the samedomain A andthe
same range B, their sum o + o5, defined by (oc1+a,) a=a1a+oc2a, isan
R-module homomorphismey +ay: A—B.

If a: A—-B and §: B—C are R-module homomorphisms, the com-
posite function Be is aso an R-module homomorphism a: A—C; but
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note that this composite is defined only when Rangea=Domain 8.
The composition d homomorphisms is associative when defined. A
(two-sided) inverse of a: 4—B isa homomorphism«™: B+A such that
both aa1=15 and a-la=1,. Moreover, a has an inverseif and only if
it isan isomorphism, and the inverseisthen unique. Wewritea: A=B
when a is an isomorphism. A left inversed ais any homomorphismy:
B—+A withya=1,; it need not exist or be unique.

A pair @ homomorphisms( a, 8) with Rangea=Domain =B,
4%Btc,

isexact at B if Kerf=Ima A longer sequence d homomorphisms:

&, & xp—
4,254,254, - A, %A,

is said to be exact if («;_,, @) isexact at 4,, for eachi =2,...,n—1.

For each submodule T ¢ B theinjection isa monomorphism|j: T—B.
For each beB the set 8 +T of all sums b4 ¢ with ¢¢T isa cosetof Tin B;
two cosetsd, + T and &, + T are either digoint or equal (thelatter when
b,—b,e T). Recall that the quotient group (factor group or difference
group) B/ T hasasitselementsthecosetsdf TinB,with(s, +T) + (5, FT)
= (b, *d,) +T as addition. Since T is a submodule, the abelian group
B|T becomesan R-modulewhen the product d any reR with a coset is
defined by »(b+T) =rbF+T; wecdll BT a quotient module. The func-
tion % which sends each element beB into its coset nb=b~+ T isan epi-
morphism %: B—»B/|T, caled the canonical map or projection B on
B|T.

Proposition 2.1. If 8: B—~B’ with TCKer g, thereisa unique module
homomorphismf’: B/T—B’ with 8'n =g; that i s, the diagram

B ,.B|T

N ﬁ B(T)=o0,
él

can ke" filled in" by a unique g’ 2 asto be commutative (8’5 = f).

Proof. Set g’(b+ T)=pBb; since TC Ker g, this iswel defined. In
particular, if 8: B—B’ is an epimorphism with kernel T,8’: B/T=B".

This result may be worded: Each g with g(T)=0 factors uniquely
through the projection 5. This property characterizes n: B—B/T up
to an isomorphism d BIT, in the following sense:

Proposition2.2. If TWCB and ¢: B+D is such that ¢(7)=0 and
each §: B 3B' with 8(T)=0 factors uniquely through(¢, thereis an iso-
morphism @: B/T =D with{ =01.
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Proof. Factor ¢ through# and % through[, so{=¢{'n,n=%'{. Hence
{={'y"Y[=1{. But{ factorsunigquely through(, so{’sn'=1. Symmetri-
caly, ’'’=1. Hence n'=({")* and ¢’ is the desired isomorphism 6.

For any T<B the injection 7 and the projection # yield an exact
sequence.

O—>T—'->B—"—>B/T—>O.

Conversaly, let

(X,0): 045 B-2% C—>0

be any short exact sequence; that is, an exact sequence d five R-modules
with the two outside modules zero (and hence the two outside maps
trivial). Exactnessat A means that » is a monomorphism, at B means
that xA=Kera, at Cthat ¢ is an epimorphism. Thus the short exact
sequence may be written as 4B C, with exactness at B. Now x
inducesanisomorphismx’: A= x A and aan isomorphisme¢’: BjxA==C;
together these provide an isomorphismd short exact sequences, in the
form of a commutative diagram

0—> A5 B-25C—50

= e (2.1)
0—->xA1.B_>BjxA->0.

In brief, a short exact sequence is but another name for a submodule
and its quotient.

Each homomorphisma: A+B determines two quotient modules
Coima=A/Kera, Cokera=B/Ima,

called the coimage and the cokernel & a. This definition gives two short
exact sequences

Kera»»A-»Coima, Ima>B-»Cokera, (2.2)
an isomorphism Coima =zIm a, and a longer exact sequence

0—Kerat>4% B Coker a— 0. (2-3)

By Prop. 2.1, g« =0 impliesthat g factors uniquely through# asg =8'».
Dudly, if somey: A’—A hasay =0, then y factors through § asy =77’
forauniquey': A’—Xera. This property characterizesj: Ker atA up
to an isomorphism d Kera. Observethe dual statements: a is a mono-
morphismif and only if Kera=0, and is an epimorphismif and only if
Coker & =0. This duality will be discussedin $8.

If a: A—>B and SC4, theset « S d all elementsasfor seS is asub-
module d B called theimage d S under a. Similarly, if TCB, the set
a1 T d al seA with aseT is a submodule d A, caled the (complete)
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inverseimaged T. In particular, Ker a=a10, whereo denotesthe sub-
module d B consistingonly o the zero element.

For K{SCA the module S/K is called a subquotient of A; itisa
quotient module d the submodule Sd A, and simultaneously a submo-
dule d the quotient module A/K. Furthermore, if K{(K'CS'CSCA,
then K’/K is a submodule d S’/K and the composite projection S'—
S'|K—(S'|K)(K'|K) has kernel K’, hence the familiar isomorphism
(S'/K)(K'|K)=S'|[K’. This dlows us to write each subquotient
(S'/K)/(K'|K) d asubquotient S/K directly asa subquotient o A.

Let S/K be a subquotient & A, S'/K’ one d A'. If a:4—A4’ has
aSc S andaK ¢ K', then astK' isacoset d S’/K’ uniquely determined
by the coset s+ K o S/K. Hence a, {s+ K)=as+ K' defines a homo-
morphism

a,: S/K - S'|K’ (aS¢ s, aK¢KY) (2.4)

called the homomorphism induced by a on the given subquotients.

f Sand T are submodulesd A, their intersection S~T (assets)
is also a submodule, asis their union SU T, consisting d all sums s +t
for se S, teT. The Nocther isomorphism theorem asserts that 1, induces
an isomorphism

1 S/(SAT)=(SVD)T. (2.5)
3. Diagrams
The diagram o R-modules and homomorphisms
0->4-5B 5 C—0
e o b (3.1)

0—>A'—K;B'.i C'——)()
issaid to be commutative if »'« =fx: A-—~B’ (left square commutative!)
and ¢'8=yo0: B—C’ (right square commutative!). In general, a dia-
gram d homomorphismsiscommutativeif any two pathsalong directed

arrows from one module to another module yield the same composite
homomorphism.

Lemma 3l (The Short Five Lemma.) If the commutativediagram
(3.1) d R-modules has both rows exact, then
(i) If a and y are isomorphisms, DisP;
(ii) If aand y are monomorphisms, DisP;
(iti) If a and y are epimorphisms, D is B.
The same conclusions had for a diagram d (not necessarily abelian)
groups.
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Proof. Clearly (ii) and (ili) together yield (i). To prove (ii), take
beKer §. The right square is commutative, 0 yab=¢'fb=0; asyisa
monomorphism, this meansthat ab=0. Sincethetop row isexact, there
is an element a with xa=b. Now the left square is commutative, so
xX'aa=fx»a=pFb=0. But the bottomrowisexact at A',soaa=0. Since
a is a monomorphism, a=0, and hence b=xa =0. This proves 8 a
monomorphism.

To prove (iii),consider any b in B'. Sincey isan epimorphismthere
isaceC with yc=g'b'; sincethe top row is exact, thereisa b¢B with
ab=c. Then d (8b—b)=0in C. The exactness d the bottom row
yieldsan d e A with Xa' =gb—Db". Sincea is an epimorphism, thereis
an a¢A with wa=a" and hence with fxa=x'aa=8b—5b". Then
b =g (b—~xa) isin theimaged B, g.e.d.

This type o proof is caled "*diagram chasing™. Inspection shows
that the chase succeeds just as well if the groupsare non-abelian (multi-
plicative) groups.

By the same method, the reader should verify the following more
genera results (asformulated by J. LEICHT):

Lemma 32. (The Srong Four Lemma.) Let a commutative diagram

'lr la lﬂ l" (3.2)

n
Pty v D e

have exact rows, T an epémorphism, and v a monomorfihism. Then
Kerf=¢(Kere), Ima=#(Imp).
Herethe dotsin the diagram stand for modulesor for not necessarily
abelian groups.
A simpler version (the Weak Four Lemma) states, for the same com-
mutative diagram with exact rows, that g is a monomorphismif a and
v are monomorphisms and 7 an epimorphism, whilea is an epimorphism

if ¥ and g are epimorphisms and v a monomorphism. A more frequently
used consequenceis

Lema 33. (TheFiveLemma.) Let acommutativediagram

P S .

N R e (3.3)

D e i o
have exact rows. If o, a,, &, a, aretsomorphims, VDisay. | N more detail,

() If o isan epéimorphism and a, and a, monomorphisms, thene, isa
monomorphism,
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(i) If a, i'sa monomorphism and a, and a, epimorphisms, then ogisan
epimorphism.

Proof. Chase the diagram, or apply Lemma 3.2 twice to the left-
hand and right-hand portions.

4. Direct Sums

The external direct sum 4,4, of two R-modules A, and A, is the
R-module consisting & all ordered pairs (a,,a,), for ;€ 4;, with module
operations defined by

(@1, g) + (a1, a2) =(m+ a1, a5+ az), 7(ay, a))=(ray, ra,).

Thefunctions: and ndefinedby 4 8,=(a,,0), 1,a,= (0, &), =, (a,,a) =4,
m, (a,, a) =a, are homomorphisms

A 4,0D4,55 A, (44)
which satisfy the identities

mu=1,,, @L=0,
Tty =0,  Tala=14,, (4.2)
u o+ =144,
Cdl ¢ and ¢, the injections and =, , 7, the projections d the direct sum.
The diagram (4.1) contains partial diagrams, to wit:

Injective direct sumdiagram: A-54,@ A4, A,
Projectivedirect sumdiagram: 4, 4,04, A,
One-sided direct sum diagram: A4,D A, A,,
Sequential direct sumdiagram: 4,-5A4,BDA4,-3A, ;

in particular, the last diagram is a short exact sequence. Instead o
defining the direct sum via elements, we can characterize each d these
diagrams by conceptual properties. With a view to later generalizations
(Chap.1X),our proofsd these propertieswill be socast asto useonly the
diagram (4.1), the identities (4.2), and formal propertiesd the addition
and composition d homomorphisms; in particular, the distributive laws
Bloy+ag) =Py + Py and (a;+xg)y =ayy +ogy.
Proposition 4.1. For given modules A, and A, any diagram

4 4

Al — B...._) Az
’ y
G T3

d the form (4.1) and satisfying the five identities like (4.2) isisomorphic to
the direct sum diagram. | n more detail, there i s exactly one isomorphism
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0: B—>A, DA, suchthat
ml=mn;, Ou=y, forj=1,2. (4.3)

Proof. Define8as 8=1,7;-+ t,2 and theanalogue 8': 4,6 4,—~B by
0'=um+ 17, Theidentities (4.2) show that 8 is a two-sided inverse
for 8 and thus that 8 is an isomorphism; the properties (4.3) follow
directly from (4.2). Also if 6 satisfies (4.3), then @=(¢, 7,4+ ¢,7,) 0 =
4, 7T+ ta7wg, O O isindeed uniquely determined.

Next we characterizethe one-sided direct sum diagram.

11

Proposition 4.2. Any diagram 4,°>B25 4, with /¢ =14, isiso-
morphictoa" one-sided" direct sumdiagramA4,P 4,554, withA,=Kern".

The proof requires an isomorphism 8: B—>4,4, with 0¢' =1,,
7, 8=n'". Define 6 by 6b=(b—¢'n"b,#"'b) and 6 by 67 (4, 8) =
a4 a,.

To provethis without using elements, consider the diagram

[}
Ker ' > B55 A,
=

withe theinjection. Sincex” (1 — ¢"’#"’) =0, 15— ¢’ &'’ factorsthrough ¢’

as1p—'n'" =17’ for somen': B—>Kern”. Now z’’ =0 and /=’ ¢’ ="'

given’'+/'=1, so we haveidentities like (4.2)and can apply Prop. 4.1.
Now write the direct sum asashort exact sequence(e, z,). Heresis

aright inversed =,, whilen, , =1 showsr, aleftinverse of ¢;.

Proposition 4.3. The following properties o a short exact sequence
(i',n"™): A, B-»A4,areequivalent:

(i)'’ has aright inverse ¢'': A,—>B, withz" ¢''=1;
(ii) ¢’ has a left inverse n’: B—A4,, witha'¢=1;
(iii) The sequence i sisomorphic (with identitieson A, and A,) to

04,5 4,D A4, 4, >0.

A short exact sequence with one (and hence all) d these properties
issaid to split (someauthors say instead that the sequenceisinessential).
Proof. We just observed that (iii) implies (i) and (ii). Conversealy,
exactness shows that ¢ gives theisomorphism 4, =Kerz", so (i)implies
(iii) by Prop. 4.2. Similarly, (ii) implies (iii).
Now consider pairs d coterminal homomorphisms «,,a,, as in the
diagram
D: A, 5B A,. (4.4)

Such a diagram is said to be universal with ends A, and A, if to every
diagram D': 4,—B'«A, with the same ends there exists a unique
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homomorphismd D to D' which is the identity on each A4;. In other
words, D is universal if to each rectangular diagram

A, 5 BE 4,
I (4.5)

4,588 4,,

with D asfirst row and end maps the identities, there is a unique way
d inserting the middle dotted arrow so that the whole diagram becomes
commutative (Boy=os, Boa=03).

Proposition4.4. The(injective) directsumdiagramA4,—»A4,P A« 4,1s
universal with ends A, and A,. Conversely, any diagram (4.4) which is
universal with ends 4; is é¢somorphic to this direct sum diagram (with
identities on A, and A,).

Proof. Toshow 4,D A, universal, definethe homomorphismg needed
for (4.5) asB(ay, @) =14+ g4, ; that is, asf =aym -+ a7, ; thisis the
only choicefor 8. To provethe converse, it will sufficeto show that any
two diagramsuniversal withendsA, and 4, areisomorphic(withidentities
on 4;). Suppose then that both rowsin (4.5) are universal. Sincethe
top row is universal, thereisag: B—B’ with fa,;=q;; since the bottom
row is universal, thereisag’: B'—B with f'a;=a«;. Then (f'f)a,;=«;,
forj=1, 2. Sincedso 1 g &;=wa;, the uniquenessproperty for the top row
gives '8 =1g. Similarly the uniqueness for the bottom row gives
1z=gf". Hence § and g’ are mutually inverse isomorphisms, g.e.d

Sincethe universal diagramisunigue up to an isomorphism, it follows
that the maps «; in any universal diagram with ends A, and A, are
always monomorphisms, since they are such for the external direct sum
diagram.

Notice that the proof d the converse part o the propositiondid not
useelementsd the modules, but only formal arguments with homomor-
phisms. This proof is thus valid in any category, in the sense soon
(§ 7) to be explained.

Dually, a pair d coinitial maps forming a diagram D: A,«<-C—A, is
counsversal with ends A, and A, if to each rectangular diagram

4,204,
It (4.6)

4,2c %4,

with D asfirst row and with vertical maps1 on each 4;, thereisa unique
way d inserting the middledotted arrow to make the diagram commuta-
tive. The reader should prove

Mac Lane, Homology 2



18 Chapter |. Modules, Diagrams, and Functors

Proposition 4.5. The (projective) direct sum diagram
 — 1®A2~ﬂ)A2

is couniversal with ends A, and A,. Conversely, any diagram couniversal
with ends A, and A, isisomorphic (identities on each 4;) to this diagram.

Direct sumsd morethan two moduleswork similarly. For example,in
a direct sum 4, 4,4, an element may be regarded as an ordered
triple (4, a,, a5) or as a function a on the set {1, 2, 3} d indices with
a(i)4;. In genera, given a family d modules{A,}indexed by an arbi-
trary set T, the cartesian product [T, 4, istheset d all those functions f
on 7 to the union d thesets A, for whichf (t)c A, for each t. Definethe
module operations ""termwise’’; that is, define the functions f +¢ and
rf for reR by

Gtivo=totere, eHho= (), teT.

Then JI, A, is an R-module. The homomorphisms n,: [], A,—~A
defined by &,f =f(t)are caled the projections d the cartesian product.

For given A, ,let {y,: B—>4,} beadiagram with oneadditional module
B and one homomorphism y, for each teT. This diagram is couniversal
with ends A, if to each diagram {y;: B’ A,|teT} thereexistsa unique
B: B'—B such that y;= y, 8 for alt. Theprojectionsd thecartesian pro-
duct JT, A, yieldsuchacouniversal diagram, and any two such diagrams
areisomorphic, as before.

Theexternal direct sum Y, A, of thesamemodules A, isthat submodule
d JI,A,which consistsd all those functionsf with but a finite number
d non-zero values. The homomorphisms ¢: 4,—>, 4, are defined for
each acd, by letting ¢(a) be the function on T with [¢(a))t)a,
[, (a)](S}=0 for s£=£. Thesehomomorphismsare called theinjectionsd
the direct sum. As in the case d two summands, the diagram
{,;: 4,~3, A} is universal for given ends A,, and is determined up to
isomorphism by this fact.

For a finite number d summands the external direct sumisidentical
with the cartesian product. This implies that any finite universal
diagram «;: A;—B, for =1,...,n, yields a couniversal diagram

B—>A} More explicitly, eech y; is that map which is uniquely
determl ned (since B is universal) by the conditions y; «;=1,, ¥;%=0
for j 4=k. Dually, the reader should obtain a universal diagram from the
couniversal one.

Direct sums may be treated in terms d submodules. If S, is any
family o submodulesd B indexed by aset T, their union US, isthe set
d dl finitesumss;+ ... +s with each s; in some S, ; it isasubmodule
d B containing al the S, and contai ned in any submodule which con-
tainsall the S,. Their intersection NS, is the intersection d the sets S, ;
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it isasubmodule o B contained in all the S, which contains every sub-
module contained in every S,. We aso write S,u S, or S; S, for the
union or intersection d two submodules S, S,.

Proposition 4.6. For submodules S,CB,teT, the followingconditions
are equivalent:

(i) The diagram {j,: S,—~B}, 7, the injection, is universal far ends S,,
(ii) B =US, and, fa each#yeT, S,p(‘th S;)=0.

Proof. Given (i),Bisisomorphicto > S,, which satisfies (ii). Conver-
sely, given (ii), the condition B=US, states that each 440 can be
written as a finite sum b=s,+ --. +s, o elements s; =0 belonging to
different submodules S,,, 1 =1, ..., n; the second condition o (ii) states
that thisrepresentation is unique. For any other diagram{a,: S,~>B’} the
homomorphism f8: B—B’ defined by 8(s,+ ..- +s,) =0y 5T ... S,
is the unique homomorphism with g7,=«, ; hence the universality.

When these conditions hold, B iscaled theinternal direct sum o its
submodules S,. Therefore an internal direct sum isisomorphicto the
external direct sum X S,. In particular, B is theinternal direct sum of
two submodules S, and S, if and only if S;~S,=0and S;uS,=B; these
conditions imply B =S,®S,.

Exercises
I. Show that adiagram (4.1) with 7z, ¢, =1, 7,65 =1, 7, =0, and (¢, N,) exact
is a direct sum diagram.
2. If a: A-+A satisfiesa?=a, then A isthe direct sum of Keraand Ima.

3. Show that the diagram {a;: 4,—B, ¢€T} isuniversal for given ends 4, if and
only if (i) B is the union of its submodules «,4,; (ii) there are homomor phisms
ny: B—~A, for teT with m,a,=1 and s, o0, = 0 fOr s t.

4. State and provethedual of Prop. 4.6. (Thedual of asubmoduleisa quotient
module.)

5. 1f @;,.4;—4] for i,j=1, 2, showthat thereisauniquew: 4,® 4,~>41D 45
with mf we; =03 for i,5=1, 2.

5. Free and Projective Modules

The ring R, as a left R-module, has the following characteristic
property. If ais any element o an R-module A, there is a unique
R-module homomorphism g,: R—A4 with g, (1)=a; namely, thefunction
1, With p(r)=ra.

A freeleft R-moduleisany direct sum d isomorphiccopiesd theleft
R-module R. In view d the above property d R, we can say more
explicitly that theleft R-module Fis freeon a subsst T o itselementsiif
the homomorphismsg,: R—F with g,(r)=rt form a universal diagram
withendsR (onefor eacht) . Aseach homomorphismv: R—4 isuniquely
determined byv (1)e A, thisuniversal property can berestated asfollows.

2%




20 Chapter 1. Modules, Diagrams, and Functors

Proposition 5.1. The module Fis free on a subset T¢FF and only
toeach module A and each st function g on T to A therei sa uniquemodule
homomorphism u: F—A with u (t)=g(t) for every t.

The isomorphism d internal and external direct sums gives.

Proposition 5.2. The module Fis freeona subset T<F if and only F
each element of - can be represented uniquely as a sum X, 7,t with coeffi-
cients r,e R which are almost all zero (4. e., ali but a finite number are zero).

A moduleFfreeon T isdetermined uptoisomorphismby T. GivenR
and any set T, we may construct an R-module freeon T as F=Y, Rt,
whereRt istheset d al rt for e R, with the obvious modulestructure.

Theleft module A isgenerated by asubset U o itselementsif A isthe
only submoduled A containing all »eU; that is, if every element d A
can bewritten asafinite sum 2 ; »; with each ,¢ R. Amodulefreeon T
is generated by T.

Propostion 5.3. Every R-module is isomorphic to a quotient d a
free module.

Proof. Given the module A, takeasubset UgeneratingA (e. g., take
U=4). Form a free module F on U and the map u: F— A4 with u ()=
ucA. Since U generates A, u is an epimorphism, so A=F/(Kerpu).

A module A is finitely generated (or,d finite type)if it isgenerated by
afinitesubset; that is, if it isisomorphicto a quotient moduled afinite
directsumR®® ..- ®R. A moduleCiscyclic (ormonogenic) if it is gener-
ated by one element; then C=R/L, where L is a submoduled R (i.e,
L isaleftidea in R). The main theorem o elementary divisor theory
" assertsthat if R isacommutative integral domain in which every ideal
is principal (i. e., monogenic), then any finitely generated R-moduleis
isomorphic to adirect sum o cyclic modules. In particular (R=2Z2) any
finitely generated abelian group isa direct sum o cyclic groups.

A module Piscalled projective if in each diagram

P
15 (5.1)
BX_»C

with a an epimorphism, the dotted arrow can be filled in to make the
diagram commutative. |n other words, given an epimorphisme: B-»C,
each mapy: P—C can belifted to a: P—B such that ¢ =y.

Lenma 54. Every freemoduleis projective.

Proof. Let F befreeon generatorst. SinceaB = C, wecan choosefor
each t an element b,e B such that as,=yt. Then the unique g: F—B
with g¢ =¥, for eacht liftsy, as desired.
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Projective modules will be repeatedly used. Note that a projective
module need not be free. For example, take R=Z®Z, the direct sum
d the ring Z d integers with itsdf (with product (m,n)(m',»")=
(mm' ,nn')). Then the first summand Z, as submoduled an R-module,
is an R-module. It is clearly not free, but is projective according to

Proposition 5.5. An R-module P is projectiveif and only if itisadirect
summand 0 a free R-module.

Proof. Supposefirst that n : F= P& Q—P withF free. Givenany dia-
gram (5.1), y=: F—C lifts to g: F+B with ¢f=yz. The injection
t: P>P®Q hasa(Br)=yn ¢=y, 0 yliftsto g and P istherefore pro-
jective.

Conversdly, if P is projective, Prop. 5.3 gives an epimorphism
o: F>PwithF free. Lift1p: P-~Ptog: P+F withgg=1. By Prop.
4.2, Fisthedirect sum o 8P =P and Kerp.

Any subgroup d a free abelian group isfree; hence every projective
2-module isfree.

Exercises
1. Show that a direct summand of a projectivemoduleis projective.

2. For m, n relatively prime, show Z,, projective (but not free) over the ring
Z,, 5 Of integersmodulomn.

3. Prove: Any direct sum of projectivemodulesis projective.

6. The Functor Hom

Let A and B be R-modules. The set
Homyg (4, B)={1f: A->B}

d al R-modulehomomorphismsf d A into B isan abelian group, under
the addition defined for f,g: 4—B by (f+g) a=fa +ga. f A= B,
Hom, (A,A)isaringunder addition and compositiond homomorphisms;
thisring is called the ring of R-endomorphisms & A. In casethering R
is commutative, Homg (A,B) may be regarded not just as a group but
as an R-module, when tf: A+B is defined for teR and f: 4—B by
(tf) (a)=t(fa) for all acA. That tf isstill an R-module homomorphism
followsfrom the calculation

(¢ (ra)=t(fra)=tr(fa)=ri(fa)=7[(t])a]
which uses the commutativity o R.
This group Hom occurs frequently. If R is a field, Homg{4, B)is
the vector space d al linear transformations d the vector space A into

the vector space B. If G isan abelian group, and P the additive group
d real numbers, modulo 1, both G and P can be regarded as2-modules,
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and Homy, (G, P) is the character group d G. If ¢: R—Hom,{G, Q)
is any ring homomorphism, then the abelian group G becomes an R-
module with left operators rg =¢(r)g. All left R-modules can be so
obtained from such a G and ¢.

Consder the effect d a fixed module homomorphism §: B—B’ on
Homg(4, B). Each f: 4->B determines a composite 8f: 4—B’, and
B(f+g=/P+Bg. Hencethe correspondencef —pf isa homomorphism

B.: Homp (A, B) — Homy (A, B') (6.1)

d abelian groups, called the homomorphism™ induced™ by 5. Explicitly,
Bxf=PBof. If Bisan identity,so isf; if B is acomposite,sois fy; in
detail

(18)s = tHom(4. B)» BB')x=Px ﬁ;’ (6.2)

the latter whenever the composite 8’ is defined. We summarize (6.1)
and (6.2) by the phrase: Homg(A4, B) is a " covariant functor’” o B
(general definition in §8).

For the first argument A areversein direction occurs. For a fixed
module homomorphisma: 4—A’, each f': A’—B determines a compo-
site f'a A—B with (f+g')a=fa+g'x. Hence a*f'= fa defines an
""induced" homomorphism

a*: Homp (4’, B)—>Homg (4, B) (6.3)

d abelian groups. Agan (1,)* is an identity map. If «: 4—A4’ and
a: A’'—A", the composite aa is defined, and the induced maps are

Hompg (A", B) -~ Homp (A", B) -~ Hom (A, B) ;

one shows that a*a'* =(x'a)*. This reversa o order generalizes the
fact that the transpose d the product d two matricesisthe product d
their transposesin opposite order. Because d this reversal we shall say
that Homg (4, B), for B fixed, is a contravariant functor of A.

Now vary both A and B. Given a: A—A' and f: B—B’, each
f: A’—B determinesacompositegfa: 4—B';the correspondencef - 8fa
is a homomorphism

Hom(a g): Hom(A', B) - Hom(A, B’
d abelian groups, with «* 8, =Hom («, 8) =8,«*. It has the properties
Hom(1,1') =the identity,
Hom(aa, ") =Hom (a, p) Hom (a,8),

whenever the compositesaa’ and §§’ are defined. Wesay that Homisa
functor in two variables, contravariant in the first and covariant in the
second, from R-modules to groups.
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If a, a, : A—A’ are two homomorphisms one shows that
Hom (o, + oy, 8) — Hom (&, §)+ Hom (a5, B). (6.4)

Similarly, Hom (a,B,+ g, =Hom (a, )t Hom (a,p,). These two pro-
perties state that Hom Is an "* additive' functor.

For B fixed, apply Hom(—, B) to a direct sum diagram (4.1). The
result o 4
Hom (A,, B)=5Hom (A, ®A,, B)=—Hom(4,, B)
changesinjections ¢ to projectionss®*, but by (6.4) still satisfiestheiden-
tities (4.2)for adirect sum diagram. Similarly, for A fixed, a direct sum
diagram on modules B, and B, iscarried by Hom (A, —) to adirect sum
diagram (injectionsto injections). Thus

Hom (4,®4,, B)=Hom (4;, B)® Hom (4,, B), }
Hom (A, B, B,) =Hom (A, B))® Hom (A, B,).

In particular, Hom (A, B,)>Hom (A, B, B,) »Hom (A, B,) isexact.

(6.5)

Theorem 6.1. For any module D and any sequenceo—»A_’&BLL exact
at A and B the induced sequence

0 —>Homg (D, A)**> Homy (D, B)%* Homg(D, L) (6.6)
d abelian groups is exact.

Proof. To show #, a monomorphism, consider any f: D—A4 with
xyf =0. For eachdeD, %, fd =x{d =0; since x isamonomorphism,each
fd=0, so f =0, and therefore x, is a monomorphism. Clearly, B,y =
(B#)x = 04 =0, s0 Im %, {Ker 8,. For the converseinclusion, consider
g: D+B with f,g =0O. Then fgd =0 for each d. But Kerff == A4. by the
given exactness, so thereisa unique a in A with xa =gd. Then fd=a
definesa homomorphism f: D+A  with =, f=g. Thus Imzx, > Kerg,,
which completesthe proof d exactness.

By a corresponding argument, the reader should prove

Theorem 6.2. If M%. BZ.C—0 is exact, and D is any module, the
induced sequence

0—Homy, (C, D)= Homy (B, D) % Homg (M, D) (6.7)
is exact.

A sequence M—+B—C—0 exact at B and C is caled a short right
exact sequence. This theorem states that the functor Homg(—, D) for
fixed D turns each short right exact sequence into a short left exact
sequence; by the previoustheorem, Homg (D,—) carriesashort left exact
sequenceinto a short left exact sequence. If A»-B35-C isashort exact
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sequence, we wish to have exact sequences
0—Homg (D, A)—>Homg (D, B)2 Homg (D, C)—?, (6.6)
0—>Homg (C, D)—>Homg (B, D)—>Homg(4, D)~ ?. (6.7)

By the two theorems above, each is exact except perhaps at the right
end. With o for ? on the right, these would not usually be exact. For
example, exactness d (6.6) at Homg (D, C) would assert that each
h: D—C hastheformh=g#’ for some#’': D—B;i.e.,thateachmap hinto
the quotient C =BjxA could be lifted to a map h into B (aswould be
possible were D projective). To seethat this need not be so, take R=Z
and D=2, the cyclic group d order m. For the short exact sequence
Z-Z->Z,, with first map » the operation d multiplication by =, the
sequence (6.6) becomes 9—+0->0—Hom(Z,,, Z,}—0, and is manifestly
inexact. Similarly, (6.7) can beinexact withazeroat ?, sincefor A¢B a
homomorphismyf: A—D cannot in general beextended tooned B into D.
I't will be possibleto describean object whichisthe' obstruction' to the
problem d extending such an f. The group d these objects, placed at
“?”’ in (6.7'), will restore exactness. This construction, done for both
(6.6) and {6.7'), isone d the objectivesd homologicd agebra.

We now canformulateseveral characterizationsd projectivemodules.

Theorem 63. The following properties o a module D are equivaent:

(i) D is projective,

(ii) For eech epimorphism a: B-»C, g, : Homg (D, B)~>Homg (D, C)
IS an epimorphism,

(iii)If As>»B->C is a short exact sequence, L is 0—~Homg (D, A)
—Homg (D, B)— Homg (D, C)—0,

(iv) Every short exact sequence 4»»B-»D splits.

Proof. In (ii) the statement that a, is an epimorphism means that
each y: D—C can befactored asy =o8; thisisexactly thestatement that
Dis projective. Given the exactness o (6.6), (ii)isequivalent to (iii).
Findly, if D is projective and a: B-»D, the map 1,: D—D liftsto a
B: D—Bwithef =1, sothesequenced (iv)spl its. Conversdly,if every such
sequence ending in D splits, write D asan imageq: F+D d somefree
module F. Since thesequenceKer g »~F-»D splits, D isadirect summand
d F, by Prop. 4.2, henceis projective, by Prop. 5.5.

Exercises
I. Any left ideal L in thering R is an R-module, and L>>R-»R/L is exact.
Suppose L&+ L.
(i) Thesequence (6.63 need not beexact with zerofor ? on theright. Show this
for D=R/L by provingthat Homg (R/L, R) - Homg (R/L, R/L) isnot an epimor phism
(1 is not an image!).
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(i1)The sequence (6.7") need not be exact with zero for ? on theright. Showth's
forD=L by proving that Homg(R, L) -Homg(L, L)isnot an epimorphism (I not
an imaget).

2. For any set T of indices establish an isomorphism
Homg (3, 4,, B) =[], Homg (4,, B)
by mapping each {: 3} 4,~B into the collection of its restrictionsf, : 4, +B.
3. For any set T of indices establish an isomorphism

Homg (4, ItI B) = I:I Homg (A, By,

7. Categories

A category consists d '"objects” and ""morphisms™ which may
sometimesbe *"composed”. Formally, a category € is a class d objects
A, B, C, ... together with

(i) A family o digoint setshom (4, B), onefor each pair d objects;

(ii) For each triple o objects A, B, C a function which assigns to
achom (A, B) and gehom(B, C) an element gachom(A, C);

(iii) A function which assigns to each object A an element
1,c¢hom(4, A);
all subject to the two axioms:

Associativity: If achom(A, B), fchom(B, C), and yehom(C, D),
theny (Ba)=(yf) «;

Identity. If achom(A, B), thena1,, =a =1za

Write a: A—B for achom (4, B) and call a a morphism d € with
domain A and range B. By (ii),the compositeg« isdefinedif and only if
rangea =domain §; the triple compositeyf« is associative whenever it
isdefined. Cdl a morphismx anidentity d € if both xa=a whenever x«
is defined and fx =B whenever S is defined. Each 1, is an identity.
Conversdly, if x» is an identity, then x: A+A for some object A, and
x=x1,=1,: Eachidentity d € hastheform1, for a unique object A.
In other words, the identities o ¢ determine the objects d €. It is
possible to describe a category simply as a classd morphisms, with a
composite sometimes defined and subject to suitable axioms (Ex.3
below).

A morphism 8: A-»B is called an equivalence in € if thereisin &
another morphism ¢: B—A such that p8=1, and §p =15. Theng is
unique, for if also ¢’ 0 =1, then p =1 ,p=¢'0p =¢'15 =¢'. Call p the
inverse ¢ = 62 d theequivalence8. Thecomposited two equivalences,
when defined, is an equivalence.
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A (multiplicative) group G is a category with one object G; let
hom (G, G) beall elementsd G. If aset M isclosed under an associative
multiplication with an identity, it islikewisea category with one object
and composition given by multiplication.

A more typical example d a category is the category .4 o (left)
modules over a fixed ring R. The objects d this category are all
R-modules A, B, C, ..., the set hom(4, B) d morphisms is the set
Homy(4, B) d al R-module homomorphisms d A to B, while the
composite is the usual composite & homomorphisms. The axioms o
associativity and existence d identities are obvioudly fulfilled. This
category uses the class d al R-modules. We cannot say the set o all
R-modules because this set would be an illegitimate totality in the usual
axioms for set theory. If one adopts the Gédel-Bernays-von Neumann
axioms for set theory [GODEL 1940], one has at hand larger totalities
than sets, called classes, and one can legitimately speak o theclassd al
modules, or o all topological spaces. With thisinterpretation in view, we
have defined a category to be a class d objects.... We call a category
small if theclassd its objectsis a set.

To give other examples d categoriesit will suffice to specify the
objects and the morphismsd the category; in most cases the range and
domain d the morphisms, the composite, and the identities will have
their standard meanings. We list a number d examples d categories
which we shall meet.

The category d fopological spaces. Objects, all topologica spaces;
morphisms, all continuous maps f: X—Y d one space into asecond one.

Thecategory d abelian groups. Objects, all abelian groups; morphisms,
al homomorphismsadf such.

The category d groups. Objects, all (not necessarily abelian) groups;
morphisms, all homomorphismsd groups.

The category d sets. Objects, al sets; morphisms, all functions on a
set to a set.

I n the next examplesR denotesafixed ring.

The category d exact sequences & R-modules of length #. Objects,
al exact sequencesS: 4;—>A4y—--- —4,_—A, ; morphismsI: S—S,
al n-tuples I'=(y;,y,,...,y) o module homomorphisms y;:4;,—A4;
such that the diagram

Ay—>Ay—> - >4, —A,

[ [rs om

A1—>Ag—> - A, A,

is commutative. If B=(f,...,8,): S'=S”, the composite BI" is

Brvrs -2 Bavn)-
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One may aso have the category d exact sequences infinite to the
right or infinite to theleft, or both. Another exampleisthe category o
short exact sequences E: 4>-B-»C, with morphismsall triples (a8, y) d
module homomorphisms for which the appropriate diagram (3.1) is
commutative. It is by now amply clear how more examples can be
constructed ad libitum— a category of sequencesd exact sequencesof .. ..

It isaso clear that a number o concepts applicableto moduleswill
apply to the objects d any category — provided the definition d the
concept makes reference not to the elements d the modules but only to
modules and their homomorphisms. Thus, in any category €, a diagram
consistingd morphismsa,: A,—-C d &, oneforeachtinagivenset T,
isuniversal for the given objects A, (or, a direct sumdiagramfor the A,)
if to each diagram {«;: A, —C’|tc T} on thesameA, there exists a unique
morphism g: C—C’ o € with fa, =a; for each tc¢T. (For T={1, 2},
this is exactly the property formulated in (4.5)). The previous
uniqueness proof for thedirect sum o two modulescarriesover verbatim
togive

Proposition 7.1. In any category € let{a: 4,—~C} and {«;: A, —~C'}
be two direct sum diagrams for the same family{A} of objects. Thereis
then a unique equivalence 8: C—C’ of € with G, =a; for every t.

An analogousuniquenesstheorem holdsfor a direct product diagram,
defined asadiagram {y,: B—~A4,|teT} such that to each {y;: B'—>4,|teT}
there exists a unique morphismg: B’—B with y; =y, g for teT.

The definition d the direct product is exactly parallel to that for the
direct sum, except that all the arrows are reversed. Wesay that the direct
product is the "dua™ o the direct sum. In general, the dual o any
statement & (inthefirst order propositional cal culus) about a category %
isthestatement &* obtained by reversingthedirection d all morphisms,
replacing each composite o d morphisms by g« and interchanging
"domain' and"'range”. Oneobservesat oncethat thedual d eachaxiom
for a category isan axiom. |t followsthat thedual o a proof fromthese
axiomsd astatement & about categoriesisa proof d the dual statement
B*. For example, the dual o Prop. 7.1 is the proposition which asserts
the uniqueness (up to equivalence) d a direct product diagram with
givenends. Since Prop. 7.1 has been proved from the axiomsd a cate-
gory, we have this dual proposition without further proof. However, a
proposition & whose statement involves only objects and morphisms
may happen to betruein a particular category although the dual state-
ment is false. For example, in the category o all denumerable abelian
groups there exists a direct sum diagram with summands any denumer-
able list o denumerable groups A,, A,, ..., A,, ..., but there does not
exist adirect product d the same groups (essentially because the direct
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product which does exist in the category d all abelian groupsis non-
denumerable).

To each category one may construct an opposite category €°°. Take
the objectsd ¢°P to beaclassin 1 —1 correspondence A*<> 4 with the
objectsA d €. Takethemorphismsto beaclassin1 —1 correspondence
a*<«>a with the morphisms d ¢. Decreethat a*: A*—B* if and only if
a: B—~4, and that «*8* isdefined and is (B«)*, exactly when a is defined.
Then #°P is a category, and any statement &* about the category € is
the same as the original statement & about the category °°. This,
again, shows the dual €* o a provablestatement & provable. The1 —1
function T with T(4) =A* and T(«)=«* is an ""anti-isomorphism™ d
€ to P, since T(Ba)=T{(x) T(H).

Subsequently, we shall define a special sort d category, caled an
*abeliancategory-', by requiringessentially that hom (A, B) bean abelian
group and that kernelsand cokernel sexist, asinthecased thecategory d
modules. It turns out that many theorems about modules remain true
when the modulesand their homomorphismsare replaced by the objects
and the morphismsd any abelian category. The interested reader may
turn at once to Chaps. | X and XII.

Exercises

1. In the category o topological spaces, show that the disjoint union o two
spaces provides a direct sum diagram, and that the cartesian product X><Y o two
spaces, with its usual topology and with the natural projectionson X and Y, pro-
vides a direct product diagram.

2. Show that any two objects in the category o groups may beendsd adirect
product diagram and o a direct sum diagram. (Note: The "direct sum" for not
necessarily abelian groups is more often known as the "' free product™.)

3. Consider aclass.# o elementsa, £, ¥ in which a product ga¢.4 issometimes
defined. Call x anidentity of 4 if 8= whenever»f isdefined and ax= a whenever
ax is defined. Then .# is called an abstract category if it satisfies the following
axioms:

(i) The product y (pa) is defined if and only if (yB)« is defined. When either is
defined, they are equal. This triple product will be written yfe.

(ii) The triple product ¢S« is defined whenever both products 8 and o are
defined.

(iii) For each aiin .# there exist identities x, »’ such that ax and »’a are defined.

Prove that the class d morphisms o a category is an abstract category, and
conversely that the elements o any abstract category are the morphisms o a
category € which is determined uniquely up to an isomorphism o categories.

8. Functors

Let ¢ and 2 be categories. A covariant functor T On¥ to 2 isa pair
d functions (both denoted by the sameletter T): An " object function™
which assigns to each object Ce% an object T°(C)<9, and a " mapping
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function® which assigns to each morphism y: C—C’ d € a morphism
T{y): T(C)>T(C) & 9. This pair of functions must satisfy the two
following conditions:

T(10) =11 Ccé¥, (8.1)
T@y)=TP)T(y), Py definedin®. (8.2)

A covariant functor T on ¥ to £ isthus a mapping d € to 2 which
preserves range, domain, identities, and composites.

For example, let R beafixedring. For any set T let F(T)=2X,R¢ be
the free module on the set T. Then F is a covariant functor on the
category d setsto the category d R-modules. Again, for example, let
& be the category d all groups, with G =[G, ] the commutator sub-
group d G; that is, the subgroup generated by al the " commutators'
&18:81 gt for g;€G. Each homomorphismy: G—H clearly mapsG to H'
by ahomomorphismy'. ThefunctionsT(G)=G and T(y)=y' makeG a
covariant functor on ¢ to ¢. Similarly, the " factor-commutator®
group G/[G, G] may beregarded as a covariant functor on € to the cate-
gory d abelian groups.

Let Sand T be two covariant functorson € to 9. Alzatural trans-
formation h: S+T is a function which assigns to each object Ce¢ a
morphism £(C): S(C)—-T(C) d 2 in such a fashion that for each mor-
phismy: C—C" d € the diagram

5029, 1(c)

Jsw |t (8.3)
s X 1(c)

is commutative in 9.When 4 (C) satisfies this commutativity condition
we say more briefly™ hisnatural. If in addition each h(C)is an equi-
valence, we say that his alzatural isomorphism.

Intuitively, a" natural transformation' hisonewhichisdefinedin the
same way or by the same formula for every object in the category in
question. For instance, for each group G let h(G) G—G/[G, G] be the
homomorphism which assigns to each element geG its coset g[G,G] in
the factor-commutator group. The diagram like (8.3) is commutative,
s0 h may be viewed as a natural transformation d the identity functor
to the factor-commutator functor (both in the category o al groups).
Other (and more incisive) examples of natural transformations will
appear shortly (e.g., Prop. I1.4.2 for relative homology).

A contravariant functor T on € to O consistsd an object function T
which assigns to each € a T(C)e# and a mapping function T which
assignsto each morphismy: C—C’ a morphism T'(y): T(C)—>T(C) d 2,
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now in the opposite direction. This pair o functions must again
satisfy two conditions:

T(1g) =11 Ce¥, (8.4)
TBy)=TW) TB), Py definedin®. (8.5)

The reversed order d the factors in (8.5)is necessary to make sense,
for By defined means y: C—C’, 8: C'—C", hence T(f): T(C")—>T(C")
and T(y): T(C")—>T(C), so that T(y) T(g) is defined.

For afixed R-module B wenotedin $6that Hom, (A,B)isacontra-
variant functor & A, inthe category d R-modules. The character group
d an abelian group A isthe group Ch A=Hom, (A,P),where Pisthe
additive group d real numbers modulo 1. With the mapping function
Cha=u* defined asin § 6, Ch isa contravariant functor on the category
d abelian groups to itself — or, with the standard topology on Ch A, a
contravariant functor on discrete abelian groups to compact abelian
groups. For any category £ and its opposite 2, the pair o functions
P with PD=D* and P =46* is a contravariant functor on 2 to 2°.
Each contravariant functor T on € to £ may be regarded as a covariant
functor on € to 2°°, namely, asthe composite PT.

A natural transformation h: S—T between two contravariant functors
on ¥ to 2 isafunction which assigns to every object Ce% a morphism
h(C) S(C)—=T(C) d 2 suchthat foreachy: C—C’in% thediagram

sc) X 1(c)
Jsw) ) (8.6)
()29 rc)

iscommutative. Thisdiagramis just (8.3)upsidedown.

If Tisafunctoron® to2 and S afunctor on £ to athird category &,
the compositefunctionssoT yield afunctor on% to & with variance the
product o thevariancesd Sand T (covariant = +1, contravariant, —1).
For instance, let 4 bethe category d vector spacesover afixed field F,
andlet D bethefunctor on .4 to.#; which assignsto each vector space
V its dual D(V)=Homg(V,F) and to each linear transformation
(= morphismd #y)a: V-V’ itsinduced mapa*“ : D(V)-+ D(V)defined
asin (6.3). Then D is contravariant, while the composite D*=DoD is
the covariant functor which assigns to each vector space V its double
dual. There is a homomorphism

h=h(V): V==D(DV)

which assignsto each vector vthat function hv: DV+F  with (hv) =f(v)
for fe DV. For finite dimensional V, #(V) is the familiar isomorphism
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d V toitsdoubledua. One verifiesreadily that h isa natural trans-
formation h: I->D2? (where | denotestheidentity functor).

There is a similar natural isomorphismd a finite abelian group to
its double character group.

As an example d a non-natural isomorphism, recall that thereis an
isomorphism k: V=D(V) for any finite dimensional vector space V.
Specifically, for each such V choose a fixed basisv,, ..., 9,, construct in
D(V) the dual basis \\, ..., V", with »* defined by the requirement that
v (v;) 1S 0 or 1 according asi =7 or 4=y, and set kv;=+" Thislinear
transformation k=% (V): V—D(V) is defined for each V; it maps the
covariantidentity functor | tothecontravariant functor D. If werestrict
attention to the category whose objects are finite dimensional vector
spaces and whose morphismsareisomorphismsa d such, we may replace
D by a covariant functor D with D(V)=D(V), D(«)=D(«). But
k(V): V—=D(V) isnot natural. For example, if V is I-dimensiona and
a: V+V is defined by av, =cv, for somescalar ce Fwith 0 5=c==1, then
D)k (V)v, =(1/c) v ; howeverk (V)av, =cv?, <0 (8.3) isnot commutative.

Functors in several variables may be covariant in some o their
arguments and contravariant in others. Two arguments, contra and co,
asufficetoillustrate. Let 8,%, and 2 be three categories. A bifunctor T
on # <% to @, contravariant in £ and covariant in %, isa pair o func-
tions: An object function which assigns to B¢ # and Ce % an object
T(B, CO)e2, and a mapping function which assigns to morphisms
B: B—»>B’ and y: C—C’ a morphism

T(8,y): T(B’, C)~T(B, C) (8.7)

d 2 (Notethat thedirection in B isreversed, that in Cis preserved).
These functions must satisfy the conditions

T(p, 1c) =110 > (8.8)

TEBY=TB.y)TE.7), (8.9)
the latter to hold whenever both composites 8’8 and y'y are defined.
The composite on the right is then defined, for g': B’—-B’ and
y': C'—C"" with (8.7) give

T(B", &2 (B, C) 22X 7(B, CY).

It is convenient to set T(f, 15)=T(8, C) and T(1p, V)=T(B,Y).
When B isfixed, T(B, C) and T(B, y) are object and mapping functions
d acovariant functor on ¥ to &, while, for fixed C, T(B, C) and T(8, C)
provide a contravariant functor on # to 9. These mapping functions
T(B,y) and T(8,C) determine al T(8,y) for, by (8.9), T(8.y)=
TB15,y1c)=T(B,y)T(8, C). We leave the reader to carry out the
rest d the proof o
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Proposition 8.1. For given categories #, €, and 2 let T ke a function
assigning to each B and C an object T'(B, C)¢2. For each fixed BE#, et
T(B, C) ketheobject function of a covariant functor €—2 with the mapping
function T(B, y). For each fixed C¢%, let T(B, C) ke the object function d
a contravariant functor Z#—2 with mapping function T(8, C). Suppose
that fa each 8: B—»B’ and each y: C—C’ the diagram

T(B', C)I& 7(B’, C)
T6.0)] |re.cn (8.10)
T(B, C) 22X, T(B, C’)

is commutative. Then the diagonal map

T@.7)=TB,y)TEB.C)=T@6 C)I(B',7)

d thisdiagram makes T a hifunctor on # and € to 2, contravariantin #
and covariant in €. Every such functor can ke 9 obtained.

If we write more simply g* for T'(8, C) and y. for T(B, y), the com-
mutativity condition d this proposition can be put with less accuracy
and more vigor as f*y, =y.8*. This proposition usually provides the
easiest verification that a given T is indeed a bifunctor. A typical
example d such a bifunctor T is Homg(4, B), covariant in B and
contravariant in A.

If Sand T are two such bifunctorson #>=<¥ to 9, a natural trans-
formation f: S— T is afunctionwhich assignsto each pair o objectsB, C
amorphismf (B, C): S(B, C)—T(B, C)insuch wise that foralmorphisms
B: B—~B' and y: C—C’ the diagram

s, 0 &9, 7w, C)
s |Tem (811)
S(B,C)22L 15, C)

iscommutative. Inview d thedecompositiond T'(8, y) above, it suffices
to require this condition only for g and 1¢, and for 15 and y. In other
words, it suffices to requirethat f (B, C) with either variable fixed be a
natural transformation in the remaining variable.

Direct products provide an exampled a bifunctor covariant in two
arguments. Let¥ beacategoryinwhicheach pair d objectshasadirect
product diagram,and choosesuch adiagram{z;: 4;><A4,—~A4;|i =1, 2} for
each pair; thisincludesthe choice d a direct product 4;><A4, for each A,
and A,. Let o;: A;—A; for i =1,2bemorphismsd €, asinthediagram

A, 8 A4,<A, 24,
l‘xx ﬂ lan , ﬁ =03 >X &Ky . (812)

¥
ALB A< AL AL
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Then o;7;: A;<A,—>A;; by the couniversal property of the bottom row,
there is a unique morphism f§: 4,><A4,—>A41><A; with 7 § =« 7; ; that is,
a unique # which makes the diagram commutative. For example, if € is
the category of sets or of R-modules, and if each A4,><A4, is chosen in the
usual way as the set of all pairs (4, a,), then §(a,, ) = (0, 4, % a,). Call
B =oy><a, the direct product of the given morphisms. By the couniversal
property, 1><1 =1, and (y;3><y,) (a3>< &) =910, >< %, Wherever y; a; is
defined for ¢ =1, 2. Hence P(4,;, 4;)=A,><4,, P(oy, &) =0 <a, defines
a covariant bifunctor P on %, % to . For three objects 4,, 4,, A, the
usual map (4;><A4,)><A;—>A;><(A;><A,) is a natural homomorphism
of covariant trifunctors.

The notions of category and functor provide not profound theorems,
but a convenient language. For example, consider the notion of diagrams
of the ‘‘same form”, say of diagram of modules of the form D: 4—-B—C.
Any such diagram may be regarded as a functor. Indeed, introduce the
finite category s, which has three objects a, b, and ¢, the corresponding
identity morphisms and the morphisms #y: a—b, 4,: b—>c, and uy: a—c
with A%y =ue. Then any diagram of modules as exhibited is a covariant
functor on s#to the category r.# of modules: Such a covariant functor D
does provide three modules D (a)=A, D (b)= B, and D(c)=C plus the
homomorphisms D (x,), D (4o), D {ue) =D (2g) D (). Furthermore a map
of a diagram D to a another diagram D’ of the same form is exactly a
natural transformation D—D’ of functors. In this formulation we also
can include the notions of diagrams with commutativity conditions;
thus a commutative square diagram is a functor on the finite category

5"l¥:l"" ) Mo %o = o = Vg &. (8-13)

A partly ordered set S is a set with a binary relation »<s which is
reflexive (r=7), transitive (»<s and s<¢ imply »=<¢) and such that
r<sand s<7imply »=s. The partly ordered set S has a zero if there is
an element 0€ S, necessarily unique, with 0=<s for every s. An element
ueS is a least upper bound (1. u.b.) of s,tcSifs<u,t<u ands<v,i<v
imply #=<wv. This 1. u. b. is unique if it exists, and is written u=su?.
Similarly, w=snt is a g.1.b. of sand tif w<s, w<tand x<s, ¥<¢
imply ¥*<w. The partly ordered set S is a lattice if st and s~¢ exist for
all s and ¢.

Each partly ordered set S may be regarded as a category &, with
objects the elements s€S, morphisms the pairs (s, 7): 7 —s with 7<s,
and composition of morphisms defined by (¢, s)(s,7)=(¢,7) when
r<s=¢. For example, the finite category (8.13) arises so from the partly
ordered set with four elements 4, b, ¢,d and partial order a<b=d,

Mac Lane, Homology 3
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azc=d. If Sisalattice, any two objectss,t d & have a direct sum
(given by sut) and a direct product snt; conversaly, if &% has direct
sums and products, Sis a lattice.

For any partly ordered S, a covariant functor T : #— 4 isafamily
{T;|se S} & R-modules together with homomorphisms T'(s, r): 7, —T,
defined for each r<s and such that T(t, S)T(s, r)=T(¢, r} whenever
r=s<¢ The "direct limit" o such a family may be described con-
veniently in categorical terms [EILENBERG-MACLANE 1945, Chap. 1V;

KaN 1958].
Exercises

I If o A4 —>A are module homomorphisms, show that the map f=a,><o,:
A4, DA,~>4 GBA, Characterized by #;f=a;n;, j=1, 2, is also characterized by the
conditions fu;= i a;, 1=1, 2.

2. Show that the associative law for the (external) direct sum of modules can
be expressed as a natural isomorphism (A @B)® C=A © (B C).

3. Prove that the isomorphisms (6.5) are natural.

4. Let € be asmall category in which each set hom (A, B) o morphisms has at
most one element, and in which each equivalenceis an identity. Provethat ¢ may
be obtained from a partly ordered set.

Notes. Theidead a modulegoesback at least to KRONECKER, who considered
modulesover polynomial rings; only in the last twenty years has thisidea taken on
its present central rolein algebra. Projective moduleswerefirst used effectively in
CARTAN-EILENBERG; now it is clear that they provide for linear algebra the appro-
priate generalization o a vector space (which is always a free module). Emmy
NOETHER, inlectures at Géttingen, emphasized the importanced homomorphisms.
The initial restriction to homomorphismsa: A+B with a(A)=B, asin VAN DER
WAERDEN's influential Moderne Algebra, soon proved to be needlessly restrictive,
and was dropped. By now it is expected that each definition of a type of Mathe-
matical system be accompanied by a definition o the morphisms o this system.
The arrow notation developed in topological investigations about 1940, probably
starting with the use for correspondences and then for continous maps. Exact
sequences were first noted in Hurewicz {1940]. The functor ‘“Hom” was long
known, but apparently first appeared by this name in EILENBERG-MACLANE
[1942]. Categories and functors were introduced by the same authors in 1945.
They have proved useful in theformulation of axiomatic homology (Chap.II below),
in the cohomology of a sheaf over a topological space [GobEMENT 1958], in differen-
tial geometry [EHRESMANN 1958], and in algebraic geometry (GROTHENDIECK-
DievpoNNE [1960], cf. also the review by Lanc [19611). Foundational questions
about the theory of categories, using sets and classes, are formulated in Mac LANE

[1961].
Chapter two
Homology d Complexes

Here wefirst meet the basic notionsd homology in simple geometric
cases where the homology group arises from a boundary operator. In
general, an abelian group with a boundary operator iscalleda ™ differen-
tial group™ or, when provided with dimensions, a "*chain complex'".
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This chapter considers the algebraic process d constructing homology
and cohomology groups from chain complexes. Basic is the fact (§ 4)
that a short exact sequenced complexesgives a long exact sequence o
homology groups. Asillustrative background, thelast sectionsprovidea
brief description d the singular homology groupsd a topological space.

1. Differential Groups

A differential group Cis an abelian group C together with an endo-
morphismd: C—C suchthat d2=0; call 4 the"" differential" or ' boundary
operator'” o C. Elementsd C are often called chains, elementsd Kerd,
cydes and elementsd Imd, boundaries. The requirement that d2=0 is
equivalent to the inclusion Imd C Kerd. The homology group o the
differential group C is defined to be the factor group d cycles modulo
boundaries,

H(C)=Kerd/Tmd=Kerd/dC. (1.1)

Its elements are the cosets ¢+ Imd d cycles ¢; we cal them homology
classes and write them as

cls(c)=c+dCeH(C). (1.2)

Two cyclesc and ¢ in the same homology classare said to be homologous;
in symbolsc~C. a
As first exampleswe shall give a number
d specificdifferential groupswiththeir homo-
logy. Mogt 0 these examples will be found
by dissecting a simple geometric figure into
cells and taking d to be the operator which g
assigns to each cell the sum o its boundary
cells, each affected with a suitable sign.
Example 1. Take two points » and g on
a circle S* which divide the circle into two
semicircular arcs a and b. The " boundary** . b,
or "ends" d thearcaare the pointsqand . ¢
Henceintroduce thefreeabelian group C(SY)with thefour freegenerators
a, b, and g, and define an endomorphismdd C(S*) by setting

da=q—p, db=p—q, dp=0=dgq. (1.3)
Any element o C(S%) is represented uniquely as a linear combination
mya—+myb +mgp +myq with integral coefficients m,, m,, my, and m,,
while

a (mya-+myb+ myp+mag) =my (g— p)+ my (p— q) = (my—my) (—9).
Thus C(SY) is a differential group. Its cyclesare all the integral linear
combinationsd , g, and a+ b whileits boundariesare all the multiples
3!&
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d g—pP. Hencethereisahomology p~¢, and the homology groupisthe
direct sum

H(C(SY)=Z. (cls ($)) B Z (cls (a+B)), (1.4)

where Z(cls(p)) denotes the infinite cyclic group generated by the
homology classcls (p). Thusthecircle St has two basic homology classes,
the point $ (dimensiono), and the circumference a+ b (dimensionl).

I n thisexamplethe samecircle could have been subdivided otherwise,
say into more arcs. The homology groupsturn out to be independent o
the subdivision chosen. For example, isomorphic homology groups
arise when the circle is cut into three arcs so as to form a triangle!

Example 2. TakeatriangleA with verticeso, 1, and 2, and edges 01,
12, and 02. The corresponding differential group C(4) isthefree abelian
group on six generators (0), (1),(2), (01), (12), {02), with the differen-
tial given by d(0)=d(1)=d(2)==0, 4(01)=(1)—(0), 4(02)=(2)— (0),
d(12)= (2)— (1); in other words, theboundary o each edge isthediffe-
rence d itstwo end vertices. One finds

H(C(4))=Z,(cls(0)) B Z, (cIs[(1 2)— (02)+ (01)]).

Thisgroupisindeedisomorphicto that foundfor thecirclein Example1;
both arefree abelian with two generators. Anisomorphismmay begiven
by first specifying a homomorphismf o the differential group C(St)into
C(d); we set, say, f (#)=(0), f (¢) = (1), f (a) =(01), and f (B) =(12) — (02).
Then df (b)=fd(b), df (@)=fd(a), and f carries the generating cycles ¢
and a+ bd H(C(SY))into thegenerating cycles (0)and (12)— (02)+ (ol)
d H(C(4)).

In general, let C and €’ be two differential groups. A homomorphism
f:C—C'd differential groupsis a group homomorphismwith the added
property that d'f=fd; in other words, it is afunction on C to C which
preserves the whole algebraic structure involved (addition and differen-
tial). For achain cd C thisimpliesthat fc is a cycle or a boundary
whenever ¢ is a cycle or boundary, respectively. Hence the function
H(f)=f,, defined by f.(cls (c))=cls (fc), is a group homomorphism

H(f): HC)—H(C")  (forf: C>C). (1.5)

We call H(f) the homomorphism induced by f. Since H{1¢) =1y, and
H(f h=H(f'YH(f), H is a covariant functor on differential groups to
groups.

Example 3. The circular disc D is had by adding the inside c to the
circle St; construct a corresponding differential group C(D) by adjoining
to C(SY) one new free generator ¢ with boundary dc=a+b. Then
H(C(D))=Z(clsp). The injection j: C(SY)>C(D) thus induces a map
H(j): H(C(SY))—~H(C(D)) which mapsthesecond summand d (1.4) onto
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zero. Inother words, the map H(j) induced by an injection need not bea
monomorphism; that is, the homology group o a subspace need not bea
subgroup d thehomology d theoriginal space. Thisiswhy theinjection
4 has a label different from the identity.

Example 4. For the sphere S? with the equator S, labelled as in
Fig. 2, let » bethe upper and? thelower hemisphere. Construct adifferen-
tial group C(S?) by adjoining to C(S*) two new free generators » and 1,
with boundaries du=at+ b=—dl. Then

H(C(S?)=Z(cls ($)) D Z(cls (u+1)); (1.6) /_\

there is a cycle 9 in dimension 0 and onein
dimension 2.

Example 5. The real projective plane P2, ¢
regarded as a topological space, may be ob-
tained from the sphere S2 by identifying each
point of S2 with the diametrically opposite
pemitspherpardi teati feadhwoding ipot heiupiiee

lower hemisphere. This suggests that we proceed algebraically by setting
u=—1, a=h, and p=g¢ in the differential group C(S?) above. Thiswill
yield anew differential group C(P?), whichisthefreeabeliangroup gener-
ated by #, a, and p with du=2a, da=0, dp=0. Then aisacyclewhich
isnot a boundary, though 2« is a boundary. Hence

H(C(PY)=Z(cIs(p)) D Z,(cls(a)),

where Z,(cls (a)) designates the cyclic group d order 2 with generator
cls(a).

Example 6. Let f(x,y) be a rea valued function o class C™(i.e.,
with continuous partial derivatives d all orders) defined in a connected
openset D o points (X, y)inthe Cartesian plane. For fixed D, theset A
of all such functionsisan abelian group under the operation d addition
of function values. TakeCtobethedirectsumA4® AP AP A ; anelement
of Cisthen a quadruple (f,g, % k) d such functions, which we denote
more suggestively as a formal " differential™:

(.8, b By=f+gdx+hdy+kdxdy.
Defined: C— C by setting

a

O g Y or _ %
e & __@f .
That d%*=0isaconsequenced thefact that 5205 0yox" Any cyclein

Cisasum d the following three types. a constant f=a; an expression
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gdx+ hdy with og/oy=20h/ox (in other words, an exact differential);
an expresson k dx dy. If thedomain D d definitionis, say, the interior
d the sguare we can write the function k as 84/dx for a suitable h, while
any exact differential can be expressed (by suitable integration) as the
differential d afunctionf. Hence, for this D the only homology classes
are those yielded by the constant functions, and H(C) is the additive
groupd real numbers. The same conclusion holdsif D istheinterior o a
circle, but fallsif Dis, say, theinterior d acirclewith theorigin deleted.
In thislatter case an exact differential need not be the differential o a
function f. For example (—y dx+ x dy}/(x2+ 9?) is not such.

a Example7. A circular cylinder may
/-—-—<—\ be regarded as the cartesian product
4 b, SixI d acircle Stand aunitinterval | .
““““ >——--" We subdivide this as shown, so that the
circle S* at the base has vertices p,, ¢,
and edgesa, and b,, whilethoseat thetop
gxI px| are given by the same letters with sub-
script 1. The sidesd thecylinder arethe
intervals p><1 and g><1 abovep, and g,,
3 respectively, and the curved faces a>1
T T ) and b1 above a and 4,. Introducethe
o free abelian group C(S=<I) with the
by twelve free generators px=<1I, g=<I, ax<1,
Pig. 3 b<1 , and p,‘, q;, &, bi! (1:=0, 1) Define
d; C—C on the base and top exactly
as for a circle (da;=¢,—p;, db,=p;—¢q; dp,=0= dg;). Al set
d(p=<!l)=p—p, and d(g=<I)=g¢,—%. Inspection d the geometric
boundary d the curved surface a>I suggests that we set

dlax<I)y=a;— (g><I)—ay+ (p><I) and d (b><I) =b,— by+ (g><I) — (p><I).

This defines d so that d2=0. Inspection d the cyclesand boundaries
shows that

H(C(S'<1))=Z,(cls (py)) D Z,, (cls (a+ b)) -

This homology group isisomorphic to the homology group H(S%) found
for the circle in Example 1 above. The isomorphism can be written
as H(f,): H(SY)=H(S*><I) if we take f, to be the homomorphism
fo: C(SY)—C(S=<I) o differential groupsdefined by fop =2, fod=0s,
foa=a,, fob=>b,. One could equally well give the isomorphism as
H(f,), wherethe homomorphism f, =C(S%)—C(S'<I ) issimilarly defined.
This equality H(f,)=H(f,) holds because the cycles a4+ b, and a;4 b,
on the cylinder are homologous, for their difference is the boundary

d(a><I+b<I)=(a;+ b)) —{ay+by).
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To explicitly compare f, and f,, let us define a function s by
sp=px<I, sq=gx<I, sa=axI, sb=0bxI.

This determines a homomorphisms: C(SY)—C(S*><1I) d abelian groups
(not o differential groups) with the property that

dsc+sdc=fic—fyc (1.7)

for al cin C(SY. Thisequation may beread: The boundary d(sc)d the
cylinder sc over c consistsd the top f,¢ minus the bottom f,¢ minusthe
cylinder s(dc) over the boundary o c. This equation impliesthat the
homomorphisms H(f,) and H{f,) are equal, for if cisany cycle (dc=0),
then (1.7) gives fic— fyc=d(sc), whence fic ~f,c.

Maps with the property (1.7) will appear frequently under the name
d ""chain homotopies'™.

Exercises

I. Let C be a differential group. The definition H(C)= Kerd/Imd can be
written as H(C) =Coker (d': C— Kerd) ,whered'isinduced byd. Using C/Kerd= I md,
show that H(C) has a dual description as Ker (d" :(Cokerd)—»C).

2. For a family G,, t€T, of differential groups, definethe direct sum X, C, and
the direct product JT C, and prove that H(3] C)=3 H(C,)), H(II C)=I] H(C)).

2. Complexes

In the usual differential groups C d §1 we can assign integral
dimensions to certain elements & C. The set C, d dl elements d
dimension nisagroup, Cisthedirect sumd theC, and oC,<C,_,. It
is more effective to work directly with this collection o groups. The
resulting object is called a** complex™ o abelian groups.

For any ring R, a chain complex K o R-modulesis a family {K,, 9,}
d R-modules K,, and R-module homomorphismsé,,: K,—K, _,, defined
for all integers n, —co<n< o, and such that 9,9,,,=0. This last
condition is equivalent to the statement that Kerd, > Imd,,,. A com-
plex K thus appears as a doubly infinite sequence

K: .-« K_,«K <Ky« K<«Kyc -
with each composite map zero. The homology H(K) is the family o
modules
H, (K)=Kerd,/Imd,,,= (Ker[K,~K,_1])/0y+1Kps1-  (21)

Thus H,, (K)=0 means that the sequence K is exact at K,. An n-cyde
d K isaneement d thesubmodule C (K)=Kera,; an n-boundaryisan
eement d 9,,4K,4+y. Then H,=C,/0K,., (cycles mod boundaries).
The coset d a cyclecin H, is written as clsc=c¢+ 0K,,,, Or as {c}, in
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much d theliterature. Two n-cyclesin the same homology class (clsc=
clsc) are said to be homdogous (c~¢’); this is the case if and only if
c—c'€8K, ,.

If K and K’ are complexes, a chain transformation f: K—K’ is a
family & module homomorphisms{,: K,—K,,, onefor each n, such that
onf,=1.-19, for dl n. Thislast condition asserts the commutativity o
the diagram (neglect the dotted arrows)

K: ... K, , " K, &K,
l/n—x K ., 1/1: - . lfn-{-x (22)
K': .- K,y .‘K; — Ko
o [z

('Subsequently, we usually omit the subscript # on @, and the prime on
a. K,—~K, ;) The function H,(f)=f, defined by f.(c+2K, )=
fc‘l'aK;hL1 is a homomorphism H, (f) H, (K)=H,(K"). With this
definition, each H, is a covariant functor on the category d chain com-
plexes and chain transformations to the category d modules.

A chain homotopy s between two chain transformations f, g: K— K’ is
afamily o module homomorphismss: K,—K,,, onefor each dimen-

sion #, asin the dotted arrowsd (2.2), such that

Fni150t S4—100="Fn— 8- (2:3)
We write s: f ~g. The geometric background d thisrelation is sketched
in Example 7 d §1. Algebraicaly we have
Theorem 2.1. If s f~g. K—K’, then
H,(f)=H,(g): H,(K)>H,(K'), — oco<n<oo. (2.4)

Proof. If cisacycleof K, ,thend,c=0;hence, by (2.3), f,c—g,c=0s,¢.
Thisstatesthat f,c and g, c are homologous, hence that clsf,c=clsg,cin
H, (K", as required.

A chain transformation f: K—K' is said to be a chain equivdence if
there is another chain transformation h: K'—=K (backwards!) and
homotopies s: hf =1, t: fA~1g.. Since H, (1) =1, the theorem yields

Corollary 2.2. Iff: K—~K'is a chain eguivaence, the induced map
H, (f). H,(K)=H,(K’)is an isomorphism for each dimension n.

Proposition 2.3. Chkain homotopiess: f~g: K—~K' and s': f'= g':“
K'->K'" yidd a compodte chain komotopy

fs+s'g:f'fgg K—-K"

Proof. Both &s+sd=f—g and 9s'-+s' 9=f—g’ are given. Multiply
the first by f', on theleft, and the second by g on the right, and add.
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Subcomplexesand quotient complexeshave properties like those o
submodules and quotient modules. A subcomplex Sd K isafamily of
submodules S,< K,, one for each n, such that always 8S,<S,_,.
Hence Sitsdlf isa complex with boundary induced by 8=28,, and the
injection 7: S—K is a chain transformation. If SCX, the quotient
complex K/S is the family (K/S),=K,/S, o quotient modules with
boundary ¢': K,/S,—~K,_,/S,_, induced by 9. The projection is a
chain transformation K->K/S, and the short sequence S, » K, (K/S),
d modulesis exact for each n.

If 1: K—K'isachaintransformation, then Kerf ={Kerf,} isa sub-
complex o K, Imf={f,K,} a subcomplex o K', while K’/Imf is the
cokernel 0 f and K/Kerf the coimage. A pair o chain transformations
KL K2, K" is exact at K' if Imf=ZKerg; that is, if each sequence
K,—~K,—K, d modulesisexact at K,,. For anyf: K-—+K’,

0->Kerf—K L K’ >Cokerf-—>0

IS an exact sequence d complexes.

Instead o using lower indices, as in K,, it is often notationally
convenient to write K* for K_, and é*: K"—K**'in place d o_,:
K_,—~K_, ;. Thisissimply adifferent " upper index' notation for the
same complex.

A complex K is postive (i.e., non-negative) if K,=0 for n<0; its
homology isthen positive (H, (K)=0 for n<0). Acomplex K is negative
if K,=0 for n>0;equivalently, it is positive in the upper indices and
hastheform

0K O KB K% ..., ss=—0,

with homology H*(K)=Ker /6 K*~* positive in the upper indices. In
thisform, it is often called a **right complex™ or a **cochain complex'".
By a"'cochain™ homotopy s: f=~g: K—K' is meant a chain homotopy
written with upper indices; that is, a family d mapss”: K*—K’*—* with
d0s+sé=f—g. Thecomplexesarisingin practice are usually positive or
negative; the general notion d a chain complex is useful to provide
common proofs d formal properties like those expressed in Thm. 2.1.

Each module A may beregarded asa'"trivial" positive complex, with
A,=A, A,=o for »£0, and 8=0. A complex over A is a positive com-
plex K together with a chain transformation e: K—A4; such an e is
simply a module homomorphisme: K,—A4 such that ¢9=0: K;—>A4. A
contracting homotopyfor ¢: K—A4 isachain transformation f: A+K such
that ¢f=1, together with a homotopy s: 1~ fe. In other words, a con-
tracting homotopy consists d& module homomorphismsf: A+ K, and
s: K,—~K,,,,#=0,1,...suchthat

ef=1, also+f6=1K.» Opy15nt Sp_10,=1 (n>0). (2.5)
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Equivalently, extend the complex by setting K_;=A, d,=¢: K;—>K_,
and s_,=f. Then (2.5) statessimply that s: 1=~ 0 forthemaps1,0d the
extended complex toitself. If &: K—A has a contracting homotopy, its
homology groups are ¢,: Hy(K)= A for n=0 and H, (K)=0 for »>0.

ComplexesK o free abelian groups arise in topology. If each K, is
finitely generated, then each H, (K)isafinitely generated abelian group.
The structure theorem for such groups presents H, (K) as a direct sum
zZ®..0z202,® ... ®2,,, where the number b, o infinite cyclic
summands and the integers m,, ..., m, (each a divisor d the next)
dependonly on H, (K). Theinteger b iscalledthe n-th Bezt: number o K,
and the {m} the n-th torsion coefficients.

Exercises

1. Call a complex S g-special if S,=0 for n= g, g+1and 8: S;,,— S, isamono-
morphism. Prove that any complex K of free abelian groups K, is a direct sum of
g-special complexes (one for each Q).

2. Call a g-special complex S of abelian groupselementary if either S=Sgn=12
o S,=Z, S,,,=0. Provethat each special Swith S, S,,, finitely generated free
groupsis a dlrect sum of elementary complexes. (Hlnt userowand column oper a-
tions on matricesof integersto choose new basesfor S, and S,.,,.)

3. Provethat any complex with each K,, a finitely generated free abelian group
isadirect sum of elementary complexes.

3. Cohomology

Let C beadifferential group and Gan abelian group. Form the abelian
group Cr=Hom, (C,G); its elements are the group homomorphisms
f: C—G, caled cochains d C with "*coefficients” in G. The differential
d: C+C inducesa map d*: C* —C* defined by d*f=fd: C —G; call d*f
the coboundary d the cochain f; it is often written as df=d*f. Since
d?=0, (d*)2==0. Hence C* with differential d* is a differential group.
Its homology is caled the cohomdogy d C with coefficients G and is
written H* (C,G)=H(Hom (C,G)).

Let K be a complex & R-modules and G an R-module. Form the
abelian group Homg(K,,G); its elements are the module homomor-
phisms f: K, —G, caled n-cochains d K. The coboundary o f is the
(n+ 1)-cochain

Ff=(—1)"*'f g, : K, :—>G. (3.1)

In other words, &,+,: K,,,—~K, induces d},,: Hom(K,,G)—
Hom (K,.;,G and & =(—1)"*1g%,, (the sign will be explained
below). Since 8" §*~*=0, the sequence

— Homg(K,_,,6) 25 Homg (K, G) 25> Homg (K, 11,G)—> -+ (3.2)
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isa complex d abelian groups called Hom, (K G),usually written with
upper indices as Hom" (K,G)=Hom (K,, G). If K is positive in lower
indices, Hom (K G) is positive in upper indices.
The homology d this complex Hom(K G) is called the cohonmology
o K with coefficientsin G. With upper indices, it isthefamily d abelian
groups
H" (KG)=H" (Hom (K G))=Ker §"/é6 Hom(K,_;,G). (3.3)

An element o 8Hom (K,_,,G) iscalled an n-coboundary and an element
d Kerd® an ncocyde Thus a cocycle is a homomorphism f: K,--G
with fa= 0: K,,,—~G. Any chain transformation h: K—K’ induces
a chain transformation i* =Hom (h,l ): Hom (K*,G)—~Hom (K G).Thus
Hom (K G) and H"(KG) are bifunctors, covariant in G and contra-
variant in K, If s: h~g is a homotopy, then (2.3)impliesthat s; o5,
+0¥sy_1=h, —g*. Hence #+1=(—1)"*"1s¥ is a homotopy t: h*=~g*.

More generally, we may define a complex Homg (K, L) from any
pair & complexes K and L o R-modules. With lower indices, set

Hom, (K.L)= 1] Homg(K,,L,.,), (3.4)

so that an element f o Hom, is a family & homomorphisms{,: K,—
Ly, for —oo<p<oo. The boundary d4f is the family (9gf),: K,—
L,.,_, defined by

Ouf)pk =0 B)+ (—1)"* fp_1(xk), keK,, feHom,, (3.5)

where ; and dx denote the boundary operatorsin K and L, respectively.
That this definition yields a complex is proved by the calculation:

(On0ul)pk=0L0.(fpR)+ (—1)"0rfp—1 Ok k
F{=1)" 00ty 1 OxhA-(—1)'fp—2 (0k O k) =0,

since 8,8, =0=208x 0. Clearly, Homg, (K L) is a bifunctor covariant in
L and contravariant in K.

The signsin the definition (3.5) have been chosen so as to give the
following two results.

Proposition 31. When the ring R is regarded as a trivial complex,
then Hom (R,L)=L under the natural komomorphism which assigns to
eah f,: R—L,itsimage f,(1)eL,.

Proof. This correspondence gives an isomorphism Hom(R.L,) =L,
for each . I n thiscase the boundary formula (3.5)has no termswith g;
the remaining term with + o, 1 shows that this isomorphism commutes
with boundaries.
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Proposition 3.2. A O-dimensional cyde d Hom(K,L) is a chain
transformation f: K+ L; itisthe boundaryd an dement sin Hom, (K L)
exactly when sis a homotopy s: == 0.

Proof. The formula(4.5) for the boundary (with signs) becomes

(aHf)p=apr_fp—1aK, n=0,
(EHS)P=8Lsp+ Sp—10k, n=1.
Thus 84 f=0 assertsthat f: K—L isachain transformation and 8, s=f

asserts that { =2, s+ S8, whence s f~0, asasserted. Theseconclusions
may be reformulated as

Corollary 3.3. The homology group Hy(Hom (K,L))is the abeian
group d homotopy dasses d chain transformations f; K —L.

In particular, when L=G is a trivial complex, the boundary ¢, is
zero, an element f & Hom,, (K,G) isasinglehomomorphismf: K_,—G,
and o,f=(—1)**'fo: K_, ,—G. With upper indices, this states that
an element  Hom” (K G)isahomomorphismf: K, —G with coboundary
6f = (—1)**11a. This agrees with the sign aready used in (3.1), and
explains the sign there. The reader should be warned, however, that
most o the present literature on cohomology does not use this sign,
and writesinstead éf=to.

4. The Exact Homology Sequence

Consider any short exact sequence
E: 0—»K*%L-%M—0 (4.1)

d chain complexes and chain transformationsx,a. Thefirst transforma-
tion x has kernel zero, but the induced map H, (x} H,(K)—H,(L)on
homology may have a non-trivial kernel, asin Example 1.3. To study
when this can happen, identify K with the subcomplex »K o L and
consider a cycle cd K, whose homology class becomeszeroin L. This
means that ¢= &/ for some (#+1)-chain le L, and hence that the coset
I+ K,,,isacycled the quotient complex L/K=M. Conversely, any
homology classd H,, ., (L/K) consistsd cyclesi+ K,, ., with &i=ceK,,
hence yields a homology class clsc in H, (K)which isin the kernel o
H, (x). This correspondence o !+ K,,, to ¢ is a homomorphism
H,..(L|K)—H,(K)which we now describe systematically.

In (4.1), let m be a cyclein M,,_,. Since ¢ is an epimorphism, one
can choose leL, ., with gl=m. Since 9m=0, one has¢dl=0; since E
is exact, there is a unique cycle ce K,, with xc=21, asin

I —m LS M, —0

- ?

c—0l—0 in K, 5L, —M,.
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The homology class cls (c)e H, (K) is independent d the choiced 7 with
ol=m, depends only on the homology class d m, and is additive in m.
Hence a5 (clsm)=clsc defines a homomorphism

Ot Hypa (M) —H,(K) (4-2)

caled the invariant boundary or the connecting homomorphism for E.
Specifically

dpclsm=clsc when xc=239l, ol=m  forsomel. (4.3)

This suggests the notation ¢=x"1d¢™m; or regard cls as a homomor-
phism clsg: C,{K)->H,(K); then &z is defined by a " switchback™
formula 9z=/(clsg) 10 072 (cls;; )™ — even though the inverses cls?,
»7L, g1 are not strictly defined (but see §6 below).

Theorem 4.1. (Exact homology sequence) For each short exact
squence (4.1) o chain complexes the corresponding long ssquence

>H, (M) B H,(K) 2 H, (L) 25 H, (M) 5 H,_(K) > (4.4)

of homology groups, with maps the connecting homomorphism 8, s, =
H, (x),and a, =H, (0), is exact.

Thissequence (4.4)isinfinitein both directions, but iszero for # <0
when the complexes are positive. |t givesthe desired description d the
kernel and cokernel d H,, (X): H,, (K)—H,, (L)when » isamonomorphism;
namely the kernd is gz H,.,(M), and the cokernel is isomorphic to
o H,(L).

Proof. By the definitions, the composite o any two successive
homomorphismsin the sequence (4.4) is the zero homomorphism. |t
remains to show for each dimensionn that (i) Kersx,(9gH, 1 (M);
(i) Keroy (o H, (K); (iii) Ker8g oy H, (L). Our preparatory discussion
showed thefirst true.

To prove the second inclusion, suppose that cls(c) is the homology
classd acyclecd L, such that a, cls(c)=0. This means that cc=0m
for some meM, ... Since ais an epimorphism, thereisaleL,,, with
gl=m. Hence ¢{c—8l)=0, s0 that ¢— dl=xk for some keK, with
ok=0. This asserts that cls(c)=cls (C—aJ)=x#,cls (k) is in the image
o x*.

To prove the third inclusion, recall that ¢zcls(m)=clsc, where
ceK, , and leL, have xc=4dl, l=m, asin (4.3). If clsc=0, thereis
a k in K, with 8k'=c. Then »8k'=d!, hence &(!—x%')=0. Thus
I—xk' isacycled L, and o(l—xk')=06l=m, s0 that cls{(m)cImao,,
as asserted. This completes the proof.
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Consder the category & d short exact sequencesd chain complexes.
A morphism E —E’ in this category is a triple (f,g,#) d chain trans-
formations which render the diagram

E: 0> K—>L%M-—>o0

ool | (4.5)
E': 0>K >L'">M -0

commutative. For each n, H,,(K),H,(L),and H, (M)are functorsd E.

Proposition 42. For each Ec<é, the connecting homomorphism
05  H, 1 (M)—H,(K)isnatural.
The statement that &z is natural means exactly that the diagram

H,. (M) 25 H,(K)
L ANG) LG 4.6)
Hn+1 (M') 2'; Hn (KI)

is commutative. The proof is an easy diagram chase in (4.5) with the
definition d 8. The conclusion can be expressedin a bigger diagram:

oo Hy (L) 5 Hyyy (M) 25 H,,éK)-"s H,(L)—>-
P S | L (4.7)
o> Hy (L) = H, (M) H (K') 25 H, (L) -
Here the rows are the exact homology sequencesd Thm.4.1 for E and
E' and the whole diagram is commutative; for example, the left hand
square because g, g«=(a2'g), h,a,=(ha), and ¢’g=ha by the com-
mutativity o (4.5).The conclusonmay beformulated thus: A morphism
d E to E induces a morphism d the exact homology sequence d E
tothat o E'.

The mapping coned achaintransformation f: K -»XK’ givesan exam-
ple d this exact sequence. The problem is that o fitting the induced
maps f, : H,(K)—H,(K’) on homology into an exact sequence. For
this purpose, construct a complex M =M(f), called the mapping cone
d f (or sometimes, with less accuracy, the mapping cylinder off), with

M,=K, ,®K,, 0(kk)=(—0k 0k'+fk).

Then o: M,—~M,_, satisfies 92=0, so M is a complex, and the injec-
tion:: K'—>M is a chain transformation. The projection n: M —-K*
with z(k,k')=k is aso a chain transformation, if by K* we mean the
complex K with the dimensions all raised by one and the sign d .the
boundary changed (i.e., (K*),=K,_,). Moreover E;: K' » M aK* is
a short exact sequenced complexes. Hence
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Proposition 4.3. A chain fransformation {: K—K' With mapping
cone M (f) determinesan exact sequence

v > H, (K') 2 H,(M()) 25 H,_y(K) 2 H,_((K)—> - .

Proof. Thisis the exact sequence d E;, with H,(K*)=H,_,(K);
moreover the connecting homomorphism O, H,(K*)—H,_, (K" can
be seen to be identical with the homomorphism induced by f.

The mapping cone is the algebraic analogue d the following geo-
metric construction. Let f: XX’ be a continuous map d topological
spaces. Form the cone over X by taking the cartesian product X><I
with the unit interval 1 and identifying all points (x,0) for x¢ X. Attach
this coneto X' by identifying each point (x,1) d X><I with f (X)EX";
the resulting spaceisthemap-
ping cone d f, and suggests PR X"
our boundary formula. Dorp
[1960] gives a further devel-
opment d these ideas. —_

We now consider exact co-
homology sequences. A short \/
exact sequenceE d complexes Fig. 4
o R-modules is said to split
as a sequence d modules if for each n the sequence K, L, »M,
splits; that is, if for each n, K,, is a direct summand o L, For ex-
ample, if each M, is a projective module, then E d (4.1) splits as a
sequence d modules, by Thm.1.6.3.

Theorem 4.4. If Gisan R-module and E a short exact sequence (4.1)
d complexes d R-modules which splits as a sequence d modules, then
there is for each dimension n a natural connecting homomorphism
dg: H*"(K,G)—H"**(M,G) such that the sequence ¢ cohomology groups

o >H*(M,G) %5 H*(L,G) %> H*(K,G) % H"\(M,G)—>---  (4.8)
is exact.

Proof. To construct the cohnomology d E, first apply the contra-
variant functor Hompg(—,G) to E to get the reversed sequence o
complexes

E*: 0—-Hom (M,G —Hom (L,G —»Hom (K,G —0.

Sincethegiven sequencesplits asasequenced modules, E* isexact. The
connecting homomorphism 8z.: H_,, ,,(Hom (K,G))—H_,(Hom (M,G))
for E*, when written with upper indices H* *=H_,,,, isthe desired
connecting homomorphism éz. By Prop.4.2 it follows that 8z is na-
tural when the arguments H*(K,G) and H**(M,G) are regarded as
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contravariant functors on the category d those short exact sequences
o complexeswhich split as modules. For that matter, 6§ isaso natural
when its arguments are regarded as covariant functors d the R-modu-
le G Finally, the exact homology sequence for E*, with indicesshifted
up, becomesthe desired exact cohomol ogy sequence (4.8).

For reference we describe the action o dg in terms d cochains.
Since E* is exact, each n-cocycled K, regarded as a homomorphism
f: K, —> G, can be written as f=gx whereg: L, - Gisan n-cochaind L.
Then gox=gxd=10=0, s0 go factors through a as gé=#4¢ for some
h:M, ,—G. Since hdo=hod=god=0, and a isan epimorphism, it
follows that 20=0: h is a cocycled M. Then

dpclsf=clsh defines é8z: H"(K,G)—H""(M,G) (4.9)

by he=go, gx= f for some g. This is again a switchback rule: dz=
clso* 1dx*1cls.
Another exact sequence d cohomology groups arises from a short
exact sequence
S 064565 6">0 (4.10)

d "coefficient” modules. If K is any complex, the monomorphism
A: G+G induces homomorphismsi, : H" (K,G) —H" (K ,G). Theinquiry
as to the kernel and the cokernel d A, is met by the following exact
sequence (whichis not a dual to that & Thm.4.4):

Theorem 4.5. If K isa complex d R-modules with each module K,
projective and f Sis a short exact sequence of R-modules, as in (4.10),
thereis for each dimension a connecting homomorphism és: H* (K,G") —
H"+1(K,G) whichis natural whenits arguments are regarded as covariant
functors o the exact sequence S or as contravariant functors & K and
which yields the long exact sequence:

o > H"(K,G"Y 2% H"(K,G) 2% H*(K,G") 25 H"+\(K,G')—>---. (4.11)
Proof. Sinceeach K,, is projective,
S«: 0—~Hom (K,G)—Hom (K,G)—Hom (K,G") -0

is exact, and yields ds as Js,, with the usual shift to upper indices, and
with (4.11) as a consequenced Thm.4.1.

Note the explicit rule for constructing ds. Let f: K,—-G’" be a co-
cycle. Since S, is exact, we may write f=vg for g: K,— G acochain;
since f is a cocycle, gé=Ahk, where h: K, ,->G’ is a cocycle. Then

dsclsf=clsh, Ah=gd, 7g=f. (4.12)

This is again a switchback rule: ds=clsA16 v 1cls™.
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Exercises

1. If f, g: K—K' arechain homotopic, show that the associated exact sequences
for the mapping cones M(f) and M(g) are isomorphic.

2. (The BocksTeEIN Operator.) Let K be a complex o free abelian groups,
Z,, the additive group dof integers modulo the prime p, and S=(4,r): Z—Z »>Z,
the short exact sequence with 4 multiplication by $. Construct the corresponding
exact sequence (4.11) and show that f=t,ds: H"(K,Z,) >H"t1(K,Z,) can be
described as follows. Lift each n-cocycle c: Kn—>Zt, to an n-cochain a: X, —~Z;
then da=pb for some b: K, ,,—Z, and f(cls c)=cls(tb).This 8 is known as
the BocksTEIN cohomology operator [cf. BROWDER 1961].

3. Let f: K—K' have mapping cone M, kernel L, and cokernel N, so that
F- L K-+1K, G: fK»» K’ N areshort exact sequencesd complexes. Construct
chain transformations g: L¥*—»M and h: M —-»N by g()=(,0), h(kk)=#+1K,
and show the sequence

- H,_ (L) 5 H, (00 2 B () D H (L) >

exact, wheren = 8¢ isthe composited the connecting homomorphismsfor F, G.

4. Show that the exact sequence o Ex.3, that of Prop.4.3, and those for F
and G all appear in a"braid"” diagram

> H, 4 (KY) ———)H,H_],(IV) —_’Hn—l( )=

H,(tK) H, (M) H, (1K) H, (M)
N\ I | /
—)H”(L) H”(K) Hn (K/) e ees

which is commutative except for asign (—1) in the middle diamond [Mac LANE
1960b].

5. Some Diagram Lemmas

An application o the exact homology sequence is

Lemmab5.1l. (The 33 Lemma.) In the folloning commutative dia-
gram of modules

0 0 0
ool

0——-> Aa-‘—”.—) Az-g; Al'—>0
I

0— B3— B, B, —0
S A

0—s Cs—v; Czi Ci—0

Lol

0 0] 0

suppose that all three columns and the first two rows (or the last two rows)
are short exact sequences. Then the remaining row is exact.
Mac Lane, Homology 4
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Proof. Any sequence A;—>A4,—~A; with maps «,, «, such that
o0, =0 May be regarded as a chain complex A with a5, «; asthe bound-
ary homomorphismsand with non-zero chains only in dimensions1, 2,
and 3. The homology d this complex will vanish (in dimensionsl, 2,
and 3) precisely when it is a short exact sequence.

Suppose now that the last two rows are exact. Then, for acds,
Voyaga=pfAa=0; since v is a monomorphism, e, a,a=0. Thus the
first row is indeed a complex. Since the columns are exact we may
now regard the whole 3><3 diagram as a short exact sequence 0 —A4-—
B—-C—0 d three complexes. The relative homology sequence now
reads

v > H,o 1 (C)>H, (4) —>H, (B)—> - .

But the exactness o rows B and C give H,,,{C)=0=H,(B), so the
exactness o the relative homology sequence makes H,(4)=0 for
n=1, 2, and 3.

The argument is similar, given that the first two rows are exact.

The chief result o this chapter — the exactness o the homology,
sequence (4.4) — can be proved in a different way from a lemma on
short exact sequencesd modules.

A morphism d short exact sequenceshasthe form o a commutative

dlagrarn 0—-A%L B> C—0

le Jo (5.1)
0— A" X B _-C'—0
with exact rows; the kernel and the cokernel o this morphism are short
sequences, but need not be exact (examplec map 0>4=A toA=A -»0
with/?=F). The horizontal maps d the diagram do induce maps which
give exact sequences
0—Kera—Kerf —Kery
and
Cokeru—Coker§ —Cokery —0.

They can be combined in along exact sequence:
Lemmab.2. For any commutetive diagram
A— B35 C—0
(D) = ]

0—A4' % B2’
with exact rows there is a map D, : Kery —Cokera, natural for functors
of the diagramD, such that the sequence

Kera —Kerg —Kery P2, Cokera —Cokerf§ —Cokery (5.2) .
isexact. We cdl (5.2) the Ker-Coker sequence.
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Proof. Let «: Kery—C be the injection, n: 4'—A'/a 4, the pro-
jection. The switchback formula D, =75 »''g a-,¢ then defines D,
without ambiguity. To prove the exactness o (5.2), say at Cokera,
suppose xy (@ +a A)=0 for some a'. Then x»’a’=856 for some b and
a'x'a=yab=0, 0 abcKery has D, ab=a +aA,whichistherequired
exactness. The rest o the proof is similar.

We call D, the connecting komomorphism o the diagram D.

Now we prove Thm. 4.1 for the short exact sequence E d complexes
K~»L-»M. Let C,(K)denote the module d n-cyclesd K and form
the diagram

K, J0K,11 —~L,J0L. ., —>Mn/3M'*+1 -0
D(E) J* o ik
0= Cpv(K) = Coy (L) — C,_y(M)

with exact rows and vertical maps induced by &. The first kernel is
C.(K)/oK, .,=H,(K) and thefirst cokernel isC,_, (K)/0K,=H,_,(K),
so the Ker-Coker sequence (5.2)is

H,(K)—~H, (L) ~H, (M) 28~H,_,(K)->H,_,(L)>H,_,(M).

The middle map D (E),, as defined by switchback, is identical with
the connecting homomorphism é; of Thm.4.1.

Exercises

1. Prove the 3>3 lemma by diagram chasing, without using the exact
homol ogy sequence.

2. If in the hypotheses o the 3><3 lemma one assumesonly thefirst and third
rowsexact, show that the second row need not be exact, but will beexact if 8,8,=0.

3. Under the hypotheses o the 3><3 lemma, establish exact sequences
0>A43—+>B;®Ay— By —C,—>0
0—>A43—>By,—»Cy,® B, —~C,—>0.

4. In a commutative 3><3 diagram assume only that all three columns are

""left exact" (i.e., exact at A and B) and that the last two rows are left exact.

Prove that the first row is left exact. If, in addition 8, and & are epimorphisms,
prove that the first row is exact.

5. Prove the Ker-Coker sequence from the exact homology sequence. [Hint:
Replace A by Coim(4— B) and dually for C’.}

6. For any homomorphismse: 4B, f: B—C establish an exact sequence
0— Kero — Ker oo - Ker § — Coker o — Coker o — Coker § — 0.

6. Additive Relations

The " switchback™ formulas can be justified in terms o "additive

relations™. They will appear later in the treatment of spectral sequences.

An additiverdation r: A— B isdefined to beasubmoduled thedirect

sum A€ B; in other words, r isaset d pairs (ab) closed under addition
4*
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and subtraction. The converse o r is the additive relation »1: B—A
consisting d all pairs (b,a) with (a,b)er. If s: B— Cisanother additive
relation, the composite sr: A—C istheset d al those pairs (a,c) such
that thereisa be B with (a,b)er and (b,c) es. This compositionisassocia
tive, when defined. The graph o a homomorphism a: 4-»B is the
additive relation consistingd all pairs (a,x4) for ac4; since the com-
posite d two graphs is the graph d the composite homomorphism,
we may identify each homomorphism with its graph. The class with
objects dl modules and morphisms all additive relations r: A—B is
a category — but note that »—* need not be the identity relation.

For each additive relation r: A— B intfoduce the submodules
Defr=[a|(3d),(a,b)er] Imr=Defr?, }
Kerr=[a|(a,0)€r] Indr=Kerr.

Here Kerr¢Def#Z A and IndrcImr¢ B. Def» is the domain of defini-
tion o r, while Ind is the ""indeterminancy™ o r, and consistsd all b
with (0, er. Moreover, r is the graph d a homomorphism if and only
if Defr=A and Indr=0.

For example, the converse d a homomorphism g: B+A isan addi-
tive relation 7! with Deff1=Img, Indg*=Kerg. In a complexK
the set d pairs (c, clse) for ceC, (K) is an additive relation cls: X,—
H,(K) with Def (cls)=C, (K). With these observations, the **switch-
back™ formula for the connecting homomorphism appears as the com-
posited additive relations.

Any additive relation can be regarded as a " many-valued homo-
morphism; more exactly, as a homomorphism d a submodule to a
quotient module:

Proposition 6.1. Each additive relationr: A -~ B determines a homo-
morphism v°: Def r+ B/(Ind») such that

r=n1°§1, 4: Defr-A, n: B—BjIndr, (6.2)

wherej istheinjection and n the projection. Conversely, given a submodule
SCA, a quotient module B/L o B, and a komomorphism B: S— B|L
there is a unique additive relation »: A— B with #2=§.

Proof. Given aeDer, (ab)er and (ab) ¢r imply (0,b—b) €7, hence
b—¥&'eIndr. Then #° (8)=b+ I ndr defines a homomorphism #° with the
desired form (6.2). Conversely, given 8, r is the set o dl pairs (s,b)
with beg(s).

A similar argument shows that each additive relation » induces an
isomorphism 6,: (Def7)/(Kerr)=(Imr)/(Ind7); conversely, each iso-
morphism d a subquotient o A to a subquotient d B arisesin this
way from a unique additive relation r.

(6.1)
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Given subquotients S/K d A and S/K' of A', each homomorphism
a: A—A' induces an additive relation

wp—a(S/K, S'|K"): S|K— S'|K", (6.3)

defined to be the set d al pairs (s+ K, s'+K’) d cosets with se S,
s'eS, and s’= as. This includesthe previous notion d induced homo-
morphisms.

For an equivalence one can determine the inverse d an induced
relation.

Proposition 6.2. (Equivalence principle.) If 8: 4A—A'" is an equi-
vdence, then
(Oy)1=(0")y: S/K'—~S/K.

Indeed, each o (64)* and (674 consistsd the same pairs.

In Chap.XI we will use the composite d two induced relations.
Thisis not awaysthe relationinduced by the composite homomorphism.
For example, in the direct sum A= B® B let B, be the submodule d
al (b,0), B, thesubmoduled all (0,b) and A the submoduled all (b,b)
(the "diagona™ submodule). Then 1, induces isomorphisms B,
A[By==4, but the relation B,— 4 induced by 1, consistsd (0,0) alone.
Composition works reasonably well only under a restrictive hypothesis,
asfollows:

Proposition 6.3. (Compostion principle.) If homomorphismsa: A—A'
and g: A'—A" induce the additive relationsey.: S/K— S’'/K’ and fy;:
S'|K'— S"[K’ on given subquotients, then

By = (/2a)#. S|K— S"|K",
provided (i) éther ak >K' or BK' <K' and (ii)eitheraSc S’ orf15"¢ S".

Proof. Suppose first that (s+ K, s” 4 K")¢€ By ay.. By definition o
the composited two relations, there are s; and s; in S' with s;+ K'=
sa+ K’ and as=sy, Bsa=s". Thus s;—s;=~k'c¢K’, and Bas=s"- Bk
In caseeither K'CK" or K:<aK thisgives (s+K, s+ K"")e (/?a)#,s0
hypothesis (i) gives gy a#<(Bx)y. Similarly, (ii) givesthe oppositein-
clusion.

Exercises
1. For each additiverelation y: A— B, proverrlr=y.
2 For additivereationsy and s, prove (rs)1=s1y1,

3. If u=A— Aisan additivereation with %1=u=1u2, prove that there are
submodules K ¢ S <A with #=[(Sstk)|se S, keK]. Establish the converse.

4. For each additive relation »: A— B, describe »#2 and 1.

5. Under the hypotheses of the strong Four Lemma (Lemmal.3.2), prove
§al= gy
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7. Singular Homology

The use d complexes may be illustrated by a brief description of
the singular homology groups o a topological space. We first introduce
affine ssimplices.

Let E bean n-dimensional Euclidean space; that is, an n-dimensional
vector space over the field o real numbers in which there is given a
symmetric, bilinear, and positive definite inner product («,v) for each
pair o vectorsu,vcE. The usual distancefunction g (#,v) = (U—V, #—v)}
makes E a metric space and hence a topological space. In particular,
E may bethespace E* o dl n-tuplesu=(a,, ..., a) o real numbersa,,
with termwise addition and with thestandard inner product («,, ..., a)
(Bys--., b)) =2 a;b,.

The line ssgment joining two points #,vcE is the set d all points
tut+ (1—¢) v, for t real and 0=<¢<1; that is, d all points x %+ x,v,
where x,, x, are real numbers with x,-+ x,=1, %,=0, %, =0. A subset
C o E isconvexif it contains the line segment joining any two o its
points. If «,,...,u, are m-+1 points d E, the set d al points

U=2x%y+ -+ + Xpthy,, g+ X+ - Fx,=1, %,=0 (7.1)
is a convex set containing #,, ..., #,, and in fact the smallest convex
set containing these points; it is called the convex kull 0 u,, ..., n,,.
The points #,, ..., «, are said to be affine independent if every point

d this convex hull has a unique representation in the form (7.1); the
real numbers x; are then the bdarycentric coordinates o « relative to

#g, ..., #,. |t CaN be shown that the points «,, ..., «, are affine inde-
pendent if and only if the vectors u,—u,, ..., #,,—u, are linearly
independent.

An affinem-smplex is by definition the convex hull & m-+1 affine
independent points. These points are the vertices & the simplex. Thus
a l-smplex is a line segment, a 2-simplex is a triangle (with interior),
a 3-simplex is a tetrahedron, etc. For each dimension» we will take a
standard affine n-simplex A" in the space E", and we will label the ver-
ticesof A" as (0,1, ..., n). (For example, take o to be the origin and
1,...,# abasisd n orthogonal vectorsin E".)

For any topologica space X, a singular n-simplex T in X is a con-
tinuous map T: A*—X. Thus a singular O-simplex d X is just a point
o X, or, more accurately, a map d the standard point A° into (apoint
of) X. We first construct certain singular ssmplicesin convex subsets
o E.

Let E and E' be Euclidean spaces, L : E—E’ alinear transformation
and #, a fixed vector d E'. The function f(u)=u{,+L(u) on E to E
is called an affine transformation /: E—E’. As the composite o the
linear transformation L with the translation by «g, f is continuous.
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Proposition7.1. If #,,..., %, ae n+1 affine independent points
in E*, while v,, ..., v,cE’, there is a unique affine transformation
f: E* >E’ with f (%) =v;, =0, ..., n.

Proof. The vectors w;—u,, =1, ..., n, are a basisd E". Let L
be the unique linear transformation with L{u; — ug)=v;,—v,; f(U)=
vy— L(ug)+ L(u) is the required affine transformation: It may also be
written in barycentric coordinates as

f(x0u0+"'+xn“n)=xovo+"'+xnvn» in=1'

In particular, let vy, ..., Vv, be an ordered set o points in a convex
subset C o E. The unique affine transformation f: E"-+E' which
carriesthe vertices 0, 1, ..., » d the standard smplex A" in order into
v, «.., V, thus gives a continuous map A" --C which we write as

(vg, .-, Vet A*—>C. (7.2)

Thiswe call the affinesingular n-smplex (withstandard verticeso, ..., »
mappedtoy,, ..., v). For example,if thew,,...,v, areaffineindependent,
it isa homeomorphismd the standard simplex A" to the affine simplex
spanned by the v's In particular J,=(0, 1, ..., #) 4 iS the identity map
d A" onto itsdlf. f the v,, ..., v, are dependent, the corresponding
map (v, ..., V), collapses the standard A" onto a simplex o lower
dimension.

We may now describe the "boundary' d A" to consist d certain
(n—1)-dimensional singular ssimplices which are the ""faces™ o A". For
example, the faces o the triangle A42=(0, 1, 2) are the three edges
represented by the segments (12), (02), and (01); in the notation (7.2)
they are the three continuous maps (1,2), (0, 2),, and (0, 1), o
Arinto 42, In general A" has»-- 1 faces; itsi-thfaceisthe affinesingular
(n—1)-smplex

s=st: (0,1,..., 2, ey W gnt AP A" =0, ..., n, (7-3)

where the notation ¢ indicates that the vertex i is to be omitted. Any
singular n-smplex T: 4*—X has n+1 faces 4,7 defined by

&T=Téei: A" '>X, i=0,...,n, n>0. (7.4)

In other words, &;T is the map obtained by restricting T to the i-th

face d A" and regardi nlg this restriction (via ¢%) as a map, defined on
A»-1. Any singular simplex T can be written asthe composteTsz",

where J,: 4"—A" is the identity map d A", and hence a singular n-
smplex d A". The facesd T are then given by the formula

4T=T@d,]), i=0,....n, n>0. (7.5)
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For an affine singular simplex (7.2), the ¢-th face omits the 7-th vertex:

d,-(vo,...,v,,)c=(v0,...,ﬁ;,...,v”)c. (76)
The process of forming iterated faces satisfies the identity
&;a;,T=d;_,d,T, i<j. (7.7)

By (7.5) it suffices to prove this in the case when T"= J,; here it is clear,
since the process of first omitting vertex 7 and then vertex ¢ amounts
to the same as first omitting vertex 7 and then (in the new numbering
of vertices of 4, J,) vertex j—1. An alternative proof may be given by
replacing each point of the standard s-simplex A" by its barycentric
coordinates x,, ..., %,. A singular #-simplex T in the space X is then
a continuous function with values T'(x,, ..., x,)€X, defined for all real
x; with x; = 0and xy+ --- + x,=1. Thes-th faceis the function defined by

(@;T) (Hgs oo v X)) =T (%g, -, %41, O, Xy oeey Xp—q);

i.e., by letting the s-th variable in T be 0. Hence (7.7) follows, because
first setting x;=0 and then x,=0 for i<j in T'(x,, ..., %,) amounts
to first setting x;=0 and then setting equal to 0 the variable with the
new number j—1.

To each space X we now construct a complex S(X) of abelian
groups, called the singular complex of X. Take S,(X) to be the free
abelian group with generators all singular #-simplices T of X. Then
the ¢-th face operation defines a homomorphism d;: S,(X)—S,_,(X)
for 1=0, ..., and #>0. Define the boundary homomorphism

0: Sn (X) _>Sn—1 (X)

as the sum of the face homomorphisms with alternating signs; that is
0T=d,T—d, T+ +--+(—1)*d,T= Y (—1)'d;T, n>0. (7.8)
i=0

An #n-chain ce S, (X) has a unique representation asasum c= D7 ¢(T) T
where the coefficients ¢ (T') are integers, zero except for a finite number
of T; its boundary is dc= 2, ¢(T) 0T. To show that S(X) is a complex,
we must prove that the composite 99: S,—S,_, is the zero homo-
morphism for #>1. It suffices to prove & 8T =0. But

00T=Y (—1)"d,d,T+ 3 (—1)‘+fd,-d,T.

i<y 2]
Using (7.7) and switching the labels ¢ and § in the second sum, this is
00T=Y (—1)"Hd,_,d,T+ 3 (—1)"**a,4,T.
j=12¢ ki

The two sums are equal except for sign, hence cancel to give 89=0.

\
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The n-dimensional singular homology group H, (X) d the space X
is now defined to be the n-th homology group H, (S (X) )d the complex
S (X).

Theorem 7.2. The homology group H, ( X)is a covariant functor d X.

Proof. If Y isasecond topological spaceand f: X —Y any continuous
map, each singular simplex T: A™+X d X yields by composition a
singular smplex f T: A4*—Y d Y. The correspondence T+f T on the
freegenerators T o S, (X)yieldsahomomorphismS, (f): S, (X)~S, (Y).
Moreover, 4,(fT)="f(4,T); hence & S(f)=S(f) 8, so S(f) isa chain trans-
formation which induces homomorphisms H,(S(f)): H,(X)=H,(Y)
on the homology groupsin each dimension. With these homomorphisms,
H, is a covariant functor on the category with objects all topologica
spaces, morphisms all continuous maps.

If Gis any abelian group, the cohomology groups H*(S (X)) are
the singular cohomology groups o X with coefficients G. They are bi-
functors, contravariant in X and covariant in G.

The homomorphism e: S, (X)—Z which carries each singular 0-
simplex into 1¢Z is called the augmentation d S(X). Since ¢2=0:
Si1(X)—~Z, e: S(X)—>Z is a complex over Z. Moreover, ¢ induces an
epimorphism e,: Hy(X)»Z. A space X is called acyclic if H,(X)=0
for n>0 and ¢, is an isomorphism H, (X)=Z.

Proposition 7.3. A topological space with only one point is acyclic.

Proof. Let X={x} be the space. In each dimension n, X has only
one singular simplex, namely the map T,,: 4" —{x} which collapses A"
to the point x. Hence each face 4,7,, isT,_,, for ¢=0, ..., n. Since 8T
is the alternating sum o faces, 87;,,=71;,,_, and 87,,,_,=0. Thusin
even dimensions S (X) has no cycles except 0, whilein odd dimensions
al elements o S,,,_,(X) are cycles and also boundaries. Therefore
H, (X)=o0 for al n>o0; clearly H,(X)=Z.

Exercises

1. Let the affinesmplex I be the convex hull of the affinéndependent points
%, ..., U, Show that weI"iSone of the points«, ifand only ifv, wel’and « on
the segment fromy to wimply «=v o »=w. Condudethat the Smplex I, as a
convex Set, determinesits vertices.

2. If X IS pathwise connected, prove that e,: H,(x)=z. (Definition: Let
| be the unit interval. X is pathwise connected if t0 each par of points =,y EX
there eXISts a continuous Mep f: | - x with f(0)=ux, f(1)=vy.)

8. Homotopy
Two continuous maps o a space X into a space Y are said to be
“homotopic” if it is possible to continuously deform the first map ihto
the second. Condder the deformation as taking place in a unit interval
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d time; then it can be regarded as a continuous map defined onthe
cartesian product X>I d the space X and the unit interval I ,0=<¢<1
on thereal t-axis. Hence we make the

Definition. Two continuous maps f,, f,: X—Y are homotopic if
and only if thereis a continuous map F: X><I—Y such that

F(x,0)=/o(%), F(x1)=h(x). (8.1)
When this holds, wewrite F: fy~f,: X Y.

The condition (8.1) states that the homotopy starts, for ¢=0, with
theinitial map 7, and that it ends, for ¢=1, with thefinal map #,. For
example, a space X is called contractibleif the identity map 1: X +X
is homotopic to a map which sends X into a single point. Any convex
set Cin a Euclidean space is contractible to any one d its pointsw, via
the homotopy D defined by

D(u,t)y=tw+{(1—8)u, 0=t=<1, wucC. (8-2)

This function is clearly continuous and takes values in C, because C
is convex.

This geometric notion is closely related to the agebraic notion o
a chain homotopy. As afirst example, we prove

Proposition 8.1. Any convex s C in a Euclidean space is acyclic.

The proof uses a chain homotopy s: S, (C) —S,,.+1(C). Since S,, (C)
is the free abelian group generated by the singular n-simplices T o C,
it will sufficeto defineasingular (n+ 1)-simplexs7: A*+1—C foreach T.

In terms o the barycentric coordinates (%, ..., #,,1) d a point o
An-{-l, set
*1 Fnt1
(sT)(xo,...,x,,+1)=x0w+(1—xo)T(1_xo, ey 1_%), x0=4=1,} (8.3)
=w, Xo =1 N

where w is a fixed point d C. To see that sT is continuous at x,=1,
we rewrite the definition so that it resembles the geometric homotopy
D d (8.2).Let v,=0 be theinitial vertex & A4***; then

(Or xl/(1_x0)r [RR xn+1/(1_x0))

can be viewed as the barycentric coordinates d some point #’ on
the opposite face. Each point d 4"+ can be written as a weighted,
average x,vy+ (1 — %) #’ for some U, unique except when x,=1. The
point %' on the opposite face determines ueA" with e&«=u'. The
definition (8.3) now reads, in al cases

(T) (%ovo+ (1— %) w') =2+ (1— %) T(w), Pu=u'.
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In other words, the segment in A™' joining v, to each point «’ o the
opposite face is mapped by sT linearly onto the segment joining weC
to T'(»)€C. I n particular, since A" is compact, TA"iscompact and hence
bounded, so sT: A*+1—C is continuous at x,=0.

Thiss: S, (C)—S,+1(C) provides a contracting homotopy for the
augmented complex e: S(X)—Z. In the notation d (2.5), let f: Z—
S{X) be the chain transformation which carries 1 €Z to the singular
O-simplex T, at the chosen point w ¢ C. Thei-thface 4;(sT) isthesingular
n-smplex obtained from (8.3) by setting x,=0. Hence d,{(sT)=T,
while d; ., (sT)=sd,T if n>0 and d,sT=T, if n=0. Thisgives9(sT)=
T—s(3T) for n>0, 8sT=T—feT for n=0, and ¢f=1, al asin (2.5).
Hence S(X)isacyclic, as required.

More generally, consider any homotopy F: X><I+Y. Regard X><I
as a cylinder on the base X ; the boundary o this cylinder is the top
(where F=£) minus the bottom (where F=f,) minus the sides (i.e.,
minus Fon (8X)><I). The resulting schematic formula 0F = f,— f,—F 9
suggests the definition ds=f,—f,—sd d a chain homotopy. These
indications can be made precise, as follows:

Theorem 8.2. If f,~/,: X—=Y are homotopic continuous maps, the
induced chain transformationsS(f,), S{f,): S(X)—S(Y) are chain homo-
topic.

We reduce this theorem to the special case d the cylinder X><I.
By the baseb and the topt o this cylinder we mean the continuous
maps b, t: X —X><I defined by b(x)=(x,0) and t(X)=(x,l); they are
clearly homotopic.

Lemmaa8.3. For any cylinder thereisa chain komotopy u: S ()= S(b).

The lemmaimpliesthe theorem. For let F: X><I—Y be any homo-
topy F: f,=f,. ThenFb = f,, Ft=f,, and S (F) isachain transformation.
Define s as the composite

s=S,12 (P S, (X)% Spia (X><I) > S, 11 (Y).

Then 8s+sd=S(F)(du+ud)=SF)(SE—S®))=S{H)—S(f)-

To prove the lemma, we prove more: That u=uyx: S(X) —S(X>=<I)
can be chosen simultaneously for all topological spaces X so as to be
natural. For each continuous map g: X+X: d spaces, naturality
requires that the diagram

S (X)X S, . (X=I)
lS (8) lS(g><1) (8.4)

S, (X') = n+1(X’><I)

be commutative. Observe that b, t: X —X><I are already natural. We
construct such a «# by induction on n. For =0, a singular O-simplex
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is just a point T(0) d X. Take #,T to be that singular I-simplex o
X><I defined by (#,T) (%, %) =(T(0), #;), 0 that %,T is the segment
vertically above T(0) in the cylinder X><1I. Then dy(u,T)=1¢(T(0)),
dy (uyT) =b(T(0)), S0 8(ueT) is indeed S(t)T— S(b)T. Moreover u, Is
clearly natural.

For »>0, suppose #,, has been defined for all m<#, in particular,
O, _y+u, 20=SEt)— S(b); if n=1,u,_,iszero here. Let J,: A"~ 4"
be the identity map d the standard simplex. We first define «J,¢
S,+1 (A"} its boundary ought to be

ouf,=S @) J,— S(b)J,— tp-10,- (8.5)
Now theexpressioncon theright isachaind S, (4”<I); itsboundary is
0c=0S () J,— S(8) 8J,— By, 0J,=(S(t)— S (6)— 8u,_,) 8],

which is zero by the induction assumption. Hence ¢ is an n-cycle d
A"%<I. But A"xI is a convex subset d a Euclidean space, hence is
acyclic by Prop.8.1. Therefore ¢ is a boundary, say ¢=2éa for some
acS, 1 (4"<I). We set »J,=a; then (8.5) holds.

If T: A+X isnow asingular smplex d any space X, T=T],=
S{T)], and T<1: A"<I—-X><I. DefineuT =S (T><1)u],=S(T><1)a.
This definition immediately satisfies the naturality requirement. To
show that it gives the required homotopy, calculate

0uT=S(T><1) da=S(T><1)[SEJ,— S (0) o~ tn_18],],

wheret and b are top and base for A"xI. But t, b, and #,_, are all
natural, hence (8.5) gives duT = S(t)T — S(b)T —«,,_, 8T, as desired.

This type o proof consistsin first constructing the desired object
(here, the desired chain homotopy) on a model chain such as J, by
observing that the space 4"<1I in which the moddl lies is acyclic, and
in then carrying the object around to other spaces by the mapsT.
It is an old method in topology; it will reappear later (Chap.VIII) as
the method 0 acyclic models. Here it has the merit d avoiding an
explicit formulafor the homotopy u.

Corollary 8.4. If the continuous maps f,, f,: X—Y are homotopic,
the induced homomorphisvts H{f,), H(f,): H,(X)—H,(Y) are equal.

Exercises
1. Show that any contractible space is acyclic. '
2. In the prism 4%><TI let 0, 1, ..., n denote the vertices of the base, 0’, 1/,

..., n’, those of thetop. Show that an explicit homotopy # for X = A"inLemma 8.3
is given, in the notation for affine singular smplices, by

”
u]”=.20(_ 1)5(0,1, ..., 4,4, (i+ 1), ..., n’) Am<I..
$=
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3. For »=1, 2 as in Ex.2, show that the terms of #J,, correspond to a" tri-
angulation” of the prism 4”><1 (Draw a figure).

4. Show that A"><I can be" triangulated" asfollows. Partly order the vertices
of A"><{0} and 4"><{1} by the rule that (i,¢)=(j,n) for e,y=0,1, if i<j and
e<. Takeassmplicesdf the triangulation all those formed by a linearly ordered
subset of the whole set of vertices, and show that the resulting n-simplices are
those appearingin «j, in Ex.2.

9. Axioms for Homology

Let A be asubspace d X. Identify each singular ssimplex T: 4*—A4
d A with the composite map 4*—+A4—X; then T becomes a singular
smplex d X and the singular complex S(A) a subcomplex d S(X).
The homology groupsd the quotient complex,

H,(X,4)=H,(S(X)/S(4)), (9-1)

are called the relative homology groups d the pair (X,4) d spaces.
They are subquotient groups d the quotient S (X)/S(4), hence can be
rewritten as subguotients

H,(X,4)=C,(X,4)/B,(X,4) (9.2)

o S(X). Specifically C,(X,A) consists d those elements ceS, (X)
with @ceS,_;(A),while B, (X,A)=S,(A)dS,,s(X); the elementsc
d C,(X,A) are known as relative cycles; those o B, (X,A) as relative
boundaries. A singlespace X may beregarded asa pair o spaces (X,2),
with O the empty set; then H,(X,0)=H,(X).

A map f: (X,A)—=(Y,B) d pairs d spacesis by definition a con-
tinuous map f: X+Y with f (AXXB. With these maps as morphisms,
the pairs o spaces constitute a category, and H,(X,A) is a covariant
functor on this category to abelian groups.

Each pair (X ,A) gives a short exact sequence d complexes S(A )
S(X)» S{X)/S (A).The connecting homomorphism 2, for this sequence
is called the invariant boundary d the pair (X,A);the exact homology
sequence (Thm.4.1) gives

Theorem 9.1. If (X,A)isa pair d spaces, the long sequence
o> H,(A) 2 H (X)) H, (X, A) 2 H,_,(4)—> -, (9.3)
endingin —>Hy(X)—=Hy(X,A)—0, i s exact.

Specifically, i: (A,0)-(X,0) and 7: (X,0)> (X,A) are maps
d pairsinduced by the identity function, while @, is given for each -
relative cycle ¢ as g, (clsc)=cls(2¢). We have already noted (Example
(1.3))that i,: H,(4)->H,(X) need not be a monomorphism; this
exact sequence describes the kernel and the image o 7, .
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Two maps f,, f;: (X,A)—(Y,B) d pairs are homotopic if there is
a homotopy F: fy=f: X+Y with F(4><I){B; this last condition
means that F cut down to A><I is a homotopy between f, and f, cut
down to mapsd A into B. An extension o the argument for Thm.8.2
showsthat homotopicmaps/,, f, & pairshave H,, (f))=H,(f,): H, (X,A)
—H,(Y,B).

The singular homology theory for pairs o spaces thus gives:

1. Functors H,(X,A) d pairs o spaces to abelian groups, »=0,
1,....
2. Natural homomorphisms é,: H,(X,A)—H,_;(A), n=1,2,....
These data satisfy the following additional conditions:

3. If X consistsd a single point, H,(X)=Z and H,(X)=0 for
#>0.
4. For any pair (X,A) the relative homology sequence (9.3) is exact.
5. Homotopicmapsd pairsinduceequal homomorphismson each H,,.

6. (Excison.) If X>A>M are spaces such that the closure & M
is contained in the interior d A, let X—M>4—M denote the sub-
spaces obtained by removing al points o M from X and from A,
respectively. Then theinjection kd X — M into X inducesisomorphisms
on the relative homology groups

H,(k): H,(X—M, A—M)=H, (X,A). (9.4)

Our discussion has indicated the proofs o all except the sixth
property; a proof o this uses ""barycentric subdivisions™; it may be
found in EILENBERG-STEENROD [1952], WALLACE [1957], or HirTon-
WrLIE [1960].

These six properties may be taken as axioms for homology. It can
be proved that when the pair (X,A) can be "triangulated” by a finite
number o affine simplices, any relative homology groups satisfying
the axioms must agree with the singular homology groups. Moreover,
from the axioms alone one can calculate the singular homology groups
d elementary spaces to agree with those calculated from "naive"
subdivisionsin $1. In particular, if S' is the n-sphere, one deduces
that H,(S"=Z, H,(S")=Z and H;(S")=0 for 04=:i==x. This, and
other striking geometric properties (Brouwer fixed point theorem, etc.)
are presented in EILENBERG-STEENROD [1952], Chap. X1.

We have now completed our too brief indication d the use d homo-
logy theory in topology.

Notes. " Complex" originally meant smplicial complex; in topology " complex"
has various geometric meanings, such as " cell complex" or " CW-complex". The
chain complex in our purely algebraic sense was introduced by MAYER [1929,
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1938]. Theformulation of exact homologysequences, ascodifiedin KELLEY-PITCHER
[1947], alowed a systematic treatment o simple facts which previously were done
"by hand" in each case. Poincar£ introduced homology, via Betti numbers;
it was Emmy NoeTHER Who emphasized that the homology o a space deals with
a homology group rather than just with Betti numbers and torsion coefficients.
Singular homology in its present form is due to EiLENBERG; the axioms for homo-
logy theory, with application to other homology theories (Cecu theory) appear
in the influential book by EiLENBERG-STEENROD. Additive relations have been
explicitly recognized only recently [LuBkiNn 1960, MAC LANE 1961, PUPPE 1962].
The corresponding notion for multiplicative groups occursin WEDDERBURN {19417,
ZassENHAUS [1958], and for general algebraic structures in Lorenzen [1954] and
LAMBEK [1958].

Chapter three
Extensionsand Resolutions
A long exact sequence o R-modules
0—>4—>B,_;—--—>B,—->B;—>C—0

running from A to C through # intermediate modules is called an
“n-fold extension”™ o A by C. These extensions, suitably classified by
a congruence relation, are the elements o a group Ext" (C,A).To cal-
culate this group, we present C asthe quotient C=FE,/S, d afree module
E,; this process can be iterated as S,=E/S,;, S,=FE/S,,... to give
an exact sequence

. >F,—>FE .. >F->F->C—>0

called a"'freeresolution'" o C. The complex Hom(E,, A) has cohomology
Ext" (C,A). Alternatively, one may imbed A in an injective module J,
($7) and then Jp/A4 in an injective module J;; this processiterates to
give an exact sequence

0>A->J > > >, 1> )=

called an "injective coresolution™ o A. The complex Hom({(C, J,) has
cohomology Ext" (C,A).Inparticular, Ext! (C,A)isoftencalledExt (C,A).

The chapter starts with the definition o Ext!, which is at once
applied (§4) to calculate the cohomology d a complex d free abelian
groups from its homology. The chapter ends with a canonical process
for imbedding any modulein a **minimal’* injective.

1. Extensionsof Modules

Let A and C be modules over a fixed ring R. An extension o A
by C is a short exact sequence E=(xa): A>» B -»C d R-modules and
R-module homomorphisms. A morphism I': E—>E’ d extensions is a
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triple I'=(«, 8,¥) & module homomorphisms such that the diagram

E: 0— A% B %5C—0

Ir S (1.1)
E:0—-A2B%5C—0

is commutative. I n particular, take A'= A and C= C; two extensions
E and E' d A by C are congruent (E=FE") if there is a morphism
(14, 8. 1c): E—~E’. When thisis the case, the short Five Lemma shows
that the middle homomorphismg is an isomorphism; hence congruence
d extensions is a reflexive, symmetric, and transitive relation. Let
Extg(C,4) denote the set d all congruence classesd extensonsd A
by C.

An extensiond A by Cissometimesdescribed as a pair (B,8) where
A isasubmoduled B, and 6 is an isomorphism B/4 =C. Each such
pair determines a short exact sequence 4B » BJA and every exten-
son d A by C iscongruent to one so obtained.

One extension d A by Cis the direct sum 4>>4®C—>C. An ex-
tension E=(x,q) issaid to be spist if it is congruent to this direct sum
extension; asin Prop.1.4.3, thisis the caseif and only if a has a right
inverse u: C—B (or, equivaently, x has a left inverse). Any extension
by a projective module P is split, so Extgx(P,A) has but one element.
Toillustrate a non-trivial case, take R=Z. Then, for example, the addi-
tive group 22 d even integers has two extensions by a cyclic group Z,
d order 2: (The direct sum 2Z&©Z, and the group Z> 22. Thisis a
special case d the following fact:

Proposition 1.1. For any abelian group A and for Z,,(c) the cyclic
group d order m and generator c thereis a | —1 correspondence

n: Extz(Z,(c),A)=A[mA,
where m A4 is the subgroup o A conssting o all mafor ac4.

Proof. Take any extension E d A by Z,; in the middle group B
choose an element # with ou=c to serve as a sort d "'representative’
d the generator c. Each element o B can be written uniquely asb=xa
+ hu for some acA and someinteger h, =0, ..., m—1. Since mc=0,
a(mu)=0, so mu=xg for auniquegecA. Thisg determinesthe’* addition
table' for B, because

(xa+hu)+ (xa' + W u)=x(a+a )+ (h+h') u, h+h<m,
=x(a+a'+g+ht+h—m)u, h+h=m.
The element g is not invariant; the representative #» may be replaced

by any «'=u-+xf for fe A, thus replacing g by g'=g+mf. The coset
g+mA in A/mAisuniquely determined by theextension E. Set 5 (E)=
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g+mA. If E=E, n(E)=7(E). If gisany element d A, take for B
the set o al pairs (a,h) with acA, A=0, ..., m—1 and define addition
d pairs, using g, as in the table above. This addition is associative,
makes B a group, and gives an extension E with  (E)=g+ mA. Hence
nisi—1onto 4/mA.

Now 7 is a correspondence between a set Ext, and an abelian group
AlmA; this suggests that Extz(C, A4) is aways an abelian group. We
shall shortly show this to be so. First we show that Ext is a functor,
on the category d modulesto that o sets.

Let A be fixed. To show Extg(C,A) a contravariant functor o C
requiresfor each EcExt,(C,A) and eachy: C'->C asuitable extension
E'=y* EcExtz(C’,A). ThisE' may be denoted by Ey, and is described
by the following lemma, which shows E' unique and which hence easily
implies the congruences

E1c=E, E@y)=(Ey)y. (1:2)

They state that E depends contravariantly upon C; note, in particular,
that the notation Ey, with y behind, gives the good order for multi-
plication d y's in the second equation (1.2).

Lemmal2 If Eisanextensond an R-module A by an R-module C
and if y: C’'—C is a module homomorphism, there exists an extension E'
d A by C and a morphism I'=(1,,8,y): E'-~E. The pair (I',E) is
unique »p to a congruenced E'.

Existence proof: In the diagram

E:0—AdX2.%C 0

ol (1.3)
E:0—-4%B5%C -—0

the sides and the bottom are given; we wish to fill in the module at
“?” and the dotted arrows s0 as to make the diagram commutative
and the top row exact. To do so, put at ? that subgroup B'¢c B& C’
which consists d the pairs (b,c) with ab=yc’; define d and g as
a'(b, ¢) =¢’, B(b, €) =b. This choiceinsurescommutativity in the right-
hand square o (1.3). With the definition »'a=(xa,0) the diagram is
completed; the remaining conditions may be verified.

Uniqueness proof: Take any other such E” with a morphism I/ =
(14,8",y): E"—E. If B" isthe middlemodul¢ M E", define§’: B"'—B"'
by g8 =(8"b", a"b"); then Ig=(1,, ', 1¢/)? _»E'is a congruence
and the composite E”"—E’—E is I, <0 that the diagram "1 E'>E
is unique up to a congruence Iy o E’, as asserted.

We call E’'=EYy the composite d the extension E and the homomor-
phism y; the type d construction involved occurs repeatedly, for

Mec Lane, Homology 5




66 Chapter I11. Extensionsand Resolutions

instance, in the study d induced fiber spaces (wherey isafiber map!).
Algebraically, E has the following " couniversal™ property:

Lemma1.3. Under the hypotheses d Lemma1.2 each morphism
L=(o, f1, 1) E;—~E d extensons with ;=% can ke written uniquely
as a composite

E, A, g, WAY, (1.4)

More briefly, I} can ke "factored through™ I': Ey —E.

Proof. Here E;=(%,0;) has the form A »Bl—>C' (Draw the
diagram!) Defineg’: B, —B' as 86,= (8,51, 0161). Thisisthe only way
d defining 8’ sothat g,=p ' and so that the diagram (e, §’, 1): E;—E’
will be commutative. The verification that this g’ yields the desired
factorization (1.4)isroutine.

Incidentally, this factorization includes the uniquenessassertion o
Lemmal.2, inasmuchasI™ =14, 8",y): E”"—E hasby (1.4)thefac-
torization (1, 8, y)={, 8, ¥} (1, #’, 1) with thefactor (1, ', 1): E"—>E’
a congruence.

Next we show Ext (C,A) to be a covariant functor d A, for fixed C,
by constructing for each E and for each a: 4—+A4" a "*composite” ex-
tension E’== « E, characterized as follows:

Lemmald4. For EcExt(CA) and «: A—>A’ there is an extension
E d A by C ad a morphism ['=(«, 8, 1¢c): E—E'. The pair (I, E')
is unique #p to a congruence d E'.

Proof. We are required to fill in the diagram

E: O—aA—"—>B—‘1+C—~>0

| (1.5)
E': 0——>A’ ”)D HSC—0

at the question mark and the dotted arrowsso as to make the diagram
commutative and the bottom row exact. To do so, take in 4A’® B
the subgroup N o all elements (— uaxa) for ac4. At “?” in the
diagram put the quotient group (4’ B)/N, and write elementsd this
quotient_Eroupascosets (a',b)+ N. Then the equationsz'a’ = (a',0)+ N,
o'[(a’, )T N]=ub and g5=(0,b)+ N define mezps which satisfy the
required conditions. That the E so constructed is+nique may be proved
directly or deduced from the following “universal” property d E'.

Lemma 1.5. Under the hAypotheses d Lemina 1.4, any morphism
L= (o, 1, ) E>E; d extensions with «,=c can b2 written uniquely

as a composit
Q—\E @AY g BEW, g

More briefly, I can be"'factored through’’ E —o.E.
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Proof. If E,=(%, o;) with middle module B,, a homomorphism
B’: (A'® B)/N — B, may be defined by /?'[(ab)+ N]=xa'+ B,6. One
then verifiesthat g;,= 8’8, that (14, 8, 9,) is @ morphism d extensions,
and that this 8’ is uniquely determined, completing the proof.

The uniqueness properties d «E yield congruences
14E=E, (ca)E=a(n'E).
Hence Ext(C,4) is a covariant functor d A. The fact that it is a bi-
functor (of A and C) is demonstrated by the following result:
Lemmal6. For a,y, and E asin Lemmas12 and 14 thereis a
congruence d extensions a(Ey)= (aE)y.
Proof. By the definitionsd Ey and « E there are morphisms

Ey (1,81,7) E (o6, 85, 1) “E

with composite (a,8,f;,%): Ey—>a«E. By Lemma1.3, the extension
(aE)y is couniversal for such maps; that is, (a,8s 8,, ¥) has afactoriza-
tion

Ey (@ f,1) (OCE) y L8, oE.
Now the left hand map is exactly the sort & morphism o extensions
used in Lemma1.4 to definea(Ey) from Ey. Hence, by the uniqueness
assertion o that lemma, a(Ey)= (aE)y, g.e.d.

Toillustrate one use d these lemmas, we prove:

Proposition 1.7. For arty extension E = (x,c) the composite extensions
xE and E¢ are split.

Proof. The diagram

E:0-—-A% B %C—0
E'IO—)B—)B@C—)C%O,
with v defined by vb=(b,ab), is commutative. Hence the definition

d xE in Lemma1.4 showsthat »E is given by the bottom row, hence
is split. Let the reader display the dual diagram which splits Ea.
Proposition 1.8. Any morphism |;= (a,8,y): E—~E’ d extensdons
implies a congruenceaE= E’y.
Proof. By the universa property o aE (Lemma1.5), the map |;
can be factored through I': E+aE as I[=IL;I", where I;=(1 4., ', y):
aE—E’. Thislast map characterizes aE as E'y, by Lemmat.2.

2. Addition o Extensions

Thedirect sum A® C d two modulesmay be regarded as a covariant
bifunctor & A and C, since there is for any two homomorphisms

5‘
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a: A—A and y: C—C’ a homomorphism
a®y: ABC>A4'DC

with the usual properties (a@y)(@' @y )=a d ®yy’" and 1,B1c=
146c- This homomorphism may be defined by setting (x€&y) (4,¢)=
(xa, yc) or as the unique homomorphism in the middle which renders
the diagram

A<~ ADC-C

l= %aev %%

A< A'DC -

commutative. Here each row consistsd projectionsd the direct sum,
asin (I.8.12).
The diagonal homomorphism for a module C is

A=A;: C>CDC, Al)=(cc). (2.4)
It may aso be described as that map which renders

C—~C—x2=
[ S
C&cdem

commutative: The codiagonal map for a module A is
, V=V, ADA—>A, V(a,a:)=a,+4a,; (219

it has a dual diagrammatic description by Viy=1,=Ft: A—>A. The
maps 4 and V may be used to rewrite the usual definition d the sum
f+g of two homomorphismsf, g: C-+A as

1+e=Va(fDg) Ac; (2.2)

the reader should verify that (f+g)c isstill fc+ge under this formula.

Given two extensions E;=(»;,a): A, B;-»C, for i=1,2, we
define their direct sum to be the extension

EDE,: 054, P 4,~B,® B,—~C,®C,—0. (2.3)

We now m\akg Ext(C,A) agroup under an addition which utilizes (2.3).

Theorem 2.1, For given R-modules A and C the set Extz(C,A) of
all congruence classes d extensions d A by C is an abelian group under
the binary operation which assigns to the congruence classes o extensions
E, and E, the congruence class of the extension

E\+E,=V,(E,DE,) 4. (2.4)
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The class of the spiit extension A>>AD C+C isthe 220 element d this
growp, while the inverse d any E is the extension (—1,)E. For homo-
morphisms a: A->A' and y: C'—C one has

a(Ey+Eg)=aoE,+aE,, (Ey+Ep) y=E p+Eyy, (2.5
(y+ag) E=y E4 o E, E(yi+yl)=Ep+Ey,. (2.6)

The composition (2.4) is known as the Baer sum; the rules (2.5)
state that the maps a, : Ext(C.A)—=Ext(CA") and y*: Ext(CA)—
Ext(C',A) are group homomorphisms.

We give two different proofs. The first is "computationa™; it is
like the calculation made in §1 to show that Ext,(Z,,,A) is the group
AlmA.

Take any extension E=(xa) d A by C, witha: B-»C. Toeach c
in C choose a representative u(c); that is, an element u(c)eB with
ou{c)=c. For each reR, the exactness d E gives ru(c)—u{rc)cx4;
similarly, ¢, 4eC have u(c+4—u(c)— u(d)e xA. Hence there are de-
ments f (c4) and g(r,c)e A with

(@) +u@=xfledTuc+d), odeC. (2.7a)
= ru(c)=xg(r,c)t+u(rc), r¢cR, ceC. (2.7b)

Call the pair d functions (f,g) a factor systemfor E. Let F;(C, A) denote,
during this proof, the set d all pairs (f,g) d functionsf on C><C to A
and g on R>=<C to A. Each factor system is an element d F;(C,4),
and Fy is a group under termwise addition; that is, with (f+f,) (¢,d) =
hic,d)+1a(c.a).

The factor system for E is not unique. For any different choice
d representatives u'(c) we must have w’(c)=xh(cJt#(c) for some
function h on C to A. One calculates that

w(OFw(@=x[h(e)+h@) - hc+a)Tid]+w(c+4,
ru'(c)=n[rh(c)—h{rc)+-g(r,c)]+w'(rc).

The new factor system f'(c,d), g'(r,c) for the representatives «’ is
then given by the expressionsin bracketsin these equations. We may
express this fact differently: To each function h on Cto A thereisan
element (8ch, dxh)e Fr (C,A) defined by

(8ch) (e, d)=h(c)+h(@)—h(c+d), (Orh)(r,c)=rh(c)—h(rc).

Thefactor system f', g for representatives «’ then hastheform (f/, g) =
(fg)+ (6¢ch, 8gh). Conversely, any such function h can be used to change
representatives in an extension. Thus, if we denote by Sg(C,4) the
subgroup o all those pairs o functionsin Fi(C,4) o the form (8ch,
dgh),the factor system (f,g) o E is uniquely defined modulo S;(C,A).
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Use the factor group F(C,A)/Sz(C,A); to each extension E assign
the coset w (E) d any oned itsfactor systems (f,g) in this group Fz/Sk.
Then o (E) is uniquely determined by E.

A congruence of extensions maps representatives to representativas;
hence congruent extensions have the same factor systems. It follbws
that w isa 1—1 mapping d the congruence classes o extensions to a
subset d the abelian group F;(C,A4)/Sg(C,4). To show Ext(C,A4) an
abelian group under the Baer sum it now sufficesto show that

o (E;+E)=w(E)+tw(E), o[(—14)E]=—o(E).

The first follows by calculating a factor system for E; @ E,, and thence
for E,+ E,. The second follows by observing (draw the diagram!) that
(—1) E is obtained from E just by changing the sigrt%f the map
»: A>> B and hence by changing thesigns off and g in the Hctor system.
Finaly, the split extension E, has (0,0) as one d itsfactor systems,
henceis the zero d this addition.

It is aso possible (see the exercises) to characterize directly those
pairs d functions (7,¢) which can occur as factor systems for an exten-
sion, and hence to show that Extz(C,A) is an abelian group without
using the Baer sum at all.

The pr (2.5) is easy; Fr(C,4)/Sk(C,A4) is a bifunctor, and w
is a nattiral homomorphism. The proof o (2.6)is similar.

We now turn to the second (conceptual) proof d the theorem. For
the direct sum (2.3) & two extensions E; the congruences

(2D o) (El@Ez)EalEl@ o E,, (2.8)
(El@ E,) (?’1GB yo)=E,; 7169 E, v, (2.9)

may be proved by the lemmas d §1 which characterize the composite
extensons E;y; and «,E;. For a: A—A' one calculates easily that

a V="V (@®a): ADA>4’, (2.10)
and similarly for y: C’—C that
Ady=(yDy)4: C'->CDC. (2.10%)

Now we can prove the assertion (2.5) d the theorem by the string d
congruences
«(Ey+E)=aV(E,DE) A=V (a®Dx) (E,;DE,) 4
=V(E @aE,) A=aE,+aFE,;
the second hdf issmilar. The proof d (2.6)is parallel to this once we

know that
AE=(E®E)4, EV=V(EDE). (2.11)
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Since (A,, A, 4.): E-E@E is a morphism d extensions, the first
d these identities follows from Prop.1.8. Similarly,(V,V,V): E® E—E
gives the second.

Now let us show that the Baer sum (2.4) makes Ext a group. The
associativelaw followsfrom the definition (2.4) once we know that the
diagonal and codiagonal satisfy theidentities

(ADP1)A=(1.DA)4: C>CHCDC, (2.12)
Vwed1,)=V(1,0F): AGADA-A. (2129

These follow directly from the definitiond A or V, provided we identify
(C C)B C with C& (CD C) by the obvious isomorphism. To prove
the commutative law for theBaer sum, usetheisomorphismz,: 4, B A,
—A,D A, given by t,(a,a)=(a, ) (or, if you wish, by univer-
sality and a suitable diagram!). The morphism (z,, g, 7¢): (E; P E,) —
E,DE, shows that 7, (E, D E,) = (E,PE,) 1.; a caculation or a dia-
gram proves that V,v,=F, and that A.=v.4;. Hence we get the
commutative law by

T B E,=V(E,®E) A=Vt (E,®E,) A
=V(E,® E,) 1A=V (E,® E)d=E,+E,.

To show that the split extension E, acts as the zero for the Baer sum,
first observethat for any EcExt (C,A) there isa commutative diagram

E: 04— B 2,C-—>0
b

E: 04—-4BC—~>C—0,
where v is the map vb=(0, ob)=¢,6b. This diagram asserts that the
split extension E, can be written as the composite E,=0, E, with 04:
A+A the zero homomorphism. Now the distributive law givesE+ Ey =
1,E4+0,E=(1,+04) E=1,E=E. A similar argument shows that
(—14) E acts as the additive inverse d E under the Baer sum. Our
second proof d the theorem is complete.

The second distributive law (2.6) contained in this theorem may be
expressed as follows. For eacha: A—A' let «,: Ext(CA)—=Ext(CA")
be the induced homomorphism, and similarly set y*E=Ey. Then
(y¥+9%) E=yTE+ysE, s0 (2.6) may now be written

(g +ag)e=()st+ (%), (ntya)*=0)*+ (¥a)*
A bifunctor with this property is said to be additive. Exactly as in
(1.6.5), this property gives natural isomorphisms
Ext(C,4,® A) =Ext(C,A) D Ext(CA,),
Ext(C,D C,, A)=Ext (C,,4) D Ext(C,,A4).



72 Chapter III. Extensionsand Resolutions

For R=Z and C a finitely generated abelian group, these formulas,
with Prop.1.1 and Ext, (Z,A)=0, dlow usto caculate Ext,(C,A).

Cordllary 2.2. If the finite abelian groups A and C have relatively
prime orders, then every extension of A by C splits.

Proof. Let m and n be the orders o A and C, and let u,,: C—C
be the homomorphism u,,c=mc¢ given by multiplication by » in C.
Sincemand narerelatively prime, thereisan m' with m'm= 1 (modn);
hence x,, is an automorphism, and every element d Ext(C,A) has the
form Eu,, for some E. But /z,,,=1c+ .--+1c, with s summands, so

Epp=E(c+ - +1g)={14+ - +14) E=»,E=0,

wherey,,: A+A isy,(a)=ma=0, q.e.d.

/ Exercises

In the foli;)wing exercisesit is convenient to assume that all factor systems

(f,g) satisfy the' normalizationconditions™
f(0,0)=0=f(0,d), g(r,0)=0.
This can always be accomplished by using representatives u with u{o)=o.

1. For abelian groups (i.e., with R=_2) show that a ""normalized" function
on C><C to A is a factor system for extensions o abelian groups if and only if
it satisfiesthe identities

fe.d)+fe+de)=F(c.d+e)+f(de), [le,d)=](d,c),
which correspond respectively to the associative and commutative laws.

2. If Gz(C, 4) is the set d normalized functions f satisfying the identities of
Ex.1, show that Extz (CA) a6 z(C,4)/Sz(CA).

3. Dotheanalogued EXx.1 for any ring (identitieson factor systems consisting
d two functionsf and g).

3. Obgructionsto the Extension o Homomor phisms

We have already observed that the functor Hom does not preserve
exact sequences, because a homomorphism «: 4—>G on a submodule
A< B cannot always be extended to a homomorphism o B into G
We can now describe a certain element « E d Ext(Bf4,G) which
presents the "' obstruction™ to this extension.

Lemma3.1. Let A be a submodule & B, and E: A>»B->C the
corresponding exact sequence, with C=B/[A. A homomorphism o A—G
can be extended to a homomorphism B—G ¥ and only if the extension
aE splits.
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Proof. Suppose first that a is extendable to & B—G. Form the
diagram E: 0>d—s B—2=C 0

E: 0G5 GEBC 5 C—0,

where E' is the external direct sum with injection ¢, projection =,.
Fill in the dotted arrow with the map 4 — (&4, ab) =, &b+ ¢,05. The
resulting diagram is commutative, hence yields a morphism E-—>E’.
Accordingto Lemma1.4, E' = aE. Since E' splits, so doesaE.

Conversdly, assume that « E splits. The diagram
E:0>4-—- B-—-C—->0

R
/ocE 0—>G"’B”" C—>0,
used to define'a E yieldsa map =; 8: B+G which extendsa. Thelemma
is proved.
The assignment to each a: A+G of itsobstruction « E is, by (2.6),
a group homomorphism
E*: Homy (A, G—Extg(C, G),

Call this the connecting homomorphism for the exact sequence E.

Theorem 3.2. If E: A% B 3C isashort exact ssquenced R-modules,
then the sequence

0—->HomR(C G —Homg (B, G)—>HomR(A € }
I Extgz(C, G) S Extg(B, G 5 Exty(A,G).

d abelian groups is exact far any R-module G.

Proof. We aready know exactness at Hom(C,G) and Hom (B, G)
by (1.6.7). Lemma3.1l gives exactness at Hom(A,G). By Prop. 1.7,
o*E*=(Eg)*=0. Conversdly, to show kernel contained in image at
Ext (C,G) we must take an E,¢Ext (C, G) such that E, ¢ splits and show
E, the obstruction for some map 4—G. The fact that E, o splits gives
a commutative diagram A

e

E,o: 0—>G~+G$B?”_*B—>O
l lﬁ lo

The splitting map . followed by 8 yields g,==fu: B-»B; (dotted
arrow above) which makes the right hand lower triangle commutative.

(3.1)
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Therefore o, fyx=0%x=0. But E, is exact, s0 f,» factors as »«, for
somea,; A—G.Then (a, f;, 1): E—E;isamorphismd exact sequences
which states E, = oy E.

An analogousargument yieldsexactnessd thesequenceat Exty (B, G)
and hence completes the proof d the theorem.

This theorem asserts that the functor Ext repairs the inexactitude
d Homontheright. At the sametime Ext presents a new inexactitude:
On the right in (3.1), Extz(B,G)—Ext; (A,Q) is not always an epi-
morphism (seeexercise). To describethe cokernel we need a new functor
Ext2.

Turn now to the problem: When can a homomorphismy: G- B/A4
be "lifted" to B; that is, when isthere a$9: G—B such that y isthe
composite G—B —BJA? This yields a dual to the previouslemma.

Lemma3.3. Let C=B/A be a quotient module, E the corresponding
exact sequence. A homomorphismy: G—B/A can belifted to a komomor-
phism 9: G—B f and only f the extension Ey splits.

The proof is exactly dual to that & Lemmas3.1, in the sense that
al arrows are reversed and that direct sums are replaced by direct
products. Again, call EyeExt(G, A) the obstruction to lifting y. The
assignment to each y: G—C d its obstruction Ey is a group homo-
morphism

E,: Hom(G,C)—Ext (G, A)

called the connecting homomorphism for E.

Theorem 3.4. If E: A~ B - isa short exact sequence & R-modules,
then the sequence
0—Homy (G,A) —Homy, (G, B) —~Homyg, (G, C) }

24 Extg (G, A)—Extg (G, B)—>Extg(G, C) 62

isexact for any R-module G

The proof is dual to that & Thm.3.2.

Theorem 35. An R-module Pi s projectiveif and onlyi fExtg (P, G =0
for every R-module G

By Thm.1.6.3, P is projectiveif and only if every extension by P
splits. Thm. 3.2 provides the following way to calculate the group Ext.

Theorem36. If Cand G are given modules and if F: K3 P»C
i s an exact sequence with P projective, then

Exty (C, G)=Homg (K ,G)jx* Homg (P, G). (3.3)

In particular, the growp on the right i s éndependent (up to isomorphism)
d the choice d the short exact sequence F.
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Proof. In (3.1) replace E by F. Since Pis projective, Exti (P,G)=0,
and the exactness d (3.1) gives the formula (3.3) for Extz (CG).

Sinceany moduleC can berepresented as a quotient of afreemodule,
one may always calculate Ext, (CG) by (3.3) with Pfree. For example,
the exact sequence Z % Z »ZjmZ, with x multiplication by the integer
m, provides a representation o the cyclic group Z,, as a quotient o Z.
Since Hom (Z, A)=A under the correspondence which maps each
f:Z+A into f(1), we obtain an isomorphismExt, (Z,,, A)= A/mA. The
correspondenceis that aready used in Prop.1.1.

Proposition 3.7. For abdian groups the sequences of Thms.3.2 and
3.4 remain exact when a 240 is added on the right.

Proof. Inthecased Thm.3.2 we must show that x : A>» B a mono-
morphisni implies-w*: Ext (B G)—Ext(AG) an epimorphism. To this
end, take afreeabelian group F, an epimorphism ¢: F-» B with kernel X,
andlet L be ¢ (x4). Then ¢ maps L onto » 4 with the same kernel K,
giving a commutative diagram

Ei:0>K—»>L—>A-0

b

E,: 0—>K—>F% B0

with exact rows E,, E, and hence E,= E, x. Thisyieldsa commutative
diagram
Hom (K G)Z% Ext (B G)

Hom (K G) 2 Ext (AG)— Ext (L G);

the bottom row is exact by Thm.3.2. But L, as a subgroup o the free
abelian group F, is itsdlf free. By Thm.3.5, Ext (L G)=0, hence E¥
is an epimorphism in the diagram, and so is x*, g.e.d.

Inthecased Thm.34 wearegiven E: A B -»C exact and we must
show Ext (G,B)—Ext (G,C) an epimorphism. Represent any element d
Ext (GC) by an exact sequence S: C>»D -»G. Sinceu: C—D isamono-
morphism, the case just treated shows that thereis an exact sequence
E': A-»M-»D with u*E'=E. This states that we can fill out the
following commutative diagram so that the first two rows and the last
column will be exact

E: 04A—-B——-C—>0

N .
E': 0—>Aun> ? v D >0
¥

G—©G
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A diagram chase then shows the middle column exact. This middle
column provides an element of Ext (G, B) mapping on the last column
ScExt(G,C), asdesired.

Note that the diagram above is symmetric: Given exactness o the
top row and the right column, exactnessd the middlerow isequivalent
to exactness d the middle column. The case & Thm.3.2 asserts that
the diagram can befilled out so that the middle row is exact, whilethe
cased Thm.3.4 assertsthat the diagram can befilled out so the middle
column is exact. The same fact can be stated in subgroup language as
follows:

Corollary 3.8. Given abelian groups D and A< B and a monomorphism
u: B[A-D, there exists ac abelian group M >B and an extension of u
to an ssomorphism M|A=D.

This amounts to the construction d a group M from a given sub-
group B and an " overlapping'* quotient group D.

Exercises

1. (Inexa/ca:m Ext on theright.) Let R= K[x,y] be the polynomial ring
in two indeterminates # and y with coefficientsin a field K and (#,¥) the ideal
d all polynomialswith constant term O. The quotient module R/(»,y) isisomorphic
to K, where K is regarded as an R-module with xk=0=yk, for all k€K, and
E: (xy)>»> RaK is an exact sequence d R-modules. Show that Extgz(R,G)—
Extp((#,9),G) is not an epimorphism for al G, by choosing an extension on
the right in which (#,3) is represented as the quotient d a free module in two
generators.

2. Show similarly that the sequence d Thm.3.4 cannot be completed with
a zero on theright.

3. Show that Cor.3.8 amounts to the following (self-dual) assertion: Any
homomorphism a: B—D o abelian groups can be written as a composite a= rv
with v a monomorphism, = an epimorphism, and Kerr =v(Kera).

4. Give a direct proof d the second haf o Prop.3.7. (Write G as quotient
of afree group.)

5. Prove Prop.3.7 for modules over a principal ideal domain.

6. For p a prime number and C an abelian group with pC=0, prove

Extz (C,Q=¢Homz(C,G/pG) [EILENBERG-MACLANE 1954, Thm.26.5]

7. For ¢ a prime, P the additive group d all rational numbers o the form

mfpé, m, ecZ, and Z'P) the additive group o p-adic integers, prove
Extz (PZ)=Z¥}/Z [EILENBERG-MACLANE 1942, Appendix B] .

4. The Universal Coefficient Theorem for Cohomology

As a first application d the functor Ext we give a method o "cal-
culating™ the cohomology groupsd a complex for any coefficient group
from the homology d that complex — provided we are dealing with
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complexes d free abelian groups or d free modules over a principal
ideal domain.

Theorem 4.1. (Universal Coefficients.) Let K be a complex d free
abelian groups K, and let G be any abelian group. Then for eachdimension
» thereis an exact sequence

0—>Ext(H,_, (K),G) & H*(K,G) % Hom (H,(K),G) >0  (4.1)

with homomorphisms g and a natural in K and G. This sequence splits,
by a homomorphism whichis natural 4 G but not in K.

The second map a is defined on a cohomology class, cls f, as follows.

Each n-cocycle of Hom (K G)i s a homomorphism {: K, —G which vanishes

on 2K,,,, 0induces f,: H,(K)—=G. |If {=4dgisa coboundary,it vanishes
on cycles, S0 (88)x=0. Define a(clsf)=/,.

Proof. Write C, for the group d n-cyclesd K; then D,=K,/C,
isisomorphic to the group B,_; d (n—1)-boundariesd K. The bound-
ary homomorphism 9: K,—K,_, factors as

—— Kn—’;DnLCn—l_i’Kn—-l» (42)
with 5 the prﬁegtion, i the injection. The short sequences
T; C,»K,»D,, S. D,,1>C,~>H,(K) (4.3)

are exact, the second by thedefinitiond H, asC,/oK,. The coboundary
in the complex Hom(K G) is d=4 ¢*, where &*: Hom(K,_;,G)—
Hom(K,, G) isinduced by &. This complex appears as the middle row
in the diagram

0 0

f |

0— Hom(H,,G) -Hom(C,,G)Z> Hom(D,,,.,G)
T". li‘
... > Hom(K,_,,G) > Hom (K,,G) > Hom (K,,,,G) —---
i fie
Hom(C, ;,G) —>Hom(D,,G) 23> Ext(H, ,,G) 0.

!

0 0

This diagram is commutative up to a sign (that involved in the defini-
tion d=4- a*). Inthediagram thefundamental exact sequence(Thm. 3.2)
for Hom and Ext appears several times. The top row is the exact se-
quence for S,,, the bottom that for S,_;, with the right-hand zero
standing for Ext(C,_;,G) which vanishes because C,_,C K, _, is free.
The columns are (partsof) the exact sequencesfor T,,_4, T,,, and T, ;;
the zero at the middle top is Ext(D,, G),zero because D, isfree.
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The cohomology d the middle row is Ker §/Imé. Sinces* isa mono-
morphism and +* an epimorphism, it is Ker(d'*¢*)/[Im(j*o'*), and is
mapped by i* onto Keréd'*, isomorphic to Hom(H,,G) by exactness
d the top row. The combined map is a. Its kernel is Ims*/Im(j* o' *);
as j* is a monomorphism, this is Ext{H,_,,G), by exactness d the
bottom row. This proves (4.1) exact, with g described in ** switchback™
notation asj* (S¥_,), hence natural.

To split the sequence (4.1), observethat D, =B, ,{K,_.,isfree, s0
the sequence 7, d (4.3) splits by a homomorphism ¢: D,—K, with
j @=1p. Then g*j*=1, s0 S*_,¢* is aleft inverse for /l=7*(S*_))7,
asdesired. Thisleft inversedependson the choiced the maps ¢ splitting
T,. Such a choice cannot be made uniformly for all free complexesK,
hence ¢* is not natural in K (but is natural in Gfor K fixed).

This proof uses several times the fact that subgroupsd free abelian
groups are fr&:.“l‘hi?nnal ogous statement holds for free modules over a
principal ideal domain; hence the theorem holds for K a complex d
free modules over such a domain D (and G a D-module). The most
useful caseis that for vector spaces over a field. Here Thm.4.1 gives

Coradllary 4.2. If K is a chain complex composed d vector spaces K,
ove a fiddF,and if V isany vector space over that field, thereis a natural
isomorphism H" (K,V)=Hom (H, (K), V).

In +articular, when V=F, H"*(K,F) isthe vector spacedual d H, (K).

Thm.4.1 isaspecia cased a more general result which ™ calculates™
the homology d the complex Hom (K,L) formed from two complexes K
and L. Recall (I1.3.4) that Hom(K,L) is a complex with Hom, (K,L)=
IIHom(K,,L,,,) and with the boundary 9=y d any n-chan

»
f={fp: Kp~—>Lp+n} given by
(aHf)pkzaL(fpk)‘i“ (_1)"+1fp—1 (Oxk), kEKp- (4.4)
The general theorem reads

Theorem 4.3. (Homotopy Classification Theorem.) For K and L
complexes d abeliaa groups with each K, free as an abelian group, there
is for each n a short exact sequence

) i Bt (Hy (K), Hy 11 (1) 5 H, (Hom (K, L)
f’,ﬁ ‘Hom (H, (K), By (L)

with homomorphisms f and a which are natural in K and L. This ssquence
splits by a komomorphism which is natural in. L but not in K.

Change lower indices here to upper indices by the usual convention
H_,=H" and assume L=Ly=G with boundary zero; then each d

(4.5)



4. The Universal Coefficient Theorem for Cohomology 79

the products has at most one non-zero term, and (4.5) becomes (4.1).
In generd, if weshift theindicesd L by n (and changethe sign o the
boundaries in L by (—1)")we shift H, (Hom(K,L)) to H,(Hom(K,L));
hence it suffices to prove the theorem when »=0. Now a O-cycle o
Hom(K,L) is by (4.4) just a chain transformation f: K->L; as such
it induces for each dimension ¢ a homomorphism (f,)y: H, (K)—H, (L).
The family o these homomorphisms is an element fy,={(f,)}¢
11 Hom(H,(K),H,(L)). Any f homotopic to f induces the same homo-
)

morphism f,. Since an element d Hy(Hom(K,L)) is just a homotopy
class, cls f, o such chain transformations (Prop.11.3.2), the assignment
a(clsf)=f, determines the natural homomorphisma for the theorem.
The definition d the homomorphism 8 is more subtle and will be given
beow. We first treat a special case of the theorem.

Lemma44. |f the boundary in K isidentically zero, then a=gq, is
an isomorphism

a,: Hy(Hom(K,L))= IT Hom(K,, H,(L)).
p=—0

Proof. Since 8x=0, H,(K)=K,. Let C,(L) denote the group d
+-cycles o L., whilé B (L) is that o +-boundaries. Any g={g,}¢
JT Hom(K,, Hy(L)) consistsof homomorphismsg,: K,—H,(L); since
K is free and €3 (L)-»H, (L) is an epimorphism, each g, can be lifted
tog,: K,—~C,(L). Theseg, with range extended to L,> C, (L) constitute
a chain transformation f: K —L witha (clsf)=g. Thusa isan epimor-
phism.

Toshow a, a monomorphism,supposesa, (clsf) =0for somef. For each
p thismeansthat f,(K,) CB,(L).Since ¢: L, B,(L)and K, isfree,
the map £, can be lifted to s,: K,—~L,,, With 3s,=f,. Since s,_,0=
s,—19x =0, this equation may be written f,=20s,+s,_,9. This states
that f is chain homotopic to zero, hence clsf=0 in Hy(Hom (K,L)).
Thus Ker a, =0, and the lemmais proved.

Now consider the general case of Thm. 4.3, using the notation (4.2)
and (4.3)in K. The family d groups C, K, can be regarded as a com-
plex with boundary zero. A similar convention for D gives an exact
sequence )

d complexes. Apply the functor Hom(—,L) to get another exact
sequencesd complexes

E: 0—Hom (D, L)% Hom (K, L)-* Hom (C, L) —0,
wherethe zero on theright standsfor Ext (D,L), which vanishes because
D,=B, ,(K,_,isasubgroup o a free group, hence free. The exact
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homology sequenced E reads
2% H,(Hom (D, L)) > Hy(Hom (K, L)) -5 Hy (Hom (C, L)) 2 ---,
with the connecting homomorphisms, for =1 and »=0,
9% 42 H,(Hom(C,L))>H,_, (Hom(D,L)).

The middle portion d this sequence can be expressedin termsd dz
as a short exact sequence

0—Coker 0 ; —~Hy(Hom (K, L)) —Ker 9z 4—0. 4.7)

Thisisashort exact sequencewith middleterm H,(Hom(K,L)),exactly
asin our theorem; it remains only to identify theend termsby analys-
ing 9.

Now &, D~—C induces maps & *: Hom, (C,L)—Hom,_, (D, L) anti-
commuting with 8; and hence aso induces maps on homology. These
maps (up to sign) are the conpecting homomorphisms @. Indeed, 9g
was defined on cycles by the “‘switchback’ j*1844*-1. A cycle g d
Hom, (CL) is a famny o maps {g,: Cp,—~L,.,} With 8.g,=0; since
D, isfree, K,=C,® Dy, < each g, can be extended to f,: K,~>L,,,
with 2.1, —0 Smce 1*¥f =fi=g, take ¢*1g to be f. Smce =0, the
formula(44) for the boundary @4 in Hom(K,L) reducesto 8y f= + o%f.
Now 9x =1 6’7 by (4.2),90 0y f = 7* &’ *i*f andwemay takes*18,4*1g
to be +&'*g: Thus g isindeed induced by + & *. But theisomorphism
a d Lemmad44 is natural, so we have commutativity up to a sign
in the diagrams

H,(Hom(C,L)) 2=, H_,(Hom(D,L))
l= |

IJHom(c,,, H,.L)5 1} Hom(D,,,, H,. ,(L)).

We may thus read off the kernel d 95 as isomorphic to that o 9'*
(lower line).

Now apply Hom(—, H,.,(L)) to the exact sequence S, o (4.3).
According to the fundamental exact sequence (Thm.3.2) for Hom and
Ext, we get an exact sequence

0—Hom (H,(K), H,. (L)) >Hom (C,, H,. ,(L)) } (4.8)
25 Hom(D,,,, ,,+,,(L))i>Ext (H,(K), H,1,(L)) -0, '
wherethelast zero standsfor Ext(Cyp, H, H,. ,(L)),which vanishesbecause

C,CK, isfree. The direct product d these sequencesover al # is still
exact, and gives the kernels and cokernelsd 2'* as

Ker o g=Ker &*= [ Hom (H, (K), H,(L)),
' ?
Coker 9 , =<Coker & *:1{1 Ext(H, (K),H,, (L))
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Substituting these valuesin (4.7) gives the desired exact sequence (4.5)
d Thm.4.3. The homomorphisma thereby is the composite

Hy(Hom(K.L))-%> Hy(Hom(C,L))-% HHom(CP,H (LY)
—>1?]Hom( (K), H,(L ))

herethelast arrow stands for the additive relation which is the converse
(or,the "inverse™) o thefirst monomorphism o (4.8). This compositea
assigns to each {: K—L the family d induced maps d homology
classes, so is the map already described. The homomorphismg is the
composite

HEXt (H (K}, Hp+1 L)) —>HHom( o1 Hppo ( L))
(Hom(D L))——>H (Hom (K, L));

it is thus the compost\e%) 1*agl S*1, where S*1 is the "inverse"
d the homomorphism S$* of (4.8) obtained by composition with the
short exact sequence S. Assuch acomposited natural maps, pi snatural.
To split (4.5) choose ¢ with 7'<p—1D as before; thus S*ay¢* is a left
inverse for B=j*«* S* -3, natural in L but not in K.

In the homotopy classflcatlon theorem the terms in Ext vanish
when H, (K)isfree. Hence

Corollary 4.5. If K and L are complexes d abelian groups with each
K, and each H,(K) free then two chain transformations f, f': KL are
chain komotopic if andonlyiff,=f,: H, (K)—H, (L) for everydimensionz.

The proof depends on observing that f=~f means exactly that
cs f=cls f in H,(Hom(K,L)). On the other hand, when some
Ext(H, (K),H,, (L))=0, the condition f,=f, for al n isnot sufficient
to make f chain homotopic to /'.

A useful application o the universal coefficient theorem is

Corollary 4.6. If f: K->K’ is a chain transformation between com-
plexes K and K' of freeabelian groups with fe: H, (K)=H, (K7 for all n,
then, far any coefficient group G, {*: H"(K’, G)—>H (K, G) is anisomor-
phism.

Proof. Since the maps a and # are natural in K, the diagram

0 Ext (H,_, (K’),G) - H*(K’, G) — Hom (H, (K'),G) >0
g . I I
0—~Ext(H,_, (K),G) > H" (K, G) > Hom (H, (K), G) >0

is commutative. Since the maps {,,: H,(K)—H, (K") are isomorphisms,
so are the outside vertical maps Ext(f,_,, 1) and Hom(f,, 1;). By
the short five lemma, the middle map is an isomorphism, q.e.d.

Mac Lane, Homology 6
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Exercises
1. Giveadirect proof of Cor.4.2.

2. Show that Thms.4.1 and 4.3 hold for complexes of R-modules if the hypo-
thesis that KX, is freeis replaced by the assumption that C,(K) and K,/C, (K)
are projectivemodulesfor everyn.

3. If K and L are complexesof abelian groupswith each K,, free, then to any
family y,: H,,(K)>H,(L) of homomorphisms, one for each n, there is a chain
transformation f: K —L with y,,.=H_(f).

5. Composition of Extensions

Return now to the study d the extensions d modules. Two short
exact sequences

E: 0>A—>B5K->0, E':0->K2>B,~C-0,

thefirst ending at the module K where the second starts, may be spliced
together by the composite map B,—K—B, to give a longer exact
sequence ?

EoE': 0»A—>B, >3 B,>C -0 (5.1)

called the Y onedacomposite  E and E'. Conversdly, any exact sequence
A~ B,—By—»C has such a factorization, with K=Ker(B, »C)=
Im (B, — By).

Longer exact sequences work similarly. Consider

S: 0>4—~>B,_;-+B,_s—>--+—>By—~C—>0

an n-fold exact sequencestartingat A and endingat C. If T is any m-fold
exact sequence, starting at the module C where Sends, aspliceat Cgives
the Yoneda composite So T, which is an (»+ m)-fold exact sequence
starting where S starts and ending where T ends. This composition
o sequencesisclearly associative, but it need not be associative under
the composition with homomorphisms. For example, for E and E' as
in (5.1), let M be any moduleand n: K& M+K the projectiond the
direct sum. The commutative diagrams

Ey: A»BO®M>K®OM E:KO®M—»BBM->C

] | lr l" l I

E:An B, - K, E: K » B, »C

and the definitions f composites show that E,=En and E'=zEq;
in the top row, the composite

EjoE}: 0>A—>BO®MESLB &M --C—>0 (5.1")

is not the same as (5.1) ; in other words (En)o E3&=Eo (nE;), and the
associativelaw fails.
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For short exact sequences we have already defined congruence as
isomorphism with end maps the identity. For long sequences we need
a wider congruencerelation ‘="' with the property that

(E"B)oE'=E"o (BE") (5.2)

whenever the compositesinvolved are all defined; that is, for E* ending
at somemoduleK, for g: L—K for somel, and E startingat L. Let us
then define congruence as the weakest reflexive, symmetric, and tran-
sitive relation including(5.2) and the previouscongruencefor short exact
sequences. This definition can be restated as follows. Write any n-fold
exact sequence S as the composited # exact sequences E; in the form

S=E,0E, 40 -+ o Ey; (5.3)

the E; are unique up to isomorphism. A second n-fold sequence S:
with the same start and end as Sis congruent to S if S' can be obtained
from Shy afjaﬁt/e sequence d replacementsd the following three types
(i) Replaceany onefactor E; by a congruent short exact sequence;
(ii) If two successive factors have the form E”fo0 E’ for some E”,
B, and E, asin (5.2), replacethem by E” o SE’;
(iii) If two successive factors have the form E"" o 8E’, replace by
E"BoE.
For example, the 2-fold sequences (5.1) and (5.1°) are congruent.
We aso define the composited a long exact sequence or its con-
gruence class with a ""matching”™ homomorphism. Specificaly, if S is
an n-fold exact sequencestarting at A and ending at C, then we define
asS whenever ais a homomorphism with domain A and Sy whenever y
has range C by the formulas (for Sasin (5.3)):

a(Eyo0 «+- oEy)=(aE,)0E, j0---0F,,
(Ego ++- 0 Ego E))y=E,o0 --- 0 Ego (Eyp).

If Sand S are nfold exact sequences, a morphism I': S—S- isa
family o homomorphisms (a,...,y) forming a commutative diagram

S: 0>4—->B, ;> —>By,—»C—>0

A b

S’ 0—>A'—>B,',_1—>.--—>B(',—>C'—>O.

We say that I" starts with the homomorphism a and ends with y. Now
o E was defined by just such a diagram E—«E, so our definition o
aS above yields a morphism S+a S starting with aand ending with 1,
as wdl as Sy—S starting with 1 and ending with . Moregenerally

we have, asin Prop.1.8,
6‘
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Proposition 51.  Each morphism I': S—S’ d n-fold exact sequences
Sand S startingwith a and ending with ¢ yields a congruencea S= S'y.

Proof. For notational symmetry, set B,=A and B_,=C. Write
K,=Im(B;—~>B;_;)=Ker(B;_;,—~>B;_;) for i1=n—1,...,1; thus S
factorsas E, o-+-0 E;, Where E;: K;»B;_,»K,; , and K,=A4, K,=C.
Factor S similarly. The given morphism I': S$—S’ induces homo-
morphisms /$: K;+K; which form a commutative diagram

E;: 0-K;,»B;, ,-»>K; ;—~0

lﬁ{ l lﬂi—l

E: 0>K,—»>B;_ ;—~K; ;—~0.

By Prop.1.8 this diagram implies that g,E;=E;f;_,; at the ends,
B.=o and g,=Y. Hence\by our definition o congruence,

“S=(“En)°En—1“' = (E;A~l)°En—1° o EE;O(ﬂn-—lEn-—l)o
=E,o (E:l-lﬂn—2)° o= =SB=S".

Thisresult also givesan alternative definition d congruence, as follows.

Proposition 52. A congruence S= S’ holds betwedz two n-fold exact
sequences starting at A and ending at Cif and only if thereis an nteger
k and 2% morphisms d n-fold exact sequences

S=8,—>S,< Sy« Spp_s>Sop1<Se=5,

running alternately to the left and to the right, all starting with 1, and
ending with 1.

This proposition states that S= S is the weakest reflexive, sym-
metric, and transitive relation such that I": S—S’ with ends 1 implies
S=9".

Proof. First suppose S= S’. In the elementary congruence (5.2),
the definitiond E*’g8 yieldsa morphism E”§—E", whilethe definition
d BE’ yields a morphism E'—BE" d exact sequences. Placing these
morphismsside by side yields a diagram

E"f: A»B,»L L>By~»C:E

[ A

E": A»B{»K K»By»C:BE’

Splicing these two diagrams together on the common map/?yields a
morphism (E”B)oE’'—E"o (8E’'). Hence a string o congruences (5.2)
yields a string & morphisms, as displayed. The converse is immediate,
by Prop.5.1.

Let Extx(C,4), for fixed R-modules C'and A, stand for the set
d al congruence classes o=cls S d n-fold exact sequences S starting
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at A and ending at C. Write SecExt*(C, 4) for SeacExt"(C,A). If
TE7zcExt™(D,C) the compositeSoT isdefined when C=C ; the class
d SoT isdetermined by a and 7, and is an element o Ext®*+" (D, A)
which we denote as ¢r (without the circle notation for composition).
The "matching™ condition needed to define ¢ can be remembered if
one regards geExt*(C,4) as a ""morphism™ from the end module C
to the starting module A; then ¢ is defined when the range o the
morphism ¢ equals the domain d a. This rule will include the matching
conditions for the composition d a homomorphisma: A4—A4’ with an
extension geExt” (C,A). This rule will also include the composition o
two ordinary homomorphismsif weinterpret Ext°(C,A)tobeHom(C,A).
This we do.

Each Ext% (C,A) is a bifunctor on R-modulesto sets, contravariant
in Cand covariant in A. It is aso an abelian group, under addition by
a Baer sum. Indeed, two n-fold exact sequences SeocExt*(C,A) and
S’eo’c Ext" (C,A’) have a direct sum S® S’ccExt" (CHC’, ADA)
found by taking direct sums d corresponding modules and mapsin S
and S$*The congruence class d S& S depends only on the classes a
%d hence may be denoted as ¢ ¢’; to see this, note that the

ngruence (E'’f)o E'=E"o (BE') d (5.2) will carry over to a con-
gruence on the direct sum asin

(E"BOF")o (E'®@F)=(E"®F")BDI|)o(E'DF)
=(E"DF"o(D1)(E'DF)
=(E"@F")oBE'DF).

Finaly, the Baer sum is defined for a,, o, Ext*(C, 4), i=1, 2, by the

familiar formula
0'1+0'2=VA(0'1®U2) Ac. (5.4)

Theorem 5.3. Let Ext, be the collection d all congruence classes
a, 7,... & multiple exact sequences of R-modules. Each a has a degree n
(n=0,1,2,...), an R-module C as domain, and a module A as range;
we then write acExt™ (C,A), and Ext®(C,A)=Hom (C,A). The composite
o7 is defined when range r=domaina, and

degree(ar)=dego+degr, rangear=rangea, domainar=domainz.

The sum g,+ 0, is defined for ¢y, @, in the same Ext*(C,A) and makes
Ext" (C,A) an abelian growp. The distributive laws

(ovtFa) T=0yT+ 05T, o1+ 15)=07,+07, (5.5)

and the associative law g (ar)=(g¢a)r al hod when the addition and
composition involved are defined.
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In brief, Extg is like a ring, except that the sum a+z and the
product ¢z are not aways defined.

This theorem clearly includes the previous Thm.2.1 on Ext'=Ext,
and the proof is exactly like the **conceptua’ proof o that theorem.
That proof rested on certain rules for ""direct sums™. In the present
case these rules (and their prior counterparts) are

(aDe') (v D 2) =0tDo’r,  (28) and (2.9), (5.6)
oV=F(cDo), (2.10), (2.11), (5.7)
Ar=(zD7) 4, (2.10"), (2.11%), (5.8)

w(eDo)=("DPo)w, (5-9)

where w is the natural isomorphismw: A®A'—-A'@ A. It remains to
prove these rules.

First take (5.6). If aand t both have degree zero, they are ordinary
homomorphisms, and (5.6) is the usual (functorial) rule for computing
direct sums d homomorphisms. If a and = both have positive degree,
(5.6) is an obvious rule about the composition d direct sums o exact
sequences. If a has degree zero and = has positive degree, then aand a
actually operate just on the leftmost factor d = and ', hence (5.6)
is reduced to the case where ¢ and ¢’ are short exact sequences; this
caseis (2.8). Similarly, when a has positive degree and © degree zero,
(5.6) reducesto (2.9).

Next take (5.7). When a has degree zero, (5.7) becomes (2.10); when
o has degree 1 and is a short exact sequence, it is the second o (2.11).
When a has degree 2, (2.11) gives the congruences

(E, 0 Ey)V=E,o (E,V) =E V(E,® E,)
=E,Vo(E,DE) =V(E,DE,)o0 (E,DE,),

whichis (5.7). Longer cases are similar.

The proof o (5.8) is andlogous, and (5.9) comes from the rule
o (E,DE,) =(E,DE,) , obtained by applying Prop.1.8 to the mor-
phism (w, w, w): E;@ E;—~E,DE,.

It remains only to exhibit the zero and the inverse for the abelian
group Ext"(C,A). Theinverse d clsS will be cls((—14)S). The zero
element d Ext” isfor » =0 the zero homomorphism, for »=1 thedirect
sum extension, and for #>>1 the congruence class d the n-fold exact
sequence

Se: 042450 »>0—->C2C—0.

Indeed, for each SecExt" (C,A) there isa morphism (0, ..., 1): S~ S,
S0, by Prop.5.4, Sg=0,S and clsS+cls Sy=cls S.
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The rules (5.5) show that Ext" is additive, so we obtain, as for
Ext!, the isomorphisms Ext"(A® B,G =Ext"(A,G) & Ext" (B,G),
Ext"(A,GHH)=Ext"(A,G) P Ext"(A,H). Furthermore, any short
extension by a projective module splits, hence

Ext"(P,G)=0, x>0, Pprojective. (5.10)

Qr constructiond anelement ceExt" (C,A) asaclassd all (possible)
n-fold sequences congruent to one given sequence S yields a "big"*
class, and the class Ext"(C.A) o such classesis then not well defined
in the usual axiomatics of set theory. This" wild" use o set theory can
be repaired: It isintuitively clear that it sufficesto limit the cardinal
numbers d thesetsusedin constructing sequences Sfor given modules
A and C

We turn now to find means d computing the groups Ext".

6 Resol utions

Any module Cis a quotient C=F/R, o some free module F,. The
submodule R, is again a quotient Ry,=FE/R, d a suitablefree module F,.
Continuation d this process yields an exact sequence .- —F,—F,—
C —0 which will be called a "'freeresolution™ d C. We a@m to compare
any two such.

In more detail, a complex (X,¢) ovar the R-module C is a sequence
d R-modules X and homomorphisms

—>X,,-a—>X,,_1—a+---——>Xli>Xo—s—> C-0, (6-1)

such that the composite d any two successive homomorphismsis zero.
In other words, X is a positive complex & R-modules, C is a trivial
chain complex (C=C,, 8=0), and ¢: X—C isa chain transformation
d the complex X to thecomplex C. A resolutiond Cisan exact sequence
(6.2); that is, a complex (X,¢) over C with the homology H,, (X)=0,
for n>0, and ¢: Hy(X)=C. The complex X isfreeif each X, is a free
module and projective if each X,, is projective. We compare any pro-
jective complex with any resolution.

Theorem6l (Comparison Theorem.) If y: C—~C’ is a homomor-
phism o modules, while e: X—~C is a projective complex ova C and
g1 X'—>C' is aresolutiond C’, thentherei sachaintransformationf : X — X’
with ¢'f=ye and any two such chain transformations are chain homo-
topic.

We say that such an f liftsy.

The proof uses only categorical properties d projectives and o
exactness. Since X, is projective and ¢’ an epirnorphism, ye: X,—C’
can belifted to f,: Xo,—Xg With &'fy=ye&. By induction it then suffices
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to construct f,, given f,_4, ..., fo Such that the diagram

d, Oy &
X,—>X, 1—>X, o> >Xy—C

HA
L 4

B § T S fr—1
, & l: ' B=1 l; }(7 ¢ é}:
X,— Xy 1— X, > > Ao

is commutative, By this commutativity, ,_1f,_10.=f,_s00=0.
Hence Im(f,,_la,) CKerd,_,. By exactness o the bottom row, this
kernel is 8,X,. Since X, is projective, the map f,_,3, can be lifted
toan f, with 8,f,=f,_12,, q-e.d.

The construction d the homotopy is similar; it may be obtained
directly or by applying the followinglemma, noting that the difference
d any two chain transformations f: X—X' lifting the same y is a
chain transformation lifting 0: C—C".

Lemma6.2. Under the hypotheses & Thm.6.4, let {1 XX’ ke a
chain transformation lifting y: C—C’. Suppose that there isat: C—X,
such that &'t=y. Then there exist homomorphisms s: X,—X,., for
#=0, 1,... suchthat, for all n,

a'so+t8=fo, a’sn-i-l_‘_ s”6=f,,+1.

Proof. First, &'(f,—t&): X,—~C’ is zero. Hence f,—t& maps the
projective module X, into Kere’=Im(X;—X,); it can therefore be
lifted to a map s,: X,—X1 with 8's,=f,—te. Suppose by induction
that we have t=s_,, s,, ..., s,, as desired. We wish to find s,,; with
a’sn+1= n+1_sna' Now a’(fn-lrl_sna):fna— (fn_sn~la) a:0 by the
induction assumption, so f,,;—s,8 Maps X, into Ker &’=2'X,,,,;
therefore it can be lifted to the desired s,;1: X1 —>Xpis-

Let A be afixed module; apply the functor Homg(—, A) to a reso-
lution (6.1). Since the functor does not preserve exactness, the resulting
complex Homg ( X,A) may have non-trivial cohomology

H"(X,A)=H"(Homg (X,A)).

Cordllary 6.3. If X and X' are two projective resolutions d C, while
A is any module, then H* (X, A)=H"(X', A) depends only on C and A.

Proof. By the first part & Thm.6.1, there are maps . X X’
and g: X’—X lifting 1.; by the second half d the theorem, ¢f is homo-
topic to 1: X+ X. Hence ¥ : H*(X' A)+H"*(X A)and ¢ have ¢ {*=
1=f*g*, s0 both are isomorphisms, g.e.d.

We now show that this function H"(X,A) d A and C is exactly
Ext"(C,A). For n=0. X;>X,—C—0 is right exact, 0

0—~Hom (C,4)%, Hom (X, A) —»Hom (X, , 4)
is left exact. This states that e*: Hom (C,A)=H*(X,A). For n>0,
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each n-fold exact sequence S may be regarded as a resolution of C,
zero beyond the term A o degree #, asin the diagram

X

2
n+1_>),(”—>‘?( .

S:0+4 -B,_ ; »---—>B;—>C—0.
Theorem 64. If Cand A are R-modules and ¢: X —C a projective
resolution o C, thereis an isomorphism

¢ Ext*(C,4)=H"(X,4), n=0,1,..., (6.3)

defined for #>>0 as follows. Regard SecExt™(C,A) as a resolution o C,
and lift1; tog: X —=S. Then g,: X,—4 isa cocyde o X. Define

L(clsS)=clsg,c H" (X,A). 6.4)

This isomorphism £ iSnatural in A. I tisalso natural in Cin thefollowing
sense Ify: C'—C,¢": X'—C" is a projective resolutiond C, andf: X'—X

liftsy, then gy*=f*: Ext"(CA)—>H" (X', A). {6.5)

Proof. First observe that { is wdl defined. Since g,2=0, g, is an
n-cocycle, as stated. Replace g by any other chain transformation g’
lifting 1, asin (6.2). By Thm.6.1, there is a chain homotopy s such
that g,—g,=ds,+5,_10. But 5. X,—0, SO 5,=0, g—g,=S5,_10=
(—1)"8s,_,, this by the definition (II.3.1) o the coboundary in
Hom (X,A). Thisstatesthat the cocyclesg, and g,, are conomologous, so
clsg.=clsg,. Next replace S by any congruent exact sequence S.
According to the description d the congruence relation S=S given
in Prop. 5.2, it will sufficeto consider the case when there is a morphism
I': S-S starting and ending with 1. In this case any g: X —~Syields
I'g: X - S' with the same cocycle g,= (I'8),.; hence cls g, is well defined
as a function o clsS. Thus ¢ is defined; its naturality properties as
asserted follow at once, using suitable compositions o chain transfor-
mations.

Rather than proving directly that ¢ is an isomorphism we construct
its inverse. Given a resolution X, factor 9: X,—»X,_, as X,,iaX,,
X X, 1, With » the injection; this yields an n-fold exact sequence
S,.(C,X)asin

Xn+li)Xn
|7 ~2,
S, (C.X): 03X, % X, 1o > X,>C (6.6)
| |
hS,: 0— A C.

Any n-cocycle X,—>A4 vanishes on ¢X,,,=Keré’, hence may be
written uniquely in the form 2¢’ for some h: 6X,—A4. Construct the
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composite #S,, of h with the n-fold exact sequence S,,; thisfillsin the
bottom row d thisdiagram. Definen: H' (X,A)+Ext" (C,A) by setting

ncls(hd)=cls(hS,(C,X)), h: 0X,—~>A. 6.7)

By the distributive law for the composition in Ext, the right hand
side is additive in h. Hence to show % well defined it suffices to show
that #(cls ha) vanishes when ha' is the coboundary o some cochain
ki X,_1—>A.But hd'=8§k=(—1)*ko=(—1)"%k » & meansthat 4 =4 kx
and hence that hS,=4kxS,, wherex S, =0 by Prop.1.7. Hencey is
well defined and is a homomorphism. Comparison d the diagrams (6.2)
and (6.6) now shows that n=¢2.

This theorem states that the groups Ext"*(C,4) may be computed
from any projective resolution e: X —C; in particular, (6.5) shows how
to compute induced homomorphismsy* : Ext* (C,A)—Ext* (C, A) from
resolutions.

Alternatively, many authors define the functor Ext" without using
long exact sequences, setting Ext"(C,A)=H"(X,A)=H"(Hom (X,A)).
This gives a covariant functor of A, while for y: C’—C the induced
mapsy* : Ext"(C,A) +Ext" (C, A) are defined by lifting y to a compari-
son X'—X.

Another consequence is a "canonical form' for sequences under
congruence:

Corollary 65. If SceExt*(C,A) with n>1, then there is alT=S
d the foom T: 04 —->B,_;—B,_3—--+ =>By—C—0 in which the
modules B, _;, ..., By arefree.

Proof. Take T'=hS§,(C,X) for a suitable h: 8X,—4, and X any
free resolutiond C.

Corollary 66. For abelian groups A and C, Extz (C,A)=0 if n>1.

Proof. Write C=F/R for F free abelian. Since the subgroupR d
the free abelian group Fis free, 0-~R—->F—C—0 is a free resolution
which vanishes (with its cohnomology) in dimensions above 1.

Consider now the effect o a ring homomorphism g: R'—R (with
o1=1). Any left R-module A becomes a left R’-module when the
operators are defined by 7’'a=(pr')a; we say that A has been pulled
back along g to becomethe R’-module ,A. Any R-modulehomomorphism
a: C—4 is aso an R-module homomorphism ,C—,A. By the same
token, any long exact sequence S  R-modules pulls back to a long
exact seguence ,S o R-modules, and congruent sequences remain
congruent. Hence g¥#a = «, o¥ (clsS)=cls ,S definehomomorphisms

¢¥: Ext}(C,A)—>Ext}(,C, 1), 7=0,1,... (6.8)
called change o rings. For g fixed, they are natural in C and A.
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These homomorphisms may be calculated from projective resolu-
tions e: X+C and ¢: X'-,C by R and R’-modules, respectively.
To exhibit the ring R, write H"(Homg (X, 4)) for H*(X, 4).

Theorem 6.7. The change of rings ¢¥, via the isomorphism { of
Thm.6.4, is given by the composite map

H" (Homg (X,A)) & H™ (Homg (X, ,4)) &> H* (Homg (X', ,A4))

where o* is the cokomology map induced by the chain transformation
o#: Homp—>Homg and f: X'—,X is a chain transformation lifting the
identity of ,C.

‘Proof. The case n=0 is left to the reader. For >0 take any
SeeExtg (CA). Asin (6.2), 1¢ liftsto g. X—»S. Since  X—,C is a
resolution d ,C, the comparison theorem lifts the identity o ,C to a
chain transformation f: X’— X. The diagram is

e Xy X, > > Xg—> C

| L]

e X, X, 4> a>X,—> C

e | L]

S: 04 -B, ;~>---—>By—» C.

Now read off the maps: The isomorphism¢ carries clsS to clsg,, ot
regards g, as a R’-module homomorphism, f maps clsg, to cls(g,/,),
which isexactly ¢ (cls,S) because gf lifts 1. Hence the result, which Wl
be d usein the treatment d products.

Exer cises

1. If &: Y—>Cisa projective complex over Cand ¢’: X — C aresolutiond C,
construct natural homomorphisms

¢: Ext}(C,4)—>H*(Y,4), n: H"(X,A)—~Ext}(C,4).

2. (Calculation of Yoneda product by resolutions.) If X -~C and Y+A are
projective resolutions, ge Homu(X,A) and heHom™(Y,D) are cocycles, write g
as g, for go: 80X, — 4, lift gy tof as in the diagram

Xppyp> "> X, >0X, >0

i L

Yy —>->Yy> 4 -0,
show hf an (m+ n)-cocycled Hom™+#(X,D),and prove that the Y oneda product
7 (cls h) 0 7 (cls g) isn(cls hf).

3. Given E= (»,6): A>»>B-»C exact and maps a: 4—4’, & B—+>A4’, show
by adiagram that (a+ &x)E=aE.
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4. If S=E,o...0 E,, show that any morphism I': S-S o n-fold exact
sequences starting with a map a: 4—4’ can be factored as

S—>(xE,) o E,_jo0--0 E;,—>5".

5. (Another formulation of the congruence relation on exact sequences.) If
S, S’c€Ext”(C,A), show that S= S’ if and only if there is a TEEExt"(CA)
with morphisms I': T—S, I": T—S sarting and endingwith 1’s. (UseExs.3
and 4and T="%S,,(C,X).)

7. Injective Modules

The description o Ext" by resolutions reads: Resolve the first
argument by projective modules and calculate Ext" by cohomology:
Ext" (C,A)=H" (Hom(X,A)). We wish a dual statement, using a suit-
able resolution d the secolzd argument A. For this we need the dual
d a projective module; it is called an injective module.

A left R-module J is said to be injectiveif a homomorphism a with
range J can aways be extended; that is, if for eacha: A—J and A<B
there exists g: B—J extending «. Equivalently, J isinjectiveif any
diagram d theform

0—-A5%B
@) A
}K,. s (74)
with horizontal row exact can be filled in (on the dotted arrow) so as

to be commutative. The characterization d projective modules in
Thm.I.6.3 and Thm.3.5 dualizes at once to give

Theorem 7.1. The following properties & a module J are equivalent:
(i) Jisinjective;
(ii) For each monomorphism x: A—B, x* : Hom(B,J)—~Hom (A,J)
is an epimorphism;
(iii) Every short exact sequence J~> B -»>C splits;
(iv) For every module C, Ext1(C,J)=0.
The latter characterization can be further specialized.

Proposition7.2. A left R-module J is injective if and only if
Extz(R/L,J) =0 for every left ideal L in R.

Proof. This condition is necessary. Conversely, suppose each
Ext(R/L,J) zero. Given A<B and a: A+J we must, asin (7.1), con-
struct an extension g: B+J d a. Consder all pairs (S,y) consisting
d asubmodule Swith A<S¢B and an extension y: S—J d the given
«: A—J. Partly order these pairs by the rule (S»)=(S,y) when
S¢S and y' is an extenson d y. To any linearly ordered collection
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(S;, v:) O thesepairsthereisan upper bound (T, 7) with (S;, ) < (T, 7),
for take T to be the union d the submodules S; with + defined for each
t by zt=y;¢ when t¢S;. Hence, by Zorn's lemma, there is a maximal
such pair (S, v.). We need only prove S,,=B. If not, thereisan de-
ment beBnotin G, takethesubmoduleU d B generated by band S.
Then r—>rb+ S is an epimorphism R U/S_,, the kernel d the epi-
morphismis a left ideal L in R, and R/L=U/S,. Since the sequence
S>> U—-»U/S, isexact, s0 isthe sequence

Hom (U,J)—Hom(S,,, J) >Ext(U/S,J) . (7.2)

But Ext(U/S,,J) =Ext(R/L,J)=0 by hypothesis, so Hom (U, J)—
Hom(S,,,J)is an epimorphism. In other words, each homomorphism
S—J can be extended to a homomorphism U—J; in particular,
Yoo! Seo—>J Can be so extended, a contradiction to the maximality o
(Soo! yOO)

Consider now injective modules over special types d rings R. If
R is a field, there are no proper left ideals LCR, while Exty (R, —)
is always zero. Hence every module (= vector space) over a field is
injective. Take R=2, thering  integers. Cdl a Z-module (= abelian
group) D divisbleif and only if there exists to each integer »==0 and
each deD a solution d the equation mx=d.

Corallary 7.3. An abdian group is injective (as a 2-module) if and
only if itisdivishble.

Proof. Theonly idealsin Z are the principal ideals (m), and Z/(m)
is the cyclic group o order m By Prop.1.1, Ext(Z/(m),4)=A/mA,
while 4/m A=0 for all m =40 precisely when A isdivisible.

The construction d projective resolutions rested on the fact that
any moduleis a quotient d a free module, hence certainly a quotient
d a projective module. To get injective resolutions we need

Theorem 7.4. Every R-moduleisasubmoduled an injectiveR-module.

Proof. Supposefirst that R=2Z. The additive group Z is embedded
in the additive group Q d rational numbers, and Q is divisible. Any
free abelian group F isa direct sum d copiesd Z; it is embedded in
the direct sum d corresponding copies d ¢, and this direct sum D
is divisible. Now represent the arbitrary abelian group as a quotient
A=F/S with Ffree, and embed Fin some divisible group D as above;
this embeds A=F/S in D|S. An immediate argument shows that any
quotient D/S d a divisible group D is divisible, hence injective. The
abelian group A is thus embedded in an injective group D/S.

Return now to the case d an arbitrary ring R. For any abelian
group G, the additive group Hom,(R,G) is a left R-module when the
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product sf, for seR, f: R—G, is defined as the homomorphism
sf: R+G with

(N (n=f(rs), reR. (7.3)
If Cisany left R-module we can define a homomorphism
j: C—»>Hom,(R,C) (7.4)
by letting j¢, for ceC, be the homomorphism jc: R—C given as
(fe)(r)=rc, reR. (7.5)

To show this a homomorphism d R-modules, take s, re R, and compute

[lsal(=r(sc)=(rs)c=(jc){rs) Dby (7.5),
=[sGe)] (), by (7.3).
This gives{ (s9=s(jc). Since 1c=c, § is a monomorphism.
Now embed the additive group o C in a divisible group D; this
induces a monomorphism d R-modules

k: Hom,(R,C)-Hom; (R, D).

The compositek; embeds Cin Hom, (R,D). If weshow that Hom (R,D)
=] isinjective, we are done. By Thm.7.1 (ii), it suffices to show that
each monomorphism x: 4—B d R-modules induces an epimorphism
X* =Homg (X,1;). Here x* is the top row o the diagram

Homyg (x,1;): Hom, (B, Hom, (R, D)) — Homg (A, Hom, (R, D))
na n4

Hom, (X,1p): Hom, (B, D) —~ Homg(4,D)

where the vertical maps are isomorphisms, to be established in alemma
below. These isomorphisms are natural, so the diagram commutes. The
bottom row refersnot to R, but only to Z; since D is a divisiblegroup,
this bottom map Hom, (X,1p) is an epimorphism. Since nz and », are
isomorphisms, the top map Homyg(x,1;) is aso an epimorphism.

Lemma75. If Gisan abdian group and A an R-module, thereisa
natural isomorphism n,: Homg(4, Hom, (R,G)) =Hom, (A G).

Proof. Take an feHomg(4, Hom,(R,G)). For ac4, fa: R—G;
that is, (fa)y) €eG. Now regard f asa function of two variablesf (a,)eG
The fact that fais a Z-homomorphism means that f (a,7) is additive
in the argument v. The fact that f: 4 -~Hom,(R,G) is an R-homo-
morphism means that f (a,7) is additive in a and that s(fa)=f (sa) for
each s¢R. By the definition (7.3) o the multiplication by s, this means

that aways
[s(fa))(r)=(fa) (rs)=[/(s8)1 ();
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in other words, that f(a, rs)=f(sa,r) aways. In particular, f(as)=
f (sa, 1) so thefunction f isdetermined by g (¢)=f (a,1). Clearly g: A—>G.
Now 7, and itsinverse are defined by

(naf) @ =1(a,1); (nz'e)(a,r)=g(ra).

The maps 5, and n4* are clearly homomorphismsand natural (in A
andinG).

Thisidead regarding afunctionf (a,7) d two variablesasa function
d a whose values are functions o » will reappear more formally later
(V.3), and thislemmawill turn out to be a special cased a more general
natural isomorphism, called “‘adjoint associativity'*. Injective modules
will be studied further in §11.

Exer cises

1. If Risanintegral domain, show that thefield d quotients o Risadivisible
R-module. If, in addition, R is a principal ideal domain, show that this field is
injective as an R-module.

2. If A isaleft R-moduleand L aleftideal in R, each acA definesan R-module
homomorphism f,: L -4 by f,(!)=1a. Prove that A is injective if and only if,
foral L everyf: L +4 isf, forsomea

3. If Kisacomplex & R-modules and J an injective R-module, show that a
o (4.1) yields an isomorphism

H" (Hompg (K, J)= Hompg(H,, (K), J).

8. Injective Resolutions
A complex &: A-—Y under the module A is a sequence

045yt Ly dysr L (8.1)

such that the composited any two successive homomorphismsis zero.
In other words, Y is a negative complex, positivein upper indices, and
¢: A->Y achain transformation. If this sequenceis exact, ¢: A->Y is
called a coresolution d A ; if each Y, isinjective, ¢: 4-Y isan injective
complex under A. The results d the previous section show that every
module A has an injective (co)resolution — by a customary abuse o
language, an ""injective resolution®”.

Theorem 8.1. (Comparison theorem) |f a: A—>A’ is a module
homomorphism, g: A+Y a coresolution, and &': A’—Y’ an injective
complex under A', then there is a chain transformation f: YY"’ with
¢ga=fe and any wo such chain transformations are homotopic.

The proof is exactly dual to that & Thm.6.1, which used only the
categorical propertiesd projective modulesand exact sequences. Again
the map f will be said to Zft a
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For each module C the negative complex Y determines, asin (4.4),
a negative complex
Hom(C,Y): Hom (C,Y%)—Hom (C,Y1)—..- >Hom(C,Y")—~... (82
I ts homology gives Ext, asfollows

Theorem 82. For each module C and each injective coresolution
e: A+Y thereis an isomorphism

¢: Ext*(C,A)=H"(Hom(C)Y)), #u=0,1,..., (8.3)

which is natural in C and natural in A, in the sense that if a: A—4’,
&' A'=Y’ isan injectivecoresolution, and f: Y—Y"’ is any chain trans-

formation lifting a, then Eoy=fs. Heref, is the induced homomorflhism
f, H"(Hom(C,Y))+H"(Hom(C,Y")).

Thehomomorphism¢isdefined asfollows. Regard any SEE Ext" (C,A)
as a coresolution d A, zero beyond the term C o (upper) degree n; by
Thm. 8.1 construct a cochain transformation asin

Y:0>A—>Y" Yl H...5Y1 Y5y
e fer (8-4)
S:0->A—-B, B, y—>--—+By, —C —0.
Then g*: C—Y" is a cycled Hom(C,Y). Define
¢(clsS)= (dsg")eH"(Hom(C,Y)). (8.5)
Therest d the proof, likethe definition, is dual to the proof of Thm.6.4.
We can summarize the theorems d $6 and $8in the scheme

H"(Hom (RespC, A))=Ext" (C,A)=H"(Hom (C,Res; 4)),

where RespC denotes an arbitrary projective resolution o C, Res;4
an arbitrary injective coresolutiondf A. A symmetric formula Ext" (C,A)
=H"(Hom (RespC, Res;A4)) can be established (Ex.V.9.3).

Exercises
1. Carry out the construction d g in (8.4) and o the inverse o .
2. State and prove the dual d Lemma6.2.
3. For direct sums and products establish the isomorphisms

Ext"(5C;, A) = [T Ext*(C,,A), Ext*(C, [14,) = [ Ext"(C,4,)

9. Two Exact Sequences for Ext"

Composition o long exact sequences with a short exact sequence E
from A to C yields connecting komomorphisms

E*: Ext*(A,G) »Ext**}(C,G), E,: Ext*(G,C)—Ext**(GA).
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Since E determines A and C, both Ext*(A,G) and Ext*+**(C,G) may
be regarded as contravariant functors o the short exact sequence E.
Moreover, each morphism I'=(a,8,y): E—E’' d short exact sequences
givesa E=E'y and hence

E*oq*=y*E’ *: Ext*(A,G)—Ext*1(C,0).

This states that E* is a natural transformation between functors
E, asis E,. With these connecting homomorphisms, the exact sequences
for Hom and Ext=Ext! already found in (3.1) and (3.2) Wl now be
continued to higher dimensions. Observe similarly that an n-fold exact
sequence S starting at A and ending at C is a composite d n short
exact sequences; hence composition with S yields iterated connecting
homomorphisms

S+ Ext*(A,G—>Ext*t*(C,G), S.: Ext*(GC)—-Ext***(GA),
which depend only on the congruenceclassd S.

Theorem 9.1. If E=(x,06): A>»B-»C is a short exact sequence d
modules and G is another module, then the sequences

..« »>Ext*(C,G)Z> Ext" (B, G) > Ext" (4,G) > Ext™(C,G) —---  (9.1)
.+« Ext*(G, 4)™ Ext" (G, B) 2 Ext* (G, C) > Ext** (G, A) -+ (9.2)

are exact. These sequences start at the left with 0—Hom (C,G)=Ext°(C,G
and with 0—Hom (G,A), respectively, and continue to the right far all
7n=0,1,2 .... The maps in these sequences are defined far arguments
pcExt" (C,G), weExt"(B,G), reExt"(A,G),... by composition with
x, @, E as follows,

a*g:ga‘, wro=wx, E*‘L’=(_"1)"TE, (93)
My Q':xe', 0y =cw’, E,t'=E7'. (94)

The sign in the last part o (9.3) occurs because E* v= 1t E involves
aninterchanged an element E d degree1 with an element = d degreen.

Proof. First consider (9.2). Take any free resolution X o G and
apply the exact cohomology sequence (Thm.II.4.5) for the sequence E
d coefficients. Since the cohomology groups H" (X,A) are Ext" (G,A),
and so on, this yields an exact sequence with the same terms as (9.2).
To show that the mapsin this sequence are obtained by composition,
as stated in {9.4), we must prove commutativity in the diagram

Ext*(G,A)2 Ext" (G,B) 2 Ext" (G,C) —* Ext*+! (G A)
4

lc . lc . (—1mhey It (9.5)
H*(X,A) = H*(X,B) -—'>H"(X,C) o H"'H‘(X,A),
Mac Lane, Homology 7
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where each { is the isomorphism provided by Thm.6.4, while § is
the connecting homomorphism provided in Thm.11.4.5. Since ¢ is
natural for coefficient homomorphisms » and ¢, the first two squares
are commutative. The commutativity d the right-hand square requires
a systematic used the definitionsd various mapsinvolved, asfollows.
For >0 and ScecExt*(G,C), regard Eo S as a resolution & G and
construct the commutative diagram

X: Xy Xy—> Xy > > Xy G

P R

EoS: 4 5B »B,_;—>-—>B,—~>G

I o L

$:0 —-»C - B, —>--—>By—~>G
where f lifts 1;. By the definition o 5,
LE.(clsS)=(clsf, ) eH** (X, A).

On the other hand, af is a chain transformation lifting 14, S0 £ (clsS) =
cls (af,). Now &z is defined by the switchback 6z =clsx1661cls~t o (II.
4.12)and %1807 (of,) = 218, = (—1)""1x 1 (£, 0) = (—1)" P (fpia) =
(—1)**f,.1, SO that 6&gcls(of,)=(—1)""tclsf, =(—1)""1{E,clsS.
This shows (9.5) commutative.

For n=0 the definition d ¢ (and the commutativity proof) is cor-
respondingly simpler.

Theexactnessd thesequence(9.1) d thetheoremisproved similarly,
using injective coresolutions. Specifically, let ¢: G—Y be an injective
coresolution d G Then Hom(4,Y) is, asin $8, a negative complex;
furthermore each Y" is injective, so each sequence Hom(C,Y")>
Hom (B,Y™)-»Hom (A,Y") is exact. Therefore

0—Hom (C,Y)% Hom (B,Y)* Hom (4,Y)—0

is an exact sequence d complexes. Hence Thm.I1.4.1, in the version
with upper indices, states that the first row d the following diagram
isexact for each n:

H*(Hom (C,Y))%>H*(Hom (B,Y))*>H"(Hom (4,Y)) %> H*+(Hom (C,Y))
F

. . . f
Ext"(CO & Ext"(B,O = Ext"(A,G) - Ext**!(C,0).

The desired proof that the bottom row is exact requires now only
the commutativity d the diagram. Note that the connecting homo-
morphism 4 is defined by switchback as z=cls o*1dx*cls™1, and no
troublewith signsoccurs. Given this definition, the proof that commuta-
tivity holds is now like that given above for the dual case — though
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since the proof manipulates not only arrows, but aso elements, we
cannot say that the proof isexactly dual. Thm.9.1, though formulated
in the language d exact sequences, can aso be regarded as a statement
about annihilators in the "pseudo-ring' Extp o Thm.5.3. Indeed, if
E=(x,a) is a short exact sequence d@ R-modules, then

®*E=0, ox=0, Eo=0

and these equations indicate the whole left and right annihilator in
Ext, o each d x, E, and a, asfollows. The right annihilator o = con-
sists d multiples o E; whenever geExty is such that the composite
xp isdefined and is 0, then either g=0 or p=E 7 for asuitable re Exty.
Similarly, px=0 implies g=7¢ for some 7, etc. In other words, theleft
annihilator o x is the principal left idea (Extg)o.

Exercises

I. Given the usual short exact sequence E o modules and given projective
resolutions ¢';: X—+A4 and £'"': Z—~C o the end modules A and C, construct a
projective resolutione: Y—+B o the middle module B and chain transformations
f: XY, Q. Y=ZIliftingx and a, respectively, such that X>»Y »Z is an exact
sequence d complexes. (Hint: for each n, take Y,= X, @Z, and define ¢ and o
so that (Y,¢) isa complex.)

2. Use the result o Ex.1 to give a proof o the exactness o (9.1) by projec-
tive resolutions.

3. Deduce Prop.3.7 from Thm.9.1 and Cor.6.6.

4. For A a finite abelian group, Q the additive group o rational numbers,
prove Exty (A Z)sz Homy (A, Q/2).

10. Axiomatic Description of Ext

The properties already obtained for the sequence o functors Ext"
suffice to determine those functors up to a natural equivalence, in the
following sense.

Theorem 10.1. For each =0, 1,..., let there ke given a contra-
variant functor Ex"(A) d the module A, taking abelian groups as values,
and far each n and each short exact sequence E : A B -»C let there be given
a homomorphism E": Ex"(A)—Ex**1(C) which is natural far morphisms
I': E->E’ d short exact sequences. Suppose that there is a fixed module G
such that

Ex°(A)=Hom(A,G) for all A, (10.1)
ExX"(F=0 fors>0and all freF, (10.2)
and supposethat for each E={(x,g) the sequence

.- >Ex"(C) 5 Ex"(B) 5 Ex*(4) 5 Ex*11(C)—> -+ (10.3)
7!
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is exact. Then thereis for each A and n an isomorphism ¢: EX" (A)=
Ext"(A,G), with ¢% =1, which is natural in A and such that the diagram

Ex"(A) 2 Ex*1(C)

lr e (10.4)
Ext"(A.G) 2 Ext*1(C,0)

is commutative far all »n and all short exact E: A» B—>»C.

Property (10.4) reads “‘¢ commutes with the connecting homomor-
phisms'. With the naturality o ¢, it statesthat the ¢* provide a mor-
phism o thelong sequence (10.3) into the corresponding sequence (9.1)
for Ext.

The same theorems holds with **free” in (10.2) replaced by "*pro-
jective™. Since the functors Ext" clearly satisfy the analoguesd (10.1),
(10.2), and (10.3), we may regard these three properties as axioms
characterizing the sequence d functors Ext” ** connected" by the homo-
morphismsE*.

The proof will construct ¢® by induction on #; the casen=1 presents
the most interest. Represent each module C as a quotient F/K, with
F free. This gives a short exact sequence E;: K> F->C. By (10.2),
Ex!(F)=0, 0 the sequence (10.3) becomes

Hom (F,G) %% Hom (K,G) £ Ex1(C)— o.

Exactness states that Ex1(C)=Hom (K,G)/x*Hom (F,G). The sequence
(9.1) for Ext* shows Ext!(C,G) isomorphic to the same group. Com-
bining theseisomorphismsyiel dsan isomorphism ¢g : Ex1(C)=Ext! (C,G);
by its construction, gt is characterized by the equation

gt EL=E%: Hom(K,G -~Ext!(CG),

which is a specia case o (10.4). To show that ¢¢ is natural for any
y: C—C’, pick an exact E.: K'>»F'-»C’. The comparison theorem
lifts y to g: F—F’, which induces a morphism I'=(a,8,y): Ec—Ec-.
Since both connecting homomorphisms E! and E* are natural with
respect to such morphisms I, it follows that y*¢t Et. =y*E&=E&a*
— gt EL a*=g¢L y*EL.. But ELis an epimorphism, so

y*ge=gc y*: Ex*(C)>Ext! (C0);

¢! isindeed natural for mapsd C. In particular, if E; and E.. are two
free presentations of the same module C (y==1¢), this identity shows
that the homomorphism ¢} isindependent o the choiced the particular
free module F used in its construction. Findly, if E: A— B-»C isany
short exact sequence, the comparison theorem (for F free) again lifts
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1 to a morphism (a,8,1): Ec—~E and yidds

1EE*=E¢a* (because E* is natural),
—gLELe*  (definitiond ¢),
—gLE! (becauseE?! isnatural).

Thisisthe required property (10.4) for n=1.

For »>1 we proceed in similar vein, choosing again a short exact
sequence E; with middle term free. Then Ex*~* (F=0=Ex"(F), 0
the exact sequence (10.3) becomes

0—Ex"*1(K) ExY(C)—o0

and Ex*(C)=Ex"*~1(K). Using the similar sequencefor Ext*, we define
¢" by

B

¢t=Etor (EE )™ Ex'(Q)=Ext*(C.Q)

and establish naturality, independence d the choice d F, and the
commutativity (10.4) much asin the case n=1.

There is a dual characterization for Ext(C,A4) as a functor d A,
using the second exact sequence (9.2).

Theorem 10.2. F ma fixed module G, the covariant functors Extu(G,A)
of A, n=0, 1, ... together with the natural homomorphisms E, : Extu(G,C)
—Ext**t1(G,A) defined for short exact sequences E d modules, are char-
acterized up to a natural isomorphism by these three properties:

Ext°(G,A)=Hom(G,A) for all A, (105)
Ext*(G,J)=0 fmn>0 and al injective J, (10.6)
The sequence (9.2)is exact fmall E. (10.7)

Proof. Observe first that Extu does have the property (10.6), for
an injective module J hasthe injective coresolution 0 —+J—J—0, which
vanishes in all dimensions above 0. Conversdy, the proof that these
three properties characterize the Extu(GA) as functors o A is dual
to the proof we have just given.

Exercises

1. (S. ScuaNuEL.) Given two short exact sequencesK>» P+C and K’>» P'»C
with P and P projective, K<P, K’¢P', and the same end module C: Congtruct
an isomorphism P@ P’'=x P& P’ which maps K@ P isomorphically on P@ K’.

2. Cdl two modules C and C projectively equivalent if there are projective
modules Q and Q and an isomorphisn C&Q'=C’'® Q. L&t S: K»>P,_,— -
—F,»C be an n-fold exact sequence with all P; projective. Using Ex. 1, show
that the projective equivalence class of K depends only on that of C and not on
the choicedf S.
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3. For S & in Ex.2, show that theiterated connectinghomomor phism provides
an isomorphism St : Ext!(K,G)=Ext*+1(C,G) for any G.

11. The Injective Envelope

Every R-module A is a submodule d an injective one (Thm.7.4).
We now show that thereis a unique ""minima*’" such injective module
for each A.

Anextension A<B — or amonomorphismx: A'+ B with imageA —
is caled essential if SCB and S~A=0 always implies S=0. This
amounts to the requirement that to each 40 in B there is an »¢R
with #4650 and in A. For example, the additive group Q o rational
numbers is an essential extension d the group Z o integers. If A<B
and B C are essential extensions, so is A<C.

Lemmalll |If x: A’—B is an essential monomorphism, while
A: A’—J isamonomorphismwithinjectiverangeJ ,thereisa monomorphism
u: B—J with ux=A.

I'n other words, an essential extension d A’ can be embedded in any
injective extensiond A'.

Proof. BecauseJ isinjective, 1: 4'—J extends to a g with px=4.
Let K be the kernel o . Since 1 is a monomorphism, KnxA'=0;
since » is essential, K=0. Hence x is a monomorphism.

Proposition 1.2 A module J is injective if and only if J has no
proper essential extension.

Proof. If J¢ B with J injective, then J isa direct summand d B,
so the extension J¢ B isinessential unless J=B. Conversdly, if J has
no proper essential extensions, we wish to show that any extension
J< B splits. Consider the set Y o all submodules SCB with S~J=0.
If asubset {S;} o elementsd & islinearly ordered by inclusion, the
union S=U S, d thesets S, isa submoduled B with S~J=0, hence
asoin & Since any linearly ordered subset d Y has an upper bound
in &, Zorn’s lemma asserts that % has an element M maximal in the
sense that it is properly contained in no S. Then J—B—B/M is an
essential monomorphism. But J is assumed to have no proper essential
extension, 0 J—B/M isan isomorphism, B=JuM and JoM=0. Thus
J isadirect summand d any containing B, so isinjective.

This suggeststhat we might construct a minimal injective extension
as a maximal essential extension.

Theorem 113 For every module A thereis an essential monomorphism
x: A—J with J injective. If x': 4—J* is another such, thereis an isomor-
phism 8: J—J’ with #x=x".



11. The Injective Envelope 103

Proof. By Thm.7.4 there is an injective module J, with A< j,.
Let 7 betheset d al submodulesSd J, with A<Sessential. If {S;}
is a subset & 7 linearly ordered by inclusion, the union US, is an
essential extensiond A, henceisin . By Zorn’s lemma again,  has
a maximal element, J, and A<J is essential. Any proper essentia
extension d J could by Lemmall.l be embedded in J,, counter to
the maximality d J. Hence J isinjective, by Prop.11.2.

Let x: A—J betheinjection. If X': A—J'isanother essential mono-
morphism to an injective J’, Lemma11.1 gives a monomorphism
u: I+ J with px'=x. Since ' is injective, it is a direct summand
d J.Sinced—J isessential, 4/’ must beall d J, sou isanisomorphism,
as asserted.

The essential monomorphism x: A--J with J injective, unique up
to equivalence, is called the injective envelope o A. Its existence was
established by BAER [1940]; our proof follows EckMANN-ScHoPF [1953].
For some d its applications, see MatL1s [1958]. A dual construction —
d a'least™ projective Pwith an epimorphism P+A — isnot in general
possible (Why ?).

Notes The study o extensions developed first for extensions o multiplicative
groups (seeChap. V), with extensions described by factor systems. The systematic
treatment by ScrrEeIER [1926] was influential, though the idea df a factor system
appeared much earlier [HoLbeErR 1893]. The same factor systems were important
in therepresentation o central simplealgebrasas crossed product algebras[BRAUER
1928], (Hasss-BrRAUER-NOETHER 1932] and hencein classfield theory. Aninvariant
treatment of extensions without factor systems was first broached by BAER [1934,
1935]. That the group o abelian group extensions had topological applications
was first realized by EiLENBERG-MAC LANE [1942] in their treatment of the uni-
versal coefficient problem. There Ext! was named. Another proof of the universal
coefficient theorem and the homotopy classification theorem o § 4 has been given
by Massey [1958], using the mapping cone.

Resolutions, perhaps without the name, have long been used, for example
in HILBERT [1890]. HoPF in 1944 used them explicitly to describe the homology
of a group. CarTaN [1950] used them for the cohomology o groups and gave an
axiomatic description as in §10. Ext" was defined via resolutions by CARTAN-
EiLENBERG. The definition by long exact sequences is due to YoNEDA [1954],
who also has [1960] a more general treatment o composites.

Chapter four
Cohomology of Groups

The cohomology o a group II provides our first example o the
functors Ext%(C,4) — with R the group ring and C=Z. These co-
homology groups may be defined directly in terms o a standard " bar
resolution™. I n low dimensionsthey arisein problemsd group extensions
by I7; in al dimensions they have a topologica interpretation (§11).
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1. The Group Ring

Let IT be a multiplicative group. The free abelian group Z(I7)
generated by the elements x€II consists d the finite sums X m(x) x
with integral coefficients m (x)Z. The product in II induces a product

(Zam (%) x) (Zym' () y) =2, ,m () m'(y) x'y

d two such elements, and makes Z(I7) aring, called the integral group
ring d 17. Thus an element in Z (I1) is a function = on IT to Z, zero
except for a finite number o arguments x¢l7; the sum o two func-
tions is defined by (m4m') (x)=m (x)tm’'(x), while the product is
(mm')(x)=2m (y)m'(z), wherethelatter sumistakenover al yandzin
IT with yz=x. A ring homomorphism &: Z (II) -Z, caled augmentation,

is defined by setting
e(2,m (x) %) =2, m(x). (1.1)

Let uo: II—Z(IT) be the function which assigns to each yell the
element labelled 1y in Z(71); this means more exactly that gy is
that function on IT to Z for which (g, Y)(y)=1 and (ueY)(X)=0 for
z=Yy. Clearly 4, is a multiplicative homomorphism, in the sense that
to(¥y') = (1o¥) (oY) and po(1)=1. The group ring Z (II), together with
this homomorphism x,, can be characterized by the following universal
property.

Proposition 1.1 | fITis a multiplicative group, Raring with identsty,
and g: II-R a function with g (1)=1 and x(Xy)=(zX){¢Yy), then there
i's a unique ring homomorfihism g: Z(I1) —R such that g uy= u.

Proof. We may define o(Xm (x)x)= 2 m(x)u(x); this is a ring
homomorphism, and the only such with g p,= .

In view o this property it would be more suggestive to call Z(IT)
not the'* groupringd II"’, but the freering over the multiplicative group 1.

Modules over Z(II) (II-modules for short) will appear repeatedly.

Proposition 1.2. An abelian group A is given a unique structure
as a left IT-module by giving either

(i) A function on I7><A4 to A, written xa for xclIl, acA, such that
always
(@t ag)=%a+ %43, (%,%,) a=1x%,(%4), 1a=a; (1.2
(ii) A group homomorphism
@: IT>AutA. (1.3)

Here Aut A designates the set o dl automorphismsd A that is,
d all isomorphisms a: A—A4. Under composition, Aut A is a multi-
plicative group.
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The proof is immediate, for (1.2) gives ¢ by ¢(X)a= xa, while
Aut A is contained in the endomorphism ring Hom;(4,A), and ¢
extends by Prop.1.1 top: Z(II)—»Hom, (A,A), making A aleft module
with operators p(u)a for each ueZ (IT).

In particular, any abelian group A can be regarded as a #rivial
17-module by taking ¢ x=1; then xa=a for d| x.

To each II-module A we construct an additive, but not necessarily
abelian, group 4> /T called the semi-direct product & A and IT with
operators ¢. Its elements are all pairs (a,x) with the addition

@, %)+ (@, m)=(a+ 24, x%), za=g¢(*)a. (1.4)

One proves that this is a group with the "identity*" element 0=(0, 1)
and inverse — (a,xX)=(— x4, ) and that there is a short exact
sequence

0—>A% A< JT1%T->1, (1.5)

where x is the homomorphism given by xa= (a,1), a is a(a,%)=x,
and 1 denotes the trivial multiplicative group. Also a has aright inverse
v defined by yx==(0,) for dl #; it is a homomorphism d the muilti-
plicative group /I to the additive group 4><,I1.

Exercises

1. A holomorphism h of the multiplicative group G is a 1-1 function on Gto G
with h(ab*¢)= (ha) (hd)-2 (he) for a, b, ¢ G. Show that the set o all holomorphisms
of G under composition form a group, the holomorph HolG. Construct a short
exact sequence {4,1): G>>HolG -+ AutG, where (4g) (8=ga, (th)a= h(1)A(a),
and t has aright inverse.

2. (R.BaER ) Let A be alT-module and Hol4 the holomorph o its additive
group, asin Ex. 1. Form thedirect product (Hol4)><II with projections 7, and
upon its factors, show that A4><,IT isisomorphic to the subgroup o (HolA)>< 17
where

1, =@n,: (Hold)><II - Aut4,

and compare the sequence (1.5) with that of Ex.1.

2. Crosed Homomor phisms

If A isal7-module, acrossed homomorphism o IT to A isafunction f
on I to A such that

fE)=xf()+1(), = yell. (24)

Then necessarily f(1)=0. For example, if A is a trivial Il-module
(xa=a aways), a crossed homomorphism is just an ordinary homo-
morphism d the multiplicative groupl7to the additive abelian group A.
The sum o two crossed homomorphismsf and g, defined by (f+g) x=
f(x) g(x), is a crossed homomorphism. Under this addition the set
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of all crossed homomorphisms & II to A is an abelian group which
will be denoted by Z%(I1,A) — here ¢ records the 17-module structure
IT>AutA d A. For each fixed ac A the function f, defined by f, (x)=
xa—a is a crossed homomorphism. The functions d this form f, are
principal crossed homomorphisms. Since f,+ fy,=/fu+s and f_an=—"1.,
they constitute a subgroup B (IT,A) d Zj,. The first cohomology
group d IT over A is defined to be the quotient group

H(IT, A)=Z(IT, A)| B, (I, 4). (2.2)

If Aisthe multiplicative group d a field and II a finite group o
automorphisms d A (thus determining the 17-module structure d A),
a fundamental theorem o Gadois Theory (ArRTIN 1944, Thm.21) asserts
that ' (Z1,A)=0 — that is, in this case, every crossed homomorphism
is principal. Another application d crossed homomorphismsis

Proposition 2.1. The group of all those automor phisms d the semi-direct
product B = A><II which induce the identity both on the subgroup A and
the quotient group B/4 =T i sisomorphic to the group Z% (I7,A) o crossed
homomorphisms. Under this isomorphism the inner automorphisms o B
induced by elements d A correspond to the principal crossed homomor-
phisms.

Proof. An automorphismw o the sort described must be given
by a formulaw (a,%) = (a+ f(x) x) for some function f on I7 to A with
f(1)=0. The condition that & be an automorphismisequivalent to the
equation (2.1). Composition o automorphisms then corresponds to the
addition d the functions f, and inner automorphisms (b, x) —(,1)+
(b,x)— (a,1) to principal crossed homomorphisms, as asserted.

Crossed homomorphisms may be described in terms d the group
ring Z (II) and its augmentation ¢: Z (II) —Z, as follows.

Proposition2.2. A crossed homomorphism o 7 to the Z (II)-module
A is a homomorphism g: Z({II)-—~>A d abelian groups suck that always

glrs)=rg(s)+g)els), rsez(). (23)

The principal homomorphisms are the homomorphisms g, defined for a
fixed ac 4 asg,(r)=ra—ac(r).

Proof. In these formulas ¢(r) and ¢(s) are integers which operate
on Aontheright as multiples; thusa(r)=¢(r)a. Givenany function g,
asin (2.3), itsrestriction f =g|ZI to the elements x¢/T is a crossed homo-
morphism in the previoussense d (2.1), since & (x)=1. Conversely, any
crossed homomorphism f in the sense o (2.1) may be extended by
linearity to a homomorphism g: Z(II)—-A4 d abelian groups; that is,



2. Crossed Homomor phisms 107

by g(2m, x)= 2> m,f(x). Then (2.3) follows from (2.1). We identify f
with its extension g, and obtain thus the results stated.

The augmentation ¢: Z(II)—+Z is a ring homomorphism, hence its
kernel I(II) is a two-sided ideal in Z(II) and therefore aso a 17-sub-
module d Z (7). The injection ¢ gives an exact sequence

0=>I(INZ{IN)2Z -0 (2.4)

d 17-modules, where Z has the trivial module structure. The map
m—>m1 o Z to Z(II) is a homomorphism d additive groups (not d
17-modules!) which is a right inverse d . Hence the sequence (2.4)
splits as a sequenced abelian groups. A left inverse p: Z (17)~I(IT) &
the injection ¢ is thereforethe map definedfor reZ (IT) aspr=r— g (r)1.
It is a homomorphism d abelian groups and a crossed homomorphism
d 17to the module I(I).

Proposition 2.3. For any 17-module A the operation d restricting
to I(II) a aossd homomorphism g o the form (2.3) provides an isomor-
phism

ZL(IT, 4) = Homy,(1(11), A4). (25)

The principal homomorphisms correspond to the module komomorphisms
hy: I(IT}—A defined for fixed a by the formula &, (u) =ua, wcI(II).

Proof. When ¢(s)=0 the identity (2.3) for g becomes g (rs)=rg (s),
0 g restricted to the kernel d ¢ is a module homomorphism, as stated.
Conversely, any module homomorphism h: I(II)+A, when composed
with the special crossed homomorphism pr=r—¢(r)j1, yieldsa crossed
homomorphism % on Z(II) whose restriction to I(I1) is exactly h.
Finally, the principal homomorphisms behave as stated.

For IT fixed, Z}, (IT,A) and H, are covariant functorsd A; for each
module homomorphism «: A+ B, («,f)(X) is defined as «[f (x)]. For a
fixed abelian group A with the trivial 17-module structure one can
make Z}, and H} contravariant functors of 17; for a group homomor-
phism ¢: IT—IT" and a crossed homomorphism f on IT define the in-
duced map [* 1 ZH(IT, A)—ZL(17,A) by ([* f)(x)=f ({#). This will not
do when A is a non-trivial 17 or IT-module. However, if ¢: IT—II" and
A' isa Il'-module via ¢’: II'>AutA’, then A’ is also al7-modulevia
@'C: IT>AutA', and we may define induced homomorphisms

o ZA(IT, A) > 25 (ILAY),  ¢*: HAIT, A') —HL (1T, 4')

by setting (¢*f) (x)=f(x) for any crossed homomorphism f on II.
These induced homomorphisms¢* behave functorially; that is, {'¢)* =
C*2'* and 1*=1.
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More formaly, regard the triple (I1,4,¢) as a single object in a
category %~ in which the morphisms e: (I, A,@)—(IT', A", ¢') are
changes o growps; that is, pairs p=({,a) of group homomorphisms
with

g IIT, a: A'—>A, zxaa)=a«[{*)a’) (2.6)
forall xeIl and @’c A’. Notethat aisbackwards(fromA to A),and that
the third condition states that a is a homomorphism a: 4'—-»4 o
[I-modules. If o'=(", a"): (IT', A', ¢")—(IT", A", ¢"’) isanother change
d groups, the composite ¢’ is ({'¢, aa'). For any crossed homomor-
phism f on IT' to A the definition (p*f') (XFa [f'({*)] gives a map
o*: ZL.(T', A')—Z,(IT, A) which makes Z}, and H’, contravariant func-
torson the change d groupscategory ¢-. This map ¢* isthe composite

HL(T, A5 HY, (IT,4") % HA (I, A)
d themaps{t* and a, previoudy defined.

3. Group Extensions
A group extensonis a short exact sequence
E: 0—>G5BSIT—1 (3:1)

o not necessarily abelian groups; it is convenient to write the group
compositionin 0, G, and B as addition; that in IT and | as multiplica-
tion. As before, the statement that E is exact amounts to the assertion
that » maps G isomorphically onto a normal subgroup o B and that o
induces an isomorphism B/xG=II o the corresponding quotient group.
The extension E splsts if a has a right inverse »; that is, if thereisa
homomorphism v: II->B with ovy=1p, the identity automorphism
o 17. The semi-direct product extension (1.5) splits.

Let AutG denote the group o automorphisms d G, with group
multiplication the composition d automorphisms. Conjugation in B
yields a homomorphism §: B—>AutG under which the action o each
8(b) on any geGisgiven by

x[(00)g]=b+ (xg)—b, beB, geG.

Suppose G=A abelian; then 8(A)=1, 0 that § induces a homomor-
phism ¢: IT->Autd with ¢o=6. Thus ¢ is defined by
x[(pobd) a]=b4 (xa)—b, beB, ac4. (3.2)

Wethen say that E isan extensiond the abelian group A by the group
IT with the operators @ IT—Aut A. Thismap ¢ records the way in which
A appears as a normal subgroup in the extension.
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The problem o group extensions is that of constructing all E,
given A, I1, and ¢. Now ¢ givesA the structure o al11-module; hence
the group extension problem is that o constructing all E, given IT
and a IT-module A. Thereis at least one such extension, the semi-direct
product A><I1.

If E and E' are any two group extensions, a morphism I': E—E'
isatripleI'= (a8, y) d group homomorphismssuch that the diagram

E: 04 B —>1IT -1

N (3.3)
E: 0>4'—->B —-II' -1

is commutative. If A and A' are abelian, and ¢ and ¢': II'>Aut4’
the associated operators of E and E, one shows readily that always

«[p(x)a]l=(p'y %) aa. (3.4)

For example, if 4=4', and a=1,4, then (px)a=(¢’y*)a: In other
words, the 17-module structure on A is determined by the IT'-module
structure. If I': E—E’ and I'"": E'—E" are morphisms o extensions,
s0isthe compositeI"I": E—~E".

If E and E' are two group extensions o thesame module A by the
group I1, a congruence I': E—E’ is a morphism I'=(a,8, y) witha=1,
and y=1,. For A abelian, it follows from (3.4) that ¢=¢'; i.e,, con-
gruent extensions have the same operators. The (non-commutative!)
short five lemma shows that a congruencel'=(1,, 8, 1a) has # an iso-
morphism, hence that each congruence has an inverse. We may there-
forespeak d congruenceclassesd extensions. Let Opext (1, A,¢) denote
the set of all congruence classes d extensions o the abelian group A
by IT with operators ¢. We wish to describe Opext.

Any extension (3.1)with G=A abelian which splits (underv: I7— B)
is congruent to the semi-direct product 4>< 11, under the isomorphism
B: B—Ax<II given by fb=(x1[b—vob],0d). In detail,

b+ b—vo(b+b)=(b—vobd)+vab+ (b,—vab)—vad
=(b—vob)+x[(00)x7 (by—voby)],

exactly as in the addition table (1.4) for the semi-direct product.

If IT is a (non-abelian) free group with generators ¢,, then any epi-
morphism a: B —17 has a right inverse given by setting v¢,=8,, where
b, is any element & B with ab,=¢,. Hence any extension by a free
group splits, and Opext then consistsd a single element.

As a more interesting case, take I1=C,, (¢} cyclic o finite order m
with generator t. In any extension E by C,, identify each acA withits
imagexac B, sothat A<B. Choosea representative » for t withcx=t; as
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a(mu)y=t"=1, mu= a,cA. Each element d B can be written uniquely
as a+iu for ac A and 0=i<<m. By the choiced a, and (3.2),

mu=ay, ut+a=ta+u. (3-5)

With these equations, the sum d any two elements d the forma-+<u
can be put in the same form. By associativity, #+mu=(m-+1) u=
mu-+u, SOu-+ay==a,+u. Thereforea,=ta,, 04, is" invariant’ under t.
Thiselement a, is not unique; if #'=a,+« is a different representative
for t in B, then, by (3.5)and induction on =,

mu' =m(m+uy=a,+ta+ -+ " o+ mu=N,a1+a,.

Here N,a,=a,-+ta,+ --- +8""1a, is the norm with respect to t in the
C,-module A; it isagroup homomorphism N,: 4—4. Since the coset
d a modulo N,4 is uniquely determined by the congruence class d
the extension, we have established a correspondence

Opext (C,, (1) 4,9) <[a|ta=a]/NA. (3.6)

Thisis 1-1; given any invariant a,, take B to be al symbols a+ iu
with 0= ¢ < » and addition given by (3.5). The invariance d a, proves
this addition associative, and B is an extension & A by C,, with the
given operators. In particular, if A hastrivial operators (¢ta=a aways),
the expression on the right o (3.6)isthe group 4/m A — in agreement
with the result already found in the case d abelian extensionsin Prop.
II1.1.1. In this case, al extensionsd A by C,, are abelian.

Again, let IT=C_>C_, be the free multiplicative abelian group on
two generators ¢, and t,. In any extension by 77, take representatives
uw,d ¢,7=1, 2. Thereisthenaconstant a, in A with#y+ %, =ay+ -+ ¢4,
al elementsd the extension can be written uniquely as a+ 7ty 4, -+ myu,
with integral coefficientsm, and m,, and the addition in B isdetermined
by the addition in A and therules

wta=tatu, Uyta=tatuy, Uytw=a,tu+u,.
This addition is always associative and makesthe collection o elements
a+ myu,+maUs a group. If the representatives #, and «, are replaced
by any other wy=a,+u,, ug=a,+u,, for a,, a,c¢A, the constant a,
is replaced by a,+a,—ta,—a;+t,4,. Hence, if S is the subgroup o
A generated by all sums a,— ¢, a,— a,+t,4,, We have a 1-1 correspond-

ence, Opext(Co<Cyy, A, @) < AJS. (3.7)

Exerci ses
|. DescribeOpext (C, X G >=<C, A, ¢).
2. Describe Opext (C,,><C,,, A, 9).
3. Showthat Prop.2.1 holdsif A4><, IT isreplaced by any extension of (7, A, ¢.)
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4, Factor Sets

The calculations just made suggest that Opext (11, A, ¢), like Ext,
is a group. This group structure can be described by means o certain
factor sets.

Let E be an extension (3.1) in Opext(/1, A, ¢): For convenience,
identify each a with xa. To each x in IT choose a "'representative’
u(x)in B; thatis, an element % (x) with ¢« (x )= x. I n particular, choose
#{1)=0. Now each coset of A in B contains exactly one #(x), and the
elements d B can be represented uniquely as a+ #(x) for acA, xell.
We write the operators as ¢ (x)a= xa: Then (3.2) for b=u (x) becomes

u(x)+a=zxatu(x). (41)

On the other hand, the sum % (x)+«(y) must lie in the same coset as
u(xy), SO there are unique elements f (x,y)eA such that always

u(x)+u(y)=f(xy)+u(xy). (4.2)
Since #(1)=0, we also have
Hx1)=0=f(1,5), =yell (4.3)

The function f is called a factor set d the extension E. With this
factor set and the data (I, A, ¢), the addition in B is determined,
for the sum o any two elements a+ #(x) and a,+#(y) d B can be
calculated, by (4.1)and (4.2), as

[a+#(%)]+ [a+ u(y)] = (a+ xar+ (%, )+ u(xy). (4.4)
By this rule form the triple sums
[#(2)+u()]+u@)=f(xy)+/(xy, 2)+u(xy2),
u(x)+[u(y)+u@)]=2/(y,2)+1(x.y2)+u(xy2).
Their equality (associativelaw!) gives
xf(y. )+ Hxy2)=f(xy)+f(xy,2), %y zell (4.5)

The factor set f for an extension depends on a choice d represen-
tatives; if #'(x) is a second set d representatives with «'{1) =0, then
«'(x) and # (x) lie in the same coset, 0 there is a function g on 17to A
with g(1)=0 such that «'(x) =g (x)* #(x). Thus
w'(x)+u'(y) =g (%) + xg () + u (%) +u (¥) =g () + 28 (y) +f (x.3) +u (xy).

The new factor setisf'(x,y)=40g(x,y)+ f(,y), where dg is the function
(08) (x,9)=xg () —g(¥y)+g(x),  xyell (4.6)

One verfiesthat this function ég does satisfy the identity (4.5), with f
replaced by dg there.
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These observations suggest the following definitions. Let Z3(17,A)
denotetheset d all functions f on II><IT to A which satisfy theidentity
(4.5) and the normalization condition (4.3). This set isan abelian group
under the termwise addition (f+ ') (x,y)=f (x,y)+ f(xy). Let B3 (17,A)
denote the subset o Z% which consists o all functions f o the form
f=24g, where 8¢ is defined as in (4.6) from any function g on 17 to A
with g(1)=0. Thefactor group

H (IT, A) =23, (I1, 4)| B% (IT, 4)

is called the 2-dimensional cohomology group d IT over A. Our discus-
sion has suggested

Theorem 4.1. Given ¢: II—-AutA, A abelian, the functionw which
assigns to each extension d A by 17 with eperators ¢ the congruence class
d oned its factor setsis a 1-1-correspondence

w: Opext(IT,A,p) «Hy (17A) (4.7)

between the set Opext d all congruence classes d such extensions and the
2-dimensional cohomology group. Under this correspondencethe semi-direct
product corresponds to the zero eement of H3.

Since Hj is an abelian group, this correspondence w imposes the
desired group structure on Opext. This group structure can aso be
described conceptually viathe Baer product, asset forth in the exercises
below.

Proof. Since the factor set d an extension is well defined modulo
the subgroup B3, and since congruent extensions have the same factor
sets, we know that the correspondence w is well defined. The semi-
direct product 4><IT clearly has the trivial function f(x,y)=0 as one
d its factor sets. If two extensions yield factor sets whose difference
is some function dg(x,Yy), then a change d representatives in one ex-
tension will make the factor sets equal and the extensions congruent.
Therefore (4.7) isa1-1 correspondenced Opext with part d H2. Finally,
given any f satisfying (4.5) and (4.3), one may definea group B to con-
sist d pairs (a,x) with a sum given asin (4.4) by

(@, %)+ (@, y)=(a+ 2o+ f(%,9),xy),  abed.

The module rules and the condition (4.5) show that this composi-
tion is associative; it clearly yields an extension with representatives
u(X)=(0,x) and factor set f. Thiscompletesthe proof d the theorem.

If A isabelian, a central group extension o A by I7 is an extension
Easin (3.1)in whichx 4 isin thecenter d B. I n other words, a central
extension is one with operators ¢ =1. This theorem thus includes the
fact that the set of congruence classesd central extensionsof A by 17
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isin 1-1 correspondence with the group H2(I1,A4), where the abelian
group A istaken with trivial operators ¢. If IT isabelian, every abelian
extensioniscentral, so thereisa monomorphism Ext; (17,A) +H2 (17,A).

We can regard the cohomology groups H; and H, as the cohomology
groupsd a suitable complex

X< X<« XX,

d free 17-modules. Take X, to be the free 17-module generated by
al pairs [x,y] d elementsx==1, y==1 d 17. In order todefine[x, ¥]EX,
for al x,yell, set dso [1,y]=0=[x, ] and [I,1]=0. A 2-dimensiona
cochain f d Homyg (X,A) is thus a 17-homomorphismf: X, -4 it is
determined by its values f[x, ¥] onthe free generators o X,; henceis
in effect a function on IT><IT to A with f (x,1)=0=f(l,y). Next take
X, to be the free17-module generated by all triples [#,y,z] d elements
not 1 in IZ, with é: X;—X, given by

o[x,y, 2]=x[y, 21— [xy, 2]+ [%,y z]—[%,¥]; (4.8)

the condition that f be a cocycle (fo=0) is exactly the identity (4.5).
Finally, take X; to be the free module generated by all [x] with x==1
and set [1]=0. A I-dimensional cochain is a module homomorphism
X, >4, and is hence determined by its valueson [x], sois, in effect,
a function g on IT to A with g(1)=o0. If we now define @: X, -X; by

0%, y]==x[y]—[»y]+[#], (4.9)

then 296=0, and the coboundary d g is the function given by thefor-
mula (4.6). Thus H2 (17,A) isH3(Homg sz (X,A)). We get the analogous
result for HY if we take X, to be Z(IT) and set 8[x]=x—1¢eZ(I1).

This complex aso defines a 0-dimensional cohomology group as
HY (17,A)=H*(Homg;, (X,A)). A O-dimensional cochain is a module
homomorphismf: Z(IT) A it is determined by its valuef (1) =acA.
It is a cocycle if —(8f)[x] =fa[X] =f (Xx—1)=xa—a is zero. Hence
the 0-cocycles correspond to the elements ae4 invariant under I7
(xa=a for al x):

HY(IT,Ay=A4", A"=[a|xa=a for xelI]. (4.10)

Exercises

The Bagr sum, introduced for extensions of modules in Chap.III, can also be
applied to group extensions, as indicated in the following sequence of exercises.

I. Prove: If Eisan extensiond Gby IT and y: II’—1IT, thereexists an extension
E of G by IT" and a morphism I'=(1g4, §, ¥): E’—E. The pair (I, E') isunique up
to a congruenced E'. If G is abelian and has operators ¢: IT - AutG, then E’
has operators ¢y. Define Ey=FE'.

Mac Lane, Homology 8
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2. Under the hypotheses of Ex.1, prove that each morphism (ay, 8y, %) : £, —~E
o extensions with y,=Y can be factored uniquely through I".

3. For E€Opext(IT,A, ), ¢’: II-AutAd’, and a: A4’ a II-module homo-
morphism, provethat there exists an extension E’€ Opext (I, A', ¢’) and a morphism
©=(a,p,1): E—E’, unique up to a congruenced E. DefineaE to be E.

4. Under the hypotheses of Ex.3, prove that for E,€Opext(IT;, A’, ¢]) each
morphism(a, , 8,, y,): E - E; with ¢y=a and ¢jy1=¢" can be factored uniquely
through @.

5 For a, p, and E asin Exs.1 and 3, with G=A abelian, prove that «(Ey)
is congruent to (xE) V.

6. Using Exs.1, 3, and 5, show that Opext is acontravariant functor on the
category ¢- d changesd groups.

7. Show that Opext(II,A, ¢) is an abelian group under the Baer sum defined
by E,+ E;=V4(E;>< E,) 457, and show that this composition agrees with that
given by factor sets.

5. The Bar Resolution

The boundary formulas (4.8) and (4.9) for the complex X o the
last section can be generdized to higher dimensions. Specificaly, for
any group II we construct a certain chain complex o II-modules
B,(Z(IT)). TakeB, to be thefreel7-modulewith generators [%] ... | %,]
al n-tuples d elements x,==1, ..., x,9=1 d II. Operation on a generator
with an xelT yieldsanelement x| ...} x,]in B, ,s0 B, may bedescribed
asthefreeabelian groupgenerated by all x[#,]...| %,]. Togivea meaning
to every symbol [%] ... | ,], set

[%]...1%,]=0 ifanyone x=1; (5.1)

this is called the normalization condition. In particular, B, is the free
module on one generator, denoted [ ], so is isomorphic to Z(II), while
e[ ]=1 is a II-module homomorphism ¢: B,—Z, with Z the trivial
17-module.
Homomorphisms s_,: Z-»B,, s,: B, ->B,,, d abelian groups are
defined by
soA=[1, sux[xm]...|x]=[x]x]|... |2, (5.2)

Define II-module homomorphisms 2: B,—B,_, for >0 by

EARREAEIAL Y |x,,]-|{§i(—1)"[x1| R XA PP RS
H(=1)"[x] ... [ %pa]s
in particular d[x]=x[1—[], @[#|y]=x[y]—[*y]+[x]. Note that

formula(5.3) holds even when some x;=1, for then the terms numbered
i—1 and ¢ on the right cancel, and the remaining terms are zero. All

(5-3)
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told, we have a diagram

[ 2 o
ZZI"_;BOZ.T;BIS---SB,,_IE?:;B,,?:;---, (5-4)
with solid arrows module homomorphisms and dotted arrows group
homomorphisms. Cal B=B(Z(IT)) the bar resolution.

Theorem 5.1. For amy group II the bar resolution B(Z(II)) with
augmentation & is a free resolution d the trivial 17-module Z.

Proof. The B,, are free modules, by construction, so we must show
that the sequenced solid arrowsin (5.4), with zero adjoined on the | eft,
is exact. Wewill provemore: That thissequenceisa complex o abelian
groups with s as a contracting homotopy. The latter statement means
that

£S_y=1, OSy+S_,e=1, 0s,+s,_,90=1, (n>0). (5.5)

Each d these equations is immediate from the definition; for example,
by (5.3), 8s,(x[x]...] x,]) startswith x [, ... | x,] while the remaining
terms are those o s, _,0x[x]...|x,], each with sign changed; this
proves the last equation d (5.5). Moreover, these equations determine
¢and d,,,: B,,,—B, uniquely by recursononn, for B, _, isgenerated
as a 17-module by the subgroup s,B,, and the equations (5.5 give
d,., on this subgroup as o,.45,=! —s,_19,; thus the formula (5.3)
for & can be deduced from (5.5) and (5.2) for s. By the same recursion
argument it follows that ¢6,=0 and ¢,0,.,=0, for

3” an+lsn: an (1 —Sp—1 an) = an_ (ansn——l) an= Op— 3”—— S”_23”_1 an

gives 92=0 by induction. This can aso be proved, directly but labor-
iously, from the formula(5.3) for @. Either argument shows B(Z(IT))
a complex and a resolution d Z, as stated in the theorem.

The same theorem holds for the *"non-normalized'* bar resolution
B(Z(II)). Here B, is the free II-module generated by all the n-tuples
18 ... ®x, o elements o 77 (no normalization condition) and e, 2,
s are given by the same formulas as for B. Thus B,=8,/D,,, where D,
is the submodule generated by al x & -.. ®x, with one x,=1. The
symbol & is used here because this description makes g8, the (n-+1)-
fold ""tensor product” Z(II)& .-- @Z{II) d the abelian groups Z(I7);
these tensor products are defined in Chap. V and applied to thebar reso-
lution in Chap.1X.

For any II-module A we define the cohomology groups o IT with
coefficients A by the formula
H™(II, A)=H"(B(2(II)), 4), (5.6)
8#
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in keeping with the special cases treated in the previoussection (where
the subscript ¢ was used to record explicitly the structure d A as a
IT-module). The cohomology groups H" (II,A) are thus those o the
cochain complex B (17,A)=Hom, [B(Z(1)),A], where Homp, is short
for Homg;,. Since B, is a free module with generators [#] ... | x,]
(no »;=1), an n-cochain f: B, —A isalT-module homomorphismwhich
is uniquely determined by its values on these generators. Therefore the
group B*(IT,A) d n-cochains may beidentified with the set o all those
functionsf o » arguments x; in IT, with valuesin A, which satisfy the
**normalization’” conditions

Fe, oo, %9, 1, g, o0y %) =0, i=1,...,n.  (5.7)
The sum of two cochains f, and f, is given by addition o values as

(ht1) (%, s ) =F(x1, - Za)Hfa(, oo, %)

Under this addition the set B* o all such f is an abelian group. The
coboundary homomorphism 8: B*—B"~! is defined by

Of (2, ..., %) =(— 1)”+l[x1f(x2, ooy Fnp)) ‘ (5.9)
+ =1V (® s By, s X))+ (— 1)”-*'lf("l, e %)

i=1
H" (17,A) is the n-th cohomology group d this complex B (IT,A).

As a functor, H*(II,A) is contravariant in the objects (IT,A, ),
for if p=(¢,a) is a change d groups as in (2.6}, the induced map
o*: H*(IT', A")—H"(II,A) is defined for any f'eB’" by
©*f) (%1, ..o, %) =a[f €%, ....Cx,)], C: I, a: A'>A. (5.9)
In particular, for IT fixed, H*(I1,A) is a covariant functor o the IT-
moduleA.

Coradllary 52. For any IT-module A there is an isomorphism

0: Ext} ) (Z,A)=H"(IT,A)
whichis natura n A.
Since B is a free resolution d the trivial ZI-module Z, the result is

immediate, by Thm. II1.6.4; it shows that the cohomology o agroupis
a specia cased the functor Exty, for R the group ring.

For a short exact sequence E: 4~B—»C d IT-modules, Cor.5.2
and the usual exact sequence for Ext yield an exact sequence

.. —H*(IT, A) ~H"(IT, B) - H* (I1,C) = H™(IT,A)— - --.

The connecting homomorphisms E,, are natural in E. For fixed I, the
cohomology groups H" (17A) are covariant functors & A which may
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be characterized, with these connecting homomorphisms, by three
axiomslike thosefor Ext (111.40): Thesequenceaboveisexact, Z° (IT,A)
=A", and H"(ITJ)=0if >0 and Jis an injective IT-module.

For IT finite, the coboundary formula gives an amusing result:

Proposition 53. |f IT is a finite group o order k, evary dement
d H"(IT,A) for >0 has order dividing k.

Proof. For each n-cochain f define an (n—4)-cochaing by

g(xl’ cees xn—’1)=2 i(xlr cens X1 x)
zell

Add the identities (5.8) for all x=x,_, in II. The last term is inde-
pendent o Xx; in the next to thelast term, for x, fixed,

fo("" Xn—15 xnx)=2zf(“': Xn—1» x)=g(’ xn—l)

Hence the result is
ZHch(xl, oy Ty X)=— 08 (%1, ..., x,)F R (%, ..., X).
z€

For 6f=0 this gives kf =4g a coboundary, hence the result.

Corollary 54. 1f ITisfinite, while the divisible abelian group D with
no dements o finite order is a IT-modulein any way, then H*(II,D) =0
for n>0.

Proof. For g as above, there is an (#—1)-cochain h with g==kha.
Then kf=4kdk; since D has no elements o finite order, f=4 64,
and the cocyclef is a coboundary.

Corollary 55. |f II is finite, Pis the additive group d real numbers,
mod 4, and P and Z are trivia II-modules, HA(1T,Z) =Hom(IZ, P).

The (abelian) group Hom (IT,P) o all group homomorphisms 7> P
isthe character group o IT.

Proof. The additivegroup R d reals is divisible, with no elements
d finite order. Theshort exact sequenceZ >R -»Pd trivial II-modules
yieldsthe exact sequence

H\(IT, R) —H(IT, P) ~> H2(IT, Z) > H*(IT, R).

By Cor. 5.4, the two outside groups vanish; since P has trivial module
structure, H*(IT,P)=Hom (17,P). Hence the connecting homomorphism
is the desired isomorphism.

To illustrate the use of resolutions, consider the operation of con-
jugation by a fixed element ¢¢ll. Let §,: IT-II denote the inner auto-
morphism §,x=¢"*x¢, while, for any IT-module A, a: 4—A4 is the
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automorphism given by a,a=ta. Then =x(a,e)=xta=t(t"1xta)=
a,[(6,%)a],so (6,,a,): (ITA,p)—(IT,A,¢) isachanged groupsin the
sense d (2.6). The induced map on cohomology is necessarily an iso-
morphism, but moreistrue:

Proposdtion 5.6. For any II-module A, conjugation by a fixed ¢cIT
induces the identity isomorphism

(6,, a)*: H*(II,A)=H"(IT, A).

Proof. A module homomorphism g;: B,(Z(IT)) - B,(Z(I1)) is given
by
g(xlml| ... |x])y=xe[t2xgt] ... [t 2xt| ... |t 8]

Observation shows g,0=2g,, SO g, is a chain transformation o resolu-
tions which lifts the identity Z—Z. By the comparison theorem for
resolutions, g, is homotopic to the identity, so the induced map on
cohomology is the identity. But thisinduced map carriesany #n-cochain
f into g¥ f where

&N (%, -, x)=Fg [ ... [2,]=tf(F 2 2s8, ..., E71x,0).

The cochain on the right is (6,, «,)*/, as defined by (5.9), hence the
conclusion. Note that the comparison theorem has saved us the trouble
d constructing an explicit homotopy g,~1.

This theorem may be read as stating that each n-cocycle f is co-
homologous to the cocycle g f defined above. Like many resultsin the
cohomology d groups, this result was discoveredin the case n=2 from
properties d group extensions (Ex.3 below).

In the bar resolution, B,(Z(IT)) is the free abelian group with free
generators al symbolsx[x,]| ... |x,] with al x<II and noned x, ..., %,
equal to 1¢Il. We call these symbols the nonhomogeneous generators
d B. Now the string d elements x, x,, ..., %, in IT determines and is
determined by the string o elements yo=x,1=%%, ¥,=%%%,, ...,
Y,=z%x, ... x, in II, and the condition x,=1 becomes y;_,=1v;. Hence
the generators d B, may be labelled by the elements y,€77, in symbols

(Yo, %1, -2 Y =% [¥5 2| ¥T  ¥al - |¥221Yul, (5.10)
while conversaly

x| . |x)= (%00, x%1%,, ..., X%y ... %,). (5.11)
Translating the boundary formula to this notation proves

Proposition 5.7. The abdian group B, (Z(II)) contains the elements
(Yo ---» y) of (5.10) for all y:€II. If y:i1=% (Yo, ---,¥a)=0. The



5. The Bar Resolution 119

remaining such dements are freegeneratorsd B,. Thel7-module structure
isgiven by

Y(Yor V1o s Ya) = (¥ Y0 ¥ V1, -+ ¥ V) (5.12)
and the boundary é: B,—B,_, is determined by

o0t =T (00 G2, (1)

where the Ao over y, indicates that v, is to be omitted.

Note that this formulation d B(Z(IT)) uses the multiplication of 17
only in the definition (5.12) d the modulestructure. In view d theform
d this definition, the symbols (y,, ...,y) are called the homogeneous
generators o B,. They have a geometrical flavor. If we regard (y,, ¥:,
...,¥) asan n-simplex a with the element y,¢I7 as a label on thei-th
vertex, then (y,, ...,%;,...,Y) isthen—1 simplex which consistsd the
i-th faced awithitslabels, and the boundary formula (5.13) isthe usual
formula for the boundary d a simplex as the alternating sum o its
(n—1)-dimensional faces.

The non-homogeneous generators may be similarly read as a system
d edgelabels. Onthesimplex,label the edgefromthevertex s tovertex s
by z;;=y;1y;, sothat thesimplicesaand y a havethesameedgelabels,
and z; z;,=2;,. Hence the edge labels x;=2z_, ; determine all the edge
labels by composition. The non-homogeneous generator x[#| ... |#,]
simply records these edge labels x; and the label x=y, on the initial

vertex, asin thefigure

Y
Xy X f=y7" s

Yo o oo
* =927t n

The non-homogeneous boundary formula (5.3) may be read off from
these edge labels. This schematic description can be given an exact

geometrical meaning when I7 is the fundamental group o a space
(E1ILENBERG-MACLANE 1945).

Exercises

1. Show that g(Z {II)) — the non-normalized bar resolution — with a suitable
augmentation is a free 17-module resolution o Z.

2. Deduce that Opext (11, 4,¢) can be described by factor sets which satisfy
(4.5) but not the normalization condition (4.3). Find the identity element in the
group extension given by such a non-normalized factor set.

3. For n=2 in Prop. 5.6, show explicitly that the cohomologous factor sets f
and gtf determine congruent elements o Opext (17, 4,0).

4. Show that Extg(m (Z,4) is a contravariant functor on the category %-
of changes of groups, and prove the isomorphism § of Cor.5.2 natural.
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6. The Characerigic Classd a Graup Extension
For n=2, Cor.5.2 provides an isomorphism
0: Ext} ) (Z,4)=H*(IT, 4). (61)
Hence each group extension E o A by 17,
E: 0>A5BSIT-»1,

with given operators ¢ must determine a two-fold JI-module extension
of A by the trivial module Z. It isinstructive to construct this module
extension

1(E): 045 ML zun 5250 (6.2)

directly. To do so, take Z(II) to be the group ring d 17, with ¢ its aug-
mentation. Take M to be the quotient module M =F/L, where F is
the free II-module on generators [b], one for each =1 in B, with the
conventionthat [1]=0 in F, while L is the submodule d F generated
by all [8,+ b,]— {o8y) [85] — [b,] fOr by, b,e B. Themodulehomomorphlsms
a and g d (6.2) may then be given by aa= [xa]+L, ﬁ([b] L=
ab—1eZ(Il). Clearly fa=0 and ¢8=0, 0 the sequence ¥ (E) o (6.2)
may be regarded as a complex d II-modules. The exactness d this
sequenceis a consequenced

Lemma6.1. Asa chain complex d abelian groups, (6.2) has a con-
tracting homotopy.

Proof. A contracting homotopy s would consist & homomorphisms
s: Z—Z(II), s: Z(II)>M, and s: M+A d abelian groups such that
es=1z, Bs+se=1zm, as+sf=1,, and se=1,. The first condition
is satisfied by setting s1=1, and the second by sx=[u(¥)]+ L, where
u(X)e B is a representative d x in B with o« (X)=# and «(1)=0. For
all x and &, u(x)+b—u(x(sd)) isin the kernel o a, so there are de-
ments h(x,b)e A with

u(x)+b=2xh(x,b)+u(x(d)).

A homomorphism s: M+A may be defined by s(x[b] +L)=h(x,h).
The proof is completed by showing that as+ sg=1, sa= 1.

The given short exact sequence E o groups thus determines an
exact sequence x(E) d modules, hence an element d Ext3 ) (Z,4),
caled the characterigtic class  E. That the correspondence

x: Opext(17,A @) > Ext}m (Z, A)

is an isomorphism will follow by composing it with the 8§ o (6.1) and
applying
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Theorem 6.2. The composite correspondence
Opext (IT,4,¢) % Ext} 11, (Z, A) - H(IT, A) (6.3)

is the ssomorphism which assigns to each E the cohomology class d one
d its factor sets.

Sketch o proof. To apply the definition o 6 we must find a chain
transformation d the bar resolution, regarded as a free resolution d
the trivial module Z, into the sequence x (E) regarded aso as a resolu-
tion d Z. Such a chain transformation

<= BAED) > D)~ Bz~ o
0> A4 - M - Z{I) -Z—-0

may be specified in terms o representatives #(x) d x in B, with the
usual factor set f(x,y) for the #(x),by the module homomorphisms

alx]l=[u(®]+L, glx|lyl=Ff(xy). (6.4)

The cohomology class belonging to ¢ (E) is then the cohomology class
d g,, regarded as a cocycle on B(Z(II)); that is, is the cohomology
classd a factor set f for the extension E, as asserted in our theorem.

This construction may be reversed. The bar resolution provides a
2-fold exact sequence starting with @B, and ending in Z. Left multi-
plication o thissequence by the cocyclef producesthe sequencey (E).

Exercises
1. Show that a and § as defined for (6.2) are indeed module homomor phisms.

2. Completethe proof of Lemmaé.1, in particular showing that the function h
there introduced satisfies h(x,4+b,) =h(x(aby), b,) + h(x,8) and hence that
s: M —A iswell defined.

3. Expressthe function h in terms of the factor set f.
4. Verify that (6.4) gives a chain transformation as claimed.

7. Cohomoalogy of Cydic and Free Groups

Since H3(IT, A)=Ext} (Z,A), we may calculate the cohomology
d a particular group I by using a IT-module resolution o Z suitably
adapted to the structure d the group I1.

Let II=C,,(t) be the multiplicative cyclic group d order = with
generator t. The group ring I'=2(C,,(¢)) is the ring o all polynomials

_Z a;t* in t with integral coefficients a;, taken modulo the relation
i=0

t" =4. Two particular elementsin I" are
N=14+t+ .-- 41, D=¢—1. (7.1)
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Clearly ND=o0, while, if u=) ;t' is any element d I,

m—1/m—1 . ” .

Nu=), ( Z'a,-)t’, Du=73 (a;_1—a)l, a,=a,.
=0 \i=0 i=1

If Du=0,thena,=%=-.=a,-, andu=~Na,.If Nu=0,then} a,=0

and u=— D [ay+ (&4 ag)t+ -+ + (@m_1+ - -+ @) £ *]. This means that

the sequenced II-modules

r&r&r2r  p,u=Du, N,u=Nu,

is exact. The augmentation &: I'>Z is en=y,a;, hence e»=0 implies
that »=Dwv for somev. All told, the long exact sequence

0—ZEr2p&r2p .. (7.2)

thus provides a free resolution d Z. This resolution is customarily
denoted by W, especialy in algebraictopology, whereit isdf considerable
use in calculating cohomology operations( STEENROD [1953]).

For any IT-module A the isomorphism Homp (I, A)=24 sends any
f: '>A into f(1). Hence the cochain complex Homg, (W, A),with the
usual signs 6f=(—1)**1fo for the coboundary, becomes

A 4 T 47y

starting with dimension zero, where N* a=Na, D* a=Da=(t—1)a.
Thekernel d D* isthesubgroup [gza=a] o all elementsd A invariant
under the action o ¢¢C,,, while the kernel d N* is the subgroup o
al ain A with at+ tat+ ..-+#-1a=0. The cohomology groups o C,,
are those d this cochain complex, hence

Theorem 7.1. For a finite cyclic group C,, d order m and generator t
and a C,,-module A, the cohomology groups are

H°(C,,,A)=[alta=a],
H*(C,,A)=[al|ta=a][N*A4, n>0,
HY(C, A)=[a|Na=0]/D*4, n=0.
Note that these groupsfor #» >0 repeat with period two.
Next we consider free groups.

Lemma72 If Fisa free group on free generatorse;, for ¢, then
ZY(F, A) is isomorphic t0 the cartesan product J]A; d copies 4,=A4
d A, under the correspondence which sends each crossed komomorphism |
to the family {fe} d its values on the generators.

Proof. By definition, the free group F consistsd 1 and the words
x=¢f ... INn the generators, with exponents ¢;=+1. If we assume



7. Cohomology of Cyclic and Free Groups 123

that the word is reduced (i.e., &+ ¢;,.,5=0, When 4,=1,.,), then this
representation is unique. The product o two words is obtained by
juxtaposition and subsequent cancellation. Now a crossed homomor-
phism f satisfiesthe equation f (xy)= xf (y)*f (x) and hencealsof (1) =0
and f(x~Y)=—x"f(x). Therefore f is completely determined by its
valuesf (e)=a;c A on thefreegeneratorse;. Conversaly, given constants
a in A, we may set f(e)=«; and definef (x) by induction on the length
d the reduced word x by the formulas

flex)=ef(x)+a;, [l x)=¢1f(x)—e;ta;.

We verify that these formulas hold even when the word ¢,x or ¢;1x
is not reduced, and hence that the f so defined is a crossed homomor-
phism. This completesthe proof.

Consider now the exact sequence (2.4) d Z(F)-modules
0—>I(F)12(F)<>Z 0 (7.3)

with ¢ the crossed homomorphism from F to I(F) given by px=x—1.
By Prop. 2.3 the crossed homomorphismsf on Fto A correspond one-one
to the module homomorphisms h: I{F)+A, indeed each h determines
an f=hp. In particular fe,;=hpe,=h(e;—1). Thus the lemma above
states that the module homomorphisms h are determined in one-one
fashion by their values on ¢,—1¢I(F). This means that I(F) is a free
F-module on the generators ¢,—1. Hence (7.3) is a free resolution o
thetrivial F-module Z, and may thus be used to cal cul ate the conomology
d F. Since this resolution is zero in dimensions beyond 1, we conclude

Theorem 7.3. For a free group F, H" (F,A)=0, for n>>1.

Exercises

1. Describe H! (F,A) for Ffree.
2. Without using crossed homomorphisms, prove I(F) a free module.
3. Find a resolution for Z as a trivial module over the free abelian group 17
on two generators, and calculate the cohomology o /7.
4, Determine the Yoneda products for the cohomology groups HK(Cp,,2),
showing that
s oz PP s 5 Z 50

is an exact sequence with 2» intermediate terms I" and maps alternately multi-
plication by N and by D, that, for »>0, H2*(C,,, Z)=Ext¥(Z, Z)=Z|/mZ has
an additive generator o order m given by the congruence class o the sequence
$2% and that the composite $2#S2k js S2(n+k),

5. If E, is the exact sequence Z > Z -»C,,, where the map Z+Z is multi-
plication by m, show that the characteristic class ¥ (E,) in the sense o §6 is the
sequence $? of Ex.4. Deduce that Opext(C,,, Z) is the cyclic group of order m
generated by the extension E,. '
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6. Let ¢: C,,—C; be a homomorphism of cyclic groups. For A a trivial II-
module in Thm. 7.1, calculate the induced map £* in cohomology.

8. Obgructionsto Extensions

The 3-dimensional cohomology groups appear in the study o ex-
tensions d a non-abelian group G. We write the composition in G as
addition, even though Gis not abelian.

For any element hd G, denote by u (h) or u, the inner automorphism
meg=h+g—h given by conjugation with h. The map u:G—>AutG
isa homomorphism d the additive group G to the multiplicative group
AutG o all automorphisms o G; itsimage uGis the group InGd
inner automorphismsd G. This image is a normal subgroup d AutG,
for if neAutG, then always

N (g =n(k+g—h)=nh+ng—nh=p,;ng)
and hence
NN t=p,y,  Mw=conjugation by h. (8.1)

The factor group AutG/InG is caled the group d automorphism classes
or o outer automorphisms o G; it isthe cokernel d u: G—AutG. The
kernel o u isthe center C o G; it consistsd all ceG such that ¢4-g=
g-+cfor al G The sequence

0—->C >G5 AutG—AutG/InG —>1 (8.2)
istherefore exact.
Any group extension
E: 0>G5>B5IT>1

d Ghy IT determines, via conjugation in the additive group B, a homo-
morphism 8: B —AutG for which 8(xG)<InG. It hence determines an
induced homomorphism y: II—-AutG/InG. In other words, for each
be B the automorphism ¢ —4+g—b d Gisin the automorphism class
p(ob). We say that the extension E has conjugation class y: thus g
records the fashion in which G appears as a normal subgroup d B.
Conversdly, call a pair o groups 11, G together with a homomorphism
w: II—-AutG/InG an abstract kernd. The general problem d group
extensionsis that d constructing all extensions E to a given abstract
kernel (I1,G,y); that is, of constructing all short exact sequences E
with given end groups G and II and given conjugation class ¢. Asin
§ 3, congruent extensions have the same conjugation class.

A given extension E may be described as follows. Identify each
geG with xgeB. To each x<17 choose #(x)e B with o (x)=x, choosing
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in particular #(1)=0. Then conjugation by « (x)yieldsan automorphism
o (X)ey(x)of G with

u(x)+e=[p(r)gl+u(x),  xcll, geG. (8.3)

Thesum #« (X H#(y)equals% ( Xy) up to asummand in G, which we may
denote as f (x,y)eG,

u(x)+u(y)=f(x,9)+u(xy), #yell (8.4)
The associativity law for « (X )H-%(y)+«(z) implies that
e (%) 1y, )]+ 1 (x,y2)=F(x,9)+[(x,2). (8.5)

If the group G containing the values o f were abelian, this identity
would state that f=0. Also, conjugation by the left and by the right
sided (8.4) must yield the same automorphism of G ; hencetheidentity

¢ (*) ()= rlf(x)] ¢(xy), (8-6)

which states that uf measures the extent to which ¢ deviates from a
homomorphism ¢: I —AutG.

Conversdly, these conditions may be used to construct an extension
asfollows:

Lemma8.1. Givenl?, G, and functions ¢ on I to AutG, f on IT><IT
to G which satisfy the identities (8.5) and (8.6) and the (normalization)
conditions ¢(1)=1, f(x,1)=0=7(1,v), the s&t B,[G,¢, f, 1] of al Pairs
(9,x) under the sumdefined by

€2+ (€, 9)=(g+ o) a+1(x7y),%y) (8.7)

isa group. With the komomorphisms g—(g,1) and (g,x) —=x, G~ By—»IT
i san extension of G by IT with conjugation class given by the automorphism
classd ¢.

Proof. A routine calculation shows that (8.5) and (8.6) yield the
associative law. Because d the normalization condition, (0,1) is the
zero, while (— (71, X)— (2~ g, x77) is the negative o the element
(& %)

We call the group By,=[G,¢,f,II] so constructed a crossed Product
group and the resulting extension a crossed Product extension. Our
analysis just before the previous lemma showed that any extension
was isomorphic to such a crossed product, in the following explicit
sense.

Lemma8.2. If ¢(x}ky(X) has ¢(1)=1, then any extension E d
the abstract kernel (I7,G,) is congruent to a crossed Product extension
[G,, f, [I] withthe given function ¢.
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Proof. In the given extension E the representatives #(x) can be
chosen s0 that g—u(x)+g—u(x) is any automorphism in the auto-
morphism class y(x). Make this choice so that the automorphism is
¢ (X).Each element o B then has a unique representation as g+ # (x),
and the addition rules (8.3) and (8.4) yield a sum which corresponds
under g-+u(x)—(g, x) to that in the crossed product (8.7). This cor-
respondence is a congruence. This proves the lemma.

Suppose now that just the abstract kernel (17,G,¥) is given. In
each automorphism class y{x) choose an automorphism ¢(x), taking
care to pick ¢(1)=I1. Since % is a homomorphism into AutG/IngG,
e(x)@ (Y)p(xy)~tis an inner automorphism. To each x, yeIl choose an
element f(x,y)inGyiedingthisinner automorphism,in particular picking
f(x,1)=0=/(1,5); then p(x) p(y)=u[f(x,¥)] @(xy). This is (8.6); we
would like (8.5) to hold, but this need not be so. The associative law
for ¢(x)e(y) ¢(z) shows only that (8.5) holds after x is applied to
both sides. The kernel d 4 is the center C d G; hence there is for all
%,9,2 an element k(x,y,z)cC such that

[p(®) [ (y, )]+ [ (xyz)=k(x,y, 2)+ f(%,9)+1(xy, 2). (8.5

Clearly k(1, y,2)=k (x4, 2)=k(x,y,I)=0, s0 that thisfunction k may
be regarded as a normalized 3-cochain d I7 with coefficientsin C.

The abelian group C=center (G) may be regarded as a II-module,
for each automorphism ¢(x) o G carries C into C and yields for ceC
an automorphism ¢—g(x) ¢ independent of the choice d ¢(x)in its
class (x). We may thus write xc for ¢(x)c.

We call the cochain k d (8.5") an obstruction o the abstract kernel
(I1,G,y). There are various obstructions to a given kernel, depending
on the choiced ¢(x)cy(x)and of f satisfying (8.6), but when there is
an extension E we have shown in (8.5) that there is an obstruction
k=0; hence

Lemma8.3. An abstract kernel (II,G,y) has an extension ¥ and
only if one d its obstructionsis the cochain identically 0.

Next we prove

Lemma8.4. Any obstruction k of a kernel (17G,y) is a non-homo-
geneous 3-dimensional cocycle d B(Z(IT)).

We must prove §k=0. Thisis plausible, for if only G were abelian
and ¢ a homomorphism, the definition (8.5") o k would read k=4,
hence would give 6k=66f=0. The proof consistsin showing that 66
isstill 0 in the non-abelian case. I n detail, for x, y, z,t in IT we calculate
the expression

L=g(x)[p() | @& )+ F (¥, 20)]+F(x,y22)
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in two ways. In thefirst way, apply (8.5") to the inside terms beginning
p(y)i(z,t); upon application of the homomorphism ¢ (x) to the result
there are terms ¢(x) f(y,z) and ¢ (x)f(yz,t) to each d which (8.5
may again be applied. When the terms k in the center are put in front,
the result reads

L={[xk(y,2, )]+ k(x,y2, )+ k(x,v,2)+ U, (8.8)
where U is an abbreviation for the expression

U=f(x,9)+F(xy, 2)+f(xyz1)

In the second way of calculation, the automorphisms ¢ (x) ¢(y) on the
first termsin the bracketsin L may be rewritten by (8.6) to give

L={(xy)+@(xy) }{z. )= /(% )+ 9(*) (v, 20)+ (%, y21).

Using (8.5) on each term involving ¢, the fact that all valuesd k lie
in the center gives
L=Fk(xy,z,0)+k(x,y,2)+U (8.9)

with U as before. But thetermsadded to U in (8.8) and (8.9) are respec-
tively the positive and the negative termsin 6k(x,y, z,t); hence com-
parison o (8.8) and (8.9) gives 6k= 0, q.e.d.

We now investigate the effect d different choicesd ¢ and f in the
construction d an obstruction to a given kernel.

Lemma 8.5. For given ¢ (x)(X),a change in the choice d f in (8.6)
replaces k by a cohomologous cocycle. By suitably changing the choice
of f,k may be replaced by any cohomologous cocycle.

Proof. Sincethe kernel o . isthe center C d G, any other choice
d the function f in (8.6) must have the form

Fxy)=h(xy)+1(xy), h(x1)=0=h1,y) (8.10)

where the function h has valuesin C, hence may be viewed as a 2-di-
mensiona normalized cocycled 17 with valuesin C. Now the definition
(8.5") states essentially that the obstruction k isthe coboundary 2= éf.
Theobstruction K o f' isthus K =6(h+ f). Thevaluesd hliein the
center, so we may write 6 (k- f) =(6h)+ (67); the new obstruction thus
has the asserted form; sincein (8.10) h may bechosenarbitrarily inC,
we can indeed replace the obstruction k by any cohomologous cocycle.

Lemma 8.6. A change in the choice d the automorphisms @(x) may
be followed by a suitable new selection o f such as to leave the obstruction
cocycle k unchanged.

Proof. Let ¢ (x)¥y(x) be replaced by automorphisms ¢'(x)€ w(X)
with ¢'(1)=1. Since ¢(x) and ¢'(x) lie in the same automorphism
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class there must be elements g(x)¢G with g(1)=0 such that ¢'(¥})=
[pg(x)] ¢ (x). Usng (8.1) and (8.6), calculate that

@' (%) ¢ (N=plg®)+ o) g+ {xy)—egl=zy)] ¢'(xy).

Asthenew functionf'(x,y) we may then select the expressionin brackets.
We write this definition as

F(xy)+g(xy)=g®)+o(*) g +7(xy). (8.11)

This definition has the form f'=(dg) - f, so that we should have 6f' =
(66g)+6f=6f, modulo troubles with commutativity. If one, in fact,
successively transforms the expression ¢’ () f'(y,2)+ ' (%,y2)+ g (xy2)
by (811) and (8.6) one obtains k(x,y,z)+f'(x,y)+f "(#y,2)+g(xy2),
which shows that the obstruction k is the same as before.

These results may be summarized as follows.

Theorem 8.7. I n any abstract kernd (I1,G,y), interpret the center C
d G as a II-module with operators xc=g@(x) c for any choice d automor-
phisms @ (X)ey(x). The assgnment to this kernel o the cokomology class
d any one d its obstructions yields a wdl defined dement Obs (17, G, p) ¢
H?3(17,C). The kernd (17,G,y) has an extension if andonly if Obs (I1,G,y)
=0.

Indeed, when the cohomology class o k is zero, any obstruction k
has the form k=¢§h. By Lemma8.5, thereis a new choice f' for f which
makes the obstruction identically zero; with this factor set ' the ex-
tension may be constructed as the crossed product [G, ¢, f',IT].

To completethe study d the extension problem we have the follow-
ing result on the manifold d extensions.

Theorem 8.8. |f the abstract kernd (I1,G,y) has an extension, then
the st of congruence classes of extensionsis in 1-1 correspondence with
the sat H?(11,C), where C is the center o G with module séructure asin
Thm.8.7.

We shall actually show more: That the group H2(I1,C) operates
asa group d transformations on the set Opext{/Z,G,%} and that this
operation is simply transitive, in that from any one extension E, we
obtain all congruence classes d extensions, each once, by operation
with the elementsd H2(I1,C).

Proof. Write any extension EcOpext(IZ,G,y) as a crossed product
[G,¢,7,IT]. Hold ¢ fixed. Represent each element o H&(/Z, C) by a factor
set (2-cocycle) h. The required operation is [G,¢,f, I~ [G,¢, b+ f,I1].
The stated properties d this operation follow. In particular, to show
that any extension E' isso obtained from E, write E’, asin Lemma8.2,
in the form of-a crossed product [G,¢,f’, IT] with the same function ¢.
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Two applicationsd (8.6) give

ulf(xy)]=p (%) ¢(y) ¢ (xy) = pulf(x.y)].

Thisstatesthatf (x,y)— f'(x,y)liesinthekernel o g, that is, in thecenter
o G. If kisdefined as & (x,y)=—f (x,9)+f(x,7), then (85) forf and f
shows d4==0, hence % a cocycle with f'=#4-+f, as desired.

The operations & H? on Opext may also be defined in invariant
terms, without using factor sets. Represent an element o H?(I1,C),
according to Thm. 4.1, as an extension D o C by I7 with the indicated
operators. Let Cx=<G be the cartesian product o the groups C and G.
Define a "codiagonal™ map¥V: Cx<G—>G by setting V(c,g)=c+¢g;
sinceC isthecenter o G, thisisa homomorphism. Theresult o operating
with D on an extension E in Opext(I1,G,yp) may then be written as
V(D=<E) A,. Exactly asin the case d the Baer sum (Ex.4.7) this does
yield an extension d G by 17 with the operators ¢; if we calculate the
factor set for this extension we find that it is given, just as above, by
amap f—h-f.

9. Realization o Obsructions

We have proved that the obstruction to an extension problem is
an element o H3{l1,C). If C=0, the obstruction vanishes, hence the
extension problem has a solution. The result is

Theorem 9.1. |f the (additive, non-abelian) group G has center 0,
then any abstract kernd (I1,G,y) has an extension.

This simple result is worth a direct proof. Since G is centerless,
G~ AutG-»AutG/InG is an extension E,; the induced extension Eyp
d Ex.4.1 isthe desired extension d G by 17 with operators .

In other cases the extension problem may not have a solution.
By §7 there are cases (e.g., with I7 finite cyclic) where H3(7, C)3=0;
the obstruction theory above then produces abstract kernels with no
extension, provided that we know that every 3-cocycle can be realized
as an obstruction. This fact, which is also d interest in showing that

the cohomology o groups "*fits" the extension problem, may be stated
as follows.

Theorem 9.2. Given IT not cyclic o order 2, a IT-module C, and any
cohomology classk o H3(II,C) there exists a group G with center C and a
homomorphism p: Il —AutG/InG inducing the given Il-module structure
on C and such that Obs(/Z,G,y)=k.

The theorem is true for all 17 (cf. EiLENBERG-MACLANE [1947]);
a special proof is required when I7 is cyclic o order 2.

Mac Lane, Homology 9
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The proof is obtained by reversing the considerations leading to
the definition of the obstruction in such a way as to construct a **free"
kernel with a given 3-cocycle k as obstruction.

Take G=Cx>=F, where C is the given II-module and F is the free
(non-abelian) group with generators all symbols [x,y] for x==1 and
y==1 in I1. Write the composition in F and G as addition. Definea func-
tionf on IT<IT to G>F by f{x,1)=f(1,¥)=0, and f(x,y)=[x,y] for
x==1=Y. For each x¢II definean endomorphism g (Xx): GG by setting
B (X)e=xc (under the module structure d C) and

B(x) [y, z]=k(xy, )+ f(x,9)+(xy, 2)—f(x,y2) (9.1)

for each generator [y,z] o F. Since k isnormalized (i.e, k(x,y,1)=
kix,1,2)=K(l,y,2)=0 always), this equation aso holds with [y,z]
replaced by f(y,z);that is, with y or z=1. The equation thus asserts
that k=4¢, in the same ""non-abelian'* sense as in the definition (8.5)
o theobstruction.
By thisdefinition, 8(1) istheidentity automorphism. We now assert
that always
B(x) B(y)=plf(x.9)]B(xy): G>GC. (9-2)

Both sides have the same effect on an element ¢ o the JIT-module C;
henceit sufficesto prove that the endomorphismon each side d (9.2)
hasthesameeffect on any oned the generators [z,t]d F. First calculate
B(x) B(v)[zit] by repeated applications d the definition (9.1), once for
B(y)and threetimesfor g(x). Thetermsin k al liein C, whichissurely
contained in the center d G, so can be collected. These terms in k
include all the terms o é&(x,y,z,t) except for theterm —k (xy, z,1).
Since §%=0, we can replace the termsin k by the oneterm k(xy, z, t).
Theresult is

B(%)B () [z, E]=1(x.9)+ k(xy, 2.0+ [(xy,2)+ [ (xy2,0) — [ (xy,2) — [ (%.y)
=f(%y)+B(xy)[2 t]—{(x9)
=pulf(xy)]B(xy)(z1].

This proves (9.2).

We claim that each 8(x) is an automorphism o G. Indeed, (9.2)
proves that f(x) B(x~Y) = u[f (%2~ )] f(1)=u[f(%,x~Y)] is an inner
automorphism. Hence g(x~1) has kernel 0 and 8(x) hasimage G. Since
x isarbitrary, this givesthe result.

Denote by y(x) the automorphism class containing 8 (x). By (9-2),
w is a homomorphismy: I —-AutG/InG, hence (I1,G,y) is an abstract
kernel. Since T is not cyclic d order 2, we can assume that I7 contains
more than two elements. The free group F then has more than one
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generator, hence is centerless, so that C is exactly the center d G=
C><F. Our construction has been designed precisaly to yield the given
cocycle k as the obstruction d this kernel, hence the theorem.

A many-one correspondence d abstract kernels with center C to
the group H3(17C) has now been established. This correspondence can
be so decorated as to become a group isomorphism; one first defines a
relation d similarity between abstract kernels such that two kernels
aresimilar if and only if they have the same obstruction; with a suitable
product d kernels the group o similarity classes o kernels (I1,G, )
with fixed 17 and fixed 17-module C as center is then isomorphic to
H3(71,C). The details are given in EILENBERG-MACLANE [1947].

No reasonable analogous interpretation d H4(17,C) or d higher
dimensional cohomology groupsis known.

10. Schur'sTheorem

We now apply factor sets to a problem in group theory.

For any set S the collection AutS of all 1-1 mappings & S onto
itself is a group under composition. A (multiplicative) group G is said
toactontheset Sif ahomomorphism u: G —Aut Sisgiven. Equivalently,
to each geG and to each "point™ s¢S there is given a unique point
gs=p(Q)se S so that aways (g185)s=g;(ges) and Is=s. The orhit d
a point see S under the action o G istheset d al gs, for geG; any other
point in this subset has the same orbit. The whole set S is the union
d digoint orbits. Theset d all ¢ such that ks,=s, is a subgroup H
d G caled the group fixing s,. The correspondence gH —gs, is a 1-1
mapping d theleft cosetsd H in G onto the orbit o s,. By definition,
the number o such cosetsis the index [G:H]; if the index is finite, it
istherefore the number o pointsin the orbit. Thus when a finite group
G actson aset S, the number d pointsin each orbit is a divisor o the
order o G.

Take S to be the set d all subgroupsU d a given group G. The
correspondence U—g Ug~! defines an action & G on S; one says that
G actson S by conjugation. Similarly G (or any subgroup d G) acts by
conjugation on the set o elementsd G.

Theorem 10.1. (Cauchy’s Theorem.) | f the order » d a finite group
G isdivisible by a prime number $, then G contains an element d order .

The proof is by induction on #. Let G act on itself by conjugation.
The orbit d an element ¢ consists d ¢ alone when always gcg—1=c;
that is, precisely when cisinthecenter Cd G. Let m denotetheorder o
C and %,>1, the number of pointsin thei-th orbit outside C, 7=1, ..., t.
Since G is the union o digoint orbits, n=m-+ &+ -.-4K,.

9‘
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If m isdivisibleby #, write the abelian group C as a direct sum o
cyclic groups; one d these summands then has order divisible by 2,
hence contains an element o order 4. Otherwise m is prime to ¢, so
also at least one o the integers ;. But %; is the number d pointsin
some orbit, hence equals the index [¢:H] o some subgroup. Since #
does not divide &; it must divide the order o the subgroup H. By the
induction assumption, H contains an element d order 2.

A p-group is a group in which every element has order some power
d the prime p. By Cauchy's Theorem, a finite $-group may also be
described as a group o order some power of 2.

Theorem 10.2. Any finite p-group ==1 has a center C==1.

Proof. Let the $-group act on itself by conjugation. Each orbit
consists d p™ points for some exponent m; =0; together the orbits
exhaust the p* elements d the group. Since the orbit o 1 consists d
itself only, p*=142, p™. Therefore at least p— | other orbits consist
d one element ¢ only. These elementsliein the center C, so C4=1.

A maximal p-subgroup o G is a $-group PCG which is contained
in no larger $-subgroup d G. By Cauchy's Theorem, a finite group
d order n has at least one maximal $-subgroup ==1 for each prime p
which divides».

A subgroup U of G issaid to normdize a subgroup V if #Vu-1=V
for al #cU; that is, if V is a one-point orbit under the action & U
on subgroupsd G.

Lemmal03. If P and Q are naxi nal p-subgroups of G such that
P normalizes Q, then P=Q.

Proof. Let PQ denote the subgroup d G generated by P and Q.
Since P normalizes Q, Q is a norma subgroup o PQ. Since P is a
$-group, so isits quotient P/P~Q=PQ/Q. Thus PQis an extension
o the p-group Q by the$-group P/PnQ, henceisitself a p-group. Since
P is contained in no larger $-subgroup, P=PQ, 0 P>Q. Since Q is
contained in no larger $-subgroup, P=Q.

Any conjugate o a maximal $-subgroup is itself a maximal
p-subgroup. Moreover

Theorem 10.4. Any two maximal p-subgroups o a finite group are
conjugate.

Proof. Let S be the set d all conjugates in G d some maximal
$-subgroup P, and let P act on S by conjugation. By the lemma, a
point P'eS is a one-point orbit exactly when P’==P. The number of
points in any other orbit is the index o a subgroup o P, henceis
divisible by p. Thereforethe number d pointsin Sis congruent to 1,
modulo #.
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Any maximal p-subgroup Q o G acts by conjugationon S; under this
action each orbit again has either one point or a number d pointsdivis-
ible by . The congruence above thus shows that there is a one-point
orbit P'. In other words, Q normalizes some conjugate P o P, so,
by the lemma, 0=F and isitsalf a conjugate d P.

Theorem 10.5. (ScHUR-ZASSENHAUS) | f the integers m and n are
relatively prime, any extension d a group of order m by one of order »
splits.

Proof. Let G> B2 IT be such an extension, with G d order m and
17 d order n. This extension splsts if a has a right inverse; that is, if
B contains a subgroup (also o order n) mapped by a isomorphically
on I1.

Suppose first that G is abelian. The given extension isthen an ee-
ment ec HA(17G). By Prop.5.3, ne= 0; trivialy, me=0. Since m and
» are relatively prime, e=0; the extension splits.

For G not abelian the proof will be by induction on the order m
d G. It suffices to prove that the extension B contains a subgroup
d order #, for such a subgroup is mapped by B-»II isomorphically
upon I7.

Take a prime p dividing m and a maximal +-subgroup P d B.
Thenormalizer N d Pin Bisdefinedtobetheset d all bwithbPb—1=P.
Theindex [B:N] isthen the number o conjugates
d P in B. All these conjugatesmust liein Gand are B
maximal p-subgroups there. By Thm. 10.4 they are 7 \
all conjugate in G. Now GnN is the normalizer ¢ N
d Pin G, sotheindex [G: G~N]isthe number of ’ n/
these conjugates and is therefore equal to [B: N]. '
This index equality (seethe diagram) proves aso GAN H
that #=[B:G]=[N:G~N]. Now P and GAN L o
are normal subgroups d N, and N/P is an ex- a K
tenson d the group (GHN)/P, o order some a,
proper divisor d m, by the group N/GAN d ‘L L
order n. By the induction assumption, N/P thus
contains a subgroup d order n, which may be } . e
written in the form H/P for some H with PCH N 1
and [H: P]=mn.

The center C o Pis, by Thm.10.2, not 1. Conjugation by elements
d H<N maps P onto itself and hence C onto itself, so that C and P
are normal in H. Thus H/C is an extension d the p-group P/C by the
group H/P d order n primeto . Since C==1, the order & PJC isless
than m, 30 the induction assumption provides a subgroup K/CCH|C
d order n. This group K is an extension d the abelian #-subgroup C
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by a group K/C d order n, hence splits by the abelian case aready
reated. This splitting provides a subgroup LK o order n, and the
subgroup L splits the original extension B.

Exercises

I. (Thefirst Sylow Theorem.) If the order of a finite group G is divisible by
p*, P a prime, then G contains a subgroup of order pk.

2. If p™ isthe highest power of p dividing the order of G, every maximal p-
subgroup of G hasorder p.

3. If the order of the finitegroup I7 is prime to theorder of thefiniteabedian
group A, prove that H*(II,A)=0 for n>0 and any II-module structure on A.

4. Let a: B—»IT be an extension of an abelian group G of order m by IT of
order n, with (z,m)= 1, asin the Schur-ZassenhausTheorem. If S and T are two
subgroupsdf B isomorphicto IT under ¢, show Sand T conjugate under conjuga-
tion by an element of G (use H*{(I1I,G)=0).

11. Spaceswith Operators

The geometrical meaning o the cohomology groups d a group will
now beillustrated by an examination o spaces with operators.

For any topologica spaceX, let Aut (X) denote the group d all
homeomorphismsd X with itself. A group I operates on the space X
if @ homomorphism p: II—Aut (X)is given. Equivalently, to each aclf
and each x¢X a unique point ax =y (a*<X is given such that ax
is continuous in x for each fixed a and such that aways (a,a,) x=
# (& x) and | x=Xx. Anopenset Uin Xiscaled proper (underthe action
d 17)if aUnU=@ (the null set) whenever a==1. Any open subset
d a proper open set is proper. The group /7 is said to operate properly
on X if every point & X iscontained in a proper open set; then every
open set in X isthe union d proper open sets, so that the proper open
sets constitute a base for the topology o X. When IT operates properly,
no homeomorphism u (a)with a==1 can leave a point x fixed.

Assume henceforth that 17 operates properly on X. The quotient
pace X/I1 isthe space whose points are the orbitsd pointsd X under
the action o I1. Let the projection p: X —X/IT be the function which
assignsto each x itsorbit p X. Thus px, = x, if and only if thereisan
acll with ax, = x,. The topology o X/II is defined by taking as a base
for itsopen setsthe sets p U, where U isaproper open set d X under I7;
these sets V=p U are called proper in X/ITI.

Proposition 11.1. The map $: X —X/II is continuous. The sace
X/IT is covered by proper open SHSV ; each p~1V istheunion d digoint
open &S U, such that each redtriction p| U, is a homeomorphismU, =V .

This propositionassertsthat X is a ' covering space" for X/IT under
the map p. The U, are the sheatsdof X over V.
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Proof. If U is proper and V=pU, then 7V is the union d the
sets aU for acll. These sets are dioint by the assumption that U is
proper. Each alU is mapped by p onto V, and the open setsaU are all
proper, and map onto proper open sets in X/II, so that p|aU is
indeed a homeomorphism.

For example, let X be the real line E* and 17 the infinite (multi-
plicative) cyclic group with generator c, acting on E? by the rule ¢*x=
x+k for any integer k. Then open intervalsd length lessthan 1 on the
line are proper, so I7 acts properly. The quotient EY/IT is homeomorphic
to the unit circle S If we identify EYIT with S, p: E*— St becomes
themap p x=¢**** whichwrapstheline E*around thecircle St. Similarly,
the free abelian group on two generatorsb and c acts properly on the
Euclidean plane E% by b (x,y)=(x+k, y+17); here b is horizontal
translation and cvertical translation, each by one unit. The quotient
space E#I1 is the 2-dimensional torus S'><Si. Again, the cyclic group
d order 2 operates properly on the 2-sphere S2 by mapping each point
into its diametrically opposite point, and S#/IT is the real projective
plane. In each 0 these cases X is the " universal covering space™ o
X/IT, and IT is the " fundamental group™ o X/IT [Hu 1959].

Now consider the singular homology o X, as defined in Chap.II.

Lemma11.2. |f thegroup IT operatesproperly on X, then the singular
complex S(X) is a complex o free Il-modules.

Proof. Thegroup S (X) d n-chainsis the freeabelian group gener-
ated by the singular n-simplices T: A"+X. For each a<II the composite
aT is aso a singular n-simplex; the operators T—>aT make S, (X) a
17-module. If &,T denotes the i-th face d T, then a(4,T)=d;(aT),
hence 8= (—1)'d;: S, - S,_, is a 17-module homomorphism. Thus
S(X)isacomplex d 17-modules. To show S, (X) free, pick any subset
Xo (X (a™fundamental domain'™) containing exactly one point from
each orbit & X under 17. Then those singular n-simplices T with initial
vertex in X, constitute a set d free generators for S, (X) as a module.

Lemma1l.3. If the group I operates properly on the space X, any
T: A"X/IT can ke written as T=»T"' for ome T': 4"—X. With
suitable choice of one T' for eech T, these 7' are freegenerators o S, (X)
as al7-module

We say that T can be lifted to T'; the possibility d such a lifting
isactually a consequenced a more general fact on the lifting d maps
in a covering space.

Proof. If Tis"small"inthesensethat T'(4*) iscontainedin a proper
open subset V o X/II, and if U is any sheet over V then T can be
lifted to T'=(p|U)~T in U. The genera case can then be handled
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by subdividing A" into small pieces, lifting T in successon on these
pieces. It istechnically easier to do this by replacing A' by the n-cube
I"=I>...><I (n factors), where | is the unit interval. Since A" is
homeomorphic to |, it will sufficeto lift any T: I*—X/II. The cube
I" is covered by the inverseimages T—1(V) o proper open setsd X/I1.
Since |1" is a compact metric space, the Lebesgue Lemma providesa
real ¢>0 such that any subset d diameter lessthan ¢ liesin oned the
T-1(V). Now subdivide I" into congruent n-cubes, with sides parallel
to the axes, each o diameter lessthan ¢. Then T can be lifted in suc-
cession on the cubes d this subdivision, beginning with the cubes on
thebottom layer. When wecometolift Ton any onecube, the continuous
lifting T' will already be defined on a certain connected set o faces d
this cube and will lie in one sheet U over some proper V; the rest d
the cube is then lifted by (p|U)~1. This completes the proof.

Proposition 11.4. If II operates properly on X, while the abelian
group A has the trivial lir-module structure, then p: X—X/IT induces an
isomorphism p*: Hom,(S(X/IT),A)=Homy(S(X),A) d chain complexes
and hence an ssomorphism

o1 HN(X/IT, A)=H"(Homp (S(X),A)). (11.1)

Proof. A cochain f: S,(X/IT)—A4 is uniquely determined by its
values on the n-smplices T o X/II, while a cochain f' d S(X), as a
module homomorphism . S, (X)—A4, is uniquely determined by its
valueson thefreemodulegenerators T d S,, ( X) .Since these generators
arein 1-1 correspondence I'—T by Lemma11.3 and since (p*f) T' =
f(pT"), the result follows.

More generally, when A is any II-module, the cohomology of
Homp(S(X),4) is known as the equivariant cohomology of X with
coefficients A ; in thisgeneral circumstancethetheorem wouldstill hold if
H*(X/II,A) were interpreted as the cohomology d X/IT with "local
coefficients” A, defined as in EILENBERG [1947] and EILENBERG-MAC
LANE [1949]. The main result now is

Theorem 11.5. | f a group ZI operates properly on an acyclic space X
and if A is an abelian group with trivial lir-module structure, there is an
isomor phism

H*(XJIT, A)=H"(I,4), n=0,1,..., (11.2)

natural in A, between the cohomology groups o the quotient space X/IT
and those of the group I1.

Proof. The hypothesis that X is acyclic means that H, (S(X))=0
for n>0 and H,(S(X))=Z. This latter isomorphism yields an epi-
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morphism S,(X) —Z with kernel @S, (X). Thus the exact sequence d
17-modules

e > 51 (X) > S (X) >Z -0

is a free resolution d the trivial module Z. Hence the equivariant
cohomology d S(X) is Exty,(Z,A), which is H*(JI,A) by Cor.5.2.

The system (X, II) consisting d a topological space with a proper
group of operators17 may be regarded as an object in a category where
the morphisms o: (X,IT)— (X', IT’) are pairs p={(£,y), with5: X +X"
a continuous map and y: IT—II' a group homomorphism such that
aways & (ax)=(ya) & x for acll. The isomorphism (11.2) is natural for
these maps.

This theorem provides a geometric interpretation d all the cohomo-
logy groups o a group 17. Assuming some concepts from homotopy
theory, let Y be a pathwise connected topological space with funda-
mental group I7==, (Y). Then, if Y has suitable local connectivity,
one can construct its universal covering space; this is a space upon
which II properly operates in such wise that Y is homeomorphic to
X/I1. Suppose, in particular, that Y is aspherical (all higher homotopy
groups vanish). One can then prove that the universal covering space
X is acyclic. Thm.11.5 thus applies to show that the cohomology o
the aspherical space Y is, in fact, isomorphic to the cohomology o the
fundamental group o Y.

Notes. The fact that the cohomology of an aspherical space Y depends only
on the fundamental group was proved by Hurewicz [1935], while the expression
of this dependence via the cohomology o groups was discovered by EILENBERG-
Mac LANE [1943, 1945b], and later but indepedently by EckMaNN [1945—1946].
There is a corresponding result expressing the homology o Y by the homology
of I1, found by Horr [1945] and independently by FREUDENTHAL [1946]. All
these investigations were stimulated by the prior study & Horr [1942] on the
influence of the fundamental group on the second homology group o any space.
This line of investigation provided the justification for the study of cohomology
of groups in all dimensions and was the starting point of homological algebra
The I-dimensional cohomology groups (crossed homomorphisms) had been long
known; the 2-dimensional cohomology groups, in the guise of factor sets, had
appeared long since in the study o group extensions by ScHREIER [1926], BAER
{1934, 1935], HAaLL [1938], and FiTTING [1938]. Earlier, ScHurR had considered
projective representations ¢ o a group I7. Each ¢ is a homomorphism of I7 to the
group o projective collineations of complex projective n-space, hence may be
represented by a set of (n+ 1)><(n-+1) non-singular complex matrices A, for
x€Il with A, A, =f(x,y) 4,,, where f(x,y) is a non-zero complex number. This
/ isafactor set é)r IT in the multiplicative group C* of non-zero complex numbers.
Hence ScHuR's ‘“‘multiplicator’”, which is the cohomology group H?(I1,C*), with
trivial IT-module structure for C*. (For recent literature Asano-SHopaA {19351,
FRUCHT [1955], KocHENDGRFFER [1956].) Projective representations of infinite
groups have been studied by Mackey [1958]. The 3-dimensional cohomology
groups o a group were first considered by TeicamtLiLer [19401 in a study o
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simple algebras over a number field. The cohomology of groups has been applied
extensively in classfield theory: HocrscrHiLp {19501, TATE [1952], ARTIN-TATE

[1960].
Exercises

I. Show that a set V isopen in X/IT if and only if p~1V is open in X. (This
asserts that X/IT has the standard " quotient space" topology.)
2. Condgruct an explicit homeomorphism of A" with I™.

Chapter five
Tensor and Torsion Products
1. Tensor Products

Let G be aright R-module and A aleft R-module — a situation we
may indicate as G, g4. Their tensor product G &y 4 isthe abelian group
generated by the symbolsg & a for geG and a< A subject to the relations

€+8)Qa=gRatg'®a, gQ@+a)=gQatg®@a’, (1)
grQa=gQRQra, acd, reR, geG. (1.2)

More formally, this statement describes G®,A as a factor group
(GO 4)/S, where GOA is the free abelian group with generators all
symbols gOq, while S is the subgroup d GOA generated by al de-
ments (g+g")Oa—gOa—g'Oa, gO(a+a’)—gQa—g0Oa’, and grOa—
gOra. Then g ®a denotes the coset (g0a)F S in (GO4)/S.

The intention is that GRx A be a group in which an element d G
can be "multiplied" by an element & A to give a "product” g&a;
one wishes the product to be distributive, as assured by (1.1), and
associative, asin (1.2). More formally, let G<A be the cartesian pro-
duct o thesetsG and A, whileM isany abelian group. Call afunction f
on G=<A to M biadditive if always

fete a)=1@g.a)+/(E. a), [gata)=(ga)+/ga) (13)
and middle associative if always
fg7,a)=F(g ra). (1.4)

If f satisfies both conditions, call f middle linear. Now g &®a is middie
linear by definition, and G ®z4 is the universal range for any middle
linear f, in the following sense.

Theorem 1.1. Given modules G and x4 and a middlelinear function
f on G=<A to an abelian group M, there is a unique homomorphism
w: GRrA—+M O abelian groups with w(g®a)=1(g,a).




1. Tensor Products 139

Proof. The formulaw (g®a)=f(g,a) defines w on the generators
d G®gA4; the assumption that f is middle linear impliesthat o " pre-
serves' the relations (1.1) and (1.2)defining GQg 4 ; hencew isa homo-
morphism; it is manifestly the only such. This proof is a shorter state-
ment o the following argument: Since GOA isfree abelian on the gene-
rators gOa, there is a uniqgue homomorphism w': GO4—-M with
®’'(g0a)=f(g,a). The assumptions on f show that «’ maps the sub-
group S above into zero; hence w’ factors as GOA—-(GOA)|S->M;
the second factor is the desired w.

Thistheorem hasavariety d uses. First, it givesa universal property
d My,=G®rA which characterizes this group and the middle linear
function ®: G=<A4—-M, uniquely (upto an isomorphisn d M,). Hence
the theorem may be taken as a conceptual definition o the tensor
product. Next, the theorem states that every middle linear f can be
obtained from one such function & followed by a group homomorphism
w; in this sense, the theorem reduces middle linear functions to homo-
morphisms. Finally, the theorem states that a homomorphism w with
domain the tensor product G &z A is uniquely defined by giving the
images d the symbolsg ®a under w, provided only that these images
are additive in g and a and middle associativein R. This last version
we shall use repeatedly to construct mapsw.

For example, if y: Gp—G% and a: z4—xA’ are R-module homo-
morphisms, then in G' Qg A’ we can form the expression yg Qaa, which
is middle associative and additive in geG and acA. Hencethereis
a homomorphism yQu: G Qr A—G' R A’ with (y Qa)(g Qa) =yg Qua.
Clearly | ; ®1,=1, and, for matching maps, yy' Qua'={y Ka) (' Qa');
hence GQrA is a covariant bifunctor d A and G. Moreover

YRe+pf=yRQatyQ@BF, M+ Qu=RQua+y,RQa. (1.5)

These identities can be applied to a direct sum diagram to give an iso-
morphism
£ GQRr(AD B)=(G R 4)® (GQg B). (1.6)

Alternatively, since (g Qa, g ®5b) is middle linear as a function d g
and (a,b),wecan construct ¢ directly by Thm. 1.1 asthat homomorphism
£ G Qp (4D B) (G Rp A) @ (G R B) with { [g®(a,5)]= (e R4, g QB);
¢~ may aso be constructed from g Qe —g & (a0)and g ®b—>g & (0,b).
The ring R may be considered as either a left or a right module
over itself. For modules G and zA one has isomorphisms (of abelian

groups)
GCRrR=G, R®zA=A, (1.7)

given by g Q7 —gr, rQa—ra.
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If ¢: S—R is a homomorphism d rings, each right R-module G
becomes a right S-module G, when the operators are defined by gs=
glos). Similarly, each left R-module A becomes a left S-module ,4;
this is "pull-back along ¢”’, asin 1116. If ¢: T+S is a second ring
homomorphism, G, =(G,),-» While (, 14 =,(,4), in opposite order.

Lemma 12. (The Pull-back Lemma) For a ring homomorphism
Q: S+R ad nodules Gg, g4, gC there are natural homomorphisms

ou: (G) Rs(,d) >G Rpd, €F: Homg(C,4)—>Homs(,C, 4). (1.8)
If ¢ is an epimorphism, both gy and ¢ are isomorphisms.
Proof. For geG, acA, and s¢ S,

gsQra=go(s) Qra=g RQre(s) a=g Rgsa,

D g@rais S-middle associative. Thus o4 (I®s4) =g Qra determines
a homomorphism, by Thm.1.1. If ¢ (R)=S, g4 hasan inverseg Qga—
g Qsa. Similarly each R-module homomorphism f: C—4 isan S-module
homomorphism, and conversaly if ¢ (S)=R.

We normally write the modules G,, ,4 without the subscript e
when thisisindicated by the context GRg 4.

An abelian group A is a module over the ring Z d integers, so our
definition d tensor product includes that o the tensor product G &4
d two abelian groups (here ® is short for ®,). In this case, any bi-
additive function f (g,a) is automatically middle associative, for, with
m any positiveinteger,

fimg, a)=Ff(g+---+g a)=f{g @)+ -+ a)
=f(g’ a‘++a)=f(g: ma)

This holds aso for negative m, since f(— g,a)=—1f(g,a)=f(g,—a).
Hence the middle associativity condition (1.2) may be omitted in
defining ®;.

Tensor products d finite abelian groups can be explicitly computed.
For each positiveinteger m,let Z,, (g,) be the cyclicgroup with generator
ge O order m, while mA denotes that subgroup d A which consists
d all multiples ma, acA. We claim that an isomorphism

n: AmA=2,(g) D4 (1.9)

is given by settingn (a+ mA)=g,Qa. Indeed, sinceg, Qma=mg, Qa
=0, the product g,&e depends only on the coset d a, modulo 74,
hence 5 is a homomorphism 4/mA-—>Z,, & A. To construct an inverse
for n, notethat any generator o thetensor product hastheform kg, ®a,
for some k¢Z; since the product ka is distributive in both factors, the




2. Modulesover Commutative Rings 141

formula y (kg, ®a)=ka+mA provides a homomorphism from right
to left in (1.9). Clearly yn=1, while yy(kg,Qa)=g,Qka=kg,Ra,
so dsonyp=1. Thereforen and y are mutually reciprocal isomorphisms,
proving (1.9).

We aso have Z&A4 =4 by (1.7). Snce any finitely generated
abelian group isa direct sum o cyclicgroupsZ and Z,,, these formulas,
with (1.6), provide a calculation d G®A for G finitely generated.
Note also that GR A4 =4 KG.

Exercises
1. Prove Z,,®Z,=Z(,, »j, Where (m,n) is the g.c.d. of m and n.
2. Show that G®p 2 4, = X G®r 4,.
3. Show that the tensor product of two free modules is a free abelian group.
4. If Q isthe additive group of rational numbers, Q®0=Q.

2. Modules over Commutative R ngs

The meaning o tensor products may be illustrated by examining
other special cases. If K is a commutative ring (asusual, with an iden-
tity), then any left K-module A can be regarded as a right K-module,
simply by defining the multiple ak, with k<K on the right, as ka. The
rule a(kk)=(ak) k then follows, because K is commutative, by the
calculationa(kk’) = (kk) a=4&'(ka)=(ak) k'; the other axiomsfor aright
module follow even more directly. With this observation, it is fruitless
to distinguish between left and right modules over K; instead we speak
simply d medules and write scalar multiples on either side, as may
be convenient.

For modules A and B over a commutative K, the tensor product
A®y B isnot just an abelian group, but is aso a K-module, with mul-
tiples defined (on the generators) as

Ra®b)=(ka)Qb, (or =a@kb). (21)

This definition leads to a variant & Thm.1.4. Let A, B, and M be
K-modules. Cal afunctionf on A xB toM K-bilinearif f (a,b) is K-linear
in each argument when the other is fixed (e.g., f (ki a+ksa,, b)=
Ryl ay, b)+k2f (a, 8)). Thus a®b is a K-bilinear function f on A xB
to AQkB, and Thm.1.l impliesthat any K-bilinear functionf on A=<B
to M can be written as f (a,b)=w (a® b), for a unigue homomorphism
w: A®xB —-~M o K-modules.

Since A®k B isstill a K-module, one may form iterated tensor pro-
ducts such as (A®B) ®kC; this iterated product is associative and
commuitative, inthesensethat §[(a®b)Qci=a® (b&®c) and 7 (a®b) =
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b& e define natural isomorphisms
£ (ARB)RC=AR(BRC(C), 1: AQB=BRA4 (2.2)

d K-modules, with & short for Q. The function (2 ®b) K¢ is K-
trilinear (i.e., K-linear in each argument separately) and is universal
for K-trilinear functions on 4><B>C to a K-module. The same holds
for K-multilinear functions in any number of arguments.

Similarly, (cf. 1.6) Homg(4,B) becomes a K-module if to each
f: A—»B the multiple kf: A—B is defined as (kf)(a)=k (fa).

A moduleover afield Fissimply a vector space V, and Homg (V, W)
is the vector space d all linear transformations f: V—W. Suppose
that Vand W havefinite bases{e,, ..., ¢,} and {#,, ..., A,}, respectively.
This meansthat V is a direct sum »} Fe; d copiesFe; d the fied F.
Since ""Hom' carries finite direct sums to direct sums, Homg(V, W)
is a vector space d dimension mn, as in the usual representation d
linear transformations f: V—W by m># matrices. Since the tensor
product is additive, V&zW has a basis d mn vectors ¢,&#4;, hence
has dimension mn. In particular, any vector » d V&gV has a unique
expression as u= > x"(¢;Q¢;); the m? constants x*’¢F are known
as the ""components” d the *"tensor’* u relative to the basis {¢;}. From
a change d bases one calculates the corresponding change in these
components #*/. Classica tensor analysis, lacking a proper conceptual
definition d the tensor product, described twice covariant tensors
(elementsu d V&EV) strictly in terms o such components and their
transformations under change d basis. A tensor with one covariant
and one contravariant index is, by definition, an element d VzV*,
where V*=Homg(V, F) is the dual space. Now the given basis {¢;}
for V determines a dual basis {¢} for V*. Any tensor in V®zV* hasa
unique representation as a sum 2 )x'j(¢; Q¢f), 0 is determined by com-
ponents «*;, for 4,7 =1, ..., n.

Exercises

1. If anew basis {¢}} in the finite dimensional space V isgiven by the formulas
;= X, t;%;, calculate the resulting transformation in the components of

a) atwicecovariant tensor in V@QgV';
b) atensor in V@gV*.

2. Describethe transformation of componentsfor tensorscovariant in v indices
and contravariantin s indices.

3. Bimodules

If R and Sare two rings, an R-S-bimoduleA — in symbols g4 —
isan abelian group whichis both aleft R-moduleand a right S-module,
with always (ra)s=r (as). For example, any ring R isan R-R-bimodule;
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any left R-module can be regarded as an R-Z-bimodule; any K-module,
with K commutative, is a K-K-bimodule, etc. f A and B are R-S-
bimodules, we denote by Homg (4, B) the abelian group d all bi-
module homomorphisms f: 4—B; that is, d all those group homo-
morphisms f with r(fa)s=f (ras) aways. A bimodule R4: can be
pulled back by ring homomorphisms g: R’~R and ¢: S’>S to give
an R’-S’-bimodule ,4,.

The functors Hom and & carry suitable bimodules into bimodules.
To show how thistakes place, let T, R, and Sbe any three rings. Then
we have the implication

1Gr & gAs = 1[GRrA]s, (31)

where the bimodule structure indicated on the right is defined on
generators, according to Thm.1.1, by t(g&«)s=tg ®as. Notethat the
formula t(g @a)=tg&®« which makes GR®A a left module over T is
essentially the same as the formula y (g ®4) = (yg)®a which makes
GReA a covariant functor & G Similarly there is an implication

sCr& 7Ar = 7[Homg(C, 4)]s, (3-2)

where the bimodule structure on the right is defined for each f: C+A
by (tfs)(c)=¢[f(sc)]. The reader should show that this does produce
a T-S-bimodule, noting that the given bimodule associativities s(cr)=
(s9r and t(ar)=(ta)r are used to insure that tfs is indeed a homo-
morphism d right R-moduleswhen f isone. Observea so how the contra-
variance & Homg in C changes left operators d S on C into right
operators d S on Homg (C,A). In case S=T, the group Homg 5 (C,A)
d bimodule homomorphisms can be described as the set d all those f
in the S-S-bimodule Homy (C,A) with sf=fs. For left-module homo-
morphisms, the analogue d (3.2) is the implication

Cs & pAr = s[Homg(C,4)]r. (3-3)

An endomorphism o the right R-module A is by definition an R-
module homomorphism f: A--A4. Under addition and composition the
set o all R-endomorphisms d A form a ring Endy(4)=Homg (4, 4)
with identity element 1,. The equation (fa)r=f (ar) which states that
f isahomomorphismd right R-modulesalsostatesthat A isan End, (A)-
R-bimodule. If g4 is a bimodule, the left multiplication I, by s€S,
defined by L, a=sa, isan R-endomorphismd A, and the correspondence
s—1I, is a ring homomorphism S—EndzA. Conversaly, given 4 and
a ring homomorphism S-»End;A, pull-back along this homomorphism
yields a bimodule ¢4%. In our treatment d Extp(C,A) (Chap.11l),
we showed how to multiply an element S,ecExt%(C,A) on the left
by a homomorphisma: A—A’ and on theright by ay: ¢'—C, and we
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proved (Lemmalll.1.6) the congruence (aS,) y=a(S,y). For endo-
morphismsa and y, this meansthat Ext% (C,A) isan End, (4)-Endz(C)-
bimodule. If we pull back this bimodule structure along T—EndzC
and S—Endz4, we get theimplication
Cr& sAr = [Extg(C,4)]r, (3.4)
exactly asin (3.2)for n=0.
A function o two variables f(a,b) can be turned into a function 7/
o thefirst variable a whose values are functions o the second variable,
according to the formula[(nf) a] b=f (a,b). Thischanged simultaneous
arguments to successive arguments appears in many connections; for
example, in the treatment o the topology d function spaces. In the

present context it takes the following form, which we call the adjoint
associativity d Hom and &:

Theorem 31 |f Rand S areringswith A, B, and C modules in the
situation 4, gBs, Cs, thereisa natural isomorphism

n: Homg(A® gB,C)=Homy (A Homg(B,()) (3.5)
d abelian groups defined for eech f: AQ, B—->C by
[(mha]l(®)=[(a®D), acA, beB. (3-6)

The proof is mechanical. First check that (3.6) assigns to each acA4
and each S-module homomorphism f: AQ,B—~C a function F=
[(mf)a which, asafunctiond b, isan S-homomorphism [(nf)a]: B—~C.
Next check that 7f, as a function d &, is an R-module homomorphism
d A into Homg (B,C). Finally check that % (f,+f,) =nf+nfs, S0 that
7 isa group homomorphism, as asserted.

To show that # is an isomorphism, construct an inverse map ¢.
Tothisend, take any right R-module homomorphismg: 4—Homg (B,C),
and consider the function (ga)b o acd4, b¢B. Any r in R operates on
aon the right and on b on theleft, and

[e(an)](®)=[(ga)7]b=(ga) (rD),

this because ¢ is an R-module homomorphism and because o the way
an operation d r on a homomorphism ga: B—C was defined. This
equation is the "middle associative' property for the function (ga)b
d the elements a and b. Hence, by Thm.1.1, a homomorphism
{g: A ®rB —C isdefined by setting

€e)(aQb)y={(ga)b.

One checksthat ¢ : Homy (A, Homg (B,C))-»Homg (4 ®% B, C), and that
both composites { and 5 are the identity. Both domain and range



3. Bimodules 145

d ¢ are functors d A, B, and C, covariant in C but contravariant
in A and B. Moreover { and 5 are natural homomorphisms between
these functors.

Corollary 32. If U, R, S, and T areringsand y4y, &Bs, 1Cs are
bimodules, then the map n o (3.5) is aisomorphisn d T-U-bimodules.
IfU=T, itinducesa natural isomorphism

7' Hompg(A®g B, Q) =Homg ; (A, Homg (B, C)). 37

Proof. The right U-module structure on the terms d (3.5) and the
description d these terms as functors d A are given by identical for-
mulas. Hence the fact that % is natural (in A and C) impliesthat # is
a module homomorphismin U and T. In case U=T, this yields (3.7).

As another application we prove
Corollary 3.3. If P is projective as an R-module, while the bimodule
rP5 is projective as an Smoddle then PR P’ is a projective S'module.

Proof. To say that P is S-projective means that to each epimor-
phism B -»C o S-modulestheinduced map Homg (P, B) —Homg (P, C)
is an epimorphism (of R-modules). Since Pis projective asan R-module,

Homp (P, Homg (P’, B))—>Homg (P, Homg (P’, C))

is an epimorphism. Application d adjoint associativity to each side
gives the statement that P&Q P’ is S-projective.

A simpler analogue d adjoint associativity is the associativity o
the tensor product. In the situation 4z, =B, sC, the correspondence
(a®b & c-+a® (b&c) yiddsthe natural isomorphism

(AQr B) ®sC =4 R (BRsC). (3.8)
If in addition ;4 and Cr, thisisan isomorphism d U-T-bimodules.
We normally identify the two sidesd (3.8) by thisisomorphism.
For modules 4, B we aso make the identifications

A®RR=A» R®RB=B (39)

by the natural isomorphisms ar-—»ar, r Kb—rh.

Exercises

1. If A and B areleft R-modules, show that Homgz(4, B) is an R-R-bimodule,
and that the subgroup Hompg(4,B) consists of those group homomorphisms
f: A— B with rf=fr.

2. For Gg, g4 show that G®g4 is an Endg(G)-Endg(4)-bimodule.

3. For R-Sbimodules C and A define the group Extg.g(C,A) of bimodule
extensionsaof A by C.
Mac Lane, Homology 10
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4, Establisha " permuted” adjoint associativity
Hom(4®B,C)= Hom (B,Horn(A,C)).
Deduce that if yPg is a projective U-module and gP” a projective R-module,
then PP isa projective U-module.

5. In the situation 4k, Bk, Ck, with K commutative, establish the natural
isomor phism Homg (A Homg (B, C))== Homy (B, Homg (A ,C)) of K-modules.

4. Dual Modules

The dual or conjugate d a left R-module A is the right R-module
A*=Homg (A,R). Thusan elementd A* isan R-modulemapf: 4A—R,
whilefr: A-—R is the R-module map defined for each ac A by (fr)a=
(fa)r. The dual  an R-module homomorphism «: A—A4’ is a*=
Hom(x,1): A’*—A*, s0 the dud is a contravariant functor on left
modules to right modules. Similarly, the dual d a right R-module G
isaleft R-module G*.

For left modules A and B thereisa natural isomorphism
(AD B)*=A*® B*. (4.1)
Indeed, in the direct sum diagram A= A® B=; B take the dual o
each object and each map; the result is still a direct sum diagram,
with the injections ¢,: 4—+A4® B and ¢ converted into projections
% (AD B)*—A* and .

By the propertiesd Hom, A > B -»C short exact gives C* » B* +A*
(left) exact. In other words, if A<B, then (B/4)*=C* is isomorphic
to that submodule & B* which consists d all those f: B—R which
vanish on A. Cal this submodule the annihilator o A, in symbols
AnnihA; thus

(B/A)*=Annih ACB*,  B*/Annih4 > A*. (4.2)
For each left R-module A, there is a natural homomorphism
@q: A—>A**=Hompg(Homg(4,R),R), (4.3)

which assigns to each acA the map ¢a: A* >R with (¢a) f=f(a).
In other words, for fixed a, regard the expression / (a) as alinear function
d theelement fe A*.

Theorem 4.1. IfL isafinitely generated and projectiveleft R-module,
then L* is a finitely generated projective right R-module. For such
L, @: L>L** isa natural isomorphism.

Proof. If F is free on the generators e, ..., e,, we may define
eementsef in F* by

de)=1, I 1=7,
=0, if 257.
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Any f: F—R is uniquely determined by the elementsfe;=7,;€R, hence
t=2 ér;, and F* is free on the generators é, ..., €. They are said
to be the dua basstoe,, ..., e,. Now ¢ maps the ¢; to the basis ele-
ments dual to the ¢/, s0 gz: F—F** is an isomorphism.

If L isfinitely generated and projective, there is such an F with
F»L and F=L®L'; L' is a0 finitely generated and projective.
Hence F*~L*@® L'*, and LO L ~F=~F**=~L**@ L'**; this iso-
morphism carries L onto L** by ¢, , whence the conclusion.

For example, if R is afield, any finitely generated module V (i.e.,
any finite dimensional vector space) is free. For such spaces V** =V,
and, for V> W,

(VI/W)*=AnnihW; V*/AnnihW =W*.
For left modules A and C there is a natural homomorphism
{: A*QrC—+>Homg(4,C) (4.4)

defined for each f: A—R and each ceC by [{ (f®c¢)]a=f (a)c for all a.
One checks that £ (f®c¢) is a module homomorphism 4—C, and that
this homomorphism is biadditive and middle associativein f and ¢

Proposition 4.2. If L isafinitely generated projective left R-module,
then ¢ is a natural isomorphism{=¢;: L* & xC=Homg(L,C).

For example, if V and W are finite dimensional vector spaces, take
L=V*and C=W.Then L*=V, 0 { gives VW =Hom (V*, W). Thus
tensor products d such vector spaces may be defined via Hom and
the dual. Alternatively, V@W isthe dual d the space d bilinear maps
o V=W to the basefield.

Proof. First supposethat L=F isfree on the generatorse,, ..., ¢,.
With the dual basis ¢, ..., €', each element & F* ®C has a unique
representation as Y ¢'®c; for constants ¢;cC. But { (3 ¢ Qc)=f is
that homomorphism f: F—C with f(e;)=¢;, j=1,...,n. Snce F is
free, any f: F—C is uniquely determined by its values f (¢;) for all j.
Hence {5 is an isomorphism. The case when L is a finitely generated
projective is now treated asin the proof d Thm.4.1.

Proposition 4.3. For modules L and B over a commutative ring K,
with L finitely generated and projective, there is a natural ssomorphism
p: L*QB*=(LQ B)*.

Proof. For any two K-modules A and B a natural homomorphism
y: A* Q B* ~(AQ B)* isdefined for fc 4*, gc B* by setting
[v(f®R8)](a®b)=F(a) g (B)<K.
This map y is the composite

A* @ B*%> Hom (A,B*)=Hom (A, Hom (B,K)) =Hom (4 ® B, K)
10*
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d ¢ d (4.4) with adjoint associativity. The latter is aways an isomor-
phism, and so is¢ when A= L isfinitely generated and projective.

Note. For further discussions of duality see DIEUDONNE [1958], MoORITA
[1958], Bass [1960], or Jans [1961].

Exercises
1. For each g4, show that 6(a®f)=fa is a bimodule homomorphism
6: A®zA*>R.

2. For modules z4,Gg, a bimodule homomorphismy: A®zG—R is called a
pairing. Show that p determines yg: GtA* such that y=0(1®yg), for 8 asin
Ex1.

3. For each R-module A, prove that the composite

A% BUY, gene BT 4o
istheidentity.

5. Right Exactnessd Tensor Products

The tensor product preserves short right exact sequences:

Theorem5.1. If G is a right R-module, while D5 B%C is an
exact sequence d left R-modules, then

G D 856 R B 2% 6@ C—0 (5.1)

i san exact sequence (of abelian groups).

Proof. With the cokernel L of | ® 8 manufacture the exact sequence

G R D22 G R B> L—>0.
Compare this with (5.1). The composite (1®0) (1QB8)=1R 0B is zero,
0 | Qo factors as ¢’y for some a': L—-GQgC. Since a(B)=C, there
istoeachcin C abwithab=c. By exactnessat B, each (g &®b) depends
only on geG and ceC, but not on the choice d b. Moreover, n(g Q5)
is biadditive and middle associative. Hence Thm. 1.1 givesew: G &g C —L
with o (g®c)=%(ERb), and dw=1, we'=1. Thus w:GRQC=L
makes (5.1) isomorphicto the manufactured sequence and hence exact.

Cordlary 5.2. The tensor product of two epémorphisms is an epi-
morphism.

Proof. By the theorem, if T and a are epimorphisms, so are T &®1
and 1®e, hence also their composite (r+®1) (1Qo)=1tR0o. For the
kerne o T®o, see LemmaVIII.j3.2 or EX.3 below.

In Thm. 5.4 it would not be trueto state that ashort exact sequence
(x,a): A=B —>C yields a short exact sequence like (5.1) becausewhen
X: A—B is a monomorphism 1®x: GRQrA—>GXr B need not be a
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monomorphism. To illustrate this, take R=2, A=2Z (the group o
even integers), B=Z, » the injection, and G=2,(g) a cyclic group of
order 2 with generator g. Then, as calculated in (1.9), Z,(0)®(22) is
the cyclic group d order 2 with generator g ®2, while

(1Q%) (g®2)=gQ2=2gR@1=01=0,

D gR2isin the kerne d 1&Qx.

This example can be reformulated thus. For a submodule A<B
one cannot assume that G @ A<G® B, because an element gQa o
G®A may be non-zero while the "*same’* element g @« becomes zero
in GQB. For these and related reasons we have insisted from the
start that the incluson A< B be represented by a map x: 4->B.

In this example, the integer 2 can be replaced by any integer m.
Thus we can describe certain elements in Ker(1®x) for R=Z and
(*,0): A»B-C any short exact sequence o abelian groups. These
elements g ®a arise whenever there is an element b with both xa=mb
and mg=0 for the same integer m, for then

(1Q7) (Qa) =g Rra=g@Mb=mgRb=0Qb=0.
Now xa, and hence a, is determined by b, while g ® a depends only on
c¢beC. Indeed, ab=c¢b by exactness implies ¥’ =b+xa, for some a,,
whence x(a+mag)=mb’ and gR(a+may)=gRa+gRmay,=gRa.
The kernel element g« depends on g, meZ, and ab= c; furthermore
mc=m (ab)=a (mh)=oxa=0, by exactness. By way d notation, set

kg, m,c)=gRac Ker(1Qx), mg=0=mc; (5.2)

here aiis any element o A such that xa=mb, ab=c for some b; that
is, aisobtained by “‘switchback’ asa==x"1m ¢~1c. I n the next section,
we shall show that the elementsk (g,m, ¢) d (5.2) generate Ker (1 Qx).

These elements k (gm,c) satisfy certain identities. They are additive
in g and in c; for example, additivity in ¢ meansthat

k(g’ m, "1+cz)=k(§: m, 01)+k(g, m, 02) (53)

whenever mc,=0=mc,. For any two integers m and n, one calculates
that
k(g,mn,c)=Fk(g, m, nc) (5.4)

whenever mg=0, mnc=0, and that
k(g,mn,c)=k(gm,n,c) (5.5)

whenever gmn=0, nc=0. Here we have written gm for mg because
we can consider the abelian group G as a right module over Z. These
relations will now be used to definea new group.
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Exercises
1. If A nB, show that each element in Ker (A®2Z,,—~B®2Z,,) has the foom
k(c,m, 1) for 1 thegenerator o Z,,.

2 If yisatwo-sided ideal in thering R show that the map a®(r+ J)— ar for
a€/ yields an epimorphism J®g(R/J)—=>J/J? of R-modules. If j?% 7 prove that
the injection J->R induces a map J®z(R/]) - R®g (R/J) which is not amono-
mor phism.

3. If (Y, t):6+H>»Kand (§,a):D->B-»C areexact, then t®c: HQrB »
K®zC haskernd 5 (G®B)ufs (H®D) .

6. Torson Productsd Groups

For abelian groups A and G we definethe torsion product Tor (G,A)
as that abelian group which has generators all symbols (g, m,a), with
meZ, gm= 0in G,and ma=0in A, subject totherelations (" additivity"*
and "'dide"" rulesfor factors =, »)

(Gtgam, ay=<,m a>+<g, may, gm=0=ma, (6-1)
(g, M, ay+ayy=<g, m, ay+<g, m a),  gm=0=ma, (6.2)
{g, mn,a>=<_gm,n,ay, gmn=0=na, (6.3)
g, mn, a) =g, m, na), gm=0=mna. (6.4)

Each relation is imposed whenever both sides are defined; in each
case this amounts to the requirement that the symbols on the right
hand side be defined. The additivity relations (6.1) and (6.2) imply
that <0, m,a)=0=(g,m, 0>. Hence Tor (G,A)=0 when A has no de-
ments (except 0) d finite order. Also Tor (A G)=Tor (G,A).

If a: 4—A', thedefinition a, {g, », a)=(g,m,«a> makes Tor (G,A)
a covariant functor o A. It islikewise covariant in G. From (6.2)one
deduces {x+f8),=2a, + B and hencetheisomorphismTor (G,4,D A,) =
Tor (G,A,)®Tor (G,A,). Thus to calculate Tor (G,A) for finitely gener-
ated groupsit will suffice to make a calculation for G finite cyclic.

For G=Z,(g,) a cyclic group o order q and generator g,, there is
an isomorphism

¢ A=Tor(Z,(g), A), (6.5)

where ,4 denotes the subgroup o those elements ac A for which ga=0.
Indeed, each a€, A4 yields an element {a={g,,q,a) in Tor(Z,,A); by
(6.2), ¢ is a homomorphism. To find a homomorphism # in the reverse
direction, write each element d Z, as g,k for some k<Z; each generator
o the torsion product then has the form {g,k,m,a) where ma= 0 and
mk=0 (modq).With n=mk/g, (6.3)and (6.4)give

{8k, m, ay=_gy, km, ay=<gy, 4, na>.
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This suggests that % be defined by 7 <{g,%,m,a)=(mk/g)a. The reader
should verify that this definition respects the defining relations (6.1)
to (6.4), in the sensethat # carries elements defined to be equal in Tor
into equal elements o 4. This shows that % yields a homomorphism
n:Tor(Z,, A)—,A. Furthermorenla=a, while the calculation displayed
just above shows that {n=1. Therefore and { are reciprocal isomor-
phisms, as asserted.

For a fixed cyclic group, the isomorphism(6.5)is natural in A, but
depends on the choice d the generator for the cyclic group Z,.

The torsion product, born o the inexactitude d &, does measure
that inexactitude as follows.

Theorem6.1l. If E=(x,0): A>>B—»>C isanexact sequenced abelian
groups, then each abelian group G gives an exact sequence

3 (6.6)
B 24285 6RB>GRC 0.

The maps are those induced by » and a except for E,, which is defined
on each generator d Tor (G,C) by the formula

E {g,m c>=Ek(g, m,c) (6.7)

for k asin (5.2). Thismap E, isnatural when its arguments are considered
as bifunctors of E and G.

0—Tor (G,A)—Tor (G,B)™ Tor (G,0) }

Proof. E, isa homomorphism because the identities already noted
in (5.3), (5.4), and (5.5) for k match exactly the defining identities for
Tor. Naturality isreadily proved. Since each k (g, m,c) liesin Ker (1Q#x),
one has (1Qx} E,=0, and one aso verifiesthat E,0,=0. Asusual,
the crux d the exactness proof lies in the demonstration that each
kernel is contained in the corresponding image.

It suffices to prove this, we claim, in the case when G has afinite
number of generators. As a sample consider exactness at G A. An
dement u=3, g, ®a; & GR A involvesonly afinite number d elements
d G. If itsimage (1Qx*)U=2 g, Qxa;iszeroinG® B, it is zero because
d afinite number d defining relations for G& B; these relations again
involve but afinite list 4, ..., 4, d elementsd G. Now take G, to be
the subgroup d G generated by all the elements g, ..., g,, #, ..., A,
which have occurred, and let ¢: G,—G be the injection. Then #,=
D8 Ra; is an element o G, @ A with 1 ®1)u,=u. By naturality the
diagram

Tor (Gy, C) 25 6,04 =% ¢, ® B
lx. lz@l ll@l
Tor(G,C) 25 6R4 2=2% ¢ B
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commutes, and we are alowed to assume the top row exact. Since G,
contains all the elements k;€G used to show x,%=0, these same ele-
ments will show x, u,=0 in G, B. By exactnessd thetoprow, thereis
aty,cTor (Gy, Q) With E ty=1,. BULE, t,2=(®1) E fo= (1 Q1) #y=1%;
this proves the bottom row exact at G R 4.

This argument depends not on the particular form o the definitions
o Tor and &, but only on the fact that these groups were described
by generators and relations.

Return to the proof o exactness. Now Gisfinitely generated, hence
representable as a direct sum o cyclic groups. Since both Tor and &
carry direct sumsinto direct sums, the sequence (6.6) is the direct sum
d the corresponding sequences for cyclic groups G. If G=Z is cyclic
infinite, the torsion products are all zero and the sequence isisomorphic
tothegiven sequenceE. If G=2Z,isfinitecyclic, the variousterms have
been calculated in (1.9) and (6.5); the calculations amount to a diagram
in which the central portionis

..>Tor(Z,, B) > Tor (Z,,C) 2> Z,QA —>---

Tt TC n
B - C 55 404 ...

Y g q

In the second row, define Ey. by the switchback rule Eyc=x%~1gg~!c
+¢4; with this definition this diagram is readily seen to be commu-
tative. Sincen o (1.9) and £ o (6.5) are isomorphisms, the exactness
o the top row is now reduced to the exactness d the bottom row,
which readsin full

0->;A—,B—,C=¥> 4jg 4—>BJjgB—~C|qC 0.

Exactness here may be verified from the definitions o the terms and
the exactnessd E. For example, if x (a+ ¢gA4)=0in B/¢B, then xa=gb
for some b¢B. Thus a(gb)=0, hence ab= c¢,C; the very definition of
the switchback yields Ey.c=a+ gA.

We leave the reader to prove

Theorem 6.2. The following conditions on an abelian group G are
equivaent:

(i) G has no dements o finite order, except O;
(ii) Tor (G,A)=0 for every abelian group A;
(iil) If %x: A—>B is a monomorphism, 0V IS 1Qx: GRA—-GR B,

(iv) Any short exact seguence remains exact wpon tensor multiplication
by G;

(v) Any exact sequence remains exact when tensored with G,
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Such a group G is said to be torsion-free (condition (i)).

A different description d the generators o Tor (G,A) is useful for
generdization. The triple (g, m, a) determines three homomorphisms

GEZEZ, v Z=Z% 54

by ut=g, 01=m, vi=a. Regard L: Z<«Z as a chain complex, zero
except in dimensions L,=Z2= L,; sSinceud=0, u: L—G isa chain com-
plex over G. Regard the dual L* as a chain complex a*: L§ —L¥ over
A viay: L¥+A. Thetriple (g, m, a) has become atriple(p,L,Vv),where

L and itsdual L* are chain complexes (of "'length™ I),
u: L+G andv: L* >4 are chain transformations.
The dlide rules (6.3)and (6.4) can be written as one rule
g'ng,ma>=LKg", m' , may;, nym=mn, gm=0=ma. (6.8)

If m and m determine chain complexes L and L', nym=m"n, makes

L: 2227
o, Il
cz &z

commutative, hence g: L—L’ a chain transformation. Now g’ and a
determine y': Lg=Z—>G and v: L¥ -4 by p'1=g’, v1=a and py'e1=
g'ng, vo*1=mnya. In this notation, the slide rule (6.S)becomes

(o, Lv)y=(w, L', ve*), e:L->L"

Exercises
I. For both sides defined, prove{g, my+ m,, a) ={g, m;, a) + (g my, a).

2. Let Q> Z bethe additive group o rational numbers, and let T(4) (the" tor-
sion subgroup*?) bethe subgroup o A consisting o all elementsd finiteorder in A.
Establish a natural isomorphism Tor(Q/Z,A)  T(4).

3. If 0, is that subgroupd Q consistingd all rational numberswith denominator
some povver o p, describe Tor (Q,/Z, A).

4. Investigate Tor (G,A) when its arguments are infinite direct sums.

5. If A and B are finite abelian groups prove that A® B=Tor (A,B) (The
isomorphism is not natural).

6. Show that Tor (G,A)=o¢if for each element a o finite order k in A and each
g o finiteorder 7in G onealways hask and ! relatively prime.

7. For moduies Gg, g4, let T(G,4) be defined by generators(g v, a)for
gy =0=va and relations (6.1) through (6.4). Show that the sequence (6.6) with
Tor replaced by T need not be exact at G @z 4.
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7. Torsion Productsof Modules

For fixed »=0 we consider chain complexes L d length =,

L: L2, <&, &L,
with each L, a finitely generated projective right R-module. The dua
L* =Homg(L,R) can dso be regarded as a chain complex L*, with

L} as the chains o dimension »—k,

R 4.0 £ LAY 5 DL 5 5
Each L} is aso a finitely generated projective left module, and
8y: LY —~L¥. ,isdefined fromd,,,: Ly, 1 —L, asd,=(—1)*+' ¥, ,. Here
and below, we could equally wdl require the L, to be finitely generated
and free; the same then holds for the L}.

If G is a right R-module, regarded as a trivial chain complex, a
chain transformation u: L—G is a module homomorphism gy: Lo—>G
with gy 8=0: L, -G, whileachain transformation v : L* —zC isamodule
homomorphism v: L¥ —C with v8=0. For given modules G and zC
we take as the elements d TorX (GC) all the triples

t=(u, L,v), p:L->G, »:L*>C,

where L has length » and u, v are chain transformations, as above.
If L' isa second such complex and p: L—~L' a chain transformation,
then so is the dual g*: L'*—L*. Given u’: L'~+G and v: L*—C, we
propose that

(v'e, L,v)=(u', L', vg¥). (7.4)

These maps may be exhibited by a pair & commutative diagrams

G« Ly« -+« 1L, Ly > . >LY>C
| e e af |
G Ly« -« 1L, , L*—~... > L¥->C,

resembling the definition o the congruence relation on Ext" by mor-
phisms d long exact sequences. Formally, the equality relation on
Tor, is to be the weakest equivalence relation in which (7.1) holds;
this means that two triples in Tor, are equal if the second is obtained
from the first by a finite succession o applications o the rule (7.1).
This describesTor, as a set.

Thisset isa functor. Indeed, for maps#n: G—>G', y: C—C’ therules

e (. Lv)=(pu, L,v), vy(p,L,v)=(u,L,yv) (7.2)
preserve the equality (7.1) and make Tor, a covariant bifunctor.
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Two triples ¢, and ¢, in Tor,(G,C) have as direct sum the triple
(12, L2, ) © (o, L2 v9) = (1, D i, L'D L2, 9, D)

in Tor, (GG, CHC). f t,=¢ and #=¢# according to (7.1), then
4LBt,=1DP 4. If wgisthe automorphism o G Ggiven by w(g;, g) =
(82, &1), then (wg)y (D £) = () (1, D 1), as one sees by applying (7.1)
with ¢: L1 L2 L2€D L1 the map interchanging the summands.

Now Tor, (G, C) is an abelian group when the addition is defined by

tit+ta= (Vo) (Ve)x (1D 18y) € Tor, (G, C), (7.3)

with V;: GBG+G and I/, the codiagonal maps (111.2.1"). The proof
d the group axioms is direct. The associative law follows from the
associativity o the codiagona maps. The commutative law followsfrom
(06)x (5D ) = (wc)s (2P 4) and V; wz =V;. As a zero for the addition
we may take (0,0, 0), where the middle zero designates the zero complex
d length n, while the inverse — (i, L,») is (—u, L,»). The maps#, and
v« Oefined as in (7.2), respect this addition, so Tor, is a bifunctor to
the category d abelian groups. The same formulas (7.2) show that if
the modules G and C are bimodules G, gCs for other rings T and S,
then Tor, is a bimodule y(Tor,)s, much asin (3.1).

Proposition 7.1. Thesymbols(x,L,v) in Tor, areadditivein x andv;
e.g.,
(it po, L, v)= (1, L, v)+ (12, L, v). (7.4)

Proof. Recdl (IIL.2.2) that u,+ ps=Vg (1, ®pus) 4,. The dual o
the diagonal map 4,: L->L @ L is the codiagonal V.: L*@ L* —L*.
Hence the equality rule (7.1) and the definition (7.3) yield (7.4) as

(1t pe, L, ”)=(VG (1D o) 4,, L, ”)= (Ve (1D py), LOL, v Vi)
=(Ve(1a®pa), LOL, V; (v® 7)) = (p1, L, 9) + (g2, L, %)

Proposition 7.2. Every dement o Tor, (G,C) has the form (u, F,v)
whereu: F—G, v: F*—C, and Fis a chain complex d length n o finitely
generated freeright modules. Hencethefunctor Tor, defined using complexes
o finitely generated free modules E is naturally isomorphic to the functor
Tor, defined using complexes o finitely generated projective modules L;.

Proof. The construction above, using only free modules instead o
projectives, yields a functor Torf, (G,C). Since each free complex F
of length #» is aso projective, each element (u, F,Vv) o Torf, isalso an
element d Tor,. This map Torf —Tor has a two-sided inverse. For take
any (p,L,v)eTor,. Each L, can be written as a direct summand of
some finitely generated free module E,=L,® M,. Make F a complex
with boundary o0: L,®M,—~>L, P M,_,. The injection ¢: L>F
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and the projection #: F—L are chain transformations with ne=1,
*7*=1. By our equality rule,
(H, L! V) ,u: L VL*n*) (:u ‘”’F ’VL*)

thisisan element d Torf, for F is a free complex d length n. By this
process, triples equal in the sense (7.1) are turned into equal triples
d Torf; hence the natural isomorphism Tor,=Torf,.

For =0, Tor, may be identified with &:

Theorem 7.3. There is a natural isomorphism G Q€ =Torf (G, C).

Proof. Each ge Gdetermines a map u,: R—G d right R-modulesby
ug(N)=gr; similarly each ceC determines a map #,: R=R*>C o
left R-modulesby »,(1)=c. The triple (g,, R, »,)€Tor, (G,C) is additive
in g and ¢ and middle linear, s0 g ®c—(p,, R, *,) isa homomorphism
GRC —Tor,(GC) d abelian groups. It isnatural. Thishomomorphism
takeseach element X g; Q¢; & GRC intothetriple (u, F,v), whereF is
free on generators ¢;, ue;=g;, and ve'= ¢;.

To construct an inverse map @, use Prop.7.2 to write each element
d Tory(G,C) as (¢, F,v) where u: F—G, »: F*—»C, and F is a finitely
generated free module. Choose any free generators e, ..., e, for F,
use the dual basiseét,...,e™* d F*, and set

O (u, F,») Zu )@ (¢) ¢ GRRC

To express the equallty in Tor,, write g: F—F’, in terms d bases ¢;
and ¢, aspe; _Z e; 7;; with a matrix {r;;} d elements from R. Then

g*e”——:z 76 and

@(ue»F V)= Z(Z# e ;) QVe)
—Z(N'3'®Z’” &))=0 ', F',vo*).

This shows @ well deflned for the equality in Tor; aso, if F=F' and
e,f is adifferent basisin F, it shows the definition o & independent o
thechoiced the basisin F. Since® isatwo-sidedinversed the previous
map, the proof is complete.

Corollary 7.4. For L a finitely generated and projectiveright R-module
a natural isomorphism &: Homg (L*,C)=LQgC is defined by &(v)=
(12, L, Vv). Hence each dlement t d Tor,(L,C) has a unique representation
ast=(1,,L,v) for somev: L*—C.

Proof. By additivity (Prop.7.1), & is a natural homomorphism.
To show it an isomorphism, it suffices to prove the composite

L®pC=L**®;C*>Homg(L*, C)-5Tor,(L,C)
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the identity, where5 is the isomorphism defined in Prop.4.2. If L=R,
the definitions show that ££ isthe identity; since al functors are addi-
tive, this makes 55 the identity for L finitely generated and free. Any
L is a direct summand d a finitely generated free module F. Since ¢
and ¢ are natural, their composite maps direct summands to direct
summands, hence is the identity for any L.

The torsion products are symmetric in G and A. To show this, con-
struct from the ring R its oppositering R°P: The additive group d R°?
is an isomorphic copy o that d R, under an isomorphism »—-»#°P; the
product in R is defined by »°Ps®=(sr)°?. Each right R-module G
becomes a left R°P-module via the definition »?g=gr; symmetrically,
each left R-module A is a right R°®-module.

Proposition 7.5.  The correspondence (u, L,V)—(», L*, k) is an iso-
mor phism
Tor® (G,A)=Tor2* (AG), n=o,l,....

Proof. The complex L* consists d finitely generated projective
Re°r-modules. Hence the correspondence is well defined; it is clearly
an isomorphism.

For a short exact sequence E=(x,5): A>»B-»C and an element
t=(u, L,v)eTor, (GC) with >0 a product EteTor,_,(G,A) may be
defined. Regardv: L* —C and E ascomplexesover C, thefirst projective
and the second exact. By the comparison theorem, there is a chain
map g:

S L N L 2N
l?’n-l l%l ” (75)
E:0-4 —-B —>C-o0.

Let »—3L designatethe chain complex o length n— 1 formed by removing
the last module L, from L, and set

E(u,Lv)=(u," 3L, ¢p_y)- (7.6)

Theorem 7.6. For E¢Ext'(C,A) ad teTor, (GC) the Product Et
is a wdl defined dement of Tor,_, (G, A) which satisfies the associative
laws

«(E)=(E)t, (Ey)t'=E@yt), E@md)=ns(EY), (7.7)
for a: A->A', y: C'—C, 5: GG, and ¢cTor,(G,C’). It provides a
homomorphism

Ext!(C,4) ®;Tor, (G,C) »Tor,_,(G,4), n=1,2,.... (7.8)

Proof. Any different choice ¢’ for the chain transformation ¢ o
(7.5)is homotopicto ¢, so thereisan s: L¥+A with ¢,_; =@, _;+sé.
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The product Et defined via ¢’ is

(1" 3L, @u—r) = (1," gL, @p—1)+ (u," 3L, $6)

But let L be L with thefirst module L, removed; then o: 3L—*—;L
is a chain transformation, and the second term aboveis (4 #9, L, )=
{0,3L,5)=0. The product Et is thus independent d the choice d ¢
If (@'o,L,V)=(u', L', ve*) isan equdity in Tor, for some q: L—L’,
then ¢ o* is a chain transformation, and the products

E(uo Liv)=(u 0" 5L, @ur) =1, " 5L, @ur@s-)=E (', L', v 0¥
are equal. Hence Et is well defined.

Condder the associative laws (7.7). If a: A—-A’, attach the mor-
phism E —« E to the bottom o thediagram (7.5).1t gives (¢ E) (i, L,v)=
(" 3L, a@,_y)=a(u," 3L, @,_,) =a[E(u, L,v)], proving thefirst rule
d (7.7). A smilar large dlagram for y: C’—C, EyeExt!(C, A), and
¢'cTor, (G, C) proves the second o (7.7); the third rule is immediate.

To say that (7.8) is a homomorphism is to say that the product
E¢ isadditive in each factor E and t separately. But E(t t)—Et+ Et
follows at once by the definition (7.3)df the addition in Tor,. The other
rule (E,+ E,)t=Et+ E,t derives from the definition E,+ E,=
V,(E.®PE) A, d the addition d extensions. The proof is complete.

Given E and G, a map E,: Tor,(G,C)—Tor,_, (G,A) is defined
as E t=Et; hencethe long sequence

.= Tor, (GA)+Tor, (G,B)->Toer,(G,C)™> } o)
7.9

Tor,_4 (GA)—Tor,_, (G,B) -

I'ts exactness will be proved in the next section by homologica means.
An element ScocExt”(C,A) is a long exact sequence which may
be written as a composite S=E,E,...E, d short exact sequences.
Define the product ot to be E, (E,...(E.?). By (7.7), the result is un-
changed by a congruence (E”’y) 0 E'=E"’o (yE') d long exact sequences,
hence gives a well-defined ** composite’™ connecting homomorphism

Ext™(C,A)®Tor, (G,0)—>Tor,_, (GA), #=m  (7.10)

Exact sequences in the first argument o Tor, yield symmetric
results. For E’e Ext! (K,G) and ¢¢Tor, (K,A) a product E't e Tor,,_, (G,A)
is defined, with properties as in Thm.7.6, and yielding composite
connecting homomorphisms

Ext"(K,G)®Tor, (K,A)—-Tor,_,(G,A), n=m. (7.11)
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Multiplicationsby E and E commute in the following sense:

Theorem 7.7. L&t E=(x,0): A»»B-»C, and E'=(A,7): G>H->K
ke short exact sequences o left and right modules, respectively, while
teTor, (K,C). |fn=2, EE't=—E'EtcTor,_,(G,A4).

Proof. Take ¢=(y, L,v). The products Et and Et are calculated
from the diagrams

r2rrse 3L,k
l%\—lx l%a ” l‘h A lWOt “
A 5B —=(C, G - H—K

as Et= (u,* 3L, 9,-1) and E't=(y,,%L,v). If n=2, the diagrams do
not overlap, so we may calculate EE’¢ from the first diagram if we
note that 6 for L* and & for (3L)* have opposite signs. Changing the
sgn d ¢ in the diagram gives EE‘t=(y; ,* 1L, —¢,_,). Similarly, but
without sign trouble, E'E t=(y,,* 1L, ¢,—4). Hence EE=-—EE, as
asserted.

Exercises

1. By taking L free with a given basis, show that the elements o Tor, (G, C)
can be taken to be symbols ((gy, ..., &m)» #, (¢1, ..., C)) With g;€G, ¢;£C and x an
m><n matrix of entries from R such that (g, ..., g§,) X=0=x/{cy, ..., &,)’; here
the prime denotes the transpose. Describethe addition o such symbols and show
that theequality d suchisgiven by sliding matrix factorsd x right and left.

2. Obtain asimilar definition o Tor, (G,C).

3. Provethat Tor, (PC) =0 for » >0 and P projective. (Hint: show first that
it sufficesto prove thiswhen P isfinitely generated.)

The exactness o (7.9) can be proved directly (i.e., without homology) asin the
followipg sequence o exercises.

4. Show that the composite d two successivemapsin (7.9) is zero and that the
exactnessd (7.9) for G finitely generated impliesthat for all G

5. For E= (4, 7): G>H-»K exact with H free show that E,: Tor, (K,C) -
Tor,_, (G,C) isanisomorphismfor » > | and amonomorphismwithimageKer (I81,)
for n=1. (Hint: construct an inverse map.) Show that £/, maps the displayed
portion of (7.9) for n=1 isomorphically onto the Ker-Coker sequence o the 23
diagram with ronsG®E and HQ®E.

6. Prove by induction on n that the displayed portion o (7.9) isexact.

8 Torsion Products by Resolutions

The functor Ext*(C,A) can be calculated (Thm.II1.6.4) from a
projective resolution X o C as H"(Homg(X,A)). Thereis an analogous
calculation for Tor, (GA). f &: X—G is a projective resolution by
right R-modules, X &z A isa complexd abelian groups, with boundary
IR1,4: X, ®A-X, ;QA. The comparison theorem for resolutions
shows the homology H, (X®z4) independent o the choice o X,
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hence a function of G and 4 which we call, for the moment,
Top® (G, 4)=H, (X QrA4)-

It is clearly a functor of 4, and also a functor of G. For, given: G>G’,
choose a projective resolution &': X'—G’, lift 9 to a chain transformation
f: X —X’, and construct the induced map fu: Hy (X ®@A)—~>H, (X'QA).
By the comparison theorem, any two such f’s are homotopic, so f,
depends only on 7 and gives 7y: Top, (G, 4) —~Top,(G’, 4). Thus Top,
is a covariant bifunctor, which we now identify with Tor,. (Often Tor,
is defined to be what we have called Top,.) '

Theorem 8.1. For a resolution ¢: X —G of the module Gy and a
module RA there is a homomorphism

w: TorR(G,4) ~>H,(XQr4), n=0,1,..., (8.1)

natural in A. If X is a projective rvesolution, o is an isomorphism, natural
in G and A.

Sketch. Each (u,L,%) of Tor, consists of a projective complex
u: L—>G of length # over G and an n-cycle (1, L,,v)eTory(L,,4) of
the complex L&A, hence determines a homology class in H,(L&A4).
A comparison L—X gives a homology class in H,(X®A), thus an
element of Top,,.

Proof. Take ¢=(u, L,v) in Tor,(G,4). The comparison theorem
yields a chain transformation #: L—>X of the projective complex L
over G (via y) to the exact complex X over G (via g). Set

o(p, L,v)y=cls(h,, L,,v) € H,(X®4).
This makes sense, for h,: L,—>X,,v: Lx >4, so (h,, Ly, )€ Tory (X,,, 4)
=X, ®A4. It is a cycle there, as
8 (hn, Ly, 9)=(0hy, Ly, ¥) = (hp—19, Ly, 7)
=(hy_1, Lp-1,% )= (ly_1, Ly_1,0)=0.
The homology class of this cycle is unique, for if &': L->X is another

chain transformation lifting 1, there is a homotopy s with A, =h,+
9s,+$,-10. Then

(i, Ly, 9) = (b Ly, ¥)+ (050, Ly, 9) + (8529, Loy )
=(h'n1 L”,'V)+a(s”, Lnx 'V)+ (s”—l: Ln—l’ 0):

which is the original cycle (,, L,,?) plus a boundary. Furthermore,
if t=(u'p, L,v) and ¢'=(u', L, v o*) for some g: L—L' are equal ele-
ments according to the definition of Tor,, while A4: L' X, then
Wo: L-X and wt=wt' in Tor,.
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- To show @ a homomorphism, note that two chain transformations
h': L* =X yidd V(#1®D 4?): 1@ L2+ X, and hence that

o [(sr, L4 21) + (10, L2 v3) | =00 [V (1, © g), 1D L2, V (3, D vy)]
=cls[V (@A), LD LE, Vi, Dvy) = (g, L, ») + @ (g, L2, v,) .

That w is natural in A isimmediate, while the asserted naturality
in Gfollows by observing that a chain transformation f: X — X" lifting
n: G—G' composeswith an h: L-X to give fh: L- X'.

I't suffices to show «w an isomorphism when the resolution X is free.
Any homology class in X® A is the class d a cycle in some X'& A,
where X' is a suitable finitely generated subcomplex d X. By Cor.7.4,
this cycle can be written as (1, X,,, v) for somev: X, *—A. If the com-
plex X', with g2 X’—G, iscut off beyond dimension n, it isoned the
complexesL usedin the definitiond Tor,, sot=E, X',v)isan element
d Tor, (GA). The injection ¢: X'—X shows wt=cls(:, X,,, V). Hence
w is an epimorphism.

I't remains to prove w a monomorphism. Suppose w¢=0 for somet.
This means that the cycle (#,, L,, v) is a boundary in X®4, hence
aso in some X’'®4 for X’C X a finitely generated free subcomplex
d X. Choose X' to contain A(L). Then A: L-->X cut down yields
H: L—-X with (4,, L, v)=(I,X,,VA,* the boundary d some (n+ 1)-
chain d X'®A. By Cor.7.4, write this chain as (1,X,,,,¢) for some
¢: X, ¥, —A. Now

(1, Xn v i) =0(1, X, 11, 0)=(1, X, %),
so the uniqueness assertion d Cor.74 yieldsv i *=a*. Let 2X’ be
the part & X’ from X, to X,, inclusive and **1X’ the part from X;
to X, ,,s0thath': L-2X’ and 8: »+1X’'—4X’ are chain transformations.
The original element t o Tor,, (G, A) becomes

(u, LV)=(W, L,v)=(e, 5X', W' ¥)

=(¢',2X", £A%) = (¢'9,"+1X",0) = (0, —, —) =0,

and ¢=0, as desired. The proof is complete.

It is convenient to have a homomorphism **converse™ to w.

Coradlary82. If n: Y—G is a projective complex ovr G, thereis
a homomorphism
7: H,(YQrA)—Torf (G,A) (8.2)
natural in A. If Y isaresolution, 7=w"1.

Proof. Let X beaprojectiveresolutiond G. The comparisontheorem
lifts 14 to a chain transformation f: Y —X such that f,.: H, (Y& A)—
H, (X®gA) isindependent d the choice of f. Set r=w"1f,.

Mac Lane, Homology 11
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The connecting mapst—Et may aso be calculated from resolutions

Proposition 83. Let e: X—G be a projective resolution. Each short
exact sequence E: A-»B-»C o left R-modules yields an exact sequence
XQE: XQA»XQB»XQ®C o complexes with a connecting homo-
morphism dygr: H,(X@C)—~H, 1 (X@A). For each teTor, (G,C),

that is, the isomorphism @ o Thm.8.1 commutes with connecting homo-
mor phisms.

The proof applies the relevant definitions directly and is left to
the reader. The exactness d the homology sequence for the sequence
X ®E d complexes now implies

Theorem 84. A short exact sequence E: A~ B —»C o left R-modules
and a right R-module G yield a long exact sequence

. =>Tor, (G, A) —Tor,, (G, B) -»Tor, (G,C) 25 Tor,_, (G, A) >---,  (8.3)

ending with Tor, (G,CO)=G®C—0. The map E, is left multiplication
by E.

For a projectivemodule A = P, the exactnessd aresolution X makes
H, (X®P)and henceTor, (G,P) zero for n>0. Much asfor Ext (111.10)
we can now characterize Tor by axioms, as follows.

Theorem85. For a fixed right R-module G the covariant functors
Tor, (GA) d A, n=0,1,..., taken together with the homomorphisms
E, : Tor,(G,C)—Tor,_, (G,A), natural for short exact sequences £ of
modules, are characterized #p to natural isomorphisms by the properties

(i) Tor, (GA)=G®z4  foral A,
(ii) Tor,(G,F)=0 for n>0, and all freeF,
(iii) Thesequence (8.3)isexact forall E.
By symmetry (Prop.7.5), Tor, (G,A) will also yield a long exact
sequencewhen thefirst argument Gisreplaced by ashort exact sequence;
this gives a corresponding characterization o the Tor, as functors o

Gfor fixed A. For R=2Z, it followsthat Tor, for abelian groups agrees
with the functor Tor defined by generators and relationsin § 6.

Theorem 86. The following properties d a right R-module G are
equivalent

(i) For every left R-module C, Tor, (G, C)=0,;
(ii) Whenever »: A—Bisamonomorphism, 0is1Qx:GRA—->GRB;
(iii) Every exact sequence o left R-modules remains exact upon tensor
muitiplication by G;
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(iv) If A is a left module and G »G"'»G is exact D is the sequence
GCRA»GC'RA>GRA;
(v) For evary xC and every #>0, Tor, (G,C)=o0.

Proof. Clearly (iii)= (ii). Conversdly, given (ii), Thm.5.1 implies
that any short exact sequence remains exact upon tensor multiplication
by G; since along exact sequenceisacomposited short ones, this gives
(iii).

Given (i), the long exact sequencesfor Tor, yield (ii) and (iv). Con-
versely, given (ii), represent C as a quotient C==P/4 d a projective P,
so that

0=Tor, (G,P)—>Tor; (G,C) > GRA>GRQP

is exact with G®A4—-G& P a monomorphism by (ii), and therefore
Tor, (G,C)=0. The proof that (iv)= (i) is analogous.
Finaly, (v)= (i); conversdly C=P/A and exactness

0="Tor, (G,P)+Tor, (G,C)->Tor,_,(GA)

show by induction on n that (i)= (V).

A module G with the equivalent propertieslisted in Thm.8.6 is said
to be flat. Note the analogy: P projective means that the functor
Hom (P, —) preserves exact sequences; G flat means that the functor
G®— preserves exact sequences. Every projective module is clearly
flat. When R=2Z, Thm.6.2 showsthat a flat Z-module is just a torsion-
free abelian group. Hence a flat module need not be projective.

Exercises
1. If 92 Y+A is a projective resolution, establish an isomorphism
W' TorR (G,A) = H, (G ®rY). For E: G>>H -» K exact prove that o’ E’ = dggyw’.

2. For a projectiveresolution X of G let S, (G, X) be the n-fold exact sequence
050X, +X,_ 1=« >G—0. Show that the isomorphism @ of Thm.8.1 is

wt=cls a7[S (G, X)t].

9. The Tensor Product of Complexes

f Kp and RL are chain complexes d right and left R-modules,
respectively, their tensor product K ®,L isthe chain complex d abelian
groups with

(K@gL)w= 21 K,®rL,, 91)

pra=n

with boundary homomorphisms defined on the generators k&Z by
2k Q) =0k QI+ (—1)ie* QL. 9.2)

11*
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If K and L are positive complexes, so is K ® L, and the direct sum in
(9.1) isfinite, with # running from 0 to n. The boundary formula (9.2)
resemblesthat for the derivative d a product d two functions; the sign
(—1)%&* appears in accord with the standard sign commutation rule:
Whenever two symbols #» and v with degrees are interchanged, affix
thesign (—1)¢ with e=(degreeu)(degreev). In the second term o (9.2),
o o degree —1 has been moved past k, hence the sign. With this sign,
one checksthat ¢é=o0.

If . K—=K’"andg: L-L’ are chain transformations, the definition
(fRg) (kQNH=1tk®gl gives a chain transformation fRg: KRL—
K’'QL’;inthisway the tensor product is a covariant bifunctor & com-
plexes. For chain homotopiesone has

Propostion 9.1. If fi=~f,: KK’ and g;=g,: L>L’, then f, Qg ==
f2 R g, In detail, chain homotopies s: f; = f, and t: gy== g, yield a homotopy

“: (Qe=1Q8: KQL>K'QL' 9.3)
given as u=s Qg+ 7 ®¢; that is, by
u(k QU =skQgl+ (—1)%E* ARt

Thisis in accord with the sign convention, sincet d degree 1 has
been commuted past k.

Proof. First, s andt give homotopiess®@1: f,R1=f,&1: K QL
K'QL and 1Q¢t: 1Qg=21Qg,. Composing these two homotopies (by
Prop.II1.2.3) givesthe result.

Corollary 9.2. If f: K—K’ and g: L—L’' are chain equivalences,
VISR KQL-K'QL'.

As a first application d the tensor product d complexes, we show
that the torsion products can be computed from resolutions o both
arguments, asfollows.

Theorem 9.3. If &: X+G and n: Y4 are projective resolutions
d the modules Gr and zrA, respectively, then eR1l: XQRY->GRY
induces an isomorphism H, (XQrY)=H,(G&gY), and hence an iso-
mor phism

H,(X®g Y)=Tor®(G,A), =»n=0,1,.... (9.4)

Proof. Let F, for k=0, 1,..., bethesubcomplexd X ® Y spanned

by all X;®Y, withj<k, while M* is the subcomplex d G& Y consisting
d al GRY; withj<k. Then

0=F"I(F (P XQY, }

0=M-1CMCM'C - CGRY, (9:5)
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and £ ®1 maps F* into M*. Sinced(x RQy)=0sQy £ * Ry n X RY,
the quotient complex F*/F*~ is isomorphic to
a®1
X, Q%<2 X, @Y, — X, @Y — -
Similarly M*/M*~* consistsonly d the chain group GRY, in dimension
k. Because each Y, is projective and 0< G« Xy« X, < --. is exact, the
sequence
0« GRY,« X, QY+ X, Y, <---

is exact. This amounts to the statement that e ®1: F¥/F*—t — M*pM*1
induces an isomorphismin homology for all k. On the other hand, &1
maps the exact sequence F*'»F* s F*F*1 into the corresponding
sequence for the M's, as in the commutative diagram

H,.,(FYF*7Y) > H,(F*7) — H,(F") — H,(F}F*™) - H, (F*™)
H,\y (MHM*™Y) > H, (M*") — H,(M*) - H, (M"|M*™) > H, _, (M*7).

We claim that H,(F¥) —H,(M*) is an isomorphism for all » and k.
This is true for k negative and al n. Now suppose by induction that
this is so for smaller k and all n. Thus the four outside vertical maps
in the diagram are isomorphisms, so the Five Lemma makes the
middle vertical map an isomorphism. This completes the induction.

In dimension » every cycle or boundary d X®Y will appear
within F*t1. Hence the isomorphism H,(F¥) (MY for large k
(specifically,for 2 = n+1)impliesthedesiredisomorphism H, (X QY )=
H,(GRY). Now H,(GRY )=Tor,(G,A) by the symmetric case o
Thm.8.1; hencethe result.

A sequence o subcomplexes F¥ X ® Y arranged as in (9.5) is
called a filtration & X &Y. The method here used o comparing two
complexesviafiltrations o each will be formulated in general termsin
Chap. X1.

Exercises

1. For complexes K, L, M over a commutative ring, establish the adjoint
associativity Horn(K®L, M )= Hom(KX, Hom(L,M)).

2. Let f: K —»L beachain transformation, F* afiltration of K and M*oned L
with f(FX)<MK. I f,: H, (F¥Fk1) - H, (M*M*-1) isanisomorphismfor all » and k,
while for each # there is a k such that the injections induce isomorphisms
Ialil,,(Fk)an(K),H,,(Mk)zH"(L),show f,: H,(K)>H, (L) an isomorphism for

n.

3. If &2 X - Cisa projective resolution and n: A -> Y an injective coresolution
prove that Ext"(C,A) = H" (Horn(X,Y)).
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10. The KUNNETH Formula

The tensor product o complexes corresponds to the cartesian pro-
duct d spaces X and Y, inthe sensethat the singular complex S(X><Y)
can be proved (V111.8) chain equivalent to S(X)&Q S(Y). This suggests
the problemd the present section: To determine the homology d K &L
in terms o the homologiesd K and L.

The boundary formula(9.2) shows that the tensor product «®v
d cyclesis a cyclein K®L and that the tensor product o a cycle
by a boundary is a boundary. Hence for cyclesu and vin K and L,
respectively,

P(clsu Rclsv) =cls (4 Q) (10.2)

is a well defined homology classin K Q L, so yields a homomorphism
p: Hy(K) QrHy (L) >Hpy (K Qg L)

o abelian groups, called the (external) komology product. The direct
sum 3 H,QH, for m4-g=n» is thereby mapped into H,(K®zL),
and theimagegivesall & H, (K&®L) under stringent conditionson the
modules B,, (K),C,, (K), and H,, (K) o boundaries, cycles, and homology
classesd K, respectively:

Theorem 10.1 (The KtnNera Tensor Formula) If L is a complex
d left R-modules while K is a complex of right Rmodules satisfying

(i) G (K) ad H, (K) are prgective modules, fo all n,
then, for each n, the homology product i s an isomorphism

p: 3 Ho(K) @ H, (L) =H, (K Qg L). ' (102)

m+q==n
This is a consequence d a more general theorem, which among
other thingsshowsthat theimaged p doesnot usuallyexhaust H(K ®gL ).

Theorem 10.2. (The KtnneTH Formula)) If L is a complex ¢ left
R-modules and K a complex of right R-modules satisfying

(ii) ¢,(K) ad B,(K) are flat modules, o all n,
then there is fo each dimension n a shart exact ssquence

O—;HZ H,(K)QrH, (L)—>H (K®RL):>1§”:1‘IorR(H w(K),H,(L))>0 (1
where ¢ is the homology product and 8 a natural homomorphism.
Neither complex K,.L need be positive.
Thisimpliestheprevioustheorem. Indeed, since H,(K) =C,, (K)/B,(K),
the hypothesis (i) that H,(K) is projective implies that C,—»H,
splits, hencethat B, (K)is a direct summand o the projective module
C,, soisitsaf projective. Now every projectivemoduleisflat (Thm.8.6),
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so C, and B, are flat, as required for (ii). Moreover, H,, flat makes
Tor, (H,,, H,)=0, so (10.3) reduces to (10.2).

Before proving Thrn. 10.2 we treat the special case when the bound-
ary in K is zero. It sufficesto set K=6.

Lemma10.3. If Gis a flatright R-module,p: GQH,, (L)=H,(GRL).

Proof. Set H,=H,(L), C,=C,(L), B,=B,(L). To say that H,
isthe n~th homology group d L isto say that the commutative diagram

0 0
}
0—>B, -C,—>H,—>0
(A
Ly—L,
la
n -1

has exact rows and columns. Indeed, the exactness d the long column
states that C, isthe kernel o @: L,—~L,_,, whilethe exactness d the
short columngivesB, aséL,,, and the exact row definesH,, asC,/B,,.
Now take the tensor product d this diagram with G. Since G is flat,
the new diagram is exact, and states that G ® H,, is isomorphic, under
$, to the homology group H,(G & L), thus proving the lemma.

To prove Thm.10.2, we regard the families C,=C, (K) and D, =
K,/C,=B,_,(K) as complexes of flat modules with zero boundary,
so that C»K -»D is an exact sequence d complexes. As D,=B,_,(K)
is flat by hypothesis, Tor, (D,, L,)=0, so the sequence E: CQL>
KQL»D®L is dso an exact sequence d complexes. The usud
exact homology sequencefor E reads

H,:(D®L) =5 H,(CQL) > H,(K®L) ~H,(DQL)™ H, ,(CR L),
with connecting homomorphisms E,. Equivalently, the sequence
0—>CokerE, ., >H, (KQL)—>KerE,—0 (10.4)

isexact. Wewish to comparethiswith thesequence (10.3)d thetheorem,
which also has H,(K®L) as middle term. Let &' denote the map
D,, . ;—C,, induced by &.

The homology module H,,(K) can be described by a short exact
sequence S: D,,.,~C,—»H,(K). Take the tensor product d this
sequence with H (L). Since C,, isflat, Tor,(C,, H (L)) =0, so the long
exact sequencefor the torsion product, summed over m -+ g==#, becomes

3 Tory(H,(K), H(L)»ZD,,.+1®H(L Yo ®H<L Y H,(K)QH,(L)

(10.5

,.+1<D®L) - H, (C®L)
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Since D,,,, and C,, areflat, the vertical maps are isomorphismsby the
lemma. If we know that the sguare part o the diagram is commu-
tative, we get Ker(E,,,) from Ker(a ®1); explicitly, Ker(E,,,) =
Ker(6’®1 = ¥ Tor, (H(K), H(L)), and Coker E,, =Coker (a &) =
D H(K)QH(L). Thereby (10.4) becomes the desired sequence (10.3).
One checks also that the first map o (10.3)is indeed the homology
product, while the second map 8 is described by the commutativity o
the diagram

H,(KQL)% C Tor(H, . (8). B,1))
m+g=n Se

H,((KIC) QL)< 3 (K[C), QH, (L)

m+qg=n

(10.6)

with K —K/C the canonical projection, ¢ an isomorphism, S,, the short
exact sequence S,,: K, /C,,»>C,,_~+H, ,(K), and S, the sum o the
corresponding connecting homomorphisms on Tor,. This shows g
natural, but note that its definition is not symmetric in K and L ; if
C,(L)and B, (L)are aso flat, symmetric argumentson L will produce
a possibly different map . We show below (Prop. 10.6) that f=§’
for complexes o abelian groups; we conjecture that this should hold
in general.

I't remains to show the square in (10.5) commutative. An element
24;®Qclsv; in D, ®H, (L) is mapped by p to cls(> d,®v;). The
definition d the connecting homomorphism E, ., reads: Pull the cycle
>4, Qv;, d DQL backtoachain 2 & ®v;in KL, takeitsboundary
> &'d; ®v; pulled back to CQL and the homology classd the result.
This gives cls(}9'd, Q@v,;)= ﬁ(a ®1) 314, Xcls v;), hence the com-
mutativity.

Inthecased complexesd abelian groups we can say more.

Theorem10.4. (The KtnNETH Formula far AbelianGroups.) For (not
necessarily positive) chain complexes K and L d abelian groups where no
K, has dements d finite order except 0, the sequence (10.3) is exact and
splits by a homomorphismwhich i s not natural.

Proof. Since K,, torsion-freeimplies that its subgroups C,, and B,
are also torsion-freeand henceflat (asZ-modules), the previoustheorem
givestheexact sequence(10.3).| t remainstoshowthatit splits. First sup-
posethat bothK and L arecomplexesof freeabeliangroupskK,,,and L,. Then
D, =0K,CK,, ,isasubgroup d a free abelian group, henceisfree, so
that K,, splits as an extension o C,, by D,,, with K,,=C,® D,,. The
homomorphism cls: C,,—H,(K) can thus be extended to a map
¢ K,,—~H, (K)with ¢,c=cls c for each cycle c. There is a similar
v,: L,—~H, (L) for the free complex L. The tensor product of these
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group homomorphismsyieldsamape @y: (KQL),—> H,, (K)QH,(L);
since ¢ and y vanish on boundaries, so does ¢ @y. There is thus an
induced map (p@p)y: H,(KQL)=>>H,(K)QH,(L). For cycles u
and v, (p Qv)« p(clsu®cls V) = (@ Qu)x Cls (4 Rv) =pu Quv=cls 4 Q)

clsv s0 (pQRy)s 2=1; (pQy), is a left inverse d p, splitting our
sequence.

Now consider any complexesK and L (with K torsion-freg). Just
below we will show that one can choose a free complex K' and a chain
transformation f: K’'—K such that each f,: H,(K') - H, (K) is an iso-
morphism. With a similar choice g: L'—L, the naturality o s and g
meansthat the diagram

0> H(K)QH(L) S HEK'QL) L 3 Tor(H(K'), H(L)) -0
1@ |r@e. | Tortha,0)
0> HEK)QH(L) *> HERL) % 3 Tor (H(K), H(L)) -

commutes. By the choiced f and g, the outside vertical maps are iso-
morphisms. Hence by the Short Five Lemma the middle vertical map
is also an isomorphism. The bottom exact sequence is thereby iso-
morphic to the top exact sequence, which has just been shown to split.
Therefore the bottom sequence splits.

This proof, due to A. DaLb, depends on the following useful lemma.

Lemma105. If K is a complex d abelian groups there exists a
complex X o free abelian groups and a chain transformation f: X K
suchthat £, : H, (X)—H, (K)isanisomorphism for eack dimension .

Proof. |t sufficesto take X the direct sum of complexes X™ with
chain transformations 7. X® . K such that (/®),: H,(X"™) =H,, (K)
and H, (X")=0 for q==». For fixed », construct a diagram

00— Rn+1 —F, >0
e in lE
- v
Kn+1 _)K

First writethegroup C, d n-cyclesd K asa quotient d afreegroupF,;
thisgives¢: F,—C,CK,. Nexttake R, ,=£?B, and;: R,,,—FE, the
injection. Since R,,, is free and &R, ,=0K,, ., & lifts to amapy
which makes the diagram commute. The top row is how a complex
X® with homology E/R,.,=C,/B,=H,(K) in dimension » and all
other homology groups zero. The vertical maps constitute a chain
transformation which is a homology isomorphism in dimension #, as
required.

Thm. 10.4 shows that the homology d K &L is spanned by two
typesd cycles. Typel isa cycle »®w built from cyclesuec K, veL;in
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the theorem, Im ¢ is spanned by the classesof Typel cycles. Secondly,
consider a triple <cls #, m,cls v» in Tor, (H(K), H(L)); there are then
chainsk and I with 2k=mu, 8¢ =mv for the sameinteger m; thus

(Am)o (kN =u@I+ (—1)* "k Qv, dimu=n

is a (Typell) cycle. One may verify that its homology class is deter-
mined, module Im #, by cls# and clsv. Thisyieldsan expression for 8
in the KtsnNeTH formula, as follows:

Proposition 10.6. For t={cls %, m, cls v) ¢ Tor, (H, (K) H(L))with
ok =mu, dl=mv the formula yt=(—1)"* cls(1/m)d(kQI) defines a
homomorphism

y: Tor,(H(K), H(L)) ~ H(KQL)/p[H (K) QH (L)].

Under the hypotheses & Thm. 10.4, y is an isomorphism and its inverse
inducesg.

Proof. Since D=K/C, themap H(KQL)—H (DRL) carriesyt =
cs[(—1)"*"1 4 QI+ k®v] into cls[(k+ C)®v]. Themapsp S, d (10.6)
carry tinto (k+C)Qcls v and thence into cls[{#+ C)®v]. The iden-
tity d thesetwo results provesthat y inducesg, asstated.

Exercises

1. Show that Thm. 10.1 holdswith (i) replaced by either (iii)C, (K),B, (K),and
H, (K)areflat modules, for all », or (iv) C, (K),B, (K),and A, (L)areflat modules,
for al n.

2. For K and L finitely generated complexes o free abelian groups, calculate
the Betti numbers and the torsion coefficients & K®L from thosed K and L.
(Cf.11.6; this version givesthe original theorem o KUNNETH [1923, 1924].)

3. Prove Thm-10.4 asfollows. |t sufficestotake K finitely generated, henceto
take K elementary (Ex.I1.2.2). Inthiscaseevery cycled K@®L can be written as
a sum of cyclesof types | and II; deducethat p isa monomorphismand v d Prop.
10.2 an isomorphism (EILENBERG-MACLANE {1954, § 12]).

4. State a Kttnneru formulafor K@L @M.

5. Using this, establish for abelian groups the isomorphisms
Tor (A, Tor(B,C))=Tor (Tor(A, B), C),
Ext(A, Ext(B,C)) Ext(Tor(A, B), C).

11. Universal Coefficient Theorems

The various homologiesd a complex may now belisted. If K isa
complex d right R-modules, while x4 and G are modules, regard A
as a complex (with trivial grading A=A4, and boundary 8=0), so that

K, K®zA, Homgy(K,R), Homg(K,G)
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are complexes derived from K. The homology groups
H,(K®rA), H"(K,G)=H"(Homg(K, G))

are known, respectively, as the n-dimensional homology d K with
coefficientsA and the n-dimensiona cohomology d K with coefficientsG.
According to our rulesfor shifting indicesup or down, H*(Homg, (K, G))
is H_,(Homg (K, G)). When K is a positive complex, H, (K®zA)=0
for n< 0, while H* (K, G =0 for n<0; hencethecustomd writingthe
homology index down, the cohomology index up. For K positive,
H,(K®gA) is sometimes written as H,, (K,A). Warning: Do not shift
this index up, where it would have a different meaning H—"(K,A) =
H,(Hom (K, A)).

Consider complexes o abelian groups (R=Z2). If each K, is free,
the universal coefficient theorem (Thm. II1.4.1) is an exact sequence

0—>Ext(H,_,(K), G)>H"(K, G) >Hom (H,(K), G) —>O0.
We now have a corresponding homology theorem:

Theorem 11.1. |f K isa (not necessarily positive) complex of abelian
groups with no dements d finite order and A is an abelian group, there
isfor eech dimension n a split exact sequence o groups

0—>H,(K)QA4 5 H,(KQ4)>Tor(H,_,(K), A)—>0  (11.1)

with both homomorphisms natural and p defined for a cycle w o K by
pclsu@a)=cls(u®a). If K isa complex of vedor spaces over some
field and V a vedor space over the same field, then 4: H, (K)®V =
H,(KQV).

Thisisa corollary to the previous Thm. 10.4. A direct proof is easy
when K is free. Write g, for a®1: K, 4 —-+K,_1QA. The exact
sequence

0>C,~»K,—>C, —>H, ,—0

isafreeresolutionof H,_,; itstensor product with A then has homology
oindimension2, Tor(H,_;, A)indimensonl, and H,_; ® A4 in dimen-
sionl zero. The first states that G ®4 can be regarded as a subgroup
of K, R4 indeed

Imao,,,<C,QAKer 9, K,Q4.

The second statesthat Ker 8,/C, QA =Tor(H,_,, A); thethird (withn
replaced by #--1) that C,QA4/Im &, . ; =H,Q A. Therefore H,(K QA4) =
Kera,/Ima,,, is an extension d H,®A4 by Tor(H,_,, A),as asserted
by the exact sequence (11.1).




172 Chapter V. Tensor and Torsion Products

Cordllary 11.2. If K and K' are complexes d abelian groups, each with
no dements d finite order, while f: K—K’ is a chain transformation
with 7,: H,(K) =H, (K" an isomorphism far each n, then f,.: H,(K&® 4)
—H,(K'®A4) 7s an isomorphism far every abelian group A and every n.

Proof. Write the sequences (11.1)for K and K' and apply the Five
Lemma, asin the proof o Cor. II1.4.6.

These universal coefficient theorems express the homology and
cohomologyd K with any coefficientsin termsd theso-called™ integral
homology H, (K), at least when the K,, arefree. If theK, arefree and
finitely generated abelian groups, there are corresponding expressions
intermsd the"integral’ cohomology H" (K, Z), asin Ex. 2 below.

Exercises

1. For abelian groups K and A construct natural homomorphisms
Hom(K,Z) A4 -»Hom (K,A) and K®A —-Hom(Hom(K,Z),A). Show them
isomorphisms when K isafinitely generated free group, and chain transformations
when K is a complex.

2. Let K be a complexd abelian groups, with each K, afinitely generated free
abelian group. Write H#*(K) for H' (Hom(X,Z)). Using Ex. | and the universa
coefficient theorems, establish natural exact sequences

0->H"(K)®G —>H"(K,G) —»Tor (H*+1(K),G)—0,
0—>Ext (H"+1(K),4) - H, (K®A) >Hom (H" (K),A) >0.

3. If K isacomplex d finitely generated free abelian groups, show that the
n-th Betti number b, of K (II.2) is the dimension o the vector space H, (K®0),
where Qisthe field o rational numbers.

4. For KasinEXx.3, and Z, thefield of integersmodulo#, cal culatethedimension
o thevector space H,, (K ® Z,) from the Betti numbersand torsion coefficientsd K.

5. If K is a complex o vector spaces over a field F, write K* for its dual
Hom (K, F).If each K, isfinite dimensional, establish the natural isomorphisms
H"(K*)&=[H,(K)]*.

Notes: Tensor products werelong used implicitly; for example, viaG®z 2 Re,
=2Ge; of Y®W=Hom(V*, W). Their central role in multilinear algebra was
highlighted by BourBakr1’s [1948] treatise on this subject. The tensor product for
abelian groups was first explicitly defined by Wairney {1938]. The universal
coefficient theorem 11.1 was first proved by Cecr [1935] who thereby first intro-
duced (but did not name) the torsion product Tor;. CARTAN-EILENBERG used
resolutions to define the higher torsion products. The description (§ 6) o Tor, for
abelian groups by generators and relations (EILENBERG-MACLANE [1954, § 12]) is
useful in treating the BockstEIN spectrum o a complex K o abelian groups (the
variousH, (K,Z,) and their interrelations — BocksTEIN [1958]; PaLERMO [1957]).
A similar description (Ex. 7.1, 7.2) o Tor, by generators and relations (MacLANE
[1955]) involves some rather mysterious new functors, the " slide products” (e.g.,
T in Ex. 6.7) and leads to the conceptual characterization (§ 7) of the elements o
Tor, astriples {p, L,v).
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Chapter six
Typesd Algebras
1. Algebrasby Diagrams

Thischapter studiesthe formal propertiesd varioustypesd algebras
over afixed commutativering K, with & short for Qg, Hom for Homg.

A K-adgebraA isaring whichisalso a K-module such that always
k(1112)=(k11)12=11(k/12), kEK, 11, 126/1.

If 14 is the identity element o A, then I(k) =%1, defines a ring
homomorphism | : K—A. Indeed, a K-algebra may be described as a
ring A together with a ring homomorphism | : K- such that aways
(Ik)L=A4(Ik) that is, with I K in the center & A.

The product 4,4, is left and right distributive, so is a K-bilinear
function. Hence n(4, & 4,) = 4, 4, determines a K-modulehomomorphism
n: AQA4—-A4. In these terms a K-agebra may be described as a
K-module A equipped with two homomorphisms

a=m4: AQA->A, I=I4: KA (1.1)
d K-modulessuch that the diagrams

ARQARA S A®A KA = A= ARQK
1@ I |t “ Jer (1.2)
ARA 2 A, ARAH AT ARA

are commutative. Indeed, the first diagram asserts that the product
isassociative, while thedeft and right halvesd the second diagram state
that | (1¢) is aleft and right identity element for the product in A and
that n(IAQA) =kA+=n(AQILF).

In case K isthe ring Z o integers, a 2-algebrais ssmply a ring, so
this gives a diagrammatic definition d a ring, via tensor products o
abelian groups. The dual diagrams definea ™ coring'* or a'*coalgebra’.
Algebrasmay begraded by degreessuch that deg(4, 4,) =deg 4, +deg 4,,
or may have a differential 8, with 9(4,4,)=(94,) A+ 4,(04,). This
chapter will give a uniform treatment o these various typesd algebras
and the modules over them. Asan illustration o agebras with a dif-
ferential, wefirst consider certain resolutions over a polynomial ring.

Let P=F[x]betheusua ring o polynomiasin anindeterminate x
with coefficientsin afield F; actually, P can beregarded asan F-algebra,
but for the moment we consider it just as a commutative ring. Since
F=F[x]/(x)isthequotient o Pby theprincipal ideal (x)df all multiples
d x, wecan regard F as a P-module so that ¢ (x)=0 definesa P-module
homomorphism ¢: P—F. Form the sequence

0 F<PlPu o (1.3)
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d P-modules, where P u is the free P-module on one generator » and
@ the P-module homomorphism with 6« =x. The sequence is exact,
soisafreeresolutiond F. For any P-module A, the group Ext: (FA)
may be calculated from this resolution as the first cohomology group
d the complex

Homp (P,A) —Homp (Pu,A)-—0.

Under the isomorphism Homp (P,A) =4, thisis the complex 8: 4—+4
with éa = — xa, S0 Ext} (F,4) =A/(x)A4. By taking the tensor product
o the resolution (1.3) with a module B, we find Torj (F, B) to be the
submodule d B consisting o all beB with xb=0. For example,
Exth(F, F) =F, and Torf (F,F) =F.

Similarly, let P=F[x, y] bethering d polynomialsin two indeter-
minates x and y over . If (X, y) denotestheideal generated by x and vy,
then F=PJ(x, y) isagain a P-moduleand ¢: P—F a P-module homo-
morphism with ¢ (X)=0=¢(y). The kernel d & can be written as the
imaged thefree P-moduleon two generators # and v under the module
homomorphism 8;: Pu® Pv—P with g,u=x, g,v=y. The kerndl d
this map ¢, consists d all fu+gv for polynomiads f, ge P such that
f x+gy=0; by the unique factorization d polynomials we must then
havef= — hyand g =hx for some polynomial h. Thiskernel istherefore
the image d the free module P(xv) on one generator uv under the
homomorphism 9, with &, (huv)= (hx)v — (hy)u=fu+ ov. Since P has
no divisorsd zero, 8, isa monomorphism. We have thereby shown that
the sequence

0« F< P& Pu®Pv<® Puv)<— 0 (1.4)

isexact. From thisresolution one calculates that Exth(F, F)=F @F =
Torf(F, F), and Ext(F, F)=F =Torf(F, F).

In the resolution (1.4) omit Fand write E = P&® Pu® Pv® P (uv).
Now set vu = —uv, 42=0, v8=0; this makes E a ring, with 1p acting
as the identity and products given, for example, by (f«)(gv) = (fg)(wv) =
— (gv)(fu). It is called the " exterior' ring over Pin two generators
and v. Its elements may be ""graded” by assigning dimensions as
dim 1p=0, dim#=1=dim v, and dim #v=dim #+dimv=2, in ac-
cordancewith the usual dimensionsfor the resolution (1.4). The dimen-
siond aproduct isthen thesum d thedimensionsd itsfactors. Further-
more, the boundary homomorphism in the resolution is now a module
homomorphism 9: E—E d degree —1 with du=x, dv=y, and
o(uv)=(ou)v—u(dv). Thisimpliesa formulafor the differential d a
product d two elementse, , ¢, of E as

3(e169) = (9e1) gt (—1)4™% ¢, (Dey) . (1.5)
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This “Leibniz formula™ is typical for a ring which is also a complex.
Other examplesare found in the next chapter, which may be read in
paralel with thisone.

Exercises
1. Provethat thethreedefinitionsgiven for a K-algebraare equivalent.
2. If Jisanidealin K, show that K/J isa K-algebra.
3. For P=F[x,¥] and A any P-module, show that Exth(F,A) is the quotient
Al(xAvyd), while
Exth(F, 4) = [(a,, ay)| 41, 3,€4, xay= ya,1{[(xa, ya)|a€A4].
4. Obtain asmilar formulafor TorP (F, F) when P=F[n, y].

5. Obtain a freeresolution for F asa module over the polynomial ring Fix, y, z]
in three indeter minates.

2 Graded Modules

An (externally) Z-graded K-module is a family M={M,,n=0,
+1,+£2,..} d K-modules M,,; an element md M, is aso said to be
an element d degree » in M (briefly, degm=m=). A graded submodule
S<CM is a family d submodules S,,<M,,, one for each ». For two
Z-graded modules L and M a homomorphism f: L —~M o degreedisa
family f={f,: L,—~ M, ,; neZ} & K-module homomorphisms f,. The
set d all f: LM o fixed degree d is a K-module Hom, (L,M). The
composite d homomorphisms o degrees d and d' has degree d+-4'.
A Z-graded module M may also be written with upper indices as
M"=M_,; in particular, Homd(L, M)=Hom_, (L, M).

A graded K-module M is a Z-graded module with M, =0 for n<0.
These graded modules are  most frequent occurrence, and will be
studied bedow, leaving the reader to formulate the corresponding facts
for Z-graded modules. Warning: Many authors use **graded" for our
Z-graded and "" positively graded™* for our graded modules.

A trivially graded module M has M,=o0 for n==0.

The graded K-modulesM, with morphismshom (L,M)=Hom, (L,M)
thehomomorphismsd degreeO, formacategory. Eachf: L —M d degree
0 has kernel, image, cokernel, and coimage defined as expected (i.e.,
termwise for each #) ; they are graded modules with the usual properties.
For fixed degree d, Hom, (L, M) is a bifunctor on this category, contra-
variantinL and covariantin M. Alternatively, thefamily Hom(L,M)=
{Hom, (L, M)) isabifunctor on thiscategory to the category d Z-graded
K-modules Both bifunctors are left exact, in the sense d Thm. 1.6.1
and Thm. 1.6.2.

The tensor product o two graded modulesL and M is the graded
module given by

LRM),= 3 L,QM,; (21)
p+g=n
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in brief, the grading in the tensor product is defined by deg (! @m) =
degl+degm. if f: L—L’ and g: M —-M’' are homomorphisms d
degreesd and g, respectively, then f Qg: LM —-L'Q M’ is the homo-
morphism d degree 4+ e defined by

(@) ( @m) = (—1) 2 (fl@gm) @2)

in accord with the sign convention (interchange g and ). For
deg f =deg g=0, this makes L M a covariant bifunctor on graded
modulesto graded modules. | tisright exact, asin Thm. V.5.1.

The tensor product for graded modules satisfies the same formal
identitiesasin the ungraded (=trivially graded) case; that is, there are
natural isomorphismsd degree o

w LQMRIAN)=(LRM)R®N, «llQmRn]=(IQm)&n, (2.3)
. LM =M QL, 1 [IQm] = (—1)deeh degm) ] (2.4)
KQM =M =M KK, EQm—kme—mk. (2.5)

Here ® = &x, and theground ring K is regarded asthetrivially graded
module K with Ky =K K,=0 for #£0. We regard these isomorphisths
as identities. Thiswe can do becausethey are manifestly consistent with
each other: Given any twoiterated tensor products d the same modules
M,,..., M, a suitable combination d these isomorphisms provides a
canonical map of the first tensor product into the second—deleting or
adding factorsK at will, and with sign accordingto the sign conventions,
asin (2.4).

The same properties & Homg and &g hold for Z-graded modules
and in avariety d other cases, asfollows.

A bigraded K-module B is afamily B={B, ,|#,¢cZ} d K-modules
with B, ,=0 when p<0 or q<0; a homomorphisn f: B—~B d
bzdegree (d e is a family {f; ;¢ By, Bpia g4+ o K-module homo-
morphisms. For example, the tensor product d two graded modules
L and M isinitially a bigraded module {L, ® M}, which the summation
(2.1) has turned into a singly graded module. Similarly, the tensor
product d two bigraded modules B and C is a 4-graded module which
yields a bigraded module by

(BRO)pW= 2 X B : (2.6)
pt+g=m r+s=n
An element d B, , issaid to have total degree p+g. The natural iso-
morphisms (2.3), (2.4), and (2.5) hold for bigraded modules when the
total degreesare used in thesign d the transposition z.
Trigraded modules, Z-bigraded modules, and the like are defined
similarly.
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An internally graded K-module A is a K-module with a given direct
sum decomposition 4= A,; in other words, A and its submodules
A, #»=0,1,..., aregiven so that each element a==0 in A has a unique
representation as a finite sum o non-zero elements from different sub-
modules A,. The elements d A, are said to be homogeneous elements
d A, o degree ». Each internally graded module A determines an
externally graded module {A}. Conversdly, each externally graded
module M ={M,} determines an associated internally graded module
M,=> M, Moreover, (LM),=L,QM,, but Hom(L,, M,) is
larger than [Hom(L, M)],, because a K-module homomorphism
/1 Ly—~M, need not be a sum d a finite number d homogeneous
homomorphisms.

In much o the literature, " graded module" means internally graded module.
Following a suggestion of JoHn Moorge, we have chosen to work with external
gradings. This choice has the advantage that in either event we always operate
with the homogeneous elements and not with the sums mey+- - -+ + m, o elementsd
different degrees. Similarly, one needs only the homogeneous homomorphisms
L —-M, not the arbitrary homomorphisms L,—>M,. Moreover, our choice dis-
penses with the use of infinite direct sums, so that we can define a graded object M
over any category .4 to be a family {M,} o objects in .#, with morphisms o
various degrees, just as for modules. For example, a graded set S is a family o
sets{S,, n=0,1,2,...).

3. Graded Algebras

A graded K-dgdoa A is a graded K-module equipped with two
K-module homomorphisms z=n,: AQA—-A and | =1,: K->A4, each
o degreeo, which render commutative the diagrams

ARARAZEH AQA  KQA=A=ARK
ll®n ln 1@1 ” l1®z (31)
ARA">A A®A—>A<—A®A

The first asserts that the " product™ Au==n{1®u) is associative, and
the second that I,(1x)=1, is a two-sided identity for this product.
A homomorphism f: A—A' between two graded algebras over the same
K is a homomorphism o degree 0 d graded K-modules such that the
diagrams
AQA™ A K™
ler l’ || ; (3:2)
A ®A’ - A’
are commutative.
These definitions may be restated in terms o elements. A graded
agebraAisafamily d K-modules{A,, n=o, I, ...} with adistinguished

Mac Lane, Homology 12
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element 1€4, and a function which assigns to each pair of elements
I, u aproduct A whichis K-bilinear and such that aways

deg (Ap) =deg A+deg p,
Alpyy=[Awyy, 1A=1=21.

Similarly, an algebra homomorphism f: A-A" is a function carrying
elementsd Atothosed A soasto preserveall thestructuresinvolved:

FA+u)=fA+fu,  FRA=E(fA), (module structure),
deg(f1)=deg4, (grading), (3-3)
Faw)=(2) (), (=14 (product).

We emphasize that each homomorphism f takes the identity to the
identity.

Asfor rings, we aso assume for algebras that 15=0.

A graded subalgebra XA is a graded submodule of A such that
12 and a,aeXimply go’e 2. Thus 2 isitself a graded algebra, with
the sameidentity as A, and the injection i: 2 —A is a monomorphism
d graded K-agebras. If f: A—->A’ is an algebra homomorphism, the
imagef (Z)isagraded subalgebrad A'.

A graded left ideal LA is a graded submodule of A such that
ALCL (ie., ledandicL imply AZeL). ThusL isclosed under products,
but need not be a subalgebrasinceit may not contain the identity 1,.
If a, ...,a areelementsd A, the smallest graded left ideal containing
al 4, isoften denoted by A(ay, ..., a) or simply by(a,, ceey d,),with A
understood. In degree », it consists o all sums ), 4,4, with 4,4 o
degree n—dega;. A graded right ideal RC A issimilarly defined by the
conditionthat RACR.

A graded (two-sided) ideal J o A is a graded submodule which is
both a left and a right graded ideal o A. The quotient module 4/Jisa
graded agebra with a product determined by the condition that the
projection n: A->AfJ is a homomorphism o graded agebras. This
quotient algebra, with the map #, is characterized up to isomorphism
by the fact that any homomorphism f: A4 ->A’ o graded algebras with
f(J)=o0 has a unique factorization as f =ggq for some algebra homo-
morphism g: A/]—>A’. Moreover, the kernel o any homomorphism
f: A>A’ d graded algebrasisanideal o A. (Note: Incase J=A, the
quotient "'ring"" A/J=0 has 1=0, counter to our convention 1==0.)

A graded algebra A is commutative (someauthors say skew-commu-
tative or anti-commutative)if always

A (—1)oshemn (3.4)
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that is, if my=m,7: AQA—->A, with ¢ the transposition (2.4). In con-
sequence, the elements o even degree commute in the ordinary sense.
If, in addition, A2=0 for every element | o odd degree, A is called
strictly commutative. If thegroundring K isafieldd characteristic not 2,
then any commutative graded K-adgebrais strictly commutative, for
(3.4) withdeg | odd givesAd=—11,222=0,s02in K impliesA2=0.

For example, a graded polynomial algebra P= Pg[x] may be defined
for an"'indeterminate’’ x of any degreed =0. If d=0, P istheordinary
ring d polynomiasin x with coefficientsin K. For 4>0, P is the
graded module with B,=o0 for »==0 (mod &), while F,, is the free
K-module on one generator x4 for each q=0; the product is defined by
2P 8= 2?2 If d is even, this polynomial algebrais commutative. Pis
characterized up to isomorphism by the fact that it isfreein x: For any
graded K-agebra A with a selected element 4; o degree d thereis a
unique homomorphismf: P->A o graded algebraswithf x=4,.

The exterior algebra E=Eg [u]on one symbol » d odd degree 4 is
constructed from the free K-module K« with one generator » as the
graded algebra E with E,=K, E;=Kwu, E,=0 for 0==n==d, and with
product determined by | u=#=u1, #*=0. |t isstrictly commutative.
We may also define E as the quotient algebra P¢[x]/(x?), where x isan
indeterminate o degree 4 and (x2) denotes the (two-sided) ideal in P
generated by x2. The algebra E may be characterized as the strictly
commutative algebra free on u: Given any strictly commutative A
with a selected element A,€4,;, there is a unique homomorphism
f: Eg[u]—=A4 o graded algebras with f (u)=4,.

Thetensor algebra T(M) o a K-module M isthe graded K-module
L,M)=K, T,(M)=M"=M...QM (n factors),

with product given by the identification map n: M? Q M? =M?**4. In
other words, the product isformed by juxtaposition, asin

(M@ - QM) (1 Q - QM) =M @ - Qmy, QMR -+ Q.

Clearly T is a covariant functor on K-modules to graded K-agebras.
More generally, if M is a graded K-module, a tensor algebra T(M) is
defined similarly, with

LON=K® 5 (P, T,00=2 M, - OM,,

where the second sum is taken over all 4; with d,+ .-- +d,=n. For
M = M, thisincludesthe previouscase. The graded algebra T'(M) with
the obvious K-moduleinjection M — T (M) (of degree 0) is characterized
up to isomorphism by thefollowing " universal* property:

12%
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Proposition 31 1f M is a graded module and / a graded algebra
over K, each homomorphism g: M —A d graded modules, d degree zero,
extends t0 a unique homomorphism f: T(M)—>A o graded algebras.

Proof. Setf(m & --- @m,)=(gmy) ... (gm,).

In particular, if M isthefreegraded K-moduleFon nfree generators
%, ..+, %,, €Ch d a given degree, T(F) is the free graded algebra on
these generators, in the sense that any set map &: {#,, ..., %} >4 o
degree zero extends to a unique homomorphism T'(F)—-A d graded
algebras. When F has just one generator x, T'(F) is the polynomial
algebraon the indeterminate x ; when V is a vector space over afield K,
T(V) isthetensor algebrad V over K, consistingd all covariant tensors
in any number o indices (cf. V.2).

The ground ring K itself is a graded K-agebra, with trivial grading.
An augmented graded algebra is a graded algebra A together with a
homomorphism ¢: A—K o graded algebras. The polynomial, exterior,
and tensor algebras each have an evident such augmentation. An
augmented algebra has been called a " supplemented'* algebra (CARTAN-
EILENBERG). I n the present book, an' augmentation'” d anobject Cina
category # will aways mean a morphism ¢: C—B into some fixed
"base™ object B o . In the category d K-algebras, the base object
isthe algebra K; in the category d chain complexes d abelian groups,
itisthetrivial complex Z, and so on.

Starting with graded K-modules, we have defined graded K-algebras
by the product and identity element morphismssz and | which makethe
diagrams (3.1) commutative. By starting with other types d modules,
we get the corresponding types d algebras. Thus, the diagrams (1.2) for
(ungraded) K-modules define K-algebras; call them ungraded K-agebras
when a distinction is necessary. Similarly Z-graded modules yield
Z-graded algebras, bigraded modules, bigraded algebras, and internally
graded modules yield internally graded algebras. As before, internally
and externally graded algebras are equivalent: Each graded algebra A
determines an internally graded algebra A, =X A,, with product given
by bilinearity asin

(Aot oo+ A) (o + -+ + ) =D dimy, A€y, pred;.
Notethat agraded algebraisn't an algebra, but that aninternally graded
algebramay be regarded simply as an algebra (ignorethe grading). The
internally graded ideals, defined as above, are usually called homogeneous
ideals; they are amongtheidealsd the associated ungraded algebra.

Exercises
. Describethe free graded K-module on any graded set of generators.
2. Describe the bigraded tensor algebra of a bigraded module, and prove the
analogue o Prop. 3.1.
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3. Let Sbeaset o elementsin a graded algebraA. Show that the set o all
homogeneous sums o products AsA', for s€S, is a graded ideal in A and is the
smallest ideal containing S. It iscalled theideal generated by S (or,spanned by S).

4. Show that a graded K-algebramay be described asa graded ring R equipped
with a homomorphism | : K —R o graded ringssuch that always (1k) » =»(1k).

4. Tensor Productsdf Algebras

The tensor product d two graded K-algebras A and X' is their tensor
product 4&2ZX, as graded modules, with product map defined as the
composite

1®:®1

(ARIIQURE) —— AQARTRX A . (4.1

where t isthe (signed) transposition (2.4)d 2 and A, and with identity-
element map given by | I: K=K@K >ARZ. Intermsd elements,
the product is given by

(l®0’) (lr®0_l)=(_1)degadegl' AAI®O_GI

and the identity & AR Y is1,Q15s. The axiomsfor a graded algebra
al hold. If f: A—A" and g: Y- X’ are homomorphisms o graded
algebras, VisfRg: ARE > AR AlD, A>AQR1y, 0 —+1,R0 define
homomorphisms

A>AQRE X

d graded algebras. With these mappings, the tensor product A QX' is
characterized up to isomorphism by the following property:

Proposition4.1. Iff: A—>Q and g: X—£ are homomorphisms of
graded K-adgebras such that always

(f2) (go)=(—1)2*%7 (gq) (£2), (4.2)
there is a unique homomorphism h: A QX -2 o graded dgebras with
RAR1)=1(A)1(1Q0)=g (o).

The proof isleft to the reader (set h(A ®o)=f Ag(a).

If £ is commutative, condition (4.2) holds automatically. Thusin
the category & commutative graded algebras, A -4 Q 2< 23 is a uni-
versal diagram with endsA and 2. Inthecategory d all (not necessarily
commutative) algebras, the universal diagram requires a free product
[Conn 19591, the couniversal diagram a direct product A><2X asdefined
below in (VI1.5.1).

The tensor product d algebras, with this characterization, appliesin
al the other relevant cases: The tensor product d K-algebras (trivial
grading); d rings (K=2Z2); d bigraded algebras. In each casethe tensor
product d algebrasis commutative (t: A ® 2 =2 ®RA) and associdtive,
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and satisfies KQA =A; in other words, the natural isomorphisms
(2.3)— (2.5) hold for algebras. The tensor product d algebrasis aso
called their KroNECKER Product or, in older literature, their " direct
product.

We also assign to each graded algebra A a graded opposite algebra
A%, Thisisdefined to bethe graded K-moduleA with the sameidentity
element and the new product =4 v: AQ A A (transposethe order o the
factors, with the appropriate sign, then multiply). To avoid the in-
convenience d writing two different products for the same pair d
elements, we aso say that the underlying graded module & A is an
isomorphic copy o that d A, under an isomorphism A—A4°, and with
product defined by A% u®P= (—1)d8*desx (,, 2P, This product is clearly
associative. For example, if A isthe (trivially graded) algebrad n x n
matrices with entries in K, with the usua ‘row-by-column' matrix
multiplication, then A°? isthe ring o n x n matrices with "* column-by-
row" multiplication. The same construction d an opposite applies to
rings (as already noted in V.7), to bigraded algebras, etc., and in each
casethere are natural isomorphisms

(A°P)P =24, (AR Z)P =APRIP. (4.3)

The tensor product may be used to construct various examples o
algebras, asfollows.

Let Px[x,], t=1, ..., n, bethe graded polynomial algebra(§ 3) onthe
indeterminate x; & even degreed; =0. The commutative graded algebra

Pl#, o ] =FK[n]® - QF[x,] (4.4)
iscalledthe graded polynomial algebraonthegiven ;. |1 neachdimension
m, B [#,, ..., %,] isthefree K-moduleon all

Q. Qxr With ed+ ... Te,d,=m (if =0, read 20 as 1y);

two such generators are multiplied by adding the corresponding ex-
ponents. Thispolynomial algebraisthe free commutative algebraon the
generators x; d evendegree,in thesensed thefollowing characterization.

Proposition 4.2. If A isa commutative graded algebra, any st map
& {%,..., x,}>A with deg(éx)=degx; for all i extends to a unique
homomorphism {: Pg[%,, ..., x,] -A d graded algebras.

Proof. Since P¢[x;] is free on x;, the correspondence x;—5z;
extends to an algebra homomorphism f;: P¢[x,]—>A. Since A is com-
mutative, these f; combine by Prop. 4.1 to givea unique f: Pg—A.

If all x, have the same degree, this property showsthat a changein
the order 0 the indeterminates simply replacesthe polynomial algebra
by an isomorphic algebra; hence the order d the x; isirrelevant. If all
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the x; have degree zero, P¢[x,, ..., %,] is trivialy graded. We may
regard it as an ungraded algebra, and denote it as K[, ..., x,]; it is
the ordinary polynomial algebra in n indeterminates over K. For n
given constants kK, Prop.42 yields a unique homomorphism
f: Bxk—K withfx,=#;, i=I , ..., n. Thisisthe homomorphismobtained
by thefamiliar processd " substituting %; for %;, t=1, ..., n".

We next construct a similar free strictly commutative algebra with
generators«; d odd degree (degreel will suffice). For nlettersy,, ..., %,,
each o degree1, the tensor product (over K)

EK[“I: ) un]=EK[“1]® ®EK[“»]

isastrictly commutative graded algebra, called the exterior algebra over
K with generatorsu,, ..., u,. As before,

Proposition 4.3. The exterior algebra £ = Ex [w,, ..., #,] 1Sindegree 1
the free K-module E, on the generators #,...,u,. If Aisany grictly
commutative graded K-algebra, each module homomorphism B: E,—A,
extendsto a unique homomorphism f: E—>A d graded algebras.

The product o two elementseand € in the exterior algebrais often
written as ea€. Clearly E isthe free module on all products (in order)
d generatorsw,; the productsd degreep=0 are

U;, u,-, e u,-p= u,-lAu;’A . /\u,",
With 1 <4< i< +-- <% =N. The number d such productsis ($, N— ),
where

¢.0=e+auera)="7")=(7 (45)

isour notation for the binomial coefficient. Any permutation ad the
marks 1, ..., $ can be written as the composited sgna transpositions
o adjacent marks, where sgne=1 or 0 (mod?2) according as the
permutation ¢ isodd or even, so the commutation rule yields

—(—1)®% . 4. )
Uiy Wigg v Wigy =(— 1) 0 24 o ;.

The tensor product K®, K' o two commutative rings isa commuta-
tive ring, and the definition d E showsthat

Eg [#] @z Ex-[w']=Exgx [, w]. (4.6)

There are similar isomorphisms for more #’s, more factors, or for E
replaced by P. The polynomialson n commuting indeterminates with
coefficients in a not necessarily commutative (ungraded) K-agebra A
may be defined as

Balx, ooos 2] =AQ Kk [#1, .-, %] (4-7)
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Exer cises

1. In any graded algebra A let C= C(A) be theideal spanned (cf. Ex. 3.3) by
all differencesdu — (—1)"# uA for m=deg A n =degu. Show that 4/C is com-
mutative, and that any homomorphism o A into a commutative algebra factors
uniquely through the projection A —A4/C.

2. The symmetric algebra S(M)is defined from the tensor algebra as S(M)=
T(M)/C(T(M)),for Casin Ex. 1. Showthat Prop. 3.1 holdswhenA iscommutative
and T(M) isreplaced by S (M),and that, for M free on afinite set of generators of
even degrees, S(M) is the polynomial algebra.

3. Make a similar construction o the exterior algebra on any graded K-module
M consisting of elements all o degree 1.

4. In Ex. 2, show S(M @ N)=S(M)® S(N).

5. Show thatgfreestrictly commutative graded algebra on any finite graded set
o generators may be constructed as a tensor product o polynomia and exterior
algebras.

6. If P=K[x] and Q= P[y], show that Q, as an (ungraded) K-algebra, is
isomorphic to K[#, y]. Extend this result to the graded case with more indeter-
minate~.

5. Modules over Algebras

Let A be a graded K-agebra. A left A-moduie A isagraded K-module
together with a homomorphism z,: A QA4 -+A d graded K-modules, d
degree zero, such that the diagrams

AQARA™2Y A4 KA =4
pom o uer] | (51
ARA 2+ 4, AQASA4

commute. Alternatively, aleft A-moduleis a graded abelian group A
together with a function assigning to each AeA and ac4 an element
Aac A with deg(44)=deg A+ dega such that always (for degl,=deg4,,

dega=dega,)
(htA)a=hathe, Amta)=Aa+la, (5-2)
(Aw)a=A(na), 140=a. (53)

Indeed, given these conditions, the definition 2a=(%1,)a makes A a
graded K-module. By (5.3), (¢A)a=k(Aa)=1(ka) holds. With (5.2)
this makes the function Az K-bilinear, so definesz, as =, (A Qa)=41a.
Finaly, (5.3) isarestatement o the commutativity (5.1).
If C and A are left A-modules, a A-module homomorphism | C—A
d degree disa homomorphism d graded K-modules, d degree 4, such
that
frc=m (1Qf): AQC—A; (5.4)

in other words, such that always
fhe)=(—1)een N 1 (f¢); (5.4)
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the usual sign arises from the definition (2.2) of 1®f. The set d all
such f of degreedisa K-modulewhich we denote as Hom=4(C, A).

The class ,# o all left A-modules is a category with morphisms
hom, (C,A)=HomY (C,A) those o degree 0. In .., direct sums, sub-
and quotient-modules, kernel, image, coimage, and cokernel are defined
as expected, with the usual properties. For each n, Hom"(C,A) is an
additive bifunctor on , # to K-modules, contravariant in C and co-
variantinA. Thefamd Hom, (C,A)={Hom} (C,A),n=0, £1, £2,...}
is a similar bifunctor on ,# to 2-graded K-modules. According to the
definition (5.4) d a A-module homomorphism, we can also describe
Hom, (C,A) asthat Z-graded K-modulewhichisthekernel o thenatural
homomorphism

yw: Hom(C,4)—>Hom(A®C,4), Hom=Hom, (5.5)
o 2-graded K-modulesdefined by
pi=m (1Qf)—fn;: AQC->A.

Proposition 5.1. The functor Hom, is left exact; that is, if
D-+B->C->0is a short right exact sequence in ,.#, then the induced
sequence

0—Hom, (C,A)—Hom, (B,A)—>Hom, (D,A) (5.6)

is exact, with the corresponding result when A is replaced by a short left
exact sequence.

Proof. Construct the commutative 3><3 diagram

0-> Hom,(C,A) — Hom,(B,4) — Hom,(D,A4)

} } |
0— Hom(C,4) -» Hom(B,4) -» Hom(D,A4)
e e e

0—>Hom(AQC,4)>Hom (A Q®B,4) >Hom (AR D, 4).

By right exactnessd thetensor product (Thm.V.5.1),A QD -A&B —
AQRC—0 isright exact. The left exactness o Homg makes the last
two rows left exact; by the definition (5.5), all three columns are left
exact (whenstartingwith 0—-.:). The 33 lemma (in thestrong form
o Ex. I1.5.4) now shows the first row left exact, q.e.d.

Right A-modules G are treated similarly. A homomorphism
y: GG do right A-modules must satisfy y(gl)=(yg)1l; no sign is
needed (as in (5.4)), because the homomorphism and the module
operations act on opposite sides o geG. A right A-module G may also
be described as a left A°P-module, with operators switched by A°Pg=
(—1)tdes M (de88) o 2 - this definition insures that A% (u°Pg) = (A°Pu?)g.
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Given modules G, and 44, their tensor product over A is a graded
K-module. It is defined to be the cokernel d the map ¢ o graded
K-modules

CRARAL CRA-GCR,4—0 (5.7)

given as ¢ (g QRARa)=giRa—g®Aa. This amounts to stating that
each G®,4), isthe K-module quotient d (G&A4),, by the submodule
generated by all differences gA®a—g®4Aa in (G@QA),. This tensor
product is characterized via the middle linear functions to a graded
K-module M, just asin Thm. V.I.I:

Theorem 5.2. Iff isafamily o K-bilinear functionsf, , on G,>=<4,
to M, , which is A-middle associativein the sense that awaysf (g4, a)=
f(g,A4), there is a unique homomorphism w: G®,4A—->M o graded
K-modules, with degw=0, such that alwaysw (g®Ra) =f (g, ).

Proof. Each f,,, is bilinear, hence determinesw, ,: G, Q4,—~>M,,
with w'(g®a)=f, ,(9,8); the middle associativity insures that o’
vanisheson theimaged the map ¢ d (5.7), and hencethat o’ inducesa
map w on the cokernel GR,A d ¢, asdesired.

This result implies that A-module homomorphismsy: ¢-G’ and
a: A—-A’ d degreesd and ¢, respectively, determine a homomorphism
yQu: GR A—>G Q44" d degree d4+-e d graded K-modules by the
formula

(y Qa) (E@a) = (—1)s eslyg Do, (5-8)

with the expected rules for composing (y®ea) with (' ®«’) — with a
sign (—1)@eex@ee?) |0 particular, GR 4 A4 isacovariant and biadditive
bifunctor on the categories.#, and ,.+ of right and left A-modulesto
graded K-modules. From the definition (5.7) it followsasin Prop. 5.1
that this functor carries right exact sequences (in G or A) into right
exact seguences.

Modules over other types o algebras (2-graded, bigraded, etc.) are
correspondingly defined. Note that each A-module A automatically
carries the same type d structure asA (e.g., graded when A is graded,
bigraded when A is bigraded). We may introduce modules with added
structure; thus a graded module over an ungraded algebra A means a
module over A, regarded as a trivialy graded algebra— exactly as for
graded modules over the commutative ring K.

If A and 2 are two graded K-dgebras, a 4-Z-bimodule A — in
symbols 44, — is a graded K-module which is both a left A-module
and a right 2-module such that always (Aag)a= A(aa). This condition
amounts to the commutativity o an appropriate diagram. Note that
ka=(k1l) a=a(k1y), so that the same given K-module structure on A
comes from the left A-module structure by pull-back along 1 : K—4,
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or from the right Z-module structure by pull-back aong 1: K—2.

* For example, any graded algebra A is a A-A-bimodule. SinceA isa
left A-module and X a right Z-module, the tensor product 4 Qg2 is a
A-Z-bimodule; in fact, the free bimodule on one generator 1&1. Simi-
larly, for modules 44 and B, the tensor product A &gB is canonically
aA-Z-bimodulevia l (a®@boe=1a®ba.

The typographical accident that a letter has two sides could hardly
mean that modules are restricted to one-sided modules and bimodules.
Indeed, we naturally reach trimodules; for example, modules ,4 and
zBg will have a tensor product A ®g B which is canonically a right £-
and left A-Z-module. Here we have cdled C a left A-Z-module if it is
both aleft A- and aleft Z-modulesuch that always

Aoc)=(—1)eed el (7).

Fortunately we can reduce trimodules to bimodules or even to left
modules over a single algebra. By setting (IQae)c=A4(ac), each left
A-Z-module may be regarded as a left (A ®2)-module, or conversely.
Similarly we have the logical equivalences

BzﬁzopB; AA£<=>(A®2°’)A (59)

via 0°Pb=(—1)de8 ) (Gegb) 5 (1 RQ0°P) @ = (—1)de8 ) (€4} 55, Thisreduc-
tion carries with it the definitionsd Hom and & for bimodules. Thus
for bimodules ;G , and 44 5 the bimodule tensor product

CR4_zA=6CQugrnd (5.10
isby (5.7) the quotient d G QgA by the graded K-submodule spanned
by all

gAQa—gQAa, og®a— (—1)ECeetiey a5,

The vanishing d the first expression is A-middle associativity; that o
the second is 2-outside associativity. Similarly the graded K-module of
birnodule homomorphisms d ,C into 445 iswritten Hom,_ »(CA)=
Hom(A®zop) (C,A.)

Exercises
1. An (ungraded) K-algebra A isaring R equipped with a ring homomorphism
I: K=R with | (K) in the center of R. Show that a left A-module A isjust a left
R-module, with the K-module structureof A given by pull-back along I. Show
also that Hom,4(C,A)=Homg (C,A)and G ®4 A =G ®@gA.

2. Asin EX. 1, reduce modulesover the graded algebra4 to modulesover A,
regarded as a graded ring (cf. Ex. 3.4).

6. Cohomology d free Abelian Groups

As an illustration o tensor products d algebras we calculate the
cohomology d a free abelian group.
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A

For the group ring Z (I1,><I1,) d the cartesian product d two multi-
plicativegroupsi; and I1, thereis a natural isomorphism

Z (I <ITy) =Z (I) ®Z (IT,). (6.1)

For Z(IL) is characterized (Prop.1V.1.1) by the fact that any multi-
plicative map g; d I, into a ring S, with g, (1) =15, extends to a ring
homomorphism Z(I1;)—-S. By Prop.4.4, a multiplicative map
w I ><I1, — S with x4 (1) =1 then extends to auniqueringhomomorphism
Z(A7)RZ (I1,) —S, so that Z(IL,) ®Z (I1,) satisfiesthis characterization
d the group ring Z (I1,<11,).

Let G betheinfinite (multiplicative) cyclic group with generator t,
and R=Z(Cy) its group ring. Any element d R is a polynomia in
positive, negative, and zero powersd t, hence may be written as ™4 (t)
where # isan (ordinary) polynomial in positive powersd t with integral
coefficients. The kernel d the augmentation ¢: R—Z isthe set d al
multiplesd t—1, hence the exact sequence

0<Z<R< Ru<0 (6.2)

with Ru the free R-module with one generator u and d«=¢—1. Thus
9: R<-Ru isafree R-moduleresolutiond .Z; it isaspecia cased the
resolution found in (IV.7.3) for any free group, and is analogousto the
resolution (1.3)for a polynomial ring. For any R-module A, H*(C,,, A)
may be caculated from this resolution to be the factor group
Af[ta—a|acA], while H*(Cy,, A)=0if n>>1.

The free abelian group 17 on » generators ¢, ..., ¢, is the cartesian
product d n infinite cyclic groups. By (6.1) the group ring Z (1) is
R'®... @R", where each R* is the group ring Z(C, (£)), while the
augmentation &: Z(17)—Z is the tensor product £ .. ®&" d the
augmentations &: R*—Z. For each index ¢ form the R‘-projective
resolution X*: R*<«R'u; as in (6.2). Form the tensor product complex

X=X1Q;X*Qyz - QX";

itisachancomplexd free R*'® ... R"=Z (IT)-modules.

On the one hand, each X' is a complex d free abelian groups. The
iterated KUNNETH tensor formula (Thm. V.10.1) shows that the homo-
logy product

2H,(X) Q- QH,, (X") >H,(X'Q -+ QX"

isanisomorphismin eachdimensonm=m,+ -.- + m,. ButH,, (X")=0
unless m,=0, while ¢;: H,(X*)=Z, <0 H,,(X)=0 for m positive, while
e: Hy(X)=Z. Thisprovesthat X isafreeresolutiond Z asal7-module.
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On the other hand, each X' is the exterior algebra E [«']; asin
(4.6), X is the exterior algebra Ezm[#,, ..., U], S0 hastheformd an
exact sequence

0« Z <Xy« X < «X,«0

of 17-modules, with each X, free on the generators #; & --. @u;, with
<4 <...<i,=n. Sincedw,=t;—1, the boundary formula (V.9.2) for
the tensor product gives

: ?
O, @ -+ Qui) =2 (— 1)ty =), @ - @, @ -+ @ty (63)

where the ~ indicates omission. The cohomology d 17 may be computed
from this resolution. For any 17-module A,

Extt,(Z,A)~H?(IT,A)=0, p>n. (6.4)

For p<#, ap-cochain f: X,+A, asa module homomorphism, is deter-
mined by @, n—p) arbitrary elementsf (;, @ ... @%0)e A, and
p+1

0f(u, @ -+ Quy, ) =k§1(-1)k‘1 1)1, Q- QU Q -+ Quiy,,) -

In particular, if A isan abelian group regarded as a trivial 17-module
((,a=a for al i), then éf is always zero, so H?(II,A) is simply the
direct sum of (p, n—p) copiesd A.

Exercises

1. For IT free abelian as above, show that H*(I1,A) isthe quotient L/M, where
L isthe subgroup o A@®...@4 (nsummands) consisting of all (a4, ...,a) with
ta;—Qat=a;—a; aways, while Misall (,a—a,..., t,a—a) for ac4. Interpret
thisresult in terms of classes of crossed homomorphisms.

2. Obtain asimilar formulafor H&(Z, A) and comparethiswith the result found
for two generatorsin IV.3.7.

3. Determine H" (I1,A) for IT free abelian on » generators.

7. Differential Graded Algebras

Theresolution X d thelast sectionisboth a complex and an algebra,
with the boundary d a product given by the Leibniz formula (1.5).
Such we call a DG-algebra. Further examples d DG-agebras will
appear in the next chapter; they will be used extensively in Chap. X, to
which the following systematic development will be relevant.

A positive complex X=(X,d) d K-modules is a graded K-module
X={X,} equipped with a K-module homomorphism ¢=20x: X >X d
degree —1 such that 82=0. A positive complex will thus also be called
a differential graded module (DG-module for short): the homology o
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X is the graded K-module H (X)={H,(X)}. A chain transformation
(=DG-module homomorphism) f: X->X"’ is just a homomorphism d
graded modules, d degree O, with 8y.f=fdy. The set d al such f is
an abelian group hom(X, X"); with these morphisms the DG-modules
form a category. Similarly, a not necessarily positive complex o
K-modulesis a differential Z-graded module (DG,-module).

The tensor product X ® Y d two DG-modulesis the tensor product
over K d the graded modules X and Y equipped with the differential
0=0x ®1+1Q9y. Accordingto the definition (2.2) d 1& 0y thisgives

A(x®y)=2xQy+(—1)"¥*2Qdy, (7.1)

in agreement with the previousdefinition (V.9.2) d the tensor product o
chain complexes. This tensor product d DG-modules satisfies the
standard natural isomorphisms (2.3), (2.4}, and (2.5); in the latter, the
ground ring K is.regarded as a DG-module with trivial grading and
differential 2=0.

For DG-modules X and Y the Z-graded module Hom(X,Y)=
{Hom"(X,Y)) has a differential defined for each feHom" as &yf=
ayf+ (—1)"+1f9,, asin (I11.4.4). Thus Hom(X,Y) is a DGz-module.
Note especiadly that Hom (X, Y) with capital H in ""Hom'" stands for
homomorphisms o graded modules o all degrees, while hom (X, Y),
with lower case h, includes only the homomorphisms d DG-modules, o
degree 0.

A DG-algebra U= (U, 9) over K isa graded algebra U equipped with
a graded K-module homomorphism é: U—U d degree —1 with é2=0,
such that the Leibniz formula

0 (uy t3) = (Omy) g+ (—1)28% 0 (Ouy) (7.2)

aways holds. Similarly, a homomorphism f: U—U’ d DG-algebras
is a homomorphism d graded algebras (conditions (3.3)) with af=f 2.
With these morphisms, the DG-algebras form a category.

By the Leibniz formulathe product d two cyclesisa cycle, and the
product d a boundary du, by a cycle «, is a boundary o (u,%,). Hence
aproduct d homology classesin Z (U) may bedefined by (cls #,) (cls #,) =
cls (u,u,); this makes H(U) a graded algebra. Any homomorphism
f: U—U' d DG-algebras induces a homomorphism /,.: H(U) —-H(U’)
d graded algebras.

The tensor product U @ U’ d two DG-algebras istheir tensor product
as graded algebras, with the differential given by (7.1). The analogue
d Prop. 4.1 holds. TheoppositeU? d a DG-algebra isthe opposited U,
asagraded algebra, with the same differential.

A left U-module X = (X, 9) isaleft moduleover thegraded algebraU
equipped with a graded K-module homomorphism 9: X —X d degree
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—1 with 82=0, such that the formula
& (wx) = (0w) %+ (—1)%%* 4 (2) (7.3)

aways holds. Equivalently, aleft U-module X is a DG-module over K
equipped with a homomorphism U Qg X —+X d DG-modules, d degree
0, written u® x—u x, such that the standard conditions

(gt u) x=uy x4+ ugx, u(%4 %) =02,+ux,,
(41 %05) X =11 (43 %), 1x=x,

always hold, asin the diagrams (5.1). f X and Y are U-modules, a
morphism &: X — Y isa homomorphismd the wholestructure: A homo-
morphism d DG-modules, d degree 0, which is aso a homomorphism
d modulesover the graded algebra U; in other words, £ isadditiveand

E(kx)=k(Ex), E(Ox)=0(¢x), E(ux)=u(lx), deg(bx)=degx. (7.4)

The K-module o all such morphisms ¢ is written homy (X, Y). With
these morphisms, the left U-modules form a category in which sub-
and quotient modules, kernels, images, coimages, and cokernels are
defined as usual. Right U-modules are treated similarly.

On this category we define bifunctors Horn, and &, . For U-modules
X and Y, a graded U-module homomorphism f: X Y d degree —u
isa homomorphismd X to Y, regarded just as modulesover the graded
algebra U; in other words, f is additive and

f(Rz)=k({%), fux)=u(fx), deg(fx)=degx—mn, (7.5)

but / need not commute with 8. The set d al such f is a K-module
Hom?(X,Y). The family Hom, (X,Y)={Hom% (X,Y)) becomes a
DG,-module over K when the differential g, : Hom"—Hom"+* isdefined
by the usual formula

Guf=0yf+(—1)"* 1 a. (7:6)

Thus Homy with capital ""H"" differsfrom homg, with lower case™ h™:
Hom, (X,Y)isaDGz;-module over K; elementsall f: X - Y;
hom, (X,Y) isan (ungraded) K-module; elementsall §: X — Y.

Moreover, homy is the K-module o cyclesd degree 0 in the complex
Hom,.

Let X be aright U-module, Y aleft U-module. Consideredjusf: as
modules over the graded algebra U, they define a graded K-module
X ®yY which becomes a DG-module over K when the differentia is
defined by (7.1); for, by that formula, ¢ (Xxu®y)=¢(xXQuy) (U-middle
associativity). Thus the dements & Hom, and &, are defined from
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the grading and modulestructured X and Y ; the differential son Homny,
and ®y comefrom thedifferentialson X and Y.

For two DG-adgebras U and U’ a U-U’-bimodule (X, d) has one
differential @ which satisfies (7.3) for 8(#X) and the corresponding rule
for g (xu) — just asa bimodule has just one K-module structure induced
from U or from U".

The augmented case is relevant. A differential graded awgmented
algebra U (DGA-agebra, for short) is a DG-algebra together with an
augmentation ¢: U —K which is a homomorphismd DG-agebras. Here
the ground ring K is regarded as a DG-dgebra with trivial grading
(K,=K) and differential (a=0). Such an augmentation is entirely
determined by its component d degree 0, which is a homomorphism
g: Up—K d (ungraded) K-moduleswith

gol =1,  &o(ugug) =(eoto) (o), £0=0: U—K.

A DG-algebra U is connected if Uy,=K and ¢: U, —U, is zero; this
implies Hy(U) =K (hencethe choice d the term "' connected': A topo-
logical space X is path-connected precisely when Hy(X)=Z). A con-
nected DG-algebra has a canonical augmentation g,=1: Uy —K.

Next some examples d DG-agebras. Take the polynomial algebra
Py[x] in an indeterminate » o degree 1, select some k€K, and set
dx="Fy; With this, 92*"=0, 8™t =k 4™, and P is a DG-algebra
Similarly, the exterior algebra Ex [#], with « o degree |, has a unique
differential with 9u=#%,, and isa DG-algebra.

If X is a DG-module over K, the tensor algebra T'(X) has a unique
DG-agebrastructure such that the injection X —7T'(X) isa chain trans-
formation; the requisite differential in T(X) isgiven by

(% & - ®xp):§1 (—=1)"%Q - QoxQ --- & %,

with #,=degx,+ ... +degx,~_1, in accord with the sign convention.
The analogued Prop. 3.1 holdsfor this T(X).

One may construct universal DG-algebrason given generators. Thus
if x hasdegree2 and » degreel , thereisexactly oneDG-agebrastructure
on V= P[x]RQE[u] for which ax= u, for by the Leibniz rule (7.2) the
differential isgiven on the free K-module generators d the algebra V as

o(x" N)=ma™ 1 Qu, 9(x"™RQu)=0. (7.7)

If u,is aselected element d degree2 in any strictly commutative DG-
algebra U, there is a unique homomorphism f: V- U o DG-adgebras
with f x=u, (and hencewith fu=20u,).

Similar considerations will define differential internally graded and
differential Z-graded algebras.
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Exercises

1. For DG-modulesover K show that the exact homology sequence (Thm.IL.4.1)
for a short exact sequenceE: W>»X-» Y o DG-homomorphismsxz and a takes the
form o an exact triangle

H(W) > H(X)
or -
H(Y)

(kernel = imageat each vertex), with », and ¢, homomorphismsd graded modules
of degree 0, while the connecting homomorphism 8z has degree —1. [The usual
long exact sequence spirals around this triangle, dropping one level with each 8g.]

2 Prove that a DG-algebra U is a DG-module over K with homomorphisms
n: U®U—U and |1 : K— U of DG-modules, o degree O, satisfying (3.1). Givea
similar definition d U-modules by (5.1), and show that Homg and ®p may be
obtained from Homyg and ®g, for DG-modules, by the analoguesd (5.5)and (5.7).

3. For V asin (7.7) determine the graded homology algebra H(V) when K=Z
and when K= Z, (thefield o integers modulo #).

4. Construct a universal strictly commutative DG-algebraon agivenfiniteset
o generators (of odd and even degrees).

5. For deg»;=2, degu;=1, the graded algebra Pl#, ..., #,] ®E[4;, ..., t%,]
isisomorphicto the tensor product o n algebrasV; = P[x;] ®E[u,-] likethat treated
in the text, hence has a unique differential With Ox;=wu; i=1,...,n. For any

polynominal p in the #;, show that 9p = Z ®u,, where == ap denotes the usual

partial derivative. Hence show directly that 6211 0. Note that 8¢ isthe usual
differential of thefunction ¢ d n variablesif we replacew; by asymbol d#;.

8. Identitieson Hom and &®

Consder modules and bimodules over various graded K-agebras
A, X, and 2 (which may equally well be DG-algebras). The functors
Hom, and &, have inherited module structure as follows

0184 4= o[Hom,(C, 4) ]y,
£G4 8445 2 (GR44)q,

definedforf: C—A4 by (wf o) (c)=w][f(oc)] and for g Qa by o (g RQa)w =
0gRaw, justasin (V.3.2) and (V.3.1).
There are severa natural isomorphismsfor iterated tensor products.

Thus
AR A=A, (a4) (84)

isgiven by A ®a—>Aa. The commutative law

CRIA=A QG (G, 44) (8.2)

Mac Lane, Homology 13
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isgiven by g ®a—(—1)4ee ) 3 0. The associativelaw

a: AR400(BRzC)=(A ®4B)Q@:0C, (4ds-g, 4Bz, z-00) (8.3)

isgiven by a[a® (bRc)]=(aQb) R¢; here B ®zC isregarded as a left
P-module with operators o (b @c¢) = (—1)'%ed @) h Qeyc. To show this
map a well-defined, observefirst that for fixed a the function (a®b) ®c
is bilinear and 2-middle associativein b and c. By Thm. 5.2 there is
for each a a unique homomorphism F(a): B®zC — (A X4 B)Q=zgaC
which satisfiesF(a) (b&®c)= (a®b) ®c. ThefunctionF(a) (b&0) isagain
bilinear and {4 ®£)-middle associative in its arguments in A and
B®;C. By Thm. 5.2 again there is a unigue homomorphism a with
da® bRc]=(a®b) Qc. The inverse d a is constructed similarly.
The associativity law aso holds in smpler cases; e.g., with 2 omitted
(set 2=K in (8.3)). A general verson o the commutative law is the
middle four interchange

7 (AQuB) RQrgr (C QD) =(A Ra () Qigs(BR&eD)  (8.4)
defined for modules A4_ -, 4Bs, 4#Cs, s_sD by setting
7[(a Qb) @ (c @d)] = (—1)1ED %) (3 Q) ® (b R 4).

In the DG-case, adl d these natural isomorphisms are isomorphismsd
DG-modules over K, as one verifies by showing that each of the given
isomorphisms commutes with the differential which we have defined
on Q.

For the functor Hom, aone, we have the natural isomorphism

Hom, (A, A)=A (,4) (8.5)
given by f—f (1) and the natural homomorphism
K—Hom,(A,A), (,4) (8.6)

given by mapping 1¢ into the identity homomorphism 1,: A +A.
Adjoimt associativity is the natural isomorphism
n: Homg_z(4 ®4B, C)=Hom,_,(4, Homg(B, C)) (8.7)

for modules g4,, 4Bs, and oCs, defined for f: ARB—C by
[(nf)al b=f (a®b), just asin the case d rings (V.3.5). In the DG-case
one checksthat » commutes with the differentialsdefined on both sides,
hence is an isomorphism o DG;-modules over K. In particular, taking
the cycles d degree zero on each side d (8.7) gives the natural iso-
morphism

homg_ (4 ®, B, C)=homg_4(4, Homz(B, C)) (8.8)
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— where, as above, hom with lower case h denotes homomorphisms d
degreezerod thefull DG,-structure. I n thiscase, since A hasnoelements
d negative degree, the Z-graded Hom (B, C) on the right may be re-
placed by the graded module {Hom—* (B, C),n=0, 1, ...).

Composition d homomorphismsyields a map
Hom, (B, C) QqHom, (4, B)—>Homy (4, C) (44, 2B4a, Cq) (8.9)

which is natural in A and C. Another useful natural homomorphismis
the Hom- & interchangefor modules 4B, 44, 4 B’, 4+4’,

{: Hom, (B,A)®@Hom, (B', A) >Hom,g 4+ (BRB', AQA’), (8.10)
definedforf: B—+4 andf': B'—A' by
[ (fR1)] bRb) =(—1)NCE fh b’

In the DG-casg, this and composition are homomorphisms d DG-
modules.

A notational curiosity emergeshere. |n thisdefinition,f @f' denotes
a typica element in the tensor product shown on the left o (8.10).
Previously, in (2.2), we used f®/f to denote the homomorphism
BB —»A&A' here written as¢ (f Qf'). The two symbolsf @ need
not agree, because £ may wel have a kernel not zero. This ambiguity
is not serious; long ago we observed that the tensor product ¢ ®b& d
two elements has meaning only when the modules in which these e
ments lie are specified, and may become zero when one or the other
module is enlarged.

Various other natural homomorphisms may be defined by com-
position d these. For example, the evaluation homomorphism

¢: Hom, (4, B)®A—>B (44, 4B) (8.11)

isgiven for f: A—B by e(f Qa)=f (a); i.e., by taking the value d the
functionf at a. |t may bewritten as the composition

Hom, (4, B) @A ->Hom, (4, By @Hom, (A, A)->Hom, (4, B)—B

d the maps(8.5), (8.9), and (8.5). It would be instructive to know the
various identities holding between composites d the assorted natural
homomorphisms (8.1)— (8.10) described above.

As an application; consider free and projective A-modules over a
graded algebra A. A left A-module P is projective, as usual, if each
epimorphisma: B-»C of left A-modules, d degree 0, induces an epi-
morphism hom,(P, B)-»hom,(P, C). ThefreeA-moduleon the graded
set Sd generatorsisthe A-moduleC containing S and characterized up
to isomorphism by the usua property (Prop.1.5.1) that each set map

13*
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S—,4 d degree zero extends to a unique A-module homomorphism
C->A; asusua, afreemoduleis projective. The algebraA itsdf is the
free A-module on one generator 1 d degree 0; the free A-moduleon any
S may be constructed as the direct sum AS= As for scS. Here As
denotes the left A-module with elements As d degrees deg (A9—=
deg A+degs. Note that AS=A@ K S, where KS=> Ks is the free
graded K-module on the generators S. In other words, each free graded
K-module F yields a free A-module A @ F. Similarly,

Proposition 8.1. 1M isa projectivegraded K-module and A a graded
K-dgebra then A ® M is a projective A-module.
The proof, asin Cor. V.3.3, follows from the adjoint associativity

hom, (A Q@ M, B)=hom (M, Hom, (A, B))=hom (M, B).
The same associativity proves more generally

Proposition 8.2. For each graded K-module M definea homomorphism
e M->AQRM d graded K-modules by e(m)=1&m. Thiseis universa:
For evay left A-module A eech homomorphism 9. M->A o graded
K-modules o degree 0 can e factored uniquely through e as g=y¢€ with
y: A®M —A aA-module homomorphisnd degree 0.

Proof. Observe that y must have y (A ®m)=2Ag(m)c4; the right
sided thisformulais K-bilinearin A and m, hence definesy uniquely.

For "eisuniversal" in the sense o this proposition we also say that
A QM isthe reatively freeA-module generated by the graded K-module
M, or that AQM is (A, K)-free. Similarly, for two graded algebras A
and X2, eecchA@M ®2Z is a (A-2,K) relatively free bimodule; if M is
K-projective, it isA-X projective; if M isK-freg itisA-2-free.

For Thm. X 7. 4ve shall need

Propogtion 8.3. If B and B' arefreeleft A- and A'-modules O finite
type, the Hom-& interchangeis a natural isomorphism

C: HOmA(B,A) ®HOmA' (B',A') EHOmA®Af (B®B/, A4 ®A’), (AA: AfA,).

Proof. By direct sums, this reduces to the case B=A, B'=A4’; in
thiscaseZ istheidentity ARQA'=A KA

Exercises

1. Give a direct proof of the middlefour interchange; that is, show that t as
specified iswell defined and hasan inverse.

2. Deducethe middlefour interchange by repeated applicationsdf the associa-
tivity (8.3) and A ®¢B =B ®g4.

3. For modules ACx and 440 describe the bimodule structureon Homy4 (C,A)
(Attentionto signs!).

4. Describethe behavior of composition (8.9) for a map B —B'.
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5. Show that ¢ of (8.10) may have non-zero kerne (Hint: use finite cyclic
groups).
6. Congruct a natural homomorphism
A ®qgHomyu (B,C) -~Homy (Homga(4, B),C).

9. Coalgebrasand Hopf Algebras

A formal dualization d the notion d an algebra yields that d a
coalgebra. These coalgebras have recently gained importance from a
variety d topological applications; for instance, the singular complex
d a topological space turns out to be a coalgebra.

Agraded coalgebra W over the commuitative ground ring K isa graded
K-module W with two homomorphismsy: W—WRW and ¢: W K
d graded K-modules, each d degree 0, such that the diagrams

W Y WeW WQWE WL wew
{v o1 1w I @ (9.4)
QWIS WRWRW, KQW=W= WK

are commutative. The first diagram gives the associative law for the
diagonal map (or coproduct) y; the second diagram states that ¢ is a
counit. Coalgebras which are not associative or which have no counit
are sometimes useful, but will not occur in this book. A homomorphism
u: W —W d coalgebrasis a K-module homomorphism o degree 0 such
that the diagrams
whH wew  wSK
# v @ Iz . ” (9.2)
W= ww, W—K
are commutative. If the following diagram is commutative
wHwewW
“ I 7 (1, Qwy) = (—1)2%*1 9% 1, Quy (9:3)
wHwew,
we call the graded coalgebra W commutative. As usual, our definition
includes the special cases o coalgebras (W trivially graded) and graded
corings (K=2). DG-coagebrasmay also bedefined by the diagram (9.1),
for W a DG-K-module. In particular, the ground ring K itsdf is a
(trivially graded) K-coagebrawith diagonal map K -» K @ K the canonical
isomorphism and counit the identity K 4K.

If W and W' are graded coalgebras, their tensor product WQW' (as
graded modules) is a graded coalgebra with diagonal map the com-
posite

wew-BL.wowew ew L ELWOW)SWRW), (0.4
for z asin (9.3), and with counit e Qe’': W QW' -KRQK=K.
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For completeness, let us also define comodules by dualizing the
diagrammatic definition (5.1) & a module over an algebra. A graded
left W-comodule over the graded coalgebraW is a graded K-module C
equipped with a homomorphism ¢: C--W ®C d degree zero such that
the diagrams

C - W®C C = KQC
[1&e ! ,
®C———>“’®‘ WRWRC, WRC-2% Kégc ©:3)

both commute.

A graded Hopf dgdraV isa graded K-moduleV ={¥,} which, with
this grading, is bath a graded algebra for a product map #: VQV —V
and unit | : K-V and agraded coalgebrafor a diagonal y and a counite,
and such that

(i) I : K=V isa homomorphismd graded coalgebras;
(i) e: V —K isahomomorphism d graded algebras,
(iii} 7: V&V =V isa homomorphism d graded coagebras.

Condition (i) statesthat Y (1)=1&®1 and that eI: K—K is theidentity.
Condition (ii) states that V isan augmented algebra, with augmentation
the counit. Inview o the definition (9.4), condition (iii) states that the
following diagram commutes

w®w 1®1®1

TRUELVQVQVV—>VRVRVRV
[ v a@n (9.6)
Vv , VRV

for v asin (9.3). But (= ®=) (1®* ®1) isthe product map in the tensor
product algebraV ®V, so this diagram may equally well be read as

(iii") »: V =V ®V isahomomorphism d graded algebras.

Thus (iii) is equivalent to (iii').

A homomorphism »: V—V' o Hopf agebrasis a K-module homo-
morphism which is both an algebraand a coal gebrahomomorphism.

Let V and V’ be graded Hopf algebrasover K. A formal argument
from the definitionsshows that V ® V' isa graded Hopf algebraover K,
with grading that d the tensor product d graded modules, product and
unit that o the tensor product o algebras, coproduct and counit that
d thetensor product (9.4) & coagebras.

Now for some examplesd Hopf algebras.

Theground ring K isitsdf (trivially) a graded Hopf algebra.

Let E=Eg[u] be the exterior algebra on onesymbol « d degreei.
Since E is the free strictly commutative algebra on one generator u,



9. Coalgebras and Hopf Algebras 199

there are unique algebra homomorphismse: E —K, p: E—-E QE with
e(u)=0, pU)=u@1+1Qu. (9.7)

With this structure, we claim that E is a Hopf algebra. To proveit a
coalgebra, note that (y ®1)y and (1Qy)y may both be characterized
as the unique homomorphism #: E-~EQERXE d agebras with
7{#) =4 R11 +1Q%u R1+1R®R1Qu; by a similar argument (¢ ®1)p=1
=(1RX¢)yp. Condition (i) for a Hopf algebrais trivial, while conditions
(ii) and @iii"follow by the definitionsd & and .

Let P=P[Xx] be the polynomia agebrain one symbol x d even
degree. By asimilar argument, it isa Hopf algebrawith

e(%)=0, pHE)=xRN+1RQ=x. (9.8)
Sincey is an algebra homomorphism, ¢ (X")= (p x)", SO
p(*") =p+§=”(ﬁ, 9 R, (b =0@+9Y(p'q). (9.9)

By taking tensor products o Hopf algebras, it follows that the ex-
terior algebra Ex[%, ..., on generators % d degree 1 or the poly-
nomial algebra P[#,, ..., x,] On generators »; o even degreesisa Hopf
algebra

Thegroupring Z (17)d any multiplicativegroupisa (trivially graded)
Hopf algebra over Z, for if xell, the function ¢ (X)=2&®x on II to
Z(II) ®Z (I7)carries1 to1 and productsto products, hence (Prop. IV.1.1)
extends to a ring homomorphism y: Z (II) -Z (II) Z(II). With the
usual augmentation &: Z(IT) —Z thismakes Z (IT) a coalgebra (condition
(9.1)) and a Hopf algebra, with unit 1: Z—-Z(IT) the injection. Any
homomorphism ¢: IT—II' o groups induces a homomorphism
Z©¢): Z(II)—Z{II') d Hopf agebras.

For any commutative K, the group adgebra K(II) is defined as the
K-agebra K®,Z (IT); equivaently, it is the free K-module with free
generators the elements x¢IT and product determined by the product
in17. ItisaHopf agebra, with coproduct ¢ (X)= x QX.

Now consider left modules A, B, C over a graded Hopf algebra V:
that is, modules over the graded algebra V. The tensor product 4 Q¢ B
is a left (V@ V)-module, but becomes a left V-module by pull-back
aong the diagonal y: V—V® V: We write this module as AQB =
»(ARkB). The associative law (9.1) for ¢ provesthe usual associativity
law A® (B&QC)=(A®B)®C for this tensor product. Moreover, the
ground ring K isaleft V-module K by pull-back alonge: V— K, and the
rule (e p=1=(1Q¢)yp gives the isomorphism KQR4 =A=ARK.
Using these two isomorphisms, parallel to (2.3) and (2.5), one can define
an dgebra over a graded Hopf dgebraV — by exactly the mechanismused
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to definealgebrasover K itself. If the coproduct ¢ iscommutative (9.3),
one can obtain the isomorphismz: A@B=B®&®4 for V-modules, and
in this caseone can definethe tensor product d algebrasover V.

Exercises
I. If M isa K-module show that the tensor algebra IT'(M) has a unique Hopf
algebra structure with g (m)= me1t1@m.
2. If Ais a graded K-agebrawith each 4, finitely generated and projective as
a K-module, show that the dual A* is a coalgebrawith diagonal map induced by
n* (use Prop.V.4.3). Under similar hypotheses, show that the dual of a Hopf
algebrais a Hopf algebra.

3. Characterizethe group algebra K(IT) by the analogue d Prop. IV.1.1.

Notes. Originaly, alinear associative algebra meant an algebra over afield K
which was o finite dimensions as a vector space over that field, and the classical
theory dealt with the structure o such algebras (e.g. the WEDDERBURN Principal
Theorem X.3.2). In analysis, algebrasd continuous functions were vector spaces
d infinite dimension. In topology, the cup product in conomology (Chap. VIII)
introduces graded algebras over a commutative ring not a field. Boursaki and
CHEVALLEY [1956] codified the present general concept of a graded algebra, and
emphasized a principle due to E. H. Moore: State theorems in the maximum
useful generality; e.g., for graded algebras, not just for rings. Hopf algebrasfirst
occurred in H. Hopr’s study of the cohomology of a Lie group. Their algebraic
structure has been examined by various authors (e.g., BoreL [1953], HALPERN
[1958]); for asystematic treatment see MiLNoR-MoORE [196 ?]. Algebras over Hopf
algebraswere recently considered by STEENROD [1962].

Chapter seven
Dimension
This chapter is a brief introduction to the extensive applications o
homologica algebra to ring theory and algebraic geometry. Wedefine
variousdimensions, use them in polynomial rings and separablealgebras,
and in the Hilbert theoremon syzygies. Subsequent chaptersareindepen-

dent o this material, except for thedescription ($3) d Ext and Tor for
algebras and the direct product and ground ring extensionsfor algebras.

1. Homological Dimension

For abeliangroupsC and A, Ext3 (C,A) isalways zero; wesay that C,
regarded asa moduleover thering Z d integers, has homologica dimen-
son at most 1. Over any ring R, a projectivemodule Pis characterized
by the fact that all Exty (P,G) vanish; we say that P has homological
dimension0. The general phenomenon may be described asfollows.

Theorem 1.1. For each suteger n, the following conditions on a left
R-module C are equivalent:
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() For all left R-modules B, Ext"+*(C,B)=0;
(if) Any exact seguence d modules
S:0->C,>X, 1~ >X;—>C—>0,
with the X, all projective hasthe firsterm G projective;
(iii) Chas a projectiveresolution d lengthn:
0>X,>X, 1> =>Xy—>C—0.
Here and bdow we write Ext far Extp.

Proof. Factor the sequence S d (i) into short exact sequences
E;: C;pq~ X, »C,;. Each givesthe standard long exact sequence

Ext*(X,, B)—>Ext*(C,,,, B) 2> Ext*1(C,, B)->Ext*(X,, B)

d (111.9.1). Since X; is projective, the outside terms Ext“(Xi, B) are
zero if k>0, S0 the connecting homomorphism EF¥ is an isomorphism.
Theiterated connecting homomorphism S* isthe composite E¢ ... EX_,,
hence an isomorphism

S*: Ext!(C, B)=Ext**!(C,B).

Now given Ext**1(C,B)=0 by (i), this isomorphism makes
Extt(C,, B)=0 for all B, hence C, projective asin (ii). Since C has
at least one projective resolution, (ii) implies (iii). Given a resolution
d theform (iii), Ext**(C, B) computed thereby is 0, whence (i).

The homological dimension  an R-module C is defined by the
statement that h.dim;C<# when any one d the equivalent conditions
d Thm.1.4 hold. In other words, h.dimz C=n means that all
Ext#+1(C, B)=0, but that Ext" (C, B)+ 0 for at least one module B.

Cordlary 1.2. If h.dim, C=n,then for all modules xB and G,
Ext"**(C, B)=0, Tor, (G, C)=0, k>0,
while far each m < x thereis a left module B,, with Ext™ (C, B,,)==0.

Proof. The first result followsby (iii). f Ext*(C, B)%0 for n>0,
imbed B in an injective module J to get a short exact sequence
B~ J»B'. The corresponding exact sequence

Ext*~}(C, B') ~Ext"(C, B)>Ext"(C, J)=0

shows that Ext"—*(C, B")==0.

Similarly, h.dim C=o implies that for each positive integer n
there isa module B, with Ext" (C, B,) #=0. The homologica dimension
d a module C can be calculated from any projective resolution
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0« C« Xy« X, < --- asthefirst » with Im(X,, > X,_;) projective (for
Nn=0, read X_, asC), or as e when noned theseimagesisprojective.

For example, the calculationsd V1.6 show that the trivial moduleZ
over the group ring Z (17)d a free abelian group 17 on # generators has
homological dimension n.

Theleft global dimension d aring R is defined as
l.gl.dim. R=sup (h.dim C),

where the supremum is taken over al left R-modules C. For example,
1lgl.dimZ=1. For a field F, every moduleisa vector space, hencefree,
s0l.gl.dim F=0. More generaly,

Proposition 1.3. Each d the following conditions is equivalent to
l.gl.dim R=0:
(i) Every left R-moduleis projective;
(i) Every short exact sequence A » B-»C d left R-modules splits;
(iii) Everyleft R-moduleisinjective;
(iv) Everyleftideal d Risinjective, asaleft R-module;
{(v) Everyleftideal f Risadirect summand d R, asaleft R-module.

Proof. Condition (i) is the definition d 1.gl.dim R=0. Given (i),
each short exact sequence (ii) has C projective, hencesplits. Since every
such sequencebeginningwith A splits, each A isinjective by Prop. TI1.7.1.
Hence (i)=> (ii)=>(iii), and the reverse argument shows (iii)= (ii)= (i).
Clearly (iii)= (iv)= (v). Given (v) and a left ideal L, the short exact
sequence L »R-=R/L splits, so that Hom (R,A)—Hom (L,A) is an
epimorphism for each module A. By Prop.IIL.7.2, A is injective.
Hence (v)= (iii); the proof iscomplete.

Theorem 1.4. For each r2ng Rand each #» = 0 the following conditions
are equivalent:

(i) L.gl.dim R<#;

(ii) Each left R-module has homological dimension =#;

({ii) Ext**1=0, as a functor o left R-modules;

(iv) Extk= 0 for all > #n;

(v) Any exact sequence

$:0>4->Yy—»--->Y, ,—->4,-0,
with # intermediate modules Y, all injective, has A, injective.

Proof. The first four conditions are equivalent by Thm. 1.1. The
sequence Sin (v) gives a connecting homomorphism which is an iso-
morphism S, : Ext! (C,A) =Ext**!(C,A)foreachC. But Ext?(C,A,) =0
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for all C states exactly that A, is injective; hence the equivalence of
(iii) and (v).

Corollary 1.5. (AUsLANDER [1955].) For any 7ing R
l.gl.dim R=sup {h.dim R/L |L aleftided in R).

Proof. (Marwis [1959].) If thesupremumisinfinite, Lgl.dimR =co.
Hence assumethat the supremum is n < o, S0 that Ext**+*(R/L,A)=0
for all left idealsL and all R-modules A. For each Sasin (v) above,
Sy: Ext"(R/L,A) Ext**}(R/L,A)=0. By Prop.IIl.7.2, A, is in-
jective; by the theorem, 1.gl.dimR=n.

The condition1.gl.dim R=0 isequivalent to the requirement that R
be semi-simple, and so is connected with classical representation theory.
Indeed, a left R-module A may be regarded as an abelian group A
together with the ring homomorphism ¢: R—End, A which gives the
left operators d R on A. This ¢ is a representation d R and A is the
corresponding representation module. The module A is called simple
(and the corresponding representation #rreducible) if A==0 and A has
no submodules except 0 and A. A module A is semi-simple if it is a
direct sum d simple modules; a ring R3=0 issemi-smpleif it is a semi-
simple left R-module. Using Zorn’s lemma, one can prove (see e.g.
CARTAN-EILENBERG, Prop. I.4.1) that a module is semi-simple if and
only if every submoduled A isadirect summand d A. By condition
(v) d Prop.1.3 it then follows that R is semi-simple if and only if
1gl.dim R=0, and by (ii)that every left module over a semi-ssmplering
R isitsdf semi-smple. It can aso be proved that left semi-simplicity
d R (ashere defined) is equivalent to right semi-simplicity.

Various other dimensions can be introduced. For example, the left
injective dimension d a module is defined by the analogued Thm. 1.1
using injective resolutions, so that the equivalence (v)e (iii) in the
theorem above states that the left global dimension d R agrees with
its left global injective dimension. Right dimensions are defined using
right R-modules; KarLansky [1958] has constructed an example d a
ring for which the left and right global dimensions differ by 1. Aus-
LANDER has proved that if R satisfiesthe ascending chain condition for
left idealsand for right idedls, itsleft and right global dimensions agree
(for proof see NortHCOTT [1960], Thm. 7.20). The finitistic 1ft globa
dimenson o R is the supremum o the homologica dimensions o all
left R-modulesC with h.dim C < . The wesk dimension d a moduleC
is defined by replacing the condition that Ext***(C,A)=¢ for all A
by the wesker condition that Tar,, (G,C)=o for all G. For example,
C isflat if and only if its weak homologica dimension is 0. For the
development o these ideas, see Bass [1960].
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Exercises

1. State and prove the analogue of Thm.1.1 for left injective dimensions.
2 Iflgl.dimR=1, then
lg.dmR= 1+sup{h.dim L |L aleftideal in R}.
3. If A»>B-»C is a short exact sequence of R-modules, then if any two have
finite homological dimension, so does the third.
4. In Ex. 3 above, show that h.dimA <h.dim B implies h.dimC=h.dim B,

h.dimA=h.dimB implies h.dimC§1+h.dimB, and h.dimA>h.dimB implies
h.dimC= 1+ h.dim4.

2. Dimensionsin Polynomial Rings

In (VI.1.4) the exterior ring provided an explicit resolution for a
field F regarded as a module over the polynomid ring F[#,y] in two
indeterminates. Thesamedeviceworksif Fisreplaced by acommutative
ring K or the two indeterminates are replaced by # such.

In detail, let P=K[x,..., %,] be the polynomia ring in n in-
determinate-x,, each d degree0. Then &(x;) =0 defines an augmenta-
tion g=¢p: P—K, while pull-back aong ¢ makes K a P-module K.
This amounts to regarding K as the quotient module Pf(x,, ..., %,),
where (x,, ..., %,) denotestheideal in P generated by all the ;.

Let E=Ep[u, ..., #,] betheexterior algebraover Pon » generators
u,;, each d degreel. Thus E,, in each degree m is the free P-module
with generators all exterior products d = o the #; in order. The dif-
ferential with du,=x; makes E a DG-agebraover P with éE,, ., CE,,,
while g gives an augmentation E,—K. Together these provide a
sequence

0, K< P—E/E < -« <E, <0 (2.1)

d P-modules and P-module homomorphisms.

Proposition 2.1. For Pthe polynomial ringin n indeterminates over K,
the exterior algebra E in n generators over P firovides, asin (2.1), a free
P-module resolution of K.

The proof will construct K-module homomorphisms n: K—E and
s: E—E d respective degrees 0 and 1 such that # is a chain trans-
formation with en=1 while s is a chain homotopy s: 1=2n¢: E—~E.
This contracting homotopy will show (2.1) exact as a sequence o K-
modules, hence exact asa sequenced P-modules, hence a resolution.

Thechain transformation % is defined by nk=~#1; clearly ey=1. The
homotopy s is constructed by induction on n. Set

P =K[#, o0 %], P'=K[z,],
E"=Ep.[thy, ..., %,_1]), E'=Ep[u,].
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Thus P=P" QP', E” and E' are DG-dgebrasover P' and P respec-
tively, their tensor product E” QE’ is a P’/ & P’-algebra, and (V1.4.6)
gives an isomorphism EsE"QE’ d DG-dgebrasover P. Moreover,
e=¢£"Q®¢ and n=7"®%". For a=1, the contracting homotopy
s': Eq—E; may be defined on a polynomial f=a x' d degreek in
%=1z, with coefficientsa;eK by setting

s (@t art o tayt)=(@tart -+ oty

then 8s'f=f—ay=f—n'¢'f and s’dfu=fu, s0 S: 1=n'¢. Note in
particular that s, though a homomorphism o K-modules is not a
homomorphismd P-modules.

Now assume by induction that there is a K-chan homotopy
s 4=y’ e’. gre_s g, Since we already*have s’, Prop. V.9.1 givesa
K-chain homotopy son E= E"®E', and so completestheinduction.

The resolution (2.1) is known as the Koszul resolution; it first occurs
explicitly in astudy d Liealgebrasby Koszur [19501.

Theorem 2.2. | f P=K[x,, ..., %,] istheungraded polynomial dgebra
ove a commutative ring K in n indeterminates x;, while 1: K—Pis the
injection and K isa P-modulein any way such that ;K=K then

h.dimpK=#, h.dimp(x,,...,x,)=n—1, (2.2)

Ext®(K, K) isthedirect sum o (m,n—m) copies o K, and TorP(K, K)=
{TorE (K, K)} 45 an exterior dgebraover K on # generatorsin Tor, (K, K).

Proof. Suppose first that K isthe P-module,K. The Koszul resolu-
tion (2.1) stops with degreen. Hence the homological dimension d K
isat most n.

We may calculate TorP(K, K) from the resolution (2.1) as the homo-
logy d the complex

K®PEP=K®P(P®EK [#15 - “n])
= (KQpP) QEx=KQEx =Ex[1, ..., y]
with boundary 8 (K&®u,)=k&=x,. But under the isomorphisms above,
K®x—(K®p#,) 01 —Kke(x;) ©1=0, since by definitione (x;) =0. Thus
the differential on the complex is zero, so TorP(K, K) is the exterior
algebra over K in » generators. In particular, TorZ (K,K)=K=0, so

h.dm, K is exactly n. Similarly, Extp(K, K) is calculated from the
resolution as the conomology d the complex

Homp (Ep, K) =Homp (P @ Ex, K)
=Homg (Eg, Hom, (P, K) =Homg (E, K)).
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The coboundary in this complex is again zero, so0 Ext3(K, K) =
Homg (E,,, K) isthe direct sum d (m,n—m) copiesd K, as asserted in
the Theorem.

Now consider theideal J =(#,, ..., X) =Kere. Sinced: E,—~E,=P
hasimageexactly J, the Koszul resolution (2.1) yields a resolution

0«J t By« - E, <0

dJ, withE,, ., in“dimenson™ m. Hence Ext%(J, K) =Homg (E,,,, K)
for m>0, s0 Ext% ! (J, K)=K=0, and J has exact dimension »—1, as
asserted.

Now let K have some other P-module structure, say by operators
pokfor pe P. The condition ;K=K statesthat this P-module structure,
pulled back along the injection | : K— P with | (K)=#1p, isthe original
K-module structure d K; in other words, that k’o2=k'k. Now

e(p)=po1k defines an agebra homomorphism ¢: P—K, because
pok po(kK)=g(p)ok=0(P)k. In other words, K is the P-module
K obtained by pull-back along ¢. But set a,=¢ x;¢K and x;=x,—4;.
Then P can be viewed as the polynomia algebra K[#, ..., %,] and
p x;=0, S0 ¢ is the corresponding augmentation, and the previous
calculationsapply.

In conclusion, note that Tor” (K, K)=Eg[«,, ..., %,] turns out to
be not just agraded P-module — asit should be, on general principles —
but actually a graded algebra; to wit, the exterior algebraonthencycles
(homology classes) #; in Tor,. This algebra structure on TorP(K, K)
hides a mystery. By our genera results we may (and did) compute
Tork (K, K) from any convenient resolution. By '*accident” the DG-
module E which we used as a resolution was in fact a DG-algebra, so
TorP(K, K) inherited by accident an algebra structure. We shall
show in Chap. V111 that this structure arisesintrinsically from the fact
that K (asa P-module) is a P-algebra; indeed, the torsion product o
two algebrasisan algebra.

Exercises
1. Calculate TorP(J, K) and Extp(], K) for I=(x,, ..., #,).
2. Show that h.dimp(#;, ..., #p) =k — 1.
3. Examine Thm.2.2when K is a skew field.

3. Ext and Tor for Algebras

If Aisan (ungraded!) K-algebra, the usual functors Ext, and Tor"
may be regarded as functors with valueswhich are K-modules. For this
purpose, asin V1.1, we regard the K-algebra A as the composite object

= (R,l) consigting d a ring R and a ring homomorphism | : K->R
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with (1k) r=r (1k); thatis, with I (K) inthecenter o R. A left A-module
(say as defined by (VI1.5.2) and (VI1.5.3))is just a left R-module A; by
pull-back along 1: K—R it is a K-module, hence also an R- K-bimodule
#A4x. A homomorphism a: A -4’ o left A-modulesis defined to be a
homomorphism o left R-modules, and then is automatically a homo-
morphism o R-K-bimodules.

Propostion 3.1. For A= (R,1)a K-dgebraand C, A left A-modules,
the abelian group Ext% (C,A) has two K-module structures induced by the
K-module structures of C and A, respectively. These two K-module
structures agree; if we write Ext% (C,A) for the resulting K-module, then
Ext’ isa bifunctorfrom A-modulesto K-modules which satisfiesthe axioms
formulated in Thm. 1I1.10.1. For a third A-module D, composition is a
homomorphism d K-modules

Extk (4, D) QgExt%(C,4) »Extht™(C, D). (3.1)

Proof. The first K-module structure is that induced on Ext% (C,A)
asa functor o C by the R-module endomorphisms #,: C—C defined for
each keK by p,(c)=kc; the second arises similarly from A. Equi-
valently, regard C and A as R-K-bimodules; then Ext%(C,4) is a
K-K-bimodule as in V.3.4. The crux o the proof isthe demonstration
that these two K-module structures agree.

For n=0 and feHomg(C,A), the first K-module structure defines
kf by (kf)c=F(kc), the second by (fk)c=~k(fc). Sincef isa K-module
homomorphism, they agree.

For n> 0, take a long exact sequence Sc< Ext% (C,A). Multiplication
by k isa morphism ¢,: S—S o sequences of R-modules which agrees
on theleft end with multiplication in A by k and on the right end with
multiplication in Cby k. By Prop. II1.5.1, ¢, S= S4,, and thestructures
agree. Alternatively, if X isa projective resolution of C and Ext}(C, 4)
is calculated as H"(HomR(X,A)), the K-module structure, like the
functorial structure, is computed from that of X or o A, which are
known to agreein Homg (X,A).

Any R-module homomorphism «: A —A4’ commutes with the endo-
morphism #,, so the induced map «,: Ext: (C,A)—Ext%(C,A’) isa
K-module homomorphism, and Ext"(C,A) is a bifunctor of K-modules.
The connecting homomorphisms are also K-module homomorphisms,
and the Y oneda compositeis K-bilinear; hence (3.1).

The treatment o torsion productsis similar.
Propodtion 3.2. If A= (R,l1) and G4, 4C are A-modules, then for
each n=0 the abelian growp TorZ(G, C) has two K-module structures

induced by the K-module structures of G and C, respectively. These two
K-modulestructures agree; if wewrite Tor2 (G, C) for theresulting K-module,
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then Tord is a covariant bifunctor from Amodules to K-modules which
satisfiesthe axiomsformulatedin Thm. V.8.5.

Proof. For =0, kg®c=g&*kc, so the two K-module structures
agree. We leavethe proof for >0 to the reader (useV.7.1}.

Now let A and 2 be two K-algebras (still ungraded). A A-Zrbimodule
445 isthen a bimodule over the rings A, 2 such that the two induced
K-module structures agree. They induce identical K-module structures
on Hom,_»(C,A). The corresponding K-modules Ext}_s(C,A) for
n>0 could be defined as the congruence classes d exact sequences o
bimodules leading from A to C through n intermediate steps, just as
before. Equivalently, turn A and C into left A& X°P-modules, and
define Ext}y_ p as Extl,g . Similarly, bimodules B4, 4Cx are one-
sided modules Bsgso), (ugzmC and so have a tensor product
B ®4 @ zor) C and torsion productsTor“®=? (B, C) which are K-modules.
We also write these products as Tor4—%(B, C). We next show that Ext
for left A-modules sometimes reduces to a A-bimodule Ext.

Theorem 3.3. Let A ke a K-dgeraand C and A left A-modules.
Assume that A and C are projective K-modules (for ilzstance, this automat-
icaly holdsif Kisafield). Then adjoint associativity induces a natural
isomorphism

ne: Ext}y(C,A)=Exty_,(4, Homg(C,4)), »=0,1,..., (3.2)

o K-modules For =0, Ext% (C,A)=Hom,(C,A)=Hom, (AQ,C,A),
and » isthe ordinary adjoint associativity.

In (3.2), Homg (C,A) is aleft A-module via the left A-module struc-
tured A and a right A-module via the left A-module structure of the
contravariant argument C.

Proof. Take a freeresolution e: X -4 d the A-A-bimoduleA. Asa
free bimodule, each X, has the form X,=A R E, QA for some free
K-module E,. Now a projective moduleis a direct summand of a free
module, so the tensor product o two projective K-modules is a pro-
jective K-module. Since we have assumed A and C projective as
K-modules, AR E, and E,QC are projective K-modules, so, by Prop.
V181, X,=(AR®E)RA isaprojective right A-module and X, Q,C=
A ®(E,®C) isa projectiveleft A-module.

Adjoint associativity is natural, so yields an isomorphism d com-
plexes

7: Hom, (X ®4C,4)=Hom,_,(X, Homg (C, 4)). (3.3)

The cohomology groupsd the right hand complex are
Ext,_4(A, Homg (C, 4)).
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Examine those of the left hand complex. Since e: X —A isa projective
resolution o A as a right A-module, the homology of the complex
X &4C is Tor*(A,C). But A itsef is a free right A-module, so all
Tor#(A,C)=0 for >0, so the complex X ®,C with e R1: X;Q4C —
A®,C=C constitutes a projective resolution o ,C. Therefore its
cohornology over A, as on the left side of (3.3), is Ext,(C,A). Thusy
induces an isomorphism o these cohomology groups, as asserted.

This isomorphism can be described as follows in terms d long exact
sequences.

Corollary 3.4. For any lomg exact sequence SeccExt}(C,A) with
n>0 the isomorphism 5 d (3.2) carriestheclassd Sinto the class of

[Homy (C, S)] 7 (1¢) €€ Ext}_ 4 (A4, Homg (C,4)).

Proof. First analyze [Hom (C, S)] 5(1¢). Since 1ce Hom,(C, C) and
n: Hom,(C, C)=Hom, (4 ®4C, C)=Hom,_,(4, Hom(C, C)), n(1¢) is
a map u: A—Hom (C, C) (actually, with (u2jc=lc). If

S:0>4—->B, ;- ->B;—>C—>0
isexact, and Horn is short for Homg, then Hom (C, S) is the sequence
0->Hom (C,4) - Hom(C, B,_,)— --- ->Hom(C, By) ->Hom (C, C) —>0;

sinceCisK-projective, it is an exact sequence o A-A-bimodules. Acting
on theright o this sequence with #(1;), we get along exact sequence
d bimodules from Hom (C,A) to A, asin the conclusion o thecorollary.

To apply the canonical isomorphism {: Ext% (C,A)=H"(X&,C,A)
o (II1.6.3), we regard S as a resolution o C, lift 1, tof: X ®,C—S,
and obtain £(cls S) as the class of the cocyclef, But apply adjoint
associativity; nf: X —Hom (C, S) lifts (1¢): A—Hom(C, C), so nf
factors through a chain transformation g: X -—[Hom(C, S)]ln(1c)
lifting 1, with 5f,=g,. Thus g, clsf,=clsg,, (cls S)=cls /,, and
(again by the definition o ¢) ¢ cls[Horn (C, S)n{1c)]=cls g,,, whence
the conclusion.

Exercises

1. If A isan algebraover afield, P a projective A-A-bimodule, and B a left
A-module, show that P®,B is a projective left A-module.

2. If TecExth_4(A,Hom (C,A)), as in Cor.3.4, isthe exact sequence
T: Hom(C,4)»»B,_—»X, s~ —>Xy-»4
with all X; projective show 77 1cls T'=cls(e(T®,4C)), where e is the evaluation
map e: Hom (C,4)®C 4.

3. For A an algebra over a field F, £ =A4@®A°P, and modules C4, 44, prove
Tord (CA) = Tor2 (A, A®¢C).
Mac Lane, Homology 14
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4. For K-algebrasA and X, modules G4 and 445 and an injective right Z-
module J use Ex.II1.7.3 to establish theisomor phism (" duality" ; CARTAN-EILEN-
BERG V.5
Ext%(G, Homg(4,J))=xHomx(Tord (G A),J).

4. Global Dimensionsd Polynomial Rings

We can now compute the global dimensionsd polynomial rings over
afield.

Proposition 4.1. If the modules C and A over the commutativering K
are regarded as modules over the polynomial ring P=K|[x], by pull-back
along ¢: P—K with £(x)=0, then Homp (C,A)=Hom (C,A) and, for
»n>0, thereis an isomorphismd P-modules

Ext%(C,A) =Ext} (C,4) D Extk (C,4). (4.1)

Here the Extg on the right are K-modules, hence P-modules by pull-
back.

Proof. Take a K-projective resolution 7n: X—C. The exterior
algebraE=Ep[#] providesaresolutione: E+K o K by free P-modules
E,=~E,=Pand theboundary 9: E, — E, isgiven by multiplication by x.
Now P is a free K-module, hence so are E,, E,, H(E), and the cycles
d E. The Kiinneth tensor formula (Thm.V.10.1) asserts that
HEQX)=H(E)QH(X), 0 that H,(E®RX)=0 for »>0 and
e®n: Hy(EQX)=KRC=C. Thus eQn: EQX —~C is a resolution
d C by projective P-modules. Hence Extp (C,A) is the cohomology o
the complex Homp (EQ X, A).

Now (E®X)n=E0®Xn®E1®Xn—lEP®Xn®P®Xn—1: SO by
adjoint associativity
Homp((E®X),, A) =Homp(P, Hom (X, A))@ Homp(P,Hom (X,,_,,A)),

=Hom(X, A)®Hom(X,_,,A)
Since the boundary o: E,—E, is multiplication by » and since A and
X, are P-modules via ¢ with &(x)==0, these isomorphisms carry the
coboundary on the left into the coboundary on the right (induced by @
in X). Thisisomorphism o cochain complexes gives the asserted iso-
morphism (4.1).

Theorem 4.2. If the commutativering K has global dimension »=<w,
then the polynomial ring P=K[x] has global dimension r4+1 (or w,
if 7=00).

SinceK and P are commutative, we can omit " left’’ inlgl.dim.

Proof. Let G beany P-module. Thefirstr termsd afree resolution
d G as a P-modulegivean exact sequenceS: G, »Y,_,—>.-- > Y, »G.
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Now P itself and hence each Y, is also a free K-module, so h.dimg G=<
gl.dim K=7 implies that the K-module G, is projective. For any P-module
H we have the isomorphisms

Ext3?(G, H) =Ext}(G,, H)=Ext}_,(P, Hom(G,, H)),

the first by the iterated connecting homomorphism of the sequence S
and the second by adjoint associativity (Thm. 3.3). On the right regard
the P-bimodules as P & P°-left modules. Then P®P=P, so P PPz
P QK[y] is isomorphic to a polynomial ring P[y] in one indeterminate
y over P. In particular, the P-P-bimodule P becomes a P[y]-module,
and the injection I: P— P[y] satisfies (Ip)p'=pp'. Hence Thm. 2.2
(with K there replaced by P and P by P[y]) gives h.dimgy,; P=1,
which asserts that Ext}_ (P, —) above vanishes, hence that Ext};t2=0,
so gl.dim P<7+1. On the other hand, gl.dim K=7 means that there
are K-modules C and A with Exti(C,4)==0. By Prop. 4.1, this gives
Ext31(C, A)=Extk (C,4)=0, so gl.dim P is at least »+1. This latter
argument also gives the result stated for r=o0.

Corollary 4.3. The global dimension of Z[x,, ..., %,] is n+1.

Corollary 4.4. The global dimension of the polynomial ring P=
Pp(xy, ...,%,) in n indeterminates over a field F is n. If J is any ideal
in P, h.dimp J<n—1.

Only the assertion as to the ideal J requires proof. Any projective
resolution of J yields an exact sequence

0>C, 1—>X, 3> >Xj—>]—>0

of P-modules with the X, projective. Compose this sequence with
J—>P-»P|] to give an exact sequence with » intermediate projec-
tive modules, ending in P/J. Since » is the global dimension of P,
h.dimp P[J<n, so by the characterization of homological dimension
(Thm. 1.1), C,_, is projective. This proves h.dimp J<#n—1.

5. Separable Algebras

We now consider applications to the classical theory of (ungraded)
algebras /. Recall that 1, denotes the identity element of A.

Proposition 5.1. The following conditions on an algebra A are equi-
valent:
(i) h.dim,g 4 A=0.
(ii) A is a projective A-bimodule.
(iil) The product map 7w: A QA —>A has a bimodule right inverse.
(iv) There is an element ¢ in A QA with we=1, and Le=e for all A.
14*
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I n this section we denote these equivalent properties by writing bidim
A=0 (read: " The homologica dimension & A as a A-bimodule is
zero’').

Proof. Properties (i) and (ii) are equivalent by the definition o
homological dimension. In (iii), the product map z (4 @u)=Ay is an
epimorphismd A-bimodules. If A is projective, this product map splits
by a bimodule homomorphisma: A—-A&®A with ma=1; this proves
(ii)= (iii). Conversdly, if ma=1, then A is a bimodule direct summand
of the free bimodule A ® 4, henceis projective. If ma=1, then al,=
ecA®A haspe=1,; sinceaisabimodule homomorphism,aA= Ae= ¢A.
Conversely, an element e with these properties determines such an a.

We now investigate the preservation o the property bidmA= 10
under three standard constructions for algebras: Direct products, ground
ring extension, and formation d total matrix algebras.

Thedirect product o two K-dgebrasrand X'is a K-algebrad =I"<X;
as a K-module it is the direct sum I'® X with elements all pairs (y,a);
its multiplication is given by

(y,0) (v, ") =(yy', 00'); (5-1)

its identity is thus (17, 15). The projections 7, (y, a)=y, 7 (y, a)=0
are algebra homomorphisms

r&r=<zsx, (5-2)

(theinjectionsy,, ¢, arenot; they do not mapidentity toidentity). With
these maps the algebra I"><X' is couniversal for I" and 2’ in the category
o algebras. Thisiswhy wecall I"<2'thedirect " product’’, even though
it isoften caled thedirect ""sum™ o I"and 2.

Any I'-bimodule becomes a (I"><X)-bimodule by pull-back along 7,
(on both left and right sides); similarly any 2-bimodule or any (™-2)-
bimodul e becomes a (I"=<X)-bimodule. |n particular, the definition (5.1)
shows that A=1I"=<ZX, regarded as a A-bimodule, is the direct sum
' 2 d theA-bimodulesI"and 2. Sincethetensor product is additive,
ARA=T"PL)QU P X) isthedirect sum o four A-bimodules

AQA=T'QINOI'RL)BERNB(E®Z). (5-3)

Proposition 5.2. For dgebras I' and 2, bidim I'=0= bidim %
implies bidim{I'><2)=0.

Proof. By hypothesis, Prop. 5.1, part (iii) gives bimodule maps
a I'>I'QI and as: X -2 R with wa,r=1 and nax=1. They are
also mapsd A-bimodules, hence combineasar@ az: I'S E— ('R B
(£ ®2Z) which, followed by theinjection into (5.3), yields a A-bimodule
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mapa: 4 —-ARA. SincetheinjectionsI"QI'>A R A and ZRE->ARA
preservethe product, za=1, as required for bidim A=0.

A ground-ring extension isthe processd passing from algebras over
the commutative ground-ring K to algebras over a new ground-ringR,
where R is now assumed to be a commutative algebra over K. If A isa
K-algebra, then R®A is a ring (as the tensor product d rings) and an
R-module (via its left factor); since R is commutative, it is aso an
algebra over R. As an algebra over R we denote R QA4 by A% (the
standard notation is 45; this would conflict with our previous notation
for R-modules).

Proposition 5.3. If bidim A=0, then bidim AZ=0.

Proof. The AR-bimodule AX®zA%R=(R@A)Rz(RKRA) is iso-
morphic to RQA XA under the correspondence (rQA) & sQu)—
rs@IQu. If e=>u,Qv,eARA has the property (iv) d Prop. 5.1
for A, one checksthat ¢’ = > 1 Qu; Qv; hasthe corresponding properties
for AR,

The ground-ring extension is useful in the classical case d algebrasA
d finite dimension (asvector spaces) over afield F. Any field L > F may
be regarded as a commutative algebra over F, so that A~ is an algebra
over L. If A hasF-basis,, ..., #,, the product in A is determined via
wu;= 2 [y w, by n3 constants fi/cF. The extended algebra A* is the
vector space over L with basis 1®Qu;, =1, ..., » and the same multi-
plication constants #f. In this case we have a converse d the last
proposition.

Proposition 5.4. IfA isan agebraover afield Fand R a commutative
agebra over F, then bidim AR =0 implies bidim A=o.

Proof. For @ =&z, the product map for AF is equivalent to the
epimorphism (1Q®n): RRARA—->RRXA o AR bimodules; by hypo-
thesisit hasaright inverse« whichisa map d A%-bimodules. Since an
F-algebra homomorphism j: A—A® is defined by 7(1)=1&4, each
AR-bimodule pulls back along j to become a A-bimodule; in particular,
we may regard «: RA->RRARA asa map d A-bimodules. Now
R isa vector space over the field F; choose a basis with first element 1.
If  maps 1 to 1 and the remaining basis elements to zero, n: R+F
is an F-module homomorphism whose composite with the injection
¢: F—R istheidentity. Now form the diagram

FRAZL RQASRIAQAZZLFQAQA = AQA
” 1®nl @1 ll@n ln
A R®A FRA = A.

The sguares are commutative; the composite o the top row is a com-
posite d A-bimodule maps, hence is a bimodule map a': A —->AQA.
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Since (1®n)a=1 and nt=1, the diagram shows n«’'=1, s0 bidimA =10
by (iii) d Prop. 5.1.

The process d ground-ring extensions also includes the process d
"reduction moduloa primes”’. Indeed, thering Z, d integers modulo
may beregarded as a commutative algebraR over Z. For any 2-algebra
A, A% isthen the algebraA ‘‘ reduced modulo .

The total matrix agebra M, (F)over a fidld F consists d all n><n
matrices d elements from F with the usual product; as a vector space
over F it has a basis consisting d the matrices ¢;; for i,7=1,...,n.
Here ¢;; is the matrix with entry 1 in thei-th row and the j-th column
and zeros elsewhere. The multiplication is given by e;,e;,=e; and
e, 6,,=0 for r&=s If L>Fisalarger field, [M, (F)1t=M,,(L).

Proposition 5.5. For any field F, bidim M, (F)=0

Proof. Theelemente=3, ¢;;Qe,;in M, (FRM, (Fhasne=2 ¢;;=1y
and e, e=¢g, K¢, =¢€e,, S0 that it satisfies the conditions (iv) d
Prop. 5.1.

An algebraA over afield Fissemi-simple(cf.§1)if everyleft A-module
is projective. If bidimA =0, A is semi-smple: For any left A-modules
C and A, Thm. 3.3 gives an isomorphism

Ext} (C,A)=Ext}_, (A, Hom(CA)),

s0 Ext}, (C, —) vanishesand C isleft-A projective.

An algebraA over afield Fiscaled separableif, for every extension
fiedd L>F, the algebra AL is semi-smple. By Prop. 5.5, each total
matrix algebrais separable. It iseasy to see that thedirect product d
separable algebras is separable. Conversely, the Wedderburn structure
theorem states that for every separable algebra A d finite dimension
over afield Fthereisan extensionfield L d F (actually d finite dimen-
sion as a vector space over F) such that A* isadirect product d afinite
number d total matrix algebras. Assuming this result we prove

Theorem 5.6. If thedgebraA over afidd Fhasfinitedimensionasa
vedtor spaceover F, A isseparableif and only if bidim A=0.

Proof. First suppose A separable. By the structure theorem, there
isaL with AX=X,><... <Z,, with each X; a total matrix algebraoverL.
By Prop. 5.5, bidim Z;=0, hence by Prop. 52 bidim AX=0, whence
by Prop. 54, bidim A=0.

Conversaly, suppose bidim A= 0. For each L>F we wish to prove
every left Ab-module C projective. Let B be another left A--module.
By adjoint associativity (Thm.3.3},

ExtLz (C, B)=~Extys_ s (A, Hom, (C, B)).
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But bidim A=0 implies bidim AX=0 by Prop. 5.3, so that A* is a
projective bimodule, and the Ext on the right vanishes. Therefore
Ext!(C, B)=0 for any B, which states that C is projective, asdesired.

Note that the proof has been wholly elementary, except for the use
d Ext!, viaadjoint associativity, to switch from the bimodule A to left
modules.

The effect o direct product and ground-ring extensions upon the
functor Ext (A, —) in the more general case when bidim A3=0 will be
studied in Chap. X.

Exercises

1. Construct the direct product o two DG-algebras (over the same K) so as
to be couniversal.

2. For I’'and X algebrasover K prove(I'®@ Z)R = 'R @z IR, (I'< X)R = 'Ry< IR,
and (I'><X)OP = I'P><c X°P,

3. (Coefficient extensions need not remain semi-simple.) For ¢ a rational
prime, Z{, thefield of integers mod p, and L = Z,, (x) thefield of all rational functions
over Z, in one indeterminate x, let F be the subﬁeld Zp(xf’) Then L is a commu-
tative algebra over F; let A be an isomorphic F-algebra under » -u€cA. Show
A but not AL semi-simple. (If M is the ideal in AL generated by u — #, the epi-
morphism AL - M with 1—u — x does not split.)

6. Graded Syzygies

Let P=F[x,..., x,] be the polynomia algebraover afield F in »
indeterminates x;, each d degree1. Cor. 4.4 showsthat any P-module A
has a projective resolution

0«Ad<« Xy« <X, <0

which stopswith the term X,. The Hilbert syzygy theorem asserts that
a graded P-module A has such a resolutionwith X,, free graded modules
stopping at the same point. Though closdly related, we cannot deduce
this syzygy theorem from our previous result, because we do not know
that a projective module must be free.

In this section we regard P as an internally graded algebra over F;
the homogeneous elements d degree m are thus the ordinary homo-
geneous polynomials d that degree. We work in the category d all
internally graded P-modules with morphisms all P-module homo-
morphisms d degree 0; the kernels and cokernels d such morphisms
are again internally graded P-modules. Each internaly graded P-mo-
dule A=3> A, is dso an ungraded module over the ungraded algebra P.
If Gisa second such module, we use GR®p»A and Torf (G, A) to denote
the ordinary tensor and torsion products, constructed without regard to
the grading. This used internal grading has the advantage d suiting
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the classical notion d a polynomia ring and the technical advantage
d using the ordinary torsion product. A grading d the torsion product
will beintroduced in X.8 whereit is appropriate.

The coefficient fidd F is a (trivialy) graded P-module under the
usual action x;f=0 for feF.

Lemma6.1. | f A isa graded P-module with A ®,F=0, then A=0.

Proof. Let J=(X,, ..., x,) betheideal d all polynomialsin Pwith
constant term 0. The exact sequence /> P-»F o P-modules gives
ARp ] > ARpP>AQpF=0 exact, 0 that ARXpJ>ARXpP=A.
This states that each acA liesin AJ. If A0, takea non-zero element
ad lowest possbledegreek. Every product in AJ= A then has degree
at least one higher, in contradiction to the assumption 4==0.

Notethat this proof doesnot work for Z-graded modules, wherethere
could be elementsd arbitrary negative degree.

Lemma6.2. A graded P-module A with Torf (A,F)=01s free.

Proof. Since A isgraded, A &, F is a graded vector space over F,
spanned by homogeneouselementsa®1. Takeaset S d homogeneous
elements such that the s&1 form a basisd this vector space and form
the free graded P-module M on the set S. Theidentity S+S C A gives
a homomorphismy: M —A d degree zero; by the choiced S,

n®1: MQpF=AQpF (6.1)

is an isomorphism. The kernel B and the cokernel C d # give an exact
sequence d graded P-modules

0—>B>M»A5C—>0

(with homogeneoushomomorphismsd degree 0, though we do not need
this fact). Applying ®,F to the right hand portion produces an
exact sequence

M@pF->AQpF>CRQpF.

By (6.1), C&pF=0, S0 C=0 by the previouslemma. To the remaining
short exact sequence B>-M A apply the fundamental exact sequence
for the torsion product (with F) to get the exact sequence

0—>TortP(4, F) >B®pF >M QpF 225 4 @, F >0,
where the left hand zero standsfor Tor, (M, F), which vanishessince M
is free. By (6.1) again, BQpF=Torf (4, F), which vanishes by as-
sumption. Hence B@ F=0, so B=0 by another application d the
previous lemma. Our exact sequence has collgpsed to 0—+M +A —0,
showing A isomorphic to the free module M.
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Proposition 6.3. For each graded P-module A thereis a free graded
P-module M and an epimorphism n: M +A d degree 0, such that to each
epimorphism ¢: Xy— A with X free, thereisa commutative diagram

M—’LA—>0
# |
Xo—A—0

with B a monomorphism. The kernel o # is contained in JM; with this
property, the pair (M, #} i sunique up toisomorphism.

Proof. Construct # with &1 an isomorphism asin (6.1); the first
part d the proof above shows#n (M)=A. The usual comparison gives a
homomorphism g; let B its kernel. Construct the diagram

0>B&pF >M QpF —>X,QpF

.
AQpF

where the left-hand zero standsfor Torf (X, F), zero because X, isfree.
The row is exact and the dotted composite is the isomorphism (6.1),
hence B ®pF =0, so B=0 by Lemma6.1. The uniquenessissimilar.

Thekernel A, d 5: M -4 can be again written asan image M, — 4;;
iteration yields a unique free resolution -+ -M,—> M;—>M >4 -0 d
A, called aminimal resolution. For applications see Apams [1960, p. 28];
for ageneral discussion, EILENBERG [1956].

Theorem 6.4. (The HiLBERT Theoremon Syzygies.) If Aisa graded
module over the graded polynomial ring P=F[x,, ..., #,] iN N indeter-
minates 0 degree 1 over a field F, then any exact sequence

T: 0<A+«Xye <X, 1<A4,<0
d graded P-moduleswiththe X; freehasitsn-thtermA, free

Such a sequence can always be constructed, by choosing X, free on
a set d homogeneous generators d A, X; similarly for generators o
Ker[X,—A4], and so on. The theorem impliesthat h.dimpA4 <n.

Proof. Since the X; are free, the connecting homomorphism d the
given exact sequence T provides an isomorphism Torl,, (A, F)=
Torf (A,, F). But the Koszul resolution for F showed h.dm, F<#,
s0 Torf,, (A,F)=0. Thenby Lemma6.2 A, isfree, as asserted.

Any ideal Jd P isasubmoduled P ;asin VI3 itiscaled ahomo-
geneous ideal if it isagraded submodule; that is, if Jisgenerated by its
homogeneous el ements.
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Corollary 6.5. If J is a homogeneous ideal in P, any exact sequence
0«JXy« X, ,«A, 1«0 Of graded P-modules with all X,
free has 4,,_, free.

Proof. This implies our previous result that h.dimp J<n—1. As
in that case, we prove it by composing the given sequence with the
short exact sequence P/J<« P« J and applying the Syzygy Theorem
to the graded quotient module P/J.

Note. HimeerT’s Theorem was proved [HiLeErT 1890) with a view to in-
variant theory, especially to the modules o forms invariant under a group o
linear transformations; his paper (on pp. 504—508) contains a calculation equi-
valent to the Koszut resolution o F . His proof wassimplified by GROBNER [| 949];
our proof follows CarTaN [1952], who first applied homologica methods and
established a much more general theorem, valid also for local rings (see § 7, below).

Exercises

I. For P=F[x,Y, z] construct an ungraded P-module which has no internal
grading consistent with this P-module structure.

2. Show that the HiLBerT Syzygy Theorem holds with P replaced by any
internally graded ring G for which G, is a field.

3. (General KoszuLr resolution.) If A is a right R-module, an element #= 0
o Riscalled a zevo-divisor for A if ax =0 for some e+ 0 in A. Thus # is not a
zero-divisor for A exactly when the map a—ax is a monomorphism A>>A. For
x, .-, %,6R let J, be the right ideal o R generated by #, ..., #,. If for each
k=1,...,n, %, isnot a zero divisor for 4/4 J,_;, prove that AQgEg[u,, ..., 4,]
with differential 9u,==#; and &: AQE,=AQ®R—>4[A], dgiven by &(a®r)=
ar+aj, provides a resolution of length n for the R-module 4/4 J,. (Hint: Use
induction on n and apply the exact homology sequence to the quotient of 4AQFE
by the corresponding complex without ,.)

Note. This result with A=R=F[#,..., 5,] gives the previous Koszul
resolution o F as a P-module. The more general case is useful in ideal theory.
where the sequence #,, ..., #, with x, no zero divisor for 4/4 ], _, and 4[4 J,% 0
is called an A-sequencefor A [AusSLANDER-BUCHSBAUM 1957, with E in place of
our A] whiletheleast upper bound of all n for such A-sequencesisthe codimension
o A.

7. Local Rings

I n this section we summarizewithout proofssomed the accomplish-
ments d homologica agebrafor the study d loca rings. All ringswill
be commuitative.

A prime ideal P in aring K is an ideal such that rse P impliesre P
or scP; it is equivalent to require that the quotient ring K/P has no
divisors d zero. Any ring K has as ideals the set (0) consisting d 0
alone and the set K; a proper ideal J d K isanidea with (0)==J f K.
Aunitu d K isan element with an inverse v (v#=1) in K. Clearly no
proper ideal can contain an unit.
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A locd ring L is a commutative ring in which the non-units form an
ideal M ; then M must contain all proper idealsd L. If L isnot afield,
M isthe maximal proper ideal d L. In any event, M isa primeideal.
Moreover L/M is a field, the residuefieldd L. For a rational prime ¢,
the ring d p-adic integersisaloca ring; the residuefied isthefidd d
integersmod 4. Another local ringistheset o al formal power seriesin
non-negative powersd n indeterminates x,, ..., x, and with coefficients
in afield F; a power series has a (formal) inverseif and only if its con-
stant term is not zero, so the maximal ideal isthe set o all formal power
series with vanishing constant term, and the residuefield is .

If Pisaprimeideal in theintegral domain D, thering d quotients D,
istheset d all formal quotientsa/b for a, b¢D and b not in P, with the
usual equality a/b=a’fb’ if and only if ab'=ab. These quotients form
aringunder theusual operationsa/b+ a’{b’= (ab’™+ a b)/bb, (afb) (a'[b') =
aa’/bb’. Such aquotient /b has an inversed/a in Dp if and only if a¢P,
hence D, isalocal ring with maximal ideal al /b with ac P; if weregard
Dy as a D-module, this maximal ideal may be written as the product
PDp. For example, if D is the ring d all polynomiasin n indeter-
minates over an algebraically closed field C, the set d all zerosd P
— thatis, d al points (¢, ..., ¢) withf(c,...,C) =0 foreachfcP —
is an irreducible (affine) algebraic manifold V. The corresponding local
ring D, isthen known asthering d rational functionson the manifold V;
indeed, for each formal quotient f/g in D, we can define thevalued the
quotient f/g at each point (¢, ...,C) o V asf(c, ..., c,)e(cr,---,¢,)-
Similarly, a point on the manifold V is associated with a prime ideal
containing P, and the ring d rational functions at this point is a locd
ring. This example explains the terminology **local*.

A K-module C is noetherian if every submoduled Cisd finite type;
it isequivalent to require that C satisfy the ascending chain condition
for submodules: For any sequence CyC --- CC,(ChpprC .- 0 sUb-
modulesd Cthereisan index nwith C, =C,,,=.... Thering K itsdlf
is noetherian if it is a noetherian K-module. Hilbert's basis theorem
asserts that the ring d polynomialsin n indeterminates over a fidd is
noetherian. Also any module o finite type over a noetherian ring is
itself noetherian.

Over a noetherian ring it is natural to consider the category d all
noetherian modules; every submodule or quotient module d such is
again noetherian. With thisagreement, the Hilbert Theorem on Syzygies
holdsfor noetherian local rings: 1 n the statement d Theorem 6.4, replace
the polynomia ring by a loca ring L, the field d coefficients by the
residue field L/M, and read "finitely generated module' for " graded
module™. The crux d the proof liesin the analogue d Lemma 6.1,
with the ideal J replaced by M: When A=AM, then A= AM* for
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each #, and the intersection d the MY is zero. An instructive presen-
tation d this argument may be found in EILENBERG [1956].

In a noetherian ring K the Krull dimension K is the largest integer
for which there is a properly ascending sequence d prime ideals
B<PB< +-- <B<K; it can be shown that this dimension is aways
finite. Inaloca ring L with maximal ideal M, the quotient M/M?isa
vector space over the residuefidd L/M; since M is a finitely generated
ideal, the vector space dimension #=dim; ,,, M/M? is finite. It can be
shown that the Krull dimension of L isat most n. The local ring is
said to be regular if its Krull dimension is exactly n=dimy , M/M?2.
These are the local ringsd greatest geometricinterest.

Using homologica methods, SErRrRe [1956] and later AUSLANDER-
BucHsBAUM [1956] have proved (seealso Assmus [1959]):

Theorem. A local ring L with maximal ideal M is regular if and only
if h.dim, LIM<eo, O equivalently, if and only if gl.dimL<<eo,

In particular this characterization d regularity allows an easy proof
that if Pisa primeideal in aregular local ring L, then the (local) ring
d quotients L, isalso regular. Beforethe used homological methodsthis
result had been known only for certain geometrically important cases.

More recently AusLANDER-BucHsBaumM [1959] have proved Krull's
conjecture:

Theorem. Any regular local ringis a .unique factorization domain.

The proof made essential use d NAGATA's [1958] reduction d this
conjecture to the case of homologica dimension 3. This theorem in-
cludes, for example, the classical result o the unique factorization for
power series rings.

Note. The torsion product in local rings yieldsan efficient treatment of inter-
section multiplicity of submanifoldsof an algebraic manifold [SERRE 1958]. Among
the many recent studies of homological dimension in noetherian rings we note
TATE [1957], AUSLANDER-BucHsBaum [1958], MATLIS [1960], Jans [1961]. One
of the earliest uses of homological dimension was HOCHSCHILD's [1945, 1946]
discovery of the connection (§ 5) between the bidimension of A and separ ability.
The homology theory of Frobenius algebras is analogousto that of groups[NAka-
YAMA 1957; NAKAYAMA-TSUZURU 1960, 1961; KAscH 1961].

Chapter eight
Products
1. Homology Products

Throughout the study o products there is an interplay between
“external™ and "internal™* products. This relation may be illustrated
in the case d homology products. If X and yY are chain complexesd
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R-modulesthe external homology product isthe homomorphism of abelian
groups

b Hy(X) QrHp(Y) >Hyy (X QrY), (1.1)
defined on cyclesud X andv d Y by

plclsu@clsv)=cls(# V).

This mapping # is natural in X and Y; it has already appeared in the
Kiinneth Formula. This product is associative: For ringsR and $ and
complexes X, Y5, and, W the composites

P(1QP) = p(pRN): Hy(X) QrHi(Y) Qs H,, (W) — H, (X QrY Qs W),
with n=%4 .+ m, areequal.
On the other hand suppose U a DG-algebra over a commutative
ring K. Then H (U) is agraded K-agebra under the product
n: HU)QH(U)—-H(U)
already defined (V1.7) as
7 (cls u @cls v) =cls (uv);
we call this the internal homology product. The internal product may be
obtained from the external product viathe product map «y: UQU — U,
as the composite
a=(my)sxp: H{U)QH(U)->H({UQU)-—>H(U).

The external homology product can be defined with coefficient mo-
dules. Take (ungraded) K-algebrasA and A’', complexes ,X and X’
d K-modules, and right modules G4, G, and set Q=4AQA’. The
external homology product is the compositemap gy =4 in the diagram

H,(6R4X) QH,(C'®4 X)) BoH,, (R4 X)®(G'Qu X))

\ lr (1.2)
pH

H,,,(GRG)®a(X®X"))
where p is the homology product o (1.1) with R=K, while 7 is
short for H,, ,(r); that is, for the homology map induced by the

middle four interchange o (VI1.8.4). This product ¢4 is natural and
associative — the latter meaning that the diagram

HX)QHX)QH (X") & H (XX )QH (X")
RE- T ’ lta
HX)Q@HX'®X") 2> HX®X'®X"),
with G's and A's everywhere omitted, is commutative.
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Theorem 1.1. For adgebrasA and A’ over afield, the homology product
i's an isomorphism

tr: 2T H(CRuX)QH,('QuX)=H,(GRG) R (X ®X")).

k4+m=n

Proof. AIl modules over a field are free, so the Kunneth tensor
formulamakes$ an isomorphism, while 7 is alwaysan isomorphism.

For left modules 44 and A’ the external cohomology product isthe
compositemap pHE={# in the diagram

H*(Hom (X, 4)) @H"(Hom ¢ (X! 4')) 2 H*™(Hom (X, 4) @Hom . (X,4))

H*+(Homg (X @ X', A ®4)).

Here ¢ is the homology product d (1.1), written with upper indices,
while¢ is the chain transformation determined by the Hom- & inter-
change o (VI.8.10). This product is natural and associative. |ts de-
finition may be rewritten in terms d cochains h: X,—4, h: X, —~A’.
Regard h and #' as homomorphisms d graded modules. By definition,
¢ (h&h) isthe homomorphism

hQH: (X®X""=p+z XQX;~A4Q4’
g=n
defined for n=~%-+m, xeX,, x'c X, as
W) (xRx)=hx QK &', p=k, gq=m }
=0, p=k.
Then 6(h®h) =62 Q4"+ (—1)*2®6h and p# is given on cohomology
classesas pH(cls h@cls h) =cls (h®h).

Theorem 1.2. For algebras A and A over a field and positive com-
plexes X and X' with eech X, and each X,, a free A- or A-module o
finite type, the cohomology product is an isomorphism

pH: T HMHom,(X,A))®H"(Homy (X',AY))

kt+m=n

(1.4)

=~ H*™(Homg (XQ X', A @A) .

Proof. Since X and X' are positive, each (X®Q X"}, isafinite direct
sum ZXP®X,;, and Hom(X, —) is additive for finite direct sums
(=direct products). The finite type assumption, as in Prop. V1.8.3,
insuresthat the Hom- & interchange is an isomorphism o complexes,
while ¢ isan isomorphism by the Kiinneth tensor formulaover afield.

Theorem 1.3.  Connecting homomorphisms, when defined, commute
with the homology product .

(.
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Proof. In (11), replace X by a short exact sequence
E: 0-K—~L->M-0

o complexes o right R-modules. The homology connecting homo-
morphisms are
%=E,: H, ,(M)—~H,(K).

The sequenced tensor product complexes
EQRRY: 0-KRrY >LRrY >M R, Y -0, (1.5)
f it isexact, also definesconnecting homomorphisms, asin the diagram

Hyoy (M) @gHp(Y) B Hyy i1 (M @ Y)
|E.®1 |E@=y). (1.6)
Hy(K)QxH,(Y) b H, ,(KRxY).

Our theorem asserts that this diagram is commutative; the proof is
a direct application d the ' switchback™ description d the connecting
homomorphisms. A corresponding result holds if Y is replaced by a
short exact sequenced complexes.

Thisresult applieswhenever EQRr Y isexact. It may not be; to get
exactnessweshould replacetheleft hand zeroin (1.5) by 2, Torf (M, Y,).
It will be exact in any oned the following cases:

Cazl: Each Y, isaflat left R-module;

Case2: Each M, isaflat right R-module;
Case3: E issplit asa sequenced right R-modules.

The third condition means that each sequenceK, L, - M, is split.

Corollary 1.4. Connecting komomorphisms, when defined, commute
with the homology and cohomology products ¢4 and pH.

Proof. The result is immediate, since py=1# and p?={$ and the
natural maps r and { commute with connecting homomorphisms. The
statement includes the cases when any one d the arguments G, X, G’ or
X' for py is replaced by an appropriate short exact sequence. For ex-
ample, replaceG by ashort exact sequenceE d right A-modules. Suppose

(i) Xisacomplex d flat left A-modules X ,,;
(ii) E issplit asasequenced K-modules;
(iii) X’ isacomplex d flat left A'-modules X,,.
(These are plausible hypotheses; they hold if X and X' are projective
resolutions and K is a field.) In succession, they insure that EQ X

is a short exact sequenced complexes d K-modules, that EQx G’ is a
short exact sequence d 2=A@A"-modules, and that the product
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(E®RG) Ra (X&X') isashort exact sequence d complexesd K-modu-
les. Thus all connecting homomorphisms are defined, and the diagram
like (1.6) is commutative.

2. TheTorsion Product of Algebras

When X and X' are resolutions, the (co)homology products ¢y and
p™ will give corresponding products for Tor and Ext.

For K-modules B, A, B', A' the middle four interchange
7. (BRA)R(B'RAN=(BRB)KRARKQA") (2.1)

d (VI1.8.4) may be regarded as an external product for the functor &.
Recdll that Thm. V.7.3 gives an isomorphism %: Tor, (B,A)=B®A,
where the elements d Tor, are written as triples ¢=(p,F,v) for F a
finitely generated free module with dual F* and homomorphisms
uw: F—B, vi F* —>4. Using this isomorphism #, the middle four inter-
change takes the form

[ F,9) @, F',v)]=(u@p, FQF, v @v). (2.2)

Here v@y': F* QF'* A RA4’, but we may regard v®»" as a map
defined on (FRQF)* by the identification F* QF'*=(FQF')*, given
by the isomorphism d Prop. V.4.3 (incidentally, this identification is
consistent with the identification (FRF') QF"'=F @ (FQF'"')). This
formula (2.2) will be extended to higher torsion products.
An element o Tor, (B,A) was written as a triple ¢= (g, L, v) with L
a finitely generated free complex d length k and : L—B, v. L*—>A4
chain transformations. Given a second such ¢ ¢Tor,, (B’, A"), define a
product
(6 Lo) (0, L', v) =(u @p', LOL', v Q). (23)

Here L ®L’ is a finitely generated free complex d length &+, and
v®»' a chan transformation L* QL'*=(LQL)*—>ARA. This
product iswell defined with respect to the equality used for the elements
d Tor, and is natural in the four modules concerned. This product tt'
is bilinear; we avoid the direct proof, via the addition defined in Tor,
by the following use d resolutions.

Theorem 2.1. For four K-modules B, A, B', A', the product (2.3)isa
homomorphism

p: Tor,(B,4) ®Tor,, (B, A")—> Tor,,,(BRB', ARQA"). (2.4)

It may be computed from projective resolzltionse: X —-B, ¢': X' —B', and
g’ Y -B&B' asthe composte

HXQ4)QHX' @A) BHEXQX' QAQA) BH(Y@4Q4))
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whare g i s the external homology product of (1.2), withtherdesd G and X
interchanged, while f: X® X' —Y isachaintransformationlifting | pgp- .

Proof. The tensor product 0 free or projective K-modulesis free or
projective, as the case may be, 0 eRe’: XQRX'—->B&B' is a pro-
jective complex over B@ B'. By the comparison theorem, the map f
lifting 1 exists and its homology map f, is unique. The calculation d
Tor (B,A) from the resolution X is expressed by the isomorphism
w: Tor(BA)=HX®A)d Thm. V.8.1. Let ’ and o’ be analogous.
The statement that 4, can be computed as the composite f, py IS

0" () =fpy 0t RQu't). (2.5)

Since w’’: Tor(BB', AQAY=H(Y QA KRA’) is an isomorphism,
this equation also showsthe product tt' bilinear, hencewill provethat .
isa homomorphismasin (2.4).

To prove (2.5), recall that w was defined by regarding ¢=(u, L,V) as
afreecomplexu: L—B d length k over B plusacycle(1, L,,V)eL, R4,
by lifting 1z to a chain transformation h: L—+X, and by setting
ot=(h®1), cs(I,L,,Vv). But tt' is correspondingly written as the free
complex uQu': LQL —-BRB’' plus the cycle (I,L,QL,,,vRv").
This cycle is the homology product =¢[(1, Ly, V)& (1,L,,, v')] while
f(hah): LQL —Y lifts 155 . Therefore

o () =F, (h QW U @A)y pr{cls (1, Ly, ») Qcls (1, Liy, v')},

o that (2.5)isaconsequenced thenaturality d the homology product g
under the chain transformations h and h'.

Let A and I" be two K-algebras, Nn: AQ®A —-A and g: I'QI'—I" their
multiplication maps. The composite

AR QUKD > AR QIR 25 AQT

gives the product in the algebra AQI'. In other words, the internal
product in the tensor product algebra A&I" is obtained from the
external product z d the modules.

Thisinternal product will now be defined for Tor (A,T).

Theorem 22. For K-dgeras A and I, the family {TorK (A} is a
gaded K-algebra Tor*(A.I') in which the dements d degree 20 con-
ditute the tensor product agdra AQIT. The produtt of two dements
t=(u, L,») and #=(u’, L', V') 7s defined by

(. Lv) (@', L', v ) = (m (e @u'), LRL', o (v ")), (2:6)
for = and g the product mapsdo Aad I

Mac L ane, Homology 15
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Proof. The internal product (2.6)is the composite [Tor (N,Q)12r,
with p; the external product. By Thm. 2.1, this product tt' is bilinear;
itismanifestly associative. Theidentity elementsd thealgebrasA and I’
are represented by K-module homomorphismsl: K—4, 1': K—TI', and
theidentity element 1,4 &1, of AQI appears, vian: Tor, (A IN=AQT,
asthetriplet,= (1 K I') d Ta, ,whereK isregarded asa free K-module
on one generator. Then formula (2.6)shows that 1p¢=t=t1,. Hence
Tor (A,I') isagraded algebra as asserted.

We record how this product may be computed from a suitable
resolutiond A.

Cordllary 2.3. IfU ¢s a DG-algebraand &: U —A a homomorphism d
DG-algebras such that U, regarded as a complex, is a projective resolution
d the K-module A, then the canonical module isomorphisme: Tor (A, =
H(U QI') which expresses the torsion products by this resolution is also
at isomorphismd graded algebras.

Proof. Here U®JTI’, as tensor product d a DG-agebra U and a
trivial DG-dgebra I', is a DG-agebra, so that H(UXI") is indeed a
graded algebra. In Thm. 2.1 above, we take B=B’'=A4, 0 we may
choose both X and X' to be the resolution U, while Y isany projective
resolutiond A®A. Lift1 and n to chain transformations f and g, asin

QUL v LU

l Voo

ARA=AQRAS A.

Then Tor(n,g) is the homology map induced by g Qe: YQRI'QI—
UQI. Theproduct in Tor (A,I") isthus (g @ @)« f« Pr, asin the diagram

HUQTD QHU QN2> HUQU QIR - HYRIRT)
l(”v). l(g®o).
HURIQD & puern.

But the product zy: UQU U and g : UQU U are both chain
transformations d resolutions lifting z: A &A—->A4, hence are homo-
topic by the comparison theorem. Therefore the homology diagram
aboveiscommutative, sotheproductinTor (A.l")isgiven by (7y Q o)y P -
This is exactly the internal product in the graded algebra H{(U QI).

For the polynomial algebra P we have already noted in Thm.V11.2.2
that the graded algebra TorP(K,K) is an exterior algebra over P;
the proof used thefact that the Koszur resolutiond K isa DG-algebra.
Indeed, any algebraA hasa projectiveresolutionwhichisaD G-agebrall
(Ex.2).
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Our product definition (2.3) is new, but the external product p4 which it
defines is exactly the product m defined by CarTan-EiLEnBErG (Chap.Xl.4).
Their definition uses resolutions of A and A', but thisis irrelevant (Ex.3).

Exercises

1. If UisaDG-algebra, A a K-module, and ¢: 4 U, a module homomorphism
with 9,9 =0, show that the graded algebra U®T(4) has a unique DG-structure
with @|U= 298y, 8|d=¢, and A o degree n 4 1.

2. For any K-agebra A construct a DG-algebra U and a homomorphism
e: U—»A o graded algebras, so that, asin Cor.2.3, U is a projective resolution
o A as a K-module. Hint: Use Ex.1 to construct a DG-algebra U® by recursion
on n so that it is a projective resolution up to dimension n.

3. Describe the external product in Tor(B,A) using resolutions o both B
and A, or o A only.

4. For K-agebras A and A’ and modules B4, By, 44, 44’ show that the
formula (2.3) provides an external product

Tor4 (B,A) ®@Tor4'(B’, A) > Tor4®4(BQB', AQA’),

describe its properties, and show that it commutes with all four connecting homo-
morphisms. This is the product T of CARTAN-EILENBERG XI.1.

3 A Diagram Lenma

In the next section we need the following anticommutative rule on
the splicing o exact sequences.

Lemma3l (The 33 splice) If a commutative 35«3 diagram d
modules has columns the short exact sequences E', E, and E', rows the
short exact sequences E,, Eg, and E, then

Ej0 E"=—F'o Eg.
Proof. The given 3><3 diagram has the form
E;: A/ A—A"

Lo,

Eg: B'—B5 B (31)

Lok

Ez.: C'—CLC”
(zeros on the edges not shown). Construct the diagram

0>A'>A— B”" —(C"-0
(- “ ]

0—->A4'>B%5CHB"LC"—0 (3.2)
[ PR
0—-+A'-B'— C —(C">0

15%
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with @b=(cb, $5) and y(c, ¥’)=yc—b" (note the sign), while the
other unlabelled arrows are maps or compositesfrom (3.1). The diagram
is commutative; a diagram chase shows the middle row exact. The top
row is thecomposite E, o E"; by the vertical maps with —1¢..: C"'—C"’
at theright, it is congruent to the negative d the middlerow, whichin
turn is congruent to the bottom row E'o E;. Thisis the desired result.

A related and frequently used result is
Lemma3.2. For right Rmodules A<B, left Rmodules A'C B,

(B/4) @r(B'[4")=[BQp B'][[im(A&rB’) v im(BRQrd)]-  (3.3)

Proof. Thefirst imagehereisthat d AQ B'>B & B'. Thisand the
symmetric map yield the exact sequence

ARrB' @ BRrA'—>BRgB'—(B/A) Qr(B'[|A")—0.

This sequence can also be derived (cf. Ex.2 below) from a diagram
like (3.1) with first row AQA’, AQB', AR (B'|A").

Exercises

1. In (3.1) assume only that the rows and columns are right exact, with the
third row and the third column short exact. Prove that (3.2), with the left hand
zeros omitted, is commutative with exact rows.

2. Prove Lemma 3.1 by a diagram like (3.2) with vertical arrows reversed and
middle row A »>B'@A->B »C".

4. External Products for Ext

The composition d long exact sequencesyields an external product
in Ext. For a single A-module A, composition is a homomorphism

Exth (4, A) QExt?(4, 4)—>Extit™(4, 4).

By Thm.II1.5.3, this makes Ext,(A,A) a graded ring; indeed (by
VII.3.1) a graded K-algebra. In this algebra, the elements o degree
zero form the K-agebra d A-module endomorphisms & A. We now
describe how this product can sometimes be obtained from the cohomo-
logy product for resolutions.

Let A and A' be algebras over a commutative ring K, while C and
A areleftA-modules, C and A' areleft A'-modules. Write Q for A A’,
where & is short for ®g, and note that CQC’ and AR A’ are left
Q-modules. We wish to define a K-module homomorphism

v: Ext}(C,A)@Ext} (C, A) »Exty" (CRC, ARA) (41)

called the external or wedge product; for e Ext, and o'¢ Ext, we will
write v (a®¢’) asava. Take freeresolutionse: X—Cand &¢': X'>C’
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by A- and A’-modules, respectively. The cohomology product (1.3) is
pH: H(Hom, (X,A))QH™(Hom 4, (X, A'))—H*™(Homg(XQX',AQA")).

With the canonical isomorphisms Ext (C, A)=H*(Hom,(X, A)), this
will define the desired wedge product (4.1) Provided (e Q¢'): X X'~
CQ®C’ is a free O-module resolution, for standard comparison argu-
ments show that the result is independent o the resolutions used. In
any event, each X, ®X,, is a free left 0-module. The proviso that
X &X' isaresolution holds in two cases.

Cae1. K isa field. By the Kiinneth tensor formula, valid over a
fied K, H,(X®X')=0 for >0 and ¢R¢e': Hy(XRX')=CRC’, 0
X ®X' isaresolution.

Cae2. A and A' are free as K-modulesand C is a flat K-module.
For, each free A-module X, is a direct sum o copies o the free K-
moduleA, so X, isafree K-module. Then X —C isalso a free K-module
resolution of C, so Tor¥(C, C) may be calculated (Thm.V.9.3) from
X and X' as H,(X®X'). But C is flat, so Tor,(C, —)=0 for »>0,
hence X ® X'—-C R C’ isa resolution.

Other cases will occur in the exercises and in our subsequent discus-
sion d relative Ext functors (Chap.X). From the definition, it follows
that the wedge product commutes with connecting homomorphisms,
and is associative; for k=m=0, it reducesto the Hom-& interchange.
In Case1, the wedge product may be expressed by the Y oneda compo-
sition product.

Theorem 4.1. [YonEDA 1958.] For algebrasA and A' over a fidd
and ocExt?(C, A), o’cExt (C, A") the wedge product is given by

ave'=(@®4)0(CRd)=(— 1" [(AQ0)e (¢RC)].  (42)

Heres ® A’ has an evident meaning, asfollows. If k=0, ¢ isa homo-
morphism C—A4; let 6 ®A’ mean e QR1,.: CRA'-ARA’. If k>0
and m>0, a and @ are the congruence classes o long exact sequences

S: 054 -8B, ; >---—>By—>C >0,
S’ 0—>A'—->B,,_;—--— Byg—>C'>0.
Since K isafield, Qg preserves exactness, so giveslong exact sequences
SQA4": 0-ARQA'>B, QA" +CRA'—0,
CRS": 0>CRA'->CRB,_; = —>CRC'—0.

Take a@A'=cls(S@A') and CRd¢'=cls(C®S’), so the Yoneda
composite (a®A4’) o (CRa”) is defined; for k or m zero it is the usuad
composited a homomorphism with a long exact sequence.
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Proof. First assume k>O and m>0. Regard Sas a resolutiond C;
the comparison theorem lifts 1, to a chain transformation f: X —S.
Similarly, 1. liftsto #: X’—S’; in particular, #,,: X,,—A’ isacocycle
d X' and its class represents cls S' in the isomorphism H™ (X', A") =
Extm(C, A) d Thm.II1.6.4. The complex X ® X" is the first row d
the diagram

(XRX Vi1 (X RX )y (X QX oy = (X QX) s

Xi®Xpm —XQRXp =X ®@Xpo1 — Xo®Xp s
1@ 1@ {#®fns 1@
BiR4A' — B4’ > CQB,, — CQB,,

cRA’

which extends in the same fashion left and right, ending with a column
C®C’ ontheright. Thefirst row o vertical maps projectseach (X ® X’),,
to the indicated one o its direct summands. The bottom row is the
composite long sequence T = (SRA") o (C@S'), with the splice at
C®A' displayed. The top squares do not commute, but erase the
middle row; the resulting diagram is commutative, even at the splice.
Hence the composite vertical map is a chain transformation h: X ® X’
— T which lifts the identity on C®C’. To read off the cohomology
classd X®X’ corresponding to T, take # on dimension 2+ m. But
# thereis just

(XX )X QX2 4 4';

the cohomology class d this cocycle is exactly the one obtained from
cls f,Qcls f,, by the cohomology product g% Since clsf, and cls f,,
represent S and S, respectively, this proves the first equation d the
theorem for £>>0 and »>0. The proof for 2=0 (or m=0) uses asimilar
diagram, with splicing d sequences replaced by the action & a homo-
morphism a: C-+ A on a sequence.

The second equality in (4.2) is an (anti-) commutation rule. It is
immediate from the definition if =0 or m=0. Since any long exact
sequence is a composited short ones, it suffices to give a proof in the
casek=m=1, for short exact sequencesk and E'. Herethe commutative
square diagram

ARE": AQA'>ARB' —>ARC’
| | \
v ¥
BRE': BRA'>BRB'->BRC(’ (4.3)

CRE: CRA'>CRB'—-CRC’
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and Lemmas3.1 prove ARQE)o(EQRC)=—(EQRA)o(CRE'), as
required.
From this theorem it again followsthat the v product is associetive.

Theorem 4.2. If the K-dgeras A and A' are free as K-modules,
while C, A, C, A" are all flat as Kmodules, the weoge product (4.1) is
defined. |t may be expressed by the compostion Product asin (4.2).

Proof. This falls under Case2 above. The previous argument
applies, snce X ® X’ is a resolution and the tensor product SRxA’
d along exact sequence S with a K-flat module A" is still exact.

Corallary 4.3. If A and A are augmented K-adgebras which are free
as K-modules the wedge product of ocExt® (K, K) and o’cExt%(K, K) is
given by

oVa'=,00,0 =(—1)*" 0.0 ¢ Extht"(K, K). (4.4)

Here K is to be regarded as a A- or A’-module by pull-back along
the augmentations ¢: A—K and &', while ,.o is short for 1RQ¢')*a;
i.e., for the exact sequence in a pulled back along 1RQ¢&: AQA'—
ARK=A4.

Now let V be a Hopf algebra with counit &: ¥—K and diagonal
map y: V->V®V. Pull-back along ¢ turns (VQV)-modules into V-
modules, exact sequences into exact sequences, and so gives a change
d ringsmapy#: Extpg,—Ext,. If C,A, C, and A’ areleft V-modules,
o are ,(CQRC) and (A @A*), and the compositey* v o wedge product
and pull-back is a K-module homomorphism

ypitv: Exth(C, 4) QExt(C’, 4") —>Ext’f,+’”(w(C RC"), (AR4")) (4.5)

caled the Hopf wedge product. It is defined when K is a field, or when
Cis K-fla and V isfree as a K-module, and the analoguesd Thms.4.1
and 4.2 hold. Since y is associative, so is this prodl_Jct.

By pull-back, each K-module becomes a V-module M.
Lemma 4.4. Fora K-module M and a module C over the Hopf dgebra VvV
MIAQO)=MQQ]C, (CRM=CRM (4.6)

are isomorphisms o V-modules, with the V-module structure on the right
induced by that of C.

Proof. The Hopf algebra, as a coadgebra, satisfies the identity
(e®@1)py=1d (VI.9.1). Pull-back yields

M QC]=y[( @M RC)]=(g1s(M RC)=M QC,

and similarly on the other side. Hence a curious result:
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Proposition 4.5. If V is a Hopf algebra over a fidd K and M, N are
K-modules, C, A V-modules, the Hopf wedge products

Ext, (M, 4) QExt,(C’, N') >Ext, (M QC’, AQN'),
Ext,(C, N) QExt,(M’, A')—>Ext, (CQM’', NQA’)

are independent d the diagonal map y; that is, depend only on V as an
augmented algebra e: V—K.

Proof. These wedge products are still given in terms o composi-
tion o long exact sequences by the formulas (4.2), where the modules
in these long exact sequences are pulled back to V-modules by y. The
Lemma asserts that the resulting V-module structure is independent
d .

In particular, let all modulesin sight be K; then K @K = K, and the
external wedge product becomes an internal product

Ext, (K, K) @Ext, (K, K) >Ext, (K, K) (4.7)

which makes Ext, (K, K) a graded K-adgebra Since a®Q K=o, the for-
mula (4.4) shows this algebra commutative.

Note. The external product for Tor arises from the middle four interchange
and agreeswith that map for Tory= ®; it may beobtained, asin (2.5), by replacing
suitable arguments by resolutions, and composing with the homology product
and a comparison d resolutions. The external product for Ext arises similarly
from the Hom-@® interchange. Various other " products” involving Tor and Ext
arise by the same mechanism from identities on Horn and ®; for example, there
is one arising from the mixed adjoint associativity

Hom(A®A4’, Hom (C, C)) -Hom(C®A, Horn (A", C))

These are given in detail, via resolutions, in CARTAN-EILENBERG Chap.XI. De-
scription in terms of the invariant definition of Tor and Ext would be of interest.
Other types d products will appear in Chap.X below.

Exercises

1. Describe how the external product in Ext commutes with connecting
homomaorphisms.

In the following exercises, K is a commutative ring, not necessarily a field.

2. If Pand P are projective A- and A’-modules, respectively, show P® P’
a projective (4 ®A4’)-module. If A and A" are projective as K-modules, show also
that P® P is a projective K-module.

3. Show that the wedge product for K aring can still be defined, using projec-
tiveresolutions, provided A and A' are projective as K-modules and TorK (C,C)=0
for » > 0. If, in addition, A and A' are K-flat, show that Thm.4.1 still.holds.
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5. Smplical Objects

The cohomology H(X, Z) d a topological space X with coefficients
Z is a graded ring under a product known as the cup product. This
product can be defined not only for spaces but for other complexes
with a" simplicia" structure. Hence we now analyze the combinatorial
structure d a simplex; more exactly d a #-dimensional simplex A4?
with ordered vertices.

For each non-negative integer p, let [] denote the set {0, 1, ..., }
d integersin their usual order. A (weakly) monotonic map u: [q —[#]
is a function on [g] to [#] such that :<j impliespi =< xJ. The objects
[#] with morphismsall weakly monotonic maps g constitute a category
# (for monotonic). Note that a monotonic ¢ is determined by the
sequence d g1 integers puy < iy <---= u, in [# where py=uo, ...;
hence we regard x as the affine simplex (g, ..., &,) determined by the
vertices y; on the standard p-simplex A4?.

Let € be any category. A contravariant functor S: .#—% will be
cadledasimplicial dject in%. Specificaly, Sassignsto each non-negative
integer q (toeach object d A)an object S, d €, and to each monotonic
u: [d —[#] a morphism u*=S(p) S,—S, d €, with S(1)=1 and
S(uVv)=S(v)S(p) By a simplicial st is meant a simplicial object
in the category d sets; by a semplicial A-module is meant a simplicia
object in the category d al A-modules.

If F: -2 is a covariant functor, each simplicial object S in &
determines a simplicial object FSin 2, with (FS),=F(S,), FS(p)=
F(Su). Inparticular, if A isan agebra, and F; the functor which assigns
to each set Y the free (left) A-module with generators Y, then each
simplicia set S determines a simplicial A-module E; S.

The singular simplices (11.7) d a topological space X constitute a
simplicial set §(X). In detail, let §,(X) be the set o all singular -
simplices T o X; each T is a continuous map T: 4?7 X defined on
the standard affine p-simplex 4. Now each monotonic u: [d —[#]
determines a unique affine map u: 47—A? carrying, vertex ¢ d A7
onto vertex u; of A?; the compositeu* T=Tp: 47X definesa map
p*=S (p): §,(X)->S,(X) which makes § a functor on .# and hence
a simplicial set. For Z the ring o integers, S'=F,S is a simplicial
abelian group with S, the free abelian group generated by all singular
p-simplices d X. In other words, S; is just the usual group o singular
#-chains o the space X. We shall soon see that the usua boundary
d a singular #-chain is also determined by the simplicia structure d
S(X).

It is convenient to use two special families d monotonic maps

d=g: [g—1]->[g, #'=ni: [g+1]1-[d] G-1)
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defined for =0, ..., q (and for ¢>0 in the case d &) by
& () =1 fori<i, o'()=j forj=s,
=j+1 forj=7+, =7j—1 forj>i.

In other words, & may be described as the (q—1)-face d A% with
vertices (0,1, ...,4,...,0 — omit index i — and #* isthe (g+1)-face

with vertices (0, 1,...,%,%,..., Q) — double the vertex <. From this
description one verifies the identities
PAPCANES AR A S P (5.2)
M =7 Wi 57, (5-3)
’7;—15; = ;-ﬂ?ijv <],
=1, i=f, i=j+1, (5.4)

= 3}1:%’75—2» 1>74+1.
We normally omit the subscripts g on £ and 7.
Lemma 5.1. Any monotonic #: [q] —[#] has a unique factorization
p=e... gyl ", (5.5)
with p=i,>--- >4,20, 0=,<---<7;<<(, and q—t+Fs=p.

Proof. Let the elementsd [#] not in x[q be 4, ..., in reverse
order, while those elements 7 d [q with p(f)=n(+1) are 71, ...,7%
in order. Then (5.5) holds, and presents x as the composite  a mono-
tonic epimorphism (the product d the %’s) with a monotonic mono-
morphism (the product d the €'s).

This lemma dlows an alternative definition d a simplicial object.

Theorem 52. A simplicial object Sin a category € isafamily {S;}
d objects o € together with two familiesd morphisms o €,

d;i: S§,—>S, 1, 8 5,841, =0,...,q,
(and with ¢=>0 in the case o 4;) which satisfy the identities
dd;=d;_,d;,, i<j, (5-6)
§8; = S8;118, 1=], ' (5.7)
dis;=s; ,d;, i<j,
=1, 1=, i=j+1, (5.8)
=s8;d;_y, 1>74+1.

Proof. Since Siscontravariant, the morphismsd; = S (¢*), s,= S(y')
satisfy the identities (5.6)—(5.8), which are the duals d (5.2)— (5.4).
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Conversdly, given the 4; and the s;, write any monotonic g in the unique
form (5.5) and define

S(p):S,"... Sild,"... d,~1: Sp—>Sq.

The identities (5.6)—(5.8) suffice to commute any two o d,, s;, hence
to calculate the factorization d a composite g» from that d x and
d v, hence to prove that S(uv)=S(v)S(p). This makes S: # %
contravariant.

We call 4; the i-th face operator and s; the j-th degeneracy operator
d S. Notethat (5.6) and (5.7)imply

d‘d1=d1d"+1, 1.27., (5'9)

§;8;=8;8;_1, 1>]. (5.10)

For example, let V be any partly ordered set (1.8);call an ordered
(g+ 1)-tuple (v, ..., 7,) with elements yy<---<v, in the given partial

order d Vag-simplex d V. Let S,(V)betheset d al g-smplicesd V.
Then S(V) isa simplicial set under the face and degeneracy operators
defined by

Qi (Vg +ves ) =(0g, «ers Dy .-, %) (omity),  (5.11)

5;(Vo, .., 0=V, ..., %, %,...,0) (doublev,). (5.12)

Geometricaly, V may be regarded as a schematic description o a
polyhedron with partly ordered vertices ;.

If Sand S’ are smplicia objects in a category €, a simplicial map
a: S—8’ is a natural transformation d the contravariant functors
S,S’: #—~%. In other words, a simplicial map a is a family d mor-
phismsg,: S,—»S, d € such that g,S (p)=S’(x) g, for each monotonic
wu:[d —[#], or, equivalently, such that ad,=d,¢ and as,=s;c for everyi.
The simplicial objects in % form a category with morphisms the simpli-
cial maps.

Each simplicial module S determines a (positive) chain complex
K=K(S) with K,= S, and with boundary homomorphism d: K, »K,_,
the alternating sum d the face homomorphisms:

d=dy—dy+ -+ (—1)%d,: K,—~K, ;. (5.13)
The identities (5.6) for 4,4, imply that 86=0. This alows us to speak
d the homology or cohomology modules d a sirnplicia module S,
meaning those d the associated chain complex K(S). For a topological
space X, (5.13) gives the usual boundary operator & in the singular
complex S(X).Mare formally, X determines the simplicia set §(X)
described above, hence the simplicial abelian group E, 8 (X),hence the
chain complex KE, S (X); with boundary 8, this complex is the usual
singular complex S(X)
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Asimplicialmodule S over thering R isaugmented if thereisa module
homomorphism g: S,—R with edy=¢d,: S;+ R; the associated chain
complex is then augmented by e.

Notes. Simplicial sets, under the name complete semisimplicial complexes,
arose in the study by EiLENBERG-ZILBER [1950, 1953] d the singular homology
o spaces and their cartesian products. Simplicial abelian groups, under the name
FD-complexes (Ffor face, D for degeneracy) arose simultaneously in the analysis
by EiLenBerG-MacLaNE [1953] o the spaces K(II, n) with one non-vanishing
homotopy group 7 in dimension n. Simplicial sets satisfying the additional "*Kan
condition" and simplicial (multiplicative) groups subsequently proved to provide
the suitable algebraic formulation o homotopy theory; see Kan [1958b]. The
normalization theorem o the next section and its proof are due to EILENBERG-
MacLaNE [1947]. Each simplicial module is determined by its normalized chain
complex; this gives an equivalence between the categories of simplicial modules
and (positive) chain complexes o modules, DoLp [1958].

6. Normalization

Let S be a simplicia module. In each dimension », define (DS),
to be the submodule o S, generated by all degenerate elements; that
is, set (DS),=0and

(Ds)n:sosn—lu"'Usn—-lsn-—lr n>0.

By theidentities (5.8) for 4;s;, D Sisclosed under 9, so is a subcomplex
d the associated chain complex KSd S. The quotient K S/D S=K, S
is known as the normalized chain complex d the simplicial module S.

Theorem 6.1. (Normalization Theorem.) For each simplicial mo-
dule S the canonical projection n: KS—KyS=KS/DS is a chain
equivalence.

For the proof, we interpret the degeneracies s; as homotopies. For
each non negative k, let D, S be the graded submoduled S generated
by all degenerate elements s;a with 1<k; that is, set

(DeS)a=50Su-1v U 84 15,1, n—1=k,
=SOS”_1U"'USkS”_1, n_1>k.

By (5.8), each D, S is a subcomplex, while D Sis the union d all D,S.
Definet,: S—S d degree1 by

ta=(—1)*s,a, k=dima, acS,
=0, k>dima, acS$,

and set k,=1—8t,—1?,0. This makes k,: K(S)—K(S) a chain trans-
formation and #,: 1=, a chain homotopy. Since ¢, S<D, and 8D,<D,

hya=a (mod D S), acs. 6.1y
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Moreover we claim that
mD,SCDy S, mD;SCD;S, j<k. (6.2)

Since s,s;=s;s,_; by (5.10), the second inclusion is immediate. As for
the first, "the'identities (5.8) for 2=dima, ac<S, give

ditys,a=(—1)Psy_18_1d;a, i<k,
—=(—1)*s,a, i=k, k41, k+2,
=(—1) sy 544;_» 1>k+2,
while, for k<dim a, (5.8)and (5.10) give

tkd,-skaz(——'l)ksk__lsk_ld,-a, 1«'<k,
=(—1)*s,a, i=Fk, k+1,
=(—1)*s;8,4; 14, 1>k+1.

Witha=3(—1)*d;, these combinetogive(dt,+¢,0)s,a— s,a (modD,_, S)
for k<dima and hence the first incluson d (6.2). In particular,
hoDy S=0.

Now set A=hohy ... ky.... SiNCE hya=a for k>dima, this com-
posite is finite in each dimension, and defines a chain transformation
h: KS->KS. By (6.1), kb, DSCDS, s0 an iteration d (6.1) gives

ha=a (modDS). (63)

By (6.2), 2D S=0. Since each 4, is chan homotoplc to 1, thereis a
composite homotopy t: 1= h. Because hD=0, g(at D S)=ha defines
a chain transformation g: KS/DS—KS; by (6.3), ng= 1, where =
is the projection K S—>-K S/D S. Moreover, gn= h: K S—K S is chain
homotopicto 1, by construction, so n isa chain equivalence, as asserted.

7. Acyclic Models

The treatment d products o simplicial modulesin the next section
will require the use d acyclic models; here we state the preliminaries,
for ssimplicial modules over some fixed ring R.

For each non-negative integer n a simplicial R-module M" is defined
by taking M3 to be the free module with generators all monotonic
maps 1. [#] —[n], while u*=M"(p) Mj3—M; is defined for each
monotonic u: [ —[#] as u*A=1u. This makes M" a contravariant
functor. Observe that the generators 1 d M} are al the p-dimensional
faces (44, ..., 4,), degenerate or not, on the usual n-simplex, and
that M" is augmented by &(4,)=1; often M* is denoted as A". We
cal M" the n-dimensional model simplicial module and the identity
map x"=1: [n] —[n] the basic cell on this model; thus X' e M%.
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Asin thecased spaces(I1.7), an augmented chain complex s: K —R
is acyclicif H,(K)==0 for >0 and s: Hy(K)=2R.

Proposition 7.1. For each non-negative ¢nteger n, K(M")is acyclic.

Proof. It will suffice to construct a contracting homotopy. Define

a homomorphism s: M3;—->Mj,, by s(A, ..., 4,)=(0,4,...,4,). By
(5.11) and (5.12),

dys=1, d;s=sd;,_;, >0 (7.4)

and ss;=s; ;5. Hence, in the associated chain complex, s induces a
chain homotopy s: 1=f ¢, where f: R—S is defined by f1,=(0).

Proposition 7.2 For each simplicial module S and each a€ S, there
is a unique simplicial map a: M"— S with ax*=a.

Proof. Each free generator A d M} can be written uniquely in
terms d the basic cell X" as A*x*=x"4. Hence a(A*x")=A*a defines
a smplicial map a: M"—S; it is clearly the only such with a x"=a.

To summarize: the models are acyclic and represent each acS,,.
Similarly, in the proof (11.8) & the homotopy axiom for the singular
complex S(X)d a topological space, the models S(A™) and S(4*x<I)
are acyclic and represent each singular ssimplex T via T: 4*—X. This
situation recursin many connectionsas a means d constructing chain
transformations and chain homotopies. It can be described in cate-
gorical terms(E1LENBERG-MACLANE [1953], GUGENHEIM-M OORE [1957]);
it ismore efficient to apply it directly in each case, asin the argument
to follow in the next section.

Exercise
1. If V is any set with the partial order defined by v v for every v, v’€ V,
K(E;SV) isacyclic.

8 The Eilenberg-Zilber Theorem

If U and V are simplicial sets, their cartesian Product U><V is the
simplicial set with (UxV),=U,>V, the cartesian product d sets and

d;(w, v)=d;u, d;v), s;(u,v)=(5;,5v), 1=0,....mn, (8.1)

for ueU,, veV,, and n>0 in the case o 4;. Thisdefinition issuggested
by the case d topological spaces. If XY is the cartesian product
d two spaces X and Y, with projections#, and 7z, on X and Y, respec-
tively, each singular smplex T: 4" XY is determined by its pro-
jections % T and =, T, while d;n; T=mn,;d, T, s;m;T=m;5; T. Hence
T—>(m T,7m,T) provides an isomorphism S(X><Y )=S(Xp<S(Y)d
simplicial sets. The computation d the singular homology & X><Y is
thus reduced to the computation d the homology o a cartesian product
o simplicial sets.
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There is a parallel product for smplicia modules A and B over a
commutative ring. The cartesan product A>B is defined to be the
simplicial module with (AxB),=A, ® B, and

d;(aQ@b)=d;aQd;b, s;(aRQb)=s;aRs;6, 1=0,...,n, (8.2)

for aed,, beB,, and #>0 in the case d d,. To avoid confuson with
the tensor product d complexes we shall write axb for the element
a®b d 4,8 B, For smplicid sets U and V, this definition insures
that there is a natural isomorphism d simplicial modules

F(UxV) = FUxFV; (8.3)

for F(U=V) in dimension n is the free module generated by the set
U,=<V,, and this free module is naturally isomorphic to the tensor
product (FU,) Q (FV,).

The associated chain complex K(4><B) now reduces to the tensor
product d the chain complexes K(4) and K(B).

Theorem 8.1. (EILENBERG-ZILBER.) For simplicial modules A and
B o a comdtativering there is a natural chain ejdivalence

K(A><B) %K(A) QK(B). (8.4)

In view d the normalization theorem, K(4)—>Ky(A) is a chain
equivalence, so there is also a natural chain equivalence

Ky (A=<B) = Ky (4) OKy(B). (8.5)

The proof, as recorded in the following lemmas, will use the method
d acyclic models. Note that K,(AxXB)=A4,RB,=K (AR K, (B}
hence we can choose mapsf and gin (8.4)to betheidentity in dimension
zero.

Lemma8.2. For smplicial modules A and B there exists a natural
chain transformation f: K(4><B)->K(4) Q K(B) which is the identity
i dimensgon zro. Any two such natural mapsf are chain homotopic
via a homotopy which is natural.

Proof. Sincef, is given, suppose by induction on n that f, is already
defined for all g<n and natural on K, (4>=B), with ¢f,=f,_,8. We
wish to define f, with of,=f,_,0; we do this first for the product
x"><x" d the two basic cdls in the moded A=M"= B. We require
that af, (" ><x")=f,_, 8 (x"><x"). The right hand sideeisaready defined
and has 9e=0 (or e e=0, if n=1); it is thus a cycle in the complex
K(M* QK(M"), which is acyclic as the tensor product d two acyclic
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complexes(Prop.7.1). Hencethereisin thiscomplex a chain ¢ d dimen-
sionn with gc=e. We set f, (x">=<x»")=c, s0 that

of, ">y =c=f, ,0{x"><x"). (8.6)

Now consider acA,, #¢B,. By Prop.7.2, there are smplicial maps
a: M"—4, g: M"+B with ax"=a, fx"=b. Then K(x): K(M")—>
K(A) is a chain transformation which we again denote as a, and
a®f: KIMMRK(M")—K(4)Q®K(B) is a chain transformation. Set
f.(ax)=(a®8B)c, for ¢ as in (8.6); since the simplicial mapsa and g
are unique, the right hand side is bilinear in a and b, so defines
f.: K,(AxB)—[K(A) RK(B)],. Moreover,

0, (a><b)=0(x QB) c=(x @) Ic=(x Q) fn-10(x"><x") .
Now f,_, isnatural, so
Ofn(@><b)=[, 1@ 6">< B %") =[,_,0(a><b).

Thus f isindeed a chain transformation up to dimension n.

To prepare for the next induction step it remains to show that f,
isnatural. Let: A—4’,¢: B—B' beany simplicial maps, withpa=a',
to=0b". Then na: M*—>A’ has nax"=na=da’, SO is the unique sim-
plicial map carrying »" to a. Hence

M QL) fa(a=<b) = QL) (xQB) c=(n a QL B) =], (a’'<¥'),
and f, is natural.

Now let f and ' be two such chain transformations. By induction
on » we may assume that the #: K, (A><B)—>(K(A)®K(B))q+1 are
maps defined for ¢=0,...,2—1 with at+ to=f{—# in dimensions
g<n. (FOr g=0, fy=f,; so choose z,==0.) Again we define?, first on
x"><3x". We require

at, (x"><x™) = f (3" ><o") — f' (k" ><H") — b, _ Qo™ ><2™) .

By the induction assumption, &(f—f —¢9)=0, so the right hand side
isa cyclein an acyclic complex, henceis the boundary & some chain d.
Set t,(x">=<x")=d, t,(ax<b)=(®p)d for a, B with ax"=a, Bx"=>b.
The previoustype d argument then shows ¢, natural and é¢,4¢,_; =
f—f for al axb.

Lemma 83. For simplicial modules A and B there is a natural
chain transformation . K(A) @ K{B)—->K(A>B) which is the identity
i N dimension Zero. Any two suck g are homotopic by a chain homotofly
natural = A and B.

The proof is analogous. A typical chain o K(4) & K(B) in dimen-
sion » has the form a @b, with ac K, (4), b K, (B), and p4g=n. Use
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the models M? and M? and maps a: M?—A, 8: M?—B with axf=a,
B »=5. Now the complex K(M?><M?) is acyclic, for the homotopies s
d (7.1) for M? and M? yield a contracting homotopy s(axb)=saxsb
on K(M?>M?7). Using this acyclicity, the construction d g proceeds
as before.

We now have the chain transformations f and g d the theorem;
it remains to establish homotopies 1= fg, 1=gf. These are done by
exactly the same method; for instance the homotopy 1=z gf in K(4><B)
is obtained, using the acyclicity o K(M?><M?), by comparing A=1
with 4’ ==gf as follows.

Lemma8.4. If h,h'": K(4=<B)—>K(4=<B) are two natural chain
transformations, both the identity in dimension zero, there is a natural
chain homotop yt: he=h'.

These proofs are actually constructive; explicit formulas for f and
g can be found by calculating the chain ¢ used at each stage o the
induction (e.g., in (8.6))from the explicit contracting homotopies given
in the proof d Prop.7.1 for the models. We do not need the explicit
homotopies 1=xfg, 1==¢f, but the explicit formulas so obtained for f
and ¢ are useful. To writethem out, denote the™ last™ facein asimplicial
object S by d; that is, for ain S, set da=d,a. Thus, for any exponent
n—i,d*‘a=d;,,...d,a.

Theorem 8. 5 For any simplicial modules A and B, a natural chain
transformation f: K(4=<B)—K(4) QK(B) fo the EILENBERG-ZILBER
theoremi s given by

flax<b)= Zd”“a@d’b acA,, beB,,. (8.7
=0

Proof. Since f is defined by face operators, it is natural. It reduces
to the identity in dimension »=0. It remains to prove that 2f(axb)=
fo(ax<d); in view d naturality, it suffices to prove this for a=x"= b
in the model M". Now x"= (0,1, ..., n),d"%x" isthesimplex (0, 1, ..., %)
and
©0,...,5) ¢, i4+1, ..., n). (8.8)
0
In af(x"xx") the last face d each first factor cancels with the term
arising from the initial face d the second factor, and the remaining
terms assemble to give 8 (x"><x"), as required.

The chain transformation f o (8.7) is known as the Alexander-
Whitney map, since it appeared in the simultaneous and independent
definition d the cup product in topology by these authors. The explicit
map f calculated from our contracting homotopy differs from the

Mac Lane, Homology 16

f><x™) =

b=
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Alexander-Whitney map, but only by terms which are degenerate.
Moreover,

Coradllary 8.6. The Alexander-Whitney map f induces a chain trans-
formation on the associated normalized chain complexes,

Proof. By definition, KyA= KA[DA; by (3.3)regard Ky AQ Ky B
& KA®QK B modulo the subcomplex spanned by the images d both
DA®KB and KARQDB. In (8.7)supposea>be K(A>B) degenerate, so
d the form s,a’><s,d’ for some k. In each term on the right d (8.7)
one d the factors is degenerate. Specificaly, if 4<%, (5.8) showsdis,b’
degenerate, while if i>4, zf”"'s,,a’ is degenerate, whence the desired
result.

Geometricdly, f is an "approximation to the diagona'. Consder
for instance the cartesian product 4'>=<A* d two 1-smplices (= inter-
vals); it isa square with four vertices. Algebraically, 4! is represented
by K(MY); in Ky (M) &Ky (M?*) the group d 1-chainsis a free group
on four generators, corresponding to the four edges d the square.
The diagonal d the square does not appear directly as a chain. How-
ever,

fot><xt) =(0) @ (0 1)+ (0 1) ®(1)

isthe chain represented by left hand edge plus top edge d the square.
This chain is " homotopic' to the diagonal, hence an ** approximation™
to the diagonal. Observe that the bottom edge plus the right hand
edge would give a different approximation, which could be developed
algebraically by interchanging the roles o initial and final faces in the
formula (8.7). Comparison o these two different approximations to the
diagonal leads to the Steenrod squaring operations (STEENROD [1953],
MiLnNor [1958], DoLD [1961], STEENROD-EPSTEIN [1962)).

For three smplicial modules A, B, and C, any natural Eilenberg-
Zilber map f may beiterated, asin

K(A=Bx=C) & K(4) @ K(B=<C) ~& K(4) R K(B) QK(C)

Proposition 8.7. Any natural f is associative up to homotopy, ia
the sense that there is a natural chain homotopy (1Qf) f= (f@1)f. The
Alexander-Whitney map is associative.

Proof. Since (1Q/)f and (f®1)f are each theidentity in dimension
0, a natural homotopy between them may be constructed by the method
d acyclic modds. The associativity (no homotopy necessary) d the
Alexander-Whitney map can be computed directly, say by (8.8).
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To describe the second map g d the Eilenberg-Zilber theorem we
introduce certain "shuffles”. if 4 and q are non-negative integers,
a #, g)-shuffle (u,Vv) is a partition d the set [p+g—1] o integers
into two digoint subsets p,<-.. < u, and »,<--- <, d p and gintegers,
respectively. Such a partition describes a possible way o shuffling a
deck d ¢ cardsthrough a deck o g cards, placing the cards d the first
deck in order in the position gy, ..., u#, and those d the second deck
in order in the positionsy,, ..., »,. A shuffle may be pictured as a se-
quenced movesin the lattice d points (m,n)in the plane with integral
coordinates: Start at (0, 0) at time 0; at time k move to the right if
kisoned u, ..., u, and upif kisoned s, ..., »,; theresult isa" stair-
case" from (0, 0) to (# Q). A (#, g)-shufflecan also be defined to be a
permutation t o the set o integers {1, ..., p+g¢} such that t (ixt()
whenever i<<j<p or p<<i<y; for, each such permutation t determines
the p; as t (i)-1, they; as t (#4)—1, and conversely. The signature

e(u) d the shuffle (u,v) is the integer e(,u)=ﬁ',,u,~—— (i—); then
=1
(—1)*® isthe sign d the associated permutation t.

Theorem8.8. For any simplicial modzcles A and B a natural chain
transformation g for the Eilenberg-Zilber theorem is given, for ac4,,
beB,, by

ga®b) =2 (—1)"W{(s,... 5, axs,,...5,b), (8.9)
(%]
where the sum s taken over all (p, q)-shuffles (u, V).

Clearly g is natural, a®b has dimension p4-¢, and s0 do s,, ... s,,a
and s, ... s,,b. Theproof thatg is a chain transformation is a straight-
forward verification which we omit (details in EiLENBERG-MACLANE
(1953 ], § 5, where the shuffles were first introduced).

Geometrically this function g provides a ""triangulation”™ o the
cartesian product 4?><4? d two simplices. Specifically, take a=x? ¢ M?
and b=x»?c¢ M?, 0 »? has vertices (0, 1, ..., #). In this vertex notation,

Suge -+ Sy 2 =i, 81y eer Tppg)s

with 0=4,<4,=.--<1,,,=9, and 4,=1,,, precisely when k is one o
Py ene, ¥, SIMIlAly s, ..., %7=(fo, ...1fpig), With =7, precisely
whenkisoned g, ..., u,. The smplex displayed on the right d (8.9)
then has the form

os - i) ><lias -1 o)

where the first factor is degenerate at those indices k for which the

second factor is not degenerate. This symbol may be read as the (#+ ¢)-

dimensional affine smplex with vertices (s;, 7;) in the product 4#><49.
16*
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These simplices, for all (p, g)-shuffles, provide a simplicial subdivision
o AP><A%. For example, if p=2, g=1, A?>=<A* is a triangular prism
and the three possible (2, 1) shuffles triangulate this prism into three
smplices

(0122)=<(0001), (0112)=<(0011), (0012)>=<(0111),

each d dimension three. (Draw a figure!)

This description aso shows that if either factor a or b is degenerate,
0 iseach term on the right in (8.9). Hence

Corollary 8.9. Theshufflemap g d (8.9) inducesa chain transforma-
tion on the normalized chain complexes

gv: Ky(4) @Ky (B)—>Ky(4><B).

For these normalized complexes, the composite fy gy can be shown
to be the identity (no homotopy 1==fy gy IS Needed).

Exercises
1. Exhibit a second explicit formulafor £, with first and last facesinterchanged
in (8.7).
2. Establish associativity for the shufflemap g.
3. Prove the normalization theorem o § 6 by the method of acyclic models.

4, Show that the EiLENBERG-ZILBER theorem holds for A a simplicial right
R-module, B a simplicial left R-module, and R any ring.

5. Calculatethe integral homology of a torus St'>< St from that of a circle St
(EILENBERG-ZILBER plus KUNNETH).

9. Cup Products

For any simplicial set U, Au=u#x>wu definesasimplicial map A: U—
Ux=U caled the simplicial diagonal map. Now U determines the sm-
plicial abelian group £ U and hence the chain complex K(F, U) which
we writesimply as K(U); each K, (U) isthe free abelian group generated
by the set U,,, with 8= 2 (— 1)*d;. The diagonal induces a chain trans-
formation K(U) —+K(U>U), also denoted by A. If f isany one d the
natural maps from the EILENBERG-ZILBER theorem the composite

w=f4: K(U)->K{U=<U)->K(U)QK(U) (9.1)
is called a diagonal map in K(U). Sincef is unique up to a (natural)
chain homotopy, soisw. SinceA isassociative — (A <1)A=(1><A)A —
and f is associative up to homotopy (Prop.8.7), there is a homotopy
(0w R®R1)w=(1Q®w)w. The complex K(U) is augmented by ¢(u)=1 for
ue Uy. We assert that there are homotopies

(1) 0=21=(1Q¢) w: K(U)->K(U). 9.2)
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Indeed, each d (E®R1jw and (1R e)w is natural and is the identity
in dimension zero, so natural homotopies may be constructed by using
the acyclic models M" (taken this time as simplicia sets U). Now
equalitiesin (9.2)and in associativity are exactly the conditions (V1.9.1)
required to make w a coproduct with counit g, so that we might say
that K(U) with diagonal w is a differential graded coalgebra **up to
homotopy™*.

If we choosefor f the Alexander-Whitney map, then w is associative
and it iseasy to check that (E®1)w=(1&E) w. Hence with this choice
K(U) is a differential graded coalgebra, and so is the normalized com-
plex Ky (U)-

Now let A and A’ be abelian groups, and write H*(U, A) for the
cohomology group H(Hom(K(U), A)).The composite u=w* pH,

H*(U, AQH™(U, A")
e \Y (9.3)
HM™(K(U) QK(U), AQA") % HM™(U, AQA’),
where pH is the cohomology product of (1.3), is called the (external)

stmplictal cup product. With cochains h and #’, the definition reads
{cls h) u (cIs h)=cls (hu h"), where

(hubYu=(rQnr) | Au, (9.4)
for k@4 asin (1.4).1n particular, if U=S(V) is the simplicia set
associated with a partly ordered set V o verticesand f isthe Alexander-
Whitney map, while zc¢ H*, »'c¢ H*~*, then

(ho W) (g, veey 0,) =R (vg, ..., V) QW (U, ..., Vn). (9.5)

If A=A’istheadditivegroup d acommutative ring R with product
n: RQR—R, the composite #, u is a map

H(U,R)®QH"(U,R)—H**"(U, R) (9.6)
called the internal simplicial cup product.

Theorem 9.1. For each simplicial s& U and each codfficient ring R
the ocohomology modules H*(Hom(K(U), R) =H*(U,R) congtitute a
gadad ring wnder the internal simplicial cup product. If Riscommutative,
0 i s this cohomology ring.

Proof. The associativity d the product is known. The augmentation
e: K(U)—Z composed with | : Z—R gives a zero dimensional cocycle
le & K(U). Then (hule) u=nrQI)(1Q:) wu, where m(hQI):
K®Z—-R is h when K®Z is identified with K, while (1&¢E) o=21.
Hence the cohomology class e d the cocycle | acts as the identity
for the cup product. Similarly, to show that the cup product is com-
mutative, it suffices to establish a chain homotopy f=zf for the usual
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interchange 7: K,®K,, =K, QK,. Both f and =f are the identity in
dimension O, and this homotopy is given by using acyclic models.

Whenf isthe Alexander-Whitney map, the cochainsthemselvesform
a graded ring, but the ring is not commutative: Commutativity holds
only for cohomology classes.

This theorem shows that the singular cohomology o a topological
space X with coefficients Z is a commutative ring under the cup pro-
duct.

The simplicial cup product aso applies to the cohomology d a
group17. By all-set Sis meant a set S together with an action o I7
on S; more formally, this action is given by ¢: I7—Aut(S), a homo-
morphism o I intothegroup d 1-1 mapsd Sonto S. Thel7-setsform
a category. For example, take B, (IT) to be the set o all (n+ 4)-tuples
(%4, ---» X) Withtheactiond 17given by x (%, ..., %,) = (X%, - .., ¥ %,,).
The usual face and degeneracy operators

~

di(xO’ ey xﬁ)=(x0’ s Xy e, xn)s OS‘Lgn, "’>0;

Si( 01-"sxn):(xol"'lxl"xi'""lxn)s Osiénl
are 11-maps, so B (17) is a simplicial 17-set. The associated simplicial
abelian group F; (B (17))isasimplicial II-module, while K = KF,(B (17))
is a complex of 17-modules, with K, the free abelian group generated
by the (x,, ..., #,) and with boundary

a(xO) ERRS] xn)=§0(_ 1)i(xO’ ey ;ei’ ey xn)'

We have recovered the homogeneous description (IV.5.13) d the un-
normalized bar resolution § (17)=KF; (B (IT)), while KyF; (B (17))is the
normalized bar resolution B (17).

Now recall that the group ring Z (II) is a Hopf algebra with co-
roduct
P v: ZUD—Z(DQZI), p(x)=2Qx.

By pull-back along the corresponding diagona map Il —II>=< 11, the
cartesian product B (17)><B (17)d two IT-sets is all-set. The diagonal
map w for g (17)=K B (IT) is the composite

w: B2 K (B (I)=<B (1) (1) @ D)];

here A is al7-map, f is natural, so commutes with the action d 17
andisaso al7-map. Thereforew isachain transformation for complexes
d 17-modules. This implies that the simplicial cup product is defined,
for two 17-modules A and A', as a homomorphism

i HY17,A) Q H™(IT, A") ~H*"(II, (AR 4")). 9.7)
This product is associative.
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A homomorphisma: ,(4®A') >A" d 17-modulesis called a#airing
d A and A' to A". The cup product followed by the homomorphism
induced by the pairing a yields an "internal™ cup product which isa
homomorphism H(II, A)® H(II, Ay —H(II, A").

The discussion d IT-sets in the definition o this cup product could
be short-cut by simply giving the direct description d the cup product
by cochains. If hand 4’ are cochainsd dimensionsk and m, respectively,
regarded as functions on the homogeneous generators (%, ..., %) and
(%gs «=vs ¥m) O B(IT), their cup product is the cochain defined, via
Alexander-Whitney, by

(AU k) (%g, ooos ) =R (%o, .., %) QI (%, ..., %), n==~k+m. (9.8)

This A u &' is clearly a 17-module homomorphism into 4A® A4’ with
diagonal operators, thatis, into, (AQA").

In particular, if A and A" are both the ring Z with trivial operators
(Z=,2), then (ZQ,Z) is Z. It folowsthat H*(I1, .Z) isa commutative
graded ring under the simplicial cup product.

Theorem 9.2. Under the isomorphism H" (IT, A)=Ext%m (Z, A),for
any IT-module A, the simplicial cup product 1S mapped onto the Hopf
walge product definedin Ext.

The crux d the proof is the observation that the diagonal map
w: BUI)—,[BUD) B (IT)]

d complexesd 17-modules commutes with the augmentation, henceis
a comparison o the resolution ¢: 8{II)—Z to the resolution given by
JBUT) QBUT)]->Z. Both H* and Ext" are H"(8(II), A). The Hopf
wedge product o (4.5) is ¥ pH, where p# is the cohomology product
and y# the change d rings defined by y: Z (II)—+Z (II) QZ (IT). Now
Thrn.l11.6.7 asserts that this change d rings can be calculated as
yH=f*y* where y* maps Homzpgzm t0 Homg g, whilethe map
f: B(IT) —,[BT) ® B(IT)] isa comparison. Choose f to be thecomparison
w; then y¥#pH becomes w*y*pH, which is the simplicial cup product.

The cup product in the cohomology ring H* (IZ, Z) can thus be de-
fined in three equivalent ways:

(i) Asthe simplicial cup product;
(ii) As the wedge product induced by the diagonal map y;
(iii) Asthe Yoxepa product, by compositesd long exact sequences.

Still a fourth definition will appear in Chap. XII and will facilitate the
computation o examples.

One application is the "cup product reduction theorem'. Suppose
IT=F|R whereFis a free multiplicative group. Let [R, R] be the com-
mutator subgroup d R and set Fy=F/{R, R], R,=R/[R, R]. Then R,
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is abelian and IT=F,/R,, s0 F, is an extension d R, by 17 with factor
set a 2-cocycle f, & II in the 17-module R,. For any IT-module A,
Hom, (R,, A) isal7-modulewith operators xa defined for a: R,—A4 by
(x o) 7=x [ (x727)], Whilea@r—a 7 isaparing Hom(R,, A) QR,—~A.
The internal cup product d an n-cocycle with f, then determines a
homomorphism

HM(IT, Hom(R,, A))—H**2(IT, A).

The cup product reduction theorem asserts that thisis an isomorphism
for n>0. The theorem isdue to E1LENBERG-Mac LANE [1947]; an elegant
proof, using relative cohomology and the characteristic class (IV.6) d
an extension is given by Swan [1960] and also below in 1X.7, Ex. 7—10.

The cohomology groups H" (11, Z) were shown in IV.Il to be the
singular homology groups d the space X/II when IT operates properly
on the acyclic space X. The comparison made there evidently preserves
the simplicial structure, hence the cup product, so H(II, Z)y=H(X/II, Z)
is an isomorphismd cohomology rings.

Exercise

1. Show that g (17) with non-homogeneous generators (1V.5.11) has degener-
acies and faces given by

s; (%%, o %)) =%[7, ooy Xp_q, |, H ., ¥yl O=iSm,

& (%{%y, ..., %)) =% % [%,, ..., %,], i=0,
=x[w, o %04, .., 8,], o<i<n,
=x[%, ..., %,_4], i=n

and that the map w, for f Alexander-Whitney, is
”
w(x[x]...|%,]) =i20x[x1[ NP AL-PE 77 E 2N N P

Notes. For topological discussionaof the cup product (in contrary terminology)
see HiLTon-WYLIE [1960] .For the cup product for groups see EiLENBERG-MAC
LANE [1947], EckMANN [1945—1946], [1954]. A fiber space may be regarded
asasort of "twisted" cartesian product; there is a corresponding twisted version
of the EILENBERG-ZILBER theorem (BrowN [1959], GUGENHEIM [1960], SzCZARBA
[1961]). Smplicial fiber bundles are treated in BARRATT-GUGENHEIM-M OORE
[1959].

Chapter nine

Relative Homological Algebra

Introduction. When we described the elements of Ext"(C, A) aslong
exact sequencesfrom A to Cwesupposed that A and C were left modules
over a ring. We could equally well have supposed that they were right
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modules, bimodules, or graded modules. An efficient formulation d
this situation is to assume that A and C are objects in a category with
suitable properties: One where morphisms can be added and kernels
and cokernels constructed. The first three sections o this chapter are
devoted to the description d such "abelian’ categories.

If 17 is a group, each 17-moduleisaso an abelian group; thisgivesa
homomorphism d the category d all /I-modules to that d all abelian
groups. If A is an algebra over the ground ring K, each A-module is
aso a K-module, while each A-bimodule is also a right A-module. If
R>S are rings, each R-moduleis an S-module. I n each such case we
have a homomorphismd one abelian category to a second which leads
naturally to the definition d "relative™ functors Ext and Tor; for
further introductory explanation, see § 8 below. The general method
is described in this chapter and will be applied in the next chapter to
study the cohomology d various types d agebraic systems.

1. Additive Categories

First examine the categories in which suitable pairs d morphisms
can be added. An additive category ¢ is a class d objects A, B, C, ...
together with

(i) A family d digoint abelian groups hom(4, B), one for each
ordered pair d objects. We write a: 4—B for achom (A, B) and call
a amorphism 0 €.

(ii) To each ordered triple o objects A, B, C a homomorphism
hom (B, C)®@hom (A, B)—~hom (A, C) (1.1)

d abelian groups. Theimaged S &« under compositioniswritten g a,
and called the composted g and a.

(iii) To each object A a morphism 1,: A—4, caled the identity
d A.

These data are subject to the following four axioms:
Associdtivity: If a: A—B, §: B+C, andy: C—D, then
yBa)=(yB) «; (1.2)
Identities: If a: A—B, then
o ly=a=1ga; (1.3)

Zero: Thereis an abject 0 such that hom(0’, 0') is the zero group.
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Finite Direct Sums: To each pair d objects A,, A, there exists
an object B and four morphisms forming a diagram
A2 B<5 A,
. Lo 7y
with
nlbl:'lAl’ n2L2=1A.’ 51751“}‘ t2n2=13. (1'4)

To avoid foundational difficulties, two further axiomsd a set-theoretic
character are required; they will be stated at the end o this section.

These axioms are like those for acategory (1.7). Indeed, an additive
category may be defined as a category with zero and direct sums, as
above, in which each set hom (4, B) & morphisms has the structure
d an abelian group such that the distributive laws

Blytag)=pPfay+ Py, (bt Bo)a=prat fya (1.5)

are valid whenever both sides are defined. (This insures that composi-
tion is bilinear, as required by (1.1).)

If the existence d direct sumsis not required, we speak o a pre-
additive category. Asin the case d categories, we can omit the objects
and work only with the morphisms, using the identity morphisms 1,
in place d objects. The axioms are then like the axiomsfor a ring in
which the compositions «;+«, and fo are not always defined but,
whenever defined, satisfy the usua ring axioms such as (1.2), (13),
and (1.5). Thus HiLToNn-LEDERMANN [1958] call a preadditive category
aringoid, following the terminology  BARRATT [1954].

By 0 we denote (ambiguously) the zero element d any group
hom (A, B); then 0 x=0= 8 0 whenever defined (proof: 0 a=(0+ 0) a;
use the distributive law). An object O with hom (0’, 0") the zero group
is called a zero object. Then 1,,=0, hence hom(A,0) and hom(o’, B)
are the zero groups whatever the objects A and B, and any two zero
objects are equivalent.

Examine next the consequences d the finite direct sum axiom.
By (1.4),

Ty b= (4 70+ La T0g) La =103 b+ Tyt =711 by 01 1y,
hence me,=0 and m,4, =0, as usual. Props.4.1—4.5 d Chap.I now
follow; in particular, the diagram (1.4) determines the object B up to
equivalence, and we usually writesuch a B as A, @A,. Each morphism
y: 4, 4,—C determines a pair & morphisms y;=y¢;: 4;—~C; the
correspondence ¢ (y)=(y1, y,) is an isomorphism

@: hom (4, 4,, C)=hom (4,, C)@hom(4,, C)

d abelian groups. The inverse is given by @™ (yy, yo) =M+ ya7s:
A @ A,—C. Thus y=p 7+ y,7, is the unique morphism 4, 4,—>C
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with y ¢, =v;, =1, 2, SO the injections ;: 4;,—~4,@A, d the direct
sum constitute a universal diagram. Here a diagram {a,: A,— B|te T}
d cotermina morphisms «,, with T any set d indices, is universal
if toeachdiagram {y,: A, —>C|¢e T} there isaunique morphismy: B—»C
with y a, =7, for each t. Dually, there is an isomorphism

w: hom(C, 4, P A4,)=hom{C, 4,)@hom(C, A)

with py=(my, my) and ¢ (y, yo)=un+iy,. Consequently, the
diagram {7z;: A, @ A,—~>A4;{7=1, 2} is couniversal. The usual diagonal
and codiagonal morphisms

Ai=u+t: A>APA, Vi=m-tm,: AGA—A, (1.6)
are characterized by the respective properties
mAy=1y=mdy, Viu=1,=V1,. (1.7)

Given two direct sums A, @ 4, and 4; @ 43 and morphismse;: 4;->4;
there is a unique morphism oy @a,: A A, -4, H A5 with

(Do) =7, (0, Dog) =y, (1.8)

The same morphism is characterized by the dual properties
(Bag)yu=4ay, (0 Dog)ta="ts05. (1.9)

The iterated direct sum A, G (A, &---PH 4,) with the corresponding
injections is a universal diagram, and any universal diagram on A,,
..., A isequivalent to thisiterated direct sum. Dually, the projections
7, of an (iterated) direct sum provide a couniversal diagram. The axiom
requiring the existence d finite direct sums may be replaced either
by the assumption that there exists a universal diagram for any two
objects A, and A,, or by thedual requirement. I n any event, the axioms
for an additive category are self-dual.

I n an additive category €, hom (A, B) is a bifunctor on the category
% to the category d abelian groups.

To prepare the way for the study d kernels, we formulate defini-
tions d ""monic’* and ""epic’” in categories to agree in the standard
examples with monomorphisms and epimorphisms. 1n the category o
sets, a function f on X to Y is aurjectiveif f (X)=Y (fisonto Y) and
injective if f(x)=f(x') always implies x=«" (f is 1-1 into Y). In any
category, a morphism x: A+B is said to be monic if each induced
map #x, : hom(C,A)—hom (C,B) isinjective. Thusx monic meansthat
xa=xa impliesa=a forall a,a: C+A, hencethat x isleft cancellable.
In an additive category, x is monic if and only if xa=0 impliesa=0
whenever x « is defined. Dually, a morphism a: B+C in any category
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is said to be epic if each induced map a*: hom(C,G)—hom (B,G) is
injective. Thus ¢ epic means that « c=«'c adwaysimpliesa=«’, hence
that a isright cancdlable. In an additive category, ¢ isepic if and only
if « =0 awaysimpliese=0. In this chapter we systematically denote
morphisms which are rnonic by x, 4, x4, v and those which are epic by
e, a, v. If 2 and 4 are rnonic, soisxi2 whenever it is defined, and dually.
Warning: In certain additive categoriesd modules, ""monic’” may not
agree with ""monomorphism' (see Ex.5) though the agreement does
hold in the category d all moduleswith morphismsall homomorphisms.
An equivalence is a morphism 8 with a two-sided inversey (yp 6=1,
6y¢=1). Two morphismsa: S—A and a': S’—A with the same range
are caled right equivalent if there is an equivalence §: S-S’ with
o’f=a; this relation is reflexive, symmetric, and transitive, so dlows
theformulation d right equivalenceclassesd morphismswith range A.
If x isrnonic, so is each right equivalent d x. In the additive category
d al modules, two monomorphisms with range A are right equivalent
if and only if their images are identical, as submodules d A. Hence
in any additive category we say that the right equivalence class d a
rnonic x: S+A is a subobject of A. It is convenient to say that x itself
isasubobject d A — meaning thereby the right equivalenceclass, cls x,
d x. Observethat a'" subobject™ so defined is not an object d the cate-
gory; for example, we cannot regard A as a subobject d itself but we
must useinstead cls 1, , whichistheclassd al equivalenceswithrangeA.
The dual definitionsare: a: A—-T anda': A—=T' are |eft equivalent
if 8’ =q for some equivalence8. The left equivalence class d an epic
a A—T consistsd epic morphismsand is caled a quotient object d A.
For modules, the kernel K of a homomorphism a: 4->B is the
largest submoduled A mapped by a into 0 and is characterized by the
property that each morphism g with a =0 factors uniquely through
the injection x: K+A as g=#»p’. This can be paraphrased in any
additive category #: A kernd o a: 4-—>B is a rnonic x with range A
such that
ax=0, While «f=0 implies f=xp' (1.10)
for some g, necessarily unique. In other words, the right annihilators
d a are exactly the right multiples o its kernel x. Hence any two
kernels » and x o a are right equivalent, so the class d all kernels
o e, if Not vacuous, is asubobject & A which we write askera. Dually,
a cokernd d a: A+B is an epic a with domain B such that

oga=0, while ya=0 implies y=9'c (1.11)

for somey', necessarily unique. The left annihilators d a are thus the
left multiplesd a cokernel a d a. Any two cokernelsd a are left equi-
valent; if a has a cokernel, the class d all cokernels d a is a quotient
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object d B, so0 gecoker a states that a is one d the cokernels d a.
In the category d modules, the projection B—>BfaAd is a cokernel
d a

An immediate consequence o the respective definitions is

Lemmall |f the composites a,!?,xa, and aa are defined, the
following #mplications hold:

a f monic = § monic, ap epic= a epic,
x monic=> ker (xa)=kera, aepic= coker(aa)=cokera.

Also ker1,=0, coker1,=0, and, for 0: A—B, 1,cker0 and 1z¢
coker 0. (Hereker 1=0 is short for oeker1.)

Finally we introduce a notation for short exact sequences, defining
a|f & ackerf &pecokera. (1.12)

This implies a rnonic and g epic, so we may read “x||o”’ as" x and a
are the morphismsd a short exact sequence™.

To keep the foundations in order we wish the collection d all sub-
objects d an object A and the collection d all extensionsd A by C
both to be sets and not classes. Hence, for an additive category we
assume two additional axioms:

Sets o sub- and quotient objects. For each object A there is a set
d morphisms %, each rnonic with range A, which contains a represen-
tative o every subobject d A and dualy, for quotient objects d A.

Set o extensions. For each pair o objectsC, A and each n=1 there
isaset d n-fold exact sequencesfrom A to C containing a representative
d every congruence class d such sequences(with ' congruence' defined
asin 1115).

Both axioms hold in all the relevant examples.

Exercises

1 Prove: If 0: 4A— B is rnonic, then A is a zero object, and conversely.

2 Intheisomorphism ¢ above, show that ¢1(yy, ) = Vo (3, ® ¥5).

3 For a,f: 4-B prove that a+8=Vz(a®p) 4,.

4. Show that the direct sum o two short exact sequences is exact.

5 Construct an additivecategory o (some)abelian groupsin which a morphism
which is rnonic need not be a monomorphism. (Hint: Omit lots of subgroups.)

6. Construct an additive category o some abelian groups in which some d the
morphisms do not have kernels or cokernels.

7. Inthe categories o sets, d modules, and of (not necessarily abelian) groups,
show that a morphism is rnonicif and only if it isinjective, and epic if and only
if it issurjective (as a function on sets).
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2 Abelian Categories

To use effectively the notionsd kernel and cokernel just introduced,
we need conditionsto insure that these classes are not empty. Further-
more, each monomorphism should be the kernel d its cokernel, and
conversely. For modules, theimaged a homomorphisma: A+ B appears
in its factorization 4—a 4 —B, with first factor A—-a4 an epimor-
phism and second factor the injection «4 —B, which is a monomor-
phism. Corresponding properties hold in other familiar categories: The
category d all complexesd modules over a fixed ring, with morphisms
the chain transformations; the category d all modules over a given
graded algebra, with morphisms d degree zero; the category d all
modules over a given DG-algebra. Thus an abelian category is to be
an additive category & satisfying the following further axioms:

(Abel-1). For every morphisma d & there existsaxckera and a
occoker a

(Abel-2). For » monic and a epic, xcker aif and only if gecoker Xx.

(Abel-3). Every morphism o & can be factored as a=2¢ with 2
monic and ¢ epic.

(Abel-2) may be restated thus: o epic and xeker a imply x|o, and
dually. The three axioms together are subsumed in

Theorem 2.1. To each morphism a there exist morphisms x, a, 2, v
forming the folloning diagram with the ilzdicated properties

a
otre20 20 e,  u=io, xfo, A (2.1)
a

Here and below the dots designate unnamed objects.

Proof. By (Abel-3), write a=2a; by (Abel-1), xcker a=kera
and tecoker a=coker 4 exist; by (Abel-2), x|o and A|z. The converse
proof that this theorem implies the three axioms is left to the reader.

Thediagram (2.1)iscalled an analysis d a, anda= Aaisa standard _
factorization o a.

Proposition 22. The analysis d a morphism acsf iS a functor.

Here we regard the analysis (2.1) d a as a functor on the category
A =Morph(«?) d morphismsd & ; the objectsd A are the morphisms
a: A->B d «; the maps 5:a—a’ d A are the pairs &= (&, &) of
morphismsd & with a’&,=£&,«. The values d the ""analysis' functor
lie in a similar category o diagrams from &. As the analysis is not
uniquely determined, we assert more exactly that any choice d ana-
lyses, one for each a, providessuch a functor.
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Thus, given &= (&, &,): a—a’ and andysesd a and a, we assert
that there are unique morphismss,, 75, and n, of &/ which render the
diagram

*® 4 A T
o—>0—>0—>0—0 a=Ao,
lm lEl lﬂl lfl l’h (2.2)
w Ve Yo ¥Yw , e
*—>0—>0—>0-—>0 , a' = Ao,

commutative. (In ordinary parlance, #, is the map induced by &; on the
kernels, etc.) Indeed, o' (&) =&, =0 implies that & » factors through
»'eker @ as &x=x'ny; Since »’ is left cancellable, #, is unique. Dually,
v'E=mnyt for a unique n;. AlD A'0’&x=Eax=0; since A’ is left
cancellable, ¢'§,x=0 and ¢’§, factors through accoker x as o’'&;=1,0,
with 7, unique. Then &Aa= A'0’§=A4"n,0; cancelling a, £,A=A4"7,.
This proves the diagram commutative and unique. Applied to 1: «—«,
with two different analyses d a, this argument gives equivalencesy,,
7s, 7; thus

Corollary 23. An analysis (2.1) d a is uniquely determined #p to
equivalences d the three objects domainsx, range o=domain 1, range .

In the analysis (2.1) the unique right equivalence class d 1 is the
image of a and the unique left equivalence class d a the coimage d a.
Theimage d ais a subobject d the range d a, the coimage a quotient
of the domain. An analysisd a: 4— B has the form d a commutative
diagram

QX2 pgma g

AT 2

lcokera
[}

with row and column short exact sequences. Here ""kera'* of course
stands for any morphism in the class ker a. With the same convention
we may read off the relations

(kera)| (coima), (ima)| (cokera), (2.4)
coima=coker (kera), im a=Kker (cokera), (2.5)
kera=ker(coima), cokera=coker(ima). (2.6)

Hence also ker (coker(kera))=ker a, and dually.

Proposition 24. A morphism a is monic if and only f ker a=0,
epic £ and only f cokera=0, and an equivalence F and only if both
ker a and coker a are zero. In#articular, a morphism whichis both monic
and epic i s an equivalence.
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Here ker a=0 is short for ockera; it means that every element
d the class ker « is a zero morphism.

Proof. The definition states that a rnonica has only zeros as right
annihilators, so that necessarily ker «=0. Conversely, if 0¢ker a, then
any right annihilator d a factors through zero, hence is zero, so that a
is monic by definition. The proof for a epic is dual; both proofs use
only the axioms d an additive category. Finally, an equivalencea is
both monic and epic, so that ker e=0=coker a. Conversaly, if kera=
0=coker a, then 1cker 0=ker (cokera)=irna by (2.5), so ima is equi-
valent to |, hence an equivalence. Dually, coima is an equivalence,
and thus so isa=(ime«) (coima).

Exact sequences operate as usual and can be defined in two (dual)
ways.

Proposition 25. If the composite B« is defined, then ima= ker 8
if and only if coimg=coker a.

When this is the case, we say that (a,8) is exact. In particular,
x|o implies (x, a) exact.

Proof. If ima=kerg, then coim g = coker (kerf)=coker(ima)=
coker a by (2.5) and (2.6), and dually.

Proposition 26. The short five lemma holds in any abelian category.

Proof. Given a commutative diagram

* c
o—>0—>0

o B ¥

ERES.
with »|e and #'l¢’, we wish to prove that a, y monic imply g monic,
and dually. But take ueckerf. Then fu=0 gives 0=0'fu=y ayu;
since y is rnonic, ax=0. This implies that x factors through xzcker a
asu ==, for av whichis necessarily rnonic. Then X'a v=gxv=g u=0.
But »' and a are rnonic, so =0 and thus ker f=u=xv=0, 0 8 is
rnonic, as desired.

The Five Lemma, the Four Lemma, and the 3<3 Lemma aso hold

in an abelian category. The proofs, which depend on certain additional
techniques, will be given in Chap. X11.

Call an abelian category sdectiveif

(Selectl). There is a function assigning to each pair o objects
A, A, adirect sum diagram, o the form specified in (1.4).

(Select2). There is a function selecting a unigue representative x
for each subobject and a unique representative ¢ for each quotient
object.
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In a selective abelian category &/ we can assign an object K as
Kernel for each morphism «: Take K to be the domain d the selected
representative »: K—A o the right equivalence class kera. (Observe
that now ""Kernel™ in capitals means an object, in lower case, a mor-
phism.) Similarly, we can assign Cokernelsand form Quotients d sub-
objects: In this regard we operate as if we were in the category o all
R-modules. The various cited examples o abelian categories are all
selective; by the axiom d choice, any small abelian category is selec-
tive.

Note on Terminology. The possibility o doing homological algebra abstractly
in a suitable category was first demonstrated by MacLane [1950], working in
an ""abelian bicategory' which was substantially an abelian category with a can-
onical selection o representativesd subobjectsand quotient objects. This canonical
selection proved cumbersome and was dropped at the price o the present arrange-
ment in which a subobject is not an object. Theformulation of Bucaseaum [1955]
uses exact categories, which are our abelian categories minusthe direct sum axiom,
while GrROTHENDIECK's extensive study [1957] introduced the term "abelian
category' in the sense used here. Other authors have used "abelian category"*
in other meanings. ATiyAH [1956] established the KruLL-ScumipT theorem stating
the uniqueness o a direct sum decomposition into indecomposable objects for an
abelian category satisfying a ""bichain™ condition. Set-theoretical questions about
abelian categories are consideredin MacLaNE [1961 b]. Variousother types o cate-
gories may be constructed by imposing additional structure onthe setshom(A.B).
Thus a graded category (XI1.4 below) has each hom (4, B) a graded group; a
differential category (EiLENBERG-MooORE, unpublished) has each hom(4, B) a
positive complex of K-modules. One might wish categories with a tensor product
functor satisfying suitable axioms, asin our treatment (Chap.VI) o types d age-
bras. Noetherian Categories have been studied by GaABRIEL [1962].

Exercises

I. Given (Abel-2) and (Abel-3), show that (Abel-1) may be replaced by the
weaker statement that each epic has a kernel and each monic a cokernel.

2 In (2.2), show & monic implies , monic and &, monic implies », rnonic.

3. Categories of Diagrams

Let & be an additive category and ¢ a category which is small
(i.e., theclassd objectsin¥ is aset). By Dgram (%, &) we denote the
category with objects the covariant functors T: € -« and morphisms
the natural transformationsf: 7S d functors. The sum o two
natural transformations f and g: T+S is defined for each object
Ce¥% by (f+ 0) (C)=f (C)+¢ (C). Theaxiomsfor an additivecategory hold
in Dgram (%, «7); in particular, the direct sum o two diagrams 7; and
T, is (I, PT,) (C)=T,(C)PT,(C): Take the direct sum at each vertex.
Here, asin 1.8, we can regard each T: ¥ >« as a ""diagram™ in &
with " pattern™ €. For example, if €, is the category with two objects

Mac Lane, Hormol ogy 17
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C, C and three morphisms 1¢, 1¢-, and y: C—C’, then each T: ¢, —+«
is determined by a morphism T(y) in &, S0 that Dgram(¥,, &) is the
category Morph (&) d $2, with objects the morphisnsd .

Proposition 3.1 ( GROTHEND ECK [1957].) |f the category € is small
and & is abelian, 9 =Dgram (¥, &) is an abelian caegory. If f and g
are morphisms & 2, f||g in 2 if and only if, foreech C, f (C)|g(C)in «.

Proof. Let f: T—S be natural. Since € is smal, we can choose
for each object C a monic %(C)ckerf (C), with domain, say, K(C).
Thus k(C): K(C)—T(C) is a morphisnm d . Sincef is natural, each
y: C+C givesa commutative diagram

0 K(C)22» T(C) £ s(0)
H () s
0 -»K(C) 2 ey X s (¢

with exact rows. Since f(C’)[T(y) 2(C)]=0, and %&(C’) is the kernel
d f (C), thereisaunique K(y) (dottedarrow)with T(y) k(C)=k(C) K (¥).
It follows that K: €+« with mapping function K(y) is a functor
and k: K+T natural. As a morphism o 2, Kk is rnonic, for if 2A=0,
then (kh)(C)=k(C)h(C)=0 for each object C; since k(C) is monic
in &, (C)=0. Furthermore, if g R—T is natural with fg=0, each
g(C) factors uniquely through k(C) as g(C)=k(C)h(C), h: R—K is
natural, and g=kh Therefore kekergf. This argument with its dual
proves (Abel) in 2 and aso gives

f rnonicin 2 < each f (C) monicin &,
kekergf < each k(C)ekerf(C).

These statements with their duals prove (Abe-2).

To get a standard factorization (Abel-3) for f: T—S, choose for
each C a standard factorization f(C)=I (C)t(C); the range R(C) o
t(C) yields a functor R: € —>«, t: T+R isepic and I: R—S monic
in9, and f=It. Since¥ issmall, we can also select for each T a st
o representatives d the subobjects d T and for each Sand T a st
d representatives for the extensionsd S by T, thus proving that 2
satisfies the supplementary set-theoretical axioms (§ 1) for an additive
category.

Next consider the diagrams which involve zero objects. I n any cate-
gory ¥ call an object N a nu«ll object if for each object C o € there is
exactly one morphism C—N and exactly one morphism N—C; write

-0¢: C—N and 0°: N—C for these morphisms. Any two null objects
in¥ are equivalent, and any object equivalent to a null object is null.
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For given objects € and D, the composite morphism 0?0,: C—~N—D
is independent d the choice d the intermediate null object N; it may
be caled the null morphism 02: C—D. A (new) null object may be
adjoined to any category. In an additive category the null objects
are exactly the zero objects, and the null morphism ¢: C —D is the
zero d hom(C, D).

If € and & have null objects, a normdized functor T: €&/ is
one with T'(V) null for some (and hence for any) null N o €. It follows
that T maps null morphisms to null morphisms. Dgramy (¥, &) will
denote the category d all such T. Prop.3.1 again applies.

An exampleis the category o complexes. To get this, take % to be
the following small category:

o
N; oot —2¢——1 &0&1(—---;

the objects d € are all integers » plus a null object N; the morphisms
are dl identities, the null morphisms #—-N, N—», and n—m, and
morphisms 8,: #—(n—1). The composite d morphismsis defined by
requiring 8,._, @, to be null. Take any abelian category «7. A normalized
covariant functor T: €—«& is then given by .--<«T, _,«T,«-..,a
sequence d objects and morphisms o &, with ,_,8,=0, S0 is just
a chain complex o objects from & (in brief, an &/-complex). A natu-
ral transformation f: T>S is a chain transformation. Therefore
Dgramy (%, ) is the category d all «/-complexes; by Prop.3.4 it is
an abelian category. If « is selective, the homology objects H, (T)=
Ker 9,/Im 9,., may be defined as usual; the reader should show that
each f: T'—S induces f,: H,(T)—>H,(S), so that H, is a covariant
functor on thiscategory, and that homotopieshave the usual properties.

Exercises
1. If & is abelian, show that the category o graded objects d &f is abelian.
2. Describe an abelian category whose objects include the analyses (2.1).

3. Show that the category o positive complexes o objects from an abelian
category & is abelian.

4. (MaAc LANE [1950].) In a category ¥ with null, assume that to each pair
d objects A,, A4, there is a diagram 4,2 B 4, in which the two morphisms
with range B are universal and the two with domain B couniversal. In each
hom (4, C) introduce a binary operation o addition asin Ex.1.3 and show this
addition commutative, associative, and distributive.

5. In Ex. 4, assume dso that there is a natural transformation V4o A4 with
Vy(Vy®1,)4,=0 for all A. UseV to define —a for each morphism &, and prove
that € becomes an additive category.
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4. Comparison o Allowable Resolutions

If Ais an algebra over a fixed commutative ground ring K, many
concepts are appropriately taken "relative to K'. Each left A-module
A is dso a K-module and each A-module homomorphism «: A—B
is aso a homomorphism o K-modules, but not conversely. Cdl such a
homomorphism « ""alowable" relative to (A, K) if there is a K-module
homomorphism t: B--»4 (backwards!) with « ta=«. In particular, a
monomorphisma« is alowableif thereisat withta=1,; that is, if a
has a left inverse t which is a K-module homomorphism but not neces-
sarily a homomorphism of A-modules. Similarly, a A-module epimor-
phism ¢ is dlowable if and only if it has a K-module right inverse t.
Hence a short exact sequence x|¢ o A-module homomorphisms is
alowableif x has a left K-inverse and ahasaright K-inverse. These pro-
perties state that the sequence (x,a) becomes a direct sum sequence
when regarded just as a sequence d K-modules. More briefly, the
sequence o A-modules is K-split (for some authors, weakly splst). The
use d such a class d "K-gplit™ or ""alowable™ short exact sequences
is typical d relative homological algebra. We shall now show how the
comparison theorem for resolutions applies to any such situation.

In any abelian category &7, a class & o short exact sequencesd &/
will be called allowable if & contains, with any one short exact sequence
(x,a), al isomorphic short exact sequencesd & and if aso & contains
for each A the short exact sequences (0, 14) and (1,4, 0). Write x &o ff
(x,0) isoned theshort exact sequencesd Band call (x,¢) &-allowable.
Cdl a monic x d .« allowable and write ¢ &,, if x B a for some a; this
is the case if and only if x& (cokerx). Dually, call an epic a allowable
and writeocé, if and only if (kero) €o. Sincex Baif and only if x<é,,
and x| s, the class € is determined by the class &,, d allowable monics,
or by the class &, o allowableepics. Thusé, determines &,,; for x monic,
xcé&,, if and only if cokerxed,. If xedé,,, any left or right equivalent
d xisasoiné,.

From the properties o an analysis o « we derive at once

Proposition 4.1. For a given allowable class &, the following condi-
tions on a morphism o are equivalent:

(i) imacéd, and coimaed,;
(ii) ker wed, and cokeracé,;
(iii) In a standard factorizationae=4¢, A€, and gcé,;
(iv) Each analysis o « consists of allowable smonics and epics.

The morphism a: A—B is called allowable when it satisfies these
conditions. if « happens to be monic, then coima=1,, SO« isalowable
and monicif and only if a€d,,. Likewise, the allowable morphismswhich
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are epic are the elements d &,. The composite d alowable morphisms
need not be allowable.

For example, in the category d all left A-modules, the K-split short
exact sequences form an alowable class, and the corresponding allow-
able morphisms can be shown to be those « with «t a=a for some t,
as above. Additional properties which hold in this case will be studied
in Chap. X11.

Let & be any alowable classin «. An &'-projectiveobject P (or,
an allowable projective object) is any object P d «/ such that, for every
alowableepic o: B—C, each morphismy: P+C o & can be factored
through ¢ asy=a ¢’ for somey': P—B. As before, this condition can
be formulated in severa equivalent ways:

Proposition 4.2. For a given allowable class & d short exact sequences
the following conditions on an object P are equivalent:

(i) Pisan allowable projective;

(i) Each ¢: B—C in &, induces an epimorphism hom (P,B) -
hom(P, C);

(iii) For each allowable short exact sequence A»> B-»C the induced
sequence hom (P ,A)>>hom (P, B)»hom (P, C) o abelian groups is short
exact.

We say that there are enough allowable projectives if to each object
C o &« there is at least one morphismg: P+C which is an alowable
epic with an allowable projective domain P. The dua notion is that
there are enough allowable injectives.

Any long exact sequencein an abelian category can be written as
a Yoneda composite d short exact sequences; we call the long exact
sequence alowable if and only if each of these short exact sequences
is allowable.

Consider a complex .--—X, —.- =X, —>X,—C—0 over an object
C d «. Cdl it an allowable resolution if it is an allowable long exact
sequence, and an allowable projective complex over C if each X, is an
alowable projective. If both conditions hold, it is an allowable pro-
jectiveresolutiond C.

Theorem 4.3. (Comparison Theorem.) Let & be an allowable class
d short exact sequences in the abelian category «7. If y: C—C’isa mor-
phism d o7, e: X+C anallowable projective complex over Cand ¢': X'—C’
an allowableresolution o C’, then thereisa chaintransformation f: X =X’
d morphisms d .« with ¢'f=ye. Any two suck chain transformationsare
chain homotopic.

The proof is substantially a repetition o the previous argument for
the case & modules (Thm.111.6.1). Since X, is an alowable projective
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and ¢’: X,—C’ an alowableepic, ye: X,—C factors as &', for somef,.
We next wish to construct 4 so that the diagram

2

Xy ——> Xo— C

v,: 4 l/: » l’:

X1—> .—? Xo“‘_) C '—>0

[

will be commutative. Take a standard factorization ¢'=4a as dis-
played; since X' is alowable, Abe'. But &'f,0=ye8=0, o f,0 factors
through Ackere’ as f,0=Ap for some 8. Now a is an alowable epic
and X, an allowable projective, so g=of, for somef,, and &' fi=A1¢f,=
AB=f,0, as desired. The construction of f,, f5, ... and o the homotopy
issimilar.

Note on injective envelopes. A family {a,} of subobjects of A is directed by
inclusion if each pair of subobjects a, a, of the family is contained in a third
subobject o thefamily (inthe obvioussensed " contained, asdefined in Chap. XII
below). An abelian category & satisfies GROTHENDIECK'S axiom 4 B-j5 if for each
A, each subobject b, and each family g, directed by inclusion, b~ (U,a,) =U, (b a,)
holds in the lattice o subobjectsdf & and if d hasinfinitedirect sums. An object
U isagenerator o & if to each non-zero morphisma: A+ B thereis a morphism
&: U—-A with aé+ 0. Both conditions hold in the category o all A-modules,
with A a generator. GROTHENDIECK [1957, Thm.1.10.1] shows that an abelian
category with 4B-5 and a generator has enough injectives; MITCHELL [1962]
constructs the EckMANN-ScHOPF injective envelope under these hypotheses. I n
particular this shows that there are enough injectives in the category o sheaves
over afixed topological space (thoughin this casethere are not enough projectives):
See GROTHENDIECK [1957), GODEMENT [1958].

Exercise

1. (Characterization of allowable short exact sequences by allowable projec-
tives [HELLER 1958].) If & is an allowable class d short exact sequences satis-
fying the condition afecé,=> acé,, and if there are enough allowable projectives,
show that an epic & B-—»C is allowable if and only if hom(P, B) -hom (P,C)
is an epimorphism for al allowable projectives P.

5. Relative Abelian Categories

Let S be a subring d R with the same identity as R. Some short
exact sequences & R-modules will split when regarded as sequences
d Smodules. Each R-module A is dso an S-module ,4, by pull-back
along the injection ¢: S—R, and a function which is an R-module
homomorphisma: A— B isalsoan S-modulehomomorphism,a: , A~ ,B.
Thus O(A)=,4, O(a)=,a is a functor 0 on the category & d all
left R-modules to the category # o all left S-modules; it ""forgets™
or "neglects” part d the structure d an R-module. We have in mind
many other examples, such as modules over an algebra A and modules
over the ground ring K, as explained in the introduction o §4. In each
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example there will be a similar functor O. Let us state the appropriate
general propertiesd such a functor.

A relative abelian category O will mean a pair d selective abelian
categories &/ and .# together with a covariant functor O: & —~.#
(write DA=A4g, Oa=ag) which is additive, exact, and faithful.

Additive meansthat a, fchomg (4, B) implies (&+ )y =aq+Bx in
hom 4 (A, B). It followsthat o5 =0and that (4@ B)g=A, @B, .

Exact meansthat «| g in « implies ag|fg in A. It follows that x
monic and ¢ epic in & imply x5 monic and o epicin A, that
carrieseach analysis (2.1) o a in &« into an analysis d «5 and hence
that xekerg implies xgckerf, and similarly for coker, im, and coim.
Moreover, 0 carries exact sequences into exact sequences.

Faithful means that a, =0 implies a=0. It follows that 45=0'
implies A =0’, but 45=B need not imply A=B. However « €pic
(or monic) in .# impliesa epic (or monic, respectively) in <.

Write objects o & as A, B, C, ... and morphismsa: 4-» B in Greek
letters with solid arrows. Write objects d .# asL, M, N, ... and mor-
phismst: L-»M in lower case Latin letters with broken arrows.

A short exact sequence x| ain & is said to be reatively split (or,
O-split) if the exact sequence x4 | o splitsin . that is, if o5 has a
right inverse k or (equivalently) x5 has aleft inversetin .. Thisgives

two diagrams
*0 )

ASB>C, AparBpiCy (5-1)

the first an exact sequence in «f, the second a direct sum diagram
in A. For smplicity, we often replace these by a single schematic dia-
gram

A:.%?.B:':;"C (5.2)
(solid arrowsfor the & part, solid and broken arrows for A) .Similarly
the equations
txD=1Au, ox=0, th+kaD=1Bu, cees
valid in the direct sum diagram (5.1), will be written schematically as
tx=1,, ox=0, xi+kao=1g, .

without the 1, so that a composite t » is short for t =z in A.

The class of O-split short exact sequences o &7 is allowablein the
sensed § 4; the conditionsd Prop.4.1 then describe certain morphisms
ad & asallowable (say, O-allowable). | n detail,
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Proposition 5.1. A morphism a: A—B with standard factorization
a=2c is O-allowable N the relative abelian category O F and only if
it satisfies any one d the following equivalent conditions:

(i) A5 has a left inverse and o a right inverse in A;

(i) (ima), and (kera)y have left inverses in .#;
(iii) There is a morphism u: B—A in .4 with equa, =ag;
(iv) Thereis a morfihismv: B->A in.# with both

“Dvauzan, vde—:v.

Condition (ii) may be read: Theimaged a isan.#-direct summand
d B, and the kernel d a an .#-direct summand d A, — or dualy.

Proof. The equivalenced (i), (ii), and the allowability o a isim-
mediate, by Prop.4.4. If tA=1 and k=1, asin

a a
A:.;?.o:_?.B, e=Aa,

then v=Fkt: B--»A4 has ava=2Acktio=Ac=a and vav=~iicki=
kt=w; this proves (i)= (iv). Trividly, (iv)= (iii). Finaly, to get (iii)=
(i), assume auoe=0a and set «=A4s. Thus Acu#lo=2Ac with 4 monic
(in A1) and o epic implies oud=1, 0 A has a left inverse ou in .4
and ¢ a right inverse % 4.

If X isan &-complex in thesense d §3 (X, objects and @, mor-
phismsin ) then OX isan.#-complex; sSinced isexact, it followsthat
O[H, (X)]=H.(OX).

Theorem 5.2. If X is an «/-complex (not necessarily positive) then
OX has a contracting homotopy s with ast sé=1 (and each 5. X,
X, 1 amorphism of A) F and only f all H,(X) vanish and all boundary
homomorphisms & are allowable. When these conditions hold, s may be
chosen so that s2=0.

Proof. Given s, we know that all qH, (X)=H,(O0X)=0. But O
is faithful, so H,(X)=0. Moreover, d=0s 0+s 8 0=9s8, so each &
is alowable by part (iii) of the preceding proposition.

Conversdly, suppose the sequence --. -X,, . ;—X,—~>X, _1—--- exact
and all 2 dlowable. Take a standard factorization ¢=A4¢ for each 2,.
Then X factors into O-split short exact sequences D,>X,-»D,,_,, and
each X, isan #-direct sum via morphisms¢=#,, k=k,, asin the sche-
matic diagram

Fn Ay & A
X1 = D, < X, = D,_, < X, 1
with the usual direct sum identities

1x,=At+ ko, tA=1, ok=1, tk=0, 0iA=0
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in #. Now define each s: X,->X,,, as s,=k¢, so0 that s2=0 and
Os+sd=A(ok)t+R(EA)o=At+kho=1y,.

Now a complex ¢: X —C isalowableif both ¢: X,—C and also each
d. X,—»>X,_, are dlowable, and a resolution if &: Hy(X)=C and
H,(X)=o0for n>0.

Corollary 5.3. A complex ¢: X —C in & ove C is a O-allowable
resolution o C if and only if the complex eq: X5-—>Cq in A ova Cg
has a contracting homotopy. When thisis the case, thereis suck a homotopy
s with s2=0.

Asusual, s consistsd morphismss_;: C-—»>X,, S0 X, X, inA
with

es_1=1¢c, Osy+s_1e=1x, Os+sd=1x,, n>0.

The condition s#=0 means s,s,_,=0 for al »=0,1,.... The proof
isimmediate.

A O-allowable projectiveobject Pin & will dso be called a relative
projectiveobject for 0.

Any projective object P in & is a fortiori relatively projective,
but this does not show that there are enough relative projectives: If
we write an object astheimage P-4 d a projective, we do not know
P—A to be an allowable epic.

Exercises

(Thefirst three exercises deal with the absolute case &f=.4.)

1. A complex X in an abelian category & has a contracting homotopy s if
and only if (im@,4,, coimd,): ®— X —eisadirect sum representation of each X,,.
When these conditions hold, thereis an s with s2=o0.

2. A complex X d modules has a contracting homotopy if and only if, for
each », the module of n-cyclesis a direct summand o X,

3. A (not necessarily positive) complex X o free abelian groups has homo-
morphisms s: X, - X,, 4, with astso=1if and only if all H, (X) vanish.
4. Deduce Thm. 5.2 from the result d EX.1.

6. Rdative Resolutions

To construct enough relative projectives, we further specialize our
relative abelian categories. By a resolvent pair £ o categorieswe mean
a relative abelian category 01: &f —.# together with

(i) A covariant functor F: 4 —>.«7.

(ii) A natural transformatione: I >0 F,for I, theidentityfunctor,
such that every morphism %: M --> A in.# hasa factorization » =« e,
for a unique morphism a: F(M)->4 o .
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ThuseachM determinesFM in & and a morphism ey,: M-+ 0OFM,
and each # lifts uniquely to FM, asin the schematic diagram
FM-»A4

‘u? ;
M
in other words, FM is the "relatively free”™ object in & to the given
object M in A. The lifting property states that e*a=oge defines a
natural isomorphism

€ : homgy (FM,A) =hom_, (M,OA);

this last property states that the functor F: # —% is a left adjoint
[KAN 1958] d the functor 01: &f —.# (see note below).

Conversely, the conditions (i) and (ii) for a resolvent pair may be
replaced by the requirement that the functor O has a left adjoint F.
Indeed, this requirement means that there is a natural isomorphism

@: homg (FM, A)=hom , (M, O A)

(of abelian groups). Take A=FM in this isomorphism; then | in
the group on the left gives ¢ (1) =y M->0OFM. Thate: I, --0OF
is a natural transformation followsby taking any x: M —M’ and apply-
ing ¢ to the diagram

hom (FM, FM)2% hom o (FM, F M) <= hom , (F M’, FM") .
Next take any A and any a: FM —4. Since ¢ is natural, the diagram
hom o (FM, FM)-%>hom_, (M,0FM)

- [

hom(FM, A) %> hom 4 (M,OA)

commutes. Take |,  in the group at the upper left; it goesto a below
and to g, at the right, so commutativity gives ¢ a=apne,. Since ¢
is an isomorphism, this proves that each «: M--»[JA in the group at
the lower right has the form «=eag ¢, for a unique a, as required in our
previous condition (ii).

For example, two rings R > Syield a resolvent pair, denoted # (R, S)
or just (R,S), with & and A the categories d R- and S-modules,
respectively, O the usual "neglect’” functor, and

F(M)=RQsM, e (m)=1Qm ¢ F(M).

Again, for each K-adgebra A there is a resolvent pair with «f the left
A-modules, .# the K-modules, F(M)=A QM (Prop.V1.8.2). Other
examples d resolvent pairs appear in Ex.2 below.
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Theorem 6.1. In aresolvent flair d categories, each F(M) isrelatively
projective in of. For each object A, the factorization 1,=a ¢, Yields a
O-allowable epimorphism «: F(An)—A. Hence there are enough relative
projectives.

The proof that F(M) isrelatively projective is the familiar argument
(Lemmal.5.4) that eachfreemoduleisprojective. Indeed, lety: F(M) —>C
be a morphism and ¢: B—C an alowableepic d .7, so that o5 has a
right inverse k. Form the schematic diagram

M2 FM

kyaeu=kyes | _ . ogk=t.
B < Cc

The composite kye,, displayed factors uniquely through F M askye,,=
Bey for some §: FM —B in &. Hence ofie,=ye,; but ye, factors
uniquely through e, , so o=y, this states that FM is relatively pro-
jective.

The usual comparison theorem maps a projective complex to a
resolution. The comparison d a relatively free complex to an allowable
resolution can be put in canonical form. Arelatively freecomplexey: X— A
over Ain &« haseach X, d the form F(M,) for some object M, d .4 ;
we write e, for ey, : M,—X,. An alowable resolution ey: Y—B has
an .#-contracting homotopy s with s*= 0, asin Cor.5.3 (in particular,
S_y: B-»Yy).

Theorem 6.2. Let &: X —4 be a reatively free complex over A
in & and ey: Y—>B an allowable resolution. Each morphism a: A—B
in o lifts to a unique chain transformation ¢: X —Y d /-complexes
such that each ¢,e,: M,~>Y, factorsthrough s,_,. This ¢ is determined
by the recursive formulas

Polo=S_1% Ex€g,  Pnt1nt1=5,Pn0 Eyyy-

We call ¢ the canonical comparison for the given representation
X,=F(M,) and the given homotopy sin Y. In case 4 is a category
o modules, the condition that each ¢,e, factors through s,_; can be
written

PotoMoCs_1B,  @nr1bpi1 M1 CS,Y,. (6.1)

We write this more briefly as geM {SY.

Proof. We construct ¢,: X,—Y, with eypy=a &x, 0¢,.1=¢,9
and show it unique, all by induction on #%. If ¢,e, factors through s_,,
then s2=0 gives sy p,6,=0 and

Polo=1@oCo=(0Sp+ S_18y) Polo="5_18y Poly="5_1% £x&.
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By the lifting property, there is a unique such ¢,; this g, does satisfy

sypo=u gx. Given g, ..., ¢,_, UNique, any ¢,e, which factors through

s,_3 hass, ¢,e,=0; hence
Qutn=1¢,6,=(0s+50)@,6,=s0p,6,=s@,_;06¢,.

This uniquely determines ¢, so as to satisfy d¢,=¢,_,0. The proof
is complete.

Next, each object C d & has a canonical O-split resolution. Write

Fc for FOCes, F* for the n-fold iteration &, and construct the
objects
B, (C)=B, (R, C)=F*FC, n=0,1,2,...

d . Define morphisms s between the corresponding objects

OoCgB,C-*> B C>--—>0B,C T 9 B,41C, ... (62)
in # ass_,=¢(0C) and s,,=¢(0 4,C).
Theorem 6.3. There are unique morphisms
g: Bo(C)>C, 8,: B (C)—>F,1(C), n=1,2,...

d & which make g(Z, C)={B,.(%, C)} a relatively free allowable resolu-
tion & C with s as contracting homotofiy in.#. This resolution, with its
contracting homotofiy, i s @ covariant functor o C.

We do not claim s?=0 — because it usually isn't so.

Proof. We wish to fill in the schematic diagram
e & 0 3y
C-‘Eﬂoc-z;:ﬂlc-(f;ﬂzc ::

at the solid arrows (morphisrnsd ) to get a contracting homotopy.
By the properties d e, 1. factors uniquely as 1.=z¢ ¢;; this gives ¢
uniquely and shows ¢ allowable. The boundary operators are now
defined by recursion so that s will be a contracting homotopy; given e,

1—s_,¢ factors uniquely as &,sy==1—s_,¢& for some é&,: B,—>f,, and
similarly 8,,,s,=!—s,_14. B,->B, determines 3,,, given d. Using
this equation,

an an+lsn: 0,— a»sn—l 6,,: an_ (1 - sn—2an—1) an= Sn—2an—1 an

so, by induction and the uniqueness o the factorization, ¢é=0 and
92=0. Moreover, 8,,,5,9,,1=20,.1, SO 9,4, IS alowable.

This resolutiong (W, C)isclearly functorial; it iscalledthe (unnormal-
ized) bar resolution; for a concrete example, see § 8 below.
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A"relative' ext bifunctor may now be defined by
Ext(C, A)=H"(homy (8(Z, C), 4)). (6.3)

The comparison theorem shows that we can equally well use any O-split
relatively projective resolution ¢: X —C to calculate Exty=Ext? as

Ext% (C, A)=H"(homg (X, A)); (6.4)

note that, in each dimension », hom, (X,, A) stands for the group d
al morphismsé: X,—+4 in & — not just the allowable ones. | n partic-
ular, Ext%(C,A)=hom (C,A). Replacement & C by a short exact
sequence E will give the usual long exact sequence for Ext", as in
Thm.l11.9.1, provided E is O-split. The analogous result holds if A
is replaced by a (I-split short exact sequence; the proof uses either an
exact sequence d resolutions (Ex.II1.9.1) or the assumption that there
are enough relative injectives. These long exact sequences are actually
valid in any relative abelian category without the assumption that
there are enough relative projectives or injectives. The proof, to be
given in Chap.XII, depends on the interpretation o Ext? (C,A) as
congruence classes o n-fold, O-split exact sequences from A to C.
In particular, Ext}y, unlike ExtY, depends on [J.

Note on Adjoints. If € and & are categories, a functor T: ¥—« is caled
aright adjoint & S: &/— € if there is a natural equivalence

hom g (A. T(C)) =homg (S (4), C);

here both sides are bifunctors of A and C with values in the category of sets (or,
if € and «f are additive, in the category o abelian groups). For example, adjoint
associativity

Horn(4® B, C) =Hom (A, Horn (B, C))
states for fixed B that T(C)=Hom (B, C) is aright adjointto S(4)=A®B. There
are many other examples [KAN 1958).

Exercises

1. If the relative abelian category (] is a resolvent pair of categories for two
functors F and F, show that there is a unique natural isomorphism %: F—F’
withne=¢.

2. Construct resolvent pairs of categories in the following cases:

(@) For graded rings R>S; & and .# as in the text.

(b) For @ R’—+R any ring homomorphism, & =left R-modules, .= left
R’-modules, JA=,4 the R-module A pulled back along g to be an R-module.

(c) For A, X both K-algebras, &= A-Z-bimodules, .#= K-modules.

3. Incase (b)df Ex.2 show that the allowable exact sequences and therelative
Ext functor are identical with those for Z= (R, S) when S=pR".
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7. The Categorical Bar Resolution

The (normalized) bar resolution &: B(Z (II))~Z for a group ring
Z(II), as presented in Chap.1V, provides a standard 2-split resolution
d the trivial 17-module Z. For each 17-module A the cohomology d A
is defined via the bar resolution as H*(Homg(B(Z(I1)), A)). Hence

H"(IT, A)=Ext} ) (Z, A)=Extlym, 1 (Z, A)

In other words, the cohomology d a group is an instance d both the
absolute and relative functor Ext. The same (normalized) bar resolution
will be used in the next chapter in many other cases. |t may be defined
in the context d any resolvent pair

A O: S>H., F. >, e, M->OFM

d categories. To each object Mc.#, select g, ccoker g, and F (M)=
Coker g,. Thus

M- O FM P2 F M0 (74)

is exact inA , F: .#—.4 is a covariant functor, and p: O F—F isa
natural transformation. Apply oF to F M to form the diagram

M. gFM™ FM >0
W ue (7.2)
OFFM ;
the composite s, =¢'p is a natural transformation gF->g FF. Its
characteristic property is

Lemma7.1. The morphisms e=¢, and s=s,, induce for every ohject
A aleft exact sequence o abelian groups,

0—>hom 4 (FF M, A) <> hom ¢ (01 FM, qA) > hom_, (M, OA).

Proof. Each morphisma: FFM+A o « yiddsa : O FFM-»
OA, and s*a is the composite a, s: g FM--»>[A, a morphism in A.
Clearly e*s*a=apSe=aq0=0. If 0=ags=age’'p, with p epic, then
ag e =0. But the factorization d 0 through € isunique, SO «=0. Next,
if somev: q FM-» qA hase*v=0, construct the commutative diagram

M-S>OFM-2HFMS oFFM
i lag
04 =npd= 04
as follows. Since ve=0, v factors through p=cokere, as v=up. By

the definition d €, # in turn factors through € as#=u€ for somea.
Al told, v=an€p=ans which gives the asserted exactness.
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Each object C d & yields a sequence d objects M,=F*[JC d A.
The bar resolution consists d the associated relatively free objects

B,(C)=B,(®, C)=FF"0C, n=0,1,2,... - (7.3)
d &. Define morphismss betweenthe corresponding' neglected™ objects,

DCS", DBOC.Z’.'..) DBIC..S.'., DBzc"’ e, (7.4)
d A bys_y=e(DC)and
s,=s(M,): OFM,-+-0OFFM,=0B8,,,C. (7.5)

This construction at once gives s2=0.
Theorem 7.2. There are unique morphisms
g: By(C)—»C, 9, B,(C)—>B,_,(C), n=1,2,...

d & which make B (2, O)={B, (W, C)) an &#-complex and a relatively
free allowable resolution d C with s as corttracting komotopy o square
zero in A This resolution, with its contractirtg komotopy, is a covariant
functor of C.

Proof. We are required to fill in the schematic diagram
CéBoC%BIC%BZC% (7.6)
at the solid arrows (morphismsd &) so as to satisfy the conditions
es_y=1, O&so=1—s_ye, 08,,15,=1—S,_10,, n>0, (7.7)

for a contracting homotopy. But | : C—C factors through eqc=s_, as
1=gs_,; this gives &. The morphisms g, are then constructed by re-
cursion. Given d,, ..., 8, satisfying (7.7),

(1—54—100)Sp-1=Sp—1—Su—1{(1 — 420, 1) =0+ 8, _155_30,_1=0;

sinces,_;=ep with p epic, (1—s,_, a,) e=0. By Lemma7.1,1—s,_,0,
factorsas (I—s,_,d) =as,, whichgivesa,,,=asatisfying (7.7). These
morphisms e, 9, are uniquely determined, again by Lemma7.l. More-
over, (7.7) gives

an an+lsn= an_' ansn—l 3”= 3”— an_ sn—zan—lau= - sn*zan—l an'

0 an induction using Lemma 7.1 shows £8, =0 and 22=0. This shows
B (W,C) a complex over C and completes the proof o the theorem.

Wecall B(#, C) the bar resolution d C. By the comparison theorem,
it is chain equivalent to our previous ‘‘unnormalized” bar resolution
B(&#, C) (seeEx.3).
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To show that this description d the bar resolution agrees with the
previous usage for a group IT, take & to be the category d left [I-
modules, .# that d abelian groups, F(M)=Z(II) @M, and ¢, (m)=
1Qm for each meM . This givesa resolvent pair o categories. Now the
sequence Z —Z (I1) »Z (II)/Z d free abelian groups is exact, hence so
isits tensor product with M :

0>M=ZRQM—>F(M)=Z(IT) QM —[Z(I1)|Z) QM —0.

Therefore F(M)=[Z (II)]Z) QM . Take for C the trivial 17-module Z.
Then
F"(2x=[Z(D)/Z2]1Q-.-®[Z(IT)jz],  nfactors.

But Z(IT)/Z is the free abelian group with generators all x==1 in IT.
Hence F*(Z) may be identified with the free abelian group generated
by all symbols[#| ... |#,], with no x; inII equal to 1. Then B, (W,Z)=
Z (17)®F"(Z) is the free abelian group with generators all x[x,| ... | ,]
with xell, while the map s=ep: B,->B,, defined above becomes

NEIEARNEA) BN EANEAR
zero when x=1. This is exactly the contracting homotopy s used for
the bar resolution B(Z (II)) in (1V.5.2).The boundary operators are

uniquely determined by s (in Chap. IV as here), so must agree. In short,
we have proved that in this resolvent pair d categories

B(®,2)=B(z(I)).

The next chapter will develop explicit formulasin other cases.

Exercises
I. Show that the long sequence (7.4) is exact in .#.
2. Show that the canonical comparison § (9LC)—B (9L) is epic.
3. For the case of groups, show that § gives the unnormalized bar resolution.

The following three exercises consider the relative ext functor for the rings
Z(IT)and Z.

4. For left IT-modules A, B, and C, make B®,C and Homy,(C, A) left IT-
modules with operators #{;®c)=xbQ®x¢ and (xa)e==x[a{x1c)], a: C+A,
respectively, and establish a natural isomorphism,

Homy (B,Hom,(C,A))=Hompg (B®,C, A).
5. If Aisrelatively injectiveor C relatively projective, show that Hom, (C, A),
with operators as in Ex.4, is relatively injective.
6. Using axioms for the relative ext functor, establish a natural isomorphism
ExtZm),z(C, 4) =Ext}m),z(Z, Homz(C, 4)).

With this result the following exercises, suggested to me by J.SchHwmip, will yield
the cup product reduction theorem as stated in VIII.9 (cf. ScHMID [1963]).
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7. From a presentation II = F/R with F a free group obtain a group extension
E: R, B’~»II, where [R,R] is the commutator subgroup of R, R,=R/[R, R]
and B= F/[R, R].

8. The characteristic class y of the group extension E, described asin IV.6,
is a two-fold 2-split extension of Ry by Z. Show that the intermediate module M
in x is free; specifically, let F be the free group on generators g, S the freell-
module on corresponding generators g and show that g’ fcls g]¢ M is an isomor-
phism S=M. (Hint: Use LemmalIV.7.2 to construct an inverse.)

9. Let A be a IT-module. Show that the iterated connecting homomorphism
for 4 yields an isomorphism Ext"(R,, A)=Ext#+2(Z, A) for the relative ext
functor and n> o0 and hence, by Ex. 6, isomorphisms

Hn+23(IT, A) = H™(II, Hom, (R,, 4)), =>0,
H&(IT,A) = Coker[Hom (M, A)—>Homp(Ry, A)] .
10. For n >0 and G a right II-module obtain the "dual” reduction theorem
H, . (II,G)=H,(IT, G®zR,).

8. Relative Torsion Products

Let She a subring o the ring R, with the same identity. This gives
a resolvent pair Z=(R,S) o categories, with & the left R-modules,
A the left S-modules, 1 (A) the functor which remembers only the
S-module structure, F(M)=R®QsM, and e(m)=1&m. A O-split short
exact sequence is thus an exact sequence of R-modules which splits
when regarded as a sequence of S-modules; call such a sequence S-split.
Label the corresponding alowable homomorphisms (R, S)-allowable,
and the relative projectives (R, S)-projectives.

Define a complex §(R) d R-modules over R,

R<2B,(R) <Py (R) «f,(R) <.

by 8,(R)=RQQR"QR=R"*?, with n+2 factors, ¢(r,®@n)=r, &
short for ®s, and

210®  ®nra) =?:§ (— 1)@ @771 @+ sy, (8.1)

Theorem 8.1. For R> S, &: B(R)—R is a complex of R-bimodules
over R with a contracting komotopy s: R*+%—R**+3, defined for n=1 by
S("o®"' ®rn+1)=1®70®”' ®7”+1, (82)

which is a homomorphism o left-S, right-R bimodules.

Proof. First es7g=e(1Q7,) =2, SO es=1. Let u=7,Q--- X7,
with#»=0. Thefirst term of ds« isu; the remaining terms are — sdu;
hence as+ sé=1, asdesired. From the definition it followsthat ¢8=0,
09=0. By symmetry there is aso a contracting homotopy

EHro®Q - Q7,41) =70 R Q7,11 1,

which is an R-S-bimodule homomorphism.
Mac Lane, Homology 18




274 Chapter | X. Relative Homological Algebra

Corallary 8.2 For each left R-module C, 8(R) ®xC is the bar resolu-
tion B(C) for the resolvent pair (R,S). Symmetrically, for each right
R-module G, G®y B(R) with contracting homotopy t is the (right) bar
resolution g (G).

Proof. Since R®;C=C, one forms 8(R)&xC simply by replacing
the last argument 7, in (8.1) and (8.2) above by ccC. Then 8, (R) Rz C
=F"F(C), the contracting homotopy s o (8.2) is that of (6.2), and @
is the unique boundary with s as contracting homotopy, by Thm.6.3.
In particular, 8(R) itself is just the bar resolution (left or right) of the
R-module R.

Observe that the boundary operator (8.1) in 8(R) is the alternating
sum o the face operators 4;: 8,8, defined by

(1 Q- Qs ) =7R - Q7,1 Q77,11 R%1s Q- Qi1 (83)
1=0, ..., N. The corresponding degeneracy operators s;: 8, —>f,.1 are

$;i (7R Q71 =7 QR Q7. R1Q711 Q- &7pt1, (8.4)
the usual identitiesfor 4; and s; hold, and 8 (R)isasimplicial R-bimodule
inthe sense o VII1.5. The reader may show that the simplicial normal-
ization o B(R) yields the normalized bar resolution B (R).

TakeR-modules G and zC. The (absol ute) torsion products TorR (G,C)
are calculated from a projective resolution ¢: X+C as H, (CGRrX).
In the present relative case, (R) ®xC provides a canonical and func-
torial resolution, so we define the n-th relative torsion product as:

Tor® (G, CO)=H,, (G&%x A (R)®x O); (8:5)
it is a covariant bifunctor & G and C, and is manifestly symmetric
in Gand C. Since GRxR=G and R®xC=C, the group of n-chains d
the complex GRz A (R)R:C is GR;R"®sC. The boundary formula
isobtained from (8.1) by replacing r, by geGandr,., by ceC; the com-
plex may be viewed as a simplicial abelian group.

If E: A>B—»Cisan S-split short exact sequence o left R-modules,
its tensor product (over S) with G Q¢R" is still S-split, hence exact,
and so is the sequence d complexes

G Qg B (R) Qrd > G Qr B (R) QrB>G Qr B(R) QrC-
The resulting connecting homomorphisms
E,: Tor®9 (G,C)>Tor®$ (G,A), n>o0,
are natural in G and E, and yield the exactness o the corresponding
long exact sequence
... > Tor® ) (G, A) —Tor® ) (G, B) »Tor® 9 (G, C)
B Tor® 9 (G, A) .-,

} (8.6)
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just as for the absolute torsion product, except that here E must be
S-split. f E": G~K-L is an S-split short exact sequence d right
R-modules, the same argument (interchanging left and right) gives
natural connecting homomorphisms

E,: Tor®S)(L,C)—»Tor®:H (G, C), un>o0,
and the corresponding long exact sequencein the first argument.

Theorem 8.3. For ringsR> S and modulesGy, xC, each Tor(®:S) (G,0)
is a covariant bifunctor o G and C with

Tor{® S (G, O)=G®:C, (natural) , (8.7)
Tori®$) (P, C)=0=Tor®% (G,P), n>o0, (8.8)

when P and P are (R, S)-projective right and left modules, respectively.
If E' and E are S-split short exact sequences o right and left R-modules,
respectively, the corresponding connecting homomorphisms are natural and
yield long exact sequences (8.6), and symmetrically.

I n particular, this Theorem leadsto a characterization o the relative
torsion products as functors o the second argument, by properties
(8.7), (8.8), and (8.6), just as in Thm.V.8.5; for this purpose we may
replace " (R, S)-projective’” by “(R, S)-free" in (8.8).

We need only prove (8.7) and (8.8). First 8, (R)—>8,(R)>R—0 is
exact; since tensor products carry right exact sequences into right
exact sequences, so is

G Qr b (R) ®rC—>GQrPo(R) QrC G RQrR®C—0.
The last term is GRxC; this gives (8.7). To prove (8.8), use

Lemma84. For ringsR> S, if Pisan (R, S)-projective right R-module
and E: A~ B-»>C an S-split short exact sequence o left R-modules, then
0->PRrd->PRrB—PR;C—01s an exact ssquenced abelian groups.

Proof. Since there are enough relatively free right modulesM Qs R,
each Pisan S-split quotient and hence an R-direct summand o some
M ®sR. Hence it sufficesto prove the Lemmawith P=M &gR. Then
PRrA=M QRRr4=M R4, s0 the sequence in question is iso-
morphic to M Qs 4—->M ®sB —M ®¢C, which S-splits because E does,
and henceis exact.

Now we prove (8.8). The complex 8(R) ®zC over C has a left S-
module contracting homotopy s as in (8.2). Hence, by the Lemma,
P'Qr(B(R) ®C) is exact over P'®xC, so has homology zero in di-
mensionsn>0.

The relative torsion products can aso be calculated from other
resolutions.

18%
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Theorem 85. If &: Y+G is an S-split resolution of the right R-
module G by (R, S)-projective modules Y,,, thereisa canonical isomorphism

Torl® 9 (G, C)=H,(YRC), (8.9)

natural in C. If E isany S-split short exact sequence d left R-modules,
the connecting komomorphisms E, d (8.6) are mapped by theisomorphism
(8.9) into the homology connecting homomorphism of the exact sequence
YRrA»YRrB-»>Y®rC o complexes Symmetrically, Tor, may be
caculated from an S-split, (R, S)-projective resolution d € by left R-
modules.

Proof. The relative comparison theorem gives a right R-module
chain transformation ¢: G®r f (R)—Y, unique up to homotopy, which
induces the isomorphism (8.9). Sinceeach Y, is(R, S)-projective, each
Y, QrA4A »Y,RzB->Y,&;C is exact by Lemma8.4. The chain trans-
formation ¢ maps the previous exact sequence o complexes onto this
exact sequence; hence by naturality d the connecting homomorphism
of a sequence d complexes, this yields the method stated for the cal-
culation d the connecting homomorphismsE,.

Sincean (R, S)-projective P has the resolution 0 — P’ P’—0, this
gives an immediate proof d (8.8). We leave the reader to verify the
other properties d the relative torsion product: Additivity in each
argument, anti-commutation & E, with E,_, (E,_,E,=—E,_,E., as
in Thm.V.7.7), and the additivity d E, inE.

The relative torsion product can be considered as a functor d the
pair d rings R>S. More specifically, consider objects (R, S; G, C, A)
consisting d rings R>S and modules G, gC, r4. A change d rings
(+inGand C, — in A) isaquadruple

1=(.878): (RS G CA)+R,S; G C,A) (810
where ¢: R—R’ is a ring homomorphism with ¢ (S S, while
¢: G—)G;, y: C— 0 ar A4

are homomorphismsd R-modules (notethat thedirection o aisopposite
that for y). These objects and morphisms y, with composition (g, £, ¥, &)

(0,¢,y,ad)=(e ¢, vy, ad) constitute the change of rings category
#++-; omitting A and a gives a " covariant'" change d rings category
2+*.Each y induces

{R0"Qy: COrPu(R) RrC—C'Qp B, (R) Rr (',
a chan transformation, and thence, by the definition (8.5), a map
P TorES) (G, C)—»>Torl®>51 (G, ')
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which makes the relative torsion product Tor, a covariant functor on
Z#** to abelian groups. The homomorphism y, can also be calculated
from S-split relatively free resolutions &: Y—G, ¢': Y'—G’; indeed,
by pull-back, ¢': Y, -G, isa map o complexes d R-moduleswith an
S-module splitting homotopy, so the comparison theorem (relatively
projective complexes to split resolutions) lifts¢: G—G, to a chain
transformation ¢: Y—Y,. The induced map on homology composed
with the pull-back map ¥, Qg ,C'—Y' Qg C’ givesy, asthe composite d
H, (Y ®xC)“22% H, (Y, ®r ) > H,(Y' R C)
with the isomorphisms (8.9).
By analogy with Tor{®®), we write Ext} ¢, for the corresponding
relative ext functor. Thus by (6.3)
Extlr 5 (C, 4)=H" (Homg (B (R) Q&C, 4))
=H"(Homg_x(B(R), Hom, (C, 4))),
where the isomorphism on the right is by adjoint associativity, and
Hom, (C,A) is an R-bimodule. This Ext is a contravariant functor on
the change d rings category #£*- (omit G and ¢ in (8.10) above). When

Risfixed and g=1, thisincludes the usual description d Ext%, g, (C, A)
as a bifunctor, contravariant in C and covariant in A.

Exercises
The first six of the following exercises are taken from HocrscHILD [1956].

-

Every (R, S)-projective P is an R-direct summand of some R®gA.
2. For each ¢M, Homg(R,M) is (R, S-relative injective.
. Prove: There are enough (R, S)-relativeinjectives.

3
4. 1f P is (R,9-projective and a: 4—B a homomorphism of R-modules
with Homg (P, A)-»Homg (P, B), then Homg (P, A)-»Homg(P, B).

5. For P asin Ex.4 and a a map of right R-modules, 4 ®sP>> B ®¢P monic
implies A@gP>> B ®zP rnonic.

6. For (R, S)-projectiveresolutions X —C and ¥Y-»G which are S-split, prove
that Tor®S) (G,C)= H, (Y ®g X).

7. Give a description for elements of Torl®:5)(G, A) analogous to the elements
(s, L,V)used inV.7.

8. Show by example that Extfg 5)+ Extk.

9. Show that B(R) is the (unnormalized) bar resolution for the resolvent
pair & with & = R-bimodules, .# = S-R-bimodules, F(}/) = R®:M and e(m}=
| ®@m.

10. For # asin Ex.9, show that Ext{ 5)(C, A) = Ext%.(R, Hom,(C, A))and
Tor{E:5) (G,C) = Tor#® (R,C®,G). HereC®,Gisthebimodulewith~ (c®g) = rc ®g,
(c®g)r=c®gr.
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9. Direct Products of Rings

The direct product R=R’<R’ of two rings is the ring with the
additive group R’"® R' and multiplication (ry, ry) (rz, 72) = (71 5, 1 72).
(Thisis justthedirect product of R and R* asZ-algebras, asin (V11 5.1)).
Each |l eft R’-module A' isan R-module , A’ by pull-back along the pro-
jectionz,: R'XR”—R', and similarly for R”-modules. In particular, R
and R" are | eft R-modules, while the termwise definitionofthe product
in R shows that R=R'® R"' is an isomorphism of R-modules, and
hence that R and R’* are projective R-modules.

Lemma 9.1. If the R'-modules C' and G and the R'-module A"
are regarded as R=R><R" modules, then
G'QrA”=0, Homg(C', A")0. (9.1)
Proof. Take the element {1’, 0)¢R. Then
£Ra"=¢'(1',0)Qa"=¢'Q(1',0)a" =¢g'®0=0.
Smilarly,iff; C'—-A4", then
Hey=11(1", 0)¢'T=(1", 0){(¢') =0.

The correspondence A+ A =R'®zA, a—a' =15 Qa is a covariant
functor on R-modules to R’-modules which is exact: a||g implies «'| 8.
Moreover,

Proposition 9.2. Each left (R'><R"’)-module A has a representation
A=(, A" D (,A") as a direct sum d two Rmodules, the first obtained
by pull-back froman R'-module A and the ssoond froman R’'-module A".
These modulesA' and A" aredetermined up to isomorphism asA'=R' Rz A,
A"=R"Q®zA. Given such decompositions for A and B, each R-module
homomorphism a. A—>B has a unique decomposition as a=a'Da",
withd: A'—=B and d': A" B" respectively R’- and R'’-module maps.

Proof. Using R=R'@ R"” we get the decomposition
A=RQQrA=(R'BR") QrA=(R'Qr A)B (R"RrA)

If A= A’ép A” is such a decomposition, (9.1) givesR' @z A =R'QRprA’'=
R'QpA'=A’. Given a,a' =15 RQa: R'QrA—->R'QrBand a"'= 1x.Q a
have a=a’a’".

Corollary 9.3. For left R-modules A and C and a right R-module G,
each decomposed asin Prop.9.2, there are natural isomorphisms

Homg (C, A)=~Homg(C’, A')® Homg.(C”, A"), 9.2)
C QrA=C' QpA'®C" D", 93)
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Proof. Homg(C,A) is additive in C and A, and Hom, (C, A") =
Homg,(C’, A"), while Homg (C, A")=0 by (9.1).

Isomorphismslike (9.2) and (9.3) hold for the relative Ext and Tor
functors. For example, if S’CR’ and S”CR” are subrings, then S=
S’>< S” is a subring d R'><R"”, with ;; S=S, #n,S=S". We treat the
more general case d any subring d R’<R’.

Theorem 94. If Sis a subring o R'<R”, &t S'=m SCR, S"=
7, SCR”. For left R-modules A and C and a right R-module G, each
decomposed as in Prop.9.2, there are natural isomorphisms

Extiz s (C, A)=Ext 5 (C, A) ® Extfp. 5 (C", A"), (9.4
Tor®S (G, €) =Tor®) (G, C) @ Tor®"$1(G",C"), (95
valid for al ». The same isomorphisms hod with S, S, and S’ omitted.

Proof. First observe that an (R', S’)-free module R'®s. M’ is aso
(R, S)-projective (though not necessarily (R,S)-free). For, the left
S’-module M' isaleft S-module by pull-back, and, using the pull-back
lemma,

R®sM'=R'®sM' @ R"QsM'=R'QsM' S R'Qs.M'

SinceR®sM' is (R, S)-projective, soisits R-direct summand R’ ®g. M'.

Now chooserel atively freesplit resolutionse’: X'—C’and ¢’’: X''—C"
of the componentsd C. Then @ ¢”: X’® X”—~C'® C" isaresolution
of the R-module C'@® C”” which is S-split by the direct sum d the S
and S" contracting homotopiesfor X' and X . By thefirst observation,
each term X, @ X, is an (R, S)-projective. By (9.2) and (9.3) for X =
X'oXx",

Homyp (X, A)=Homg.(X’, A") © Homg.(X"’, A"),

G ®RX‘EG’®RIXI @ G"®RIIX,’-

Taking cohomology and homology groupsgivesthe desiredisomorphisms
(9.4) and (9.5).

In the isomorphism (9.5), each projection Tor, (G, C)—Tor,, (G, C)
can be described as the map g, induced by that change o rings x:
(R,S; G O)—(R', S’; G, C) which is obtained by the projections
R=R'><R"->R', G=G'® G"-G’, etc. In fact, to calculate g, one lifts
C—C’ to a chain transformation ¢: X —X’; such a ¢ isthe projection
X=X'd X"—X" used in deducing (9.5).

The proof for the same results with S omitted is easier; when X,
is a free R’-module, it is a direct summand d copies d R, henceis R-
projective.

This theorem will be applied in the next chapter to algebras (§ 6).
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Chapter ten
Cohomology o Algebraic Systems
1. Introduction

The homology o algebraic systems is an instance d relative homo-
logical algebra

For a group 77, use exact sequences d 17-modules which split as
sequences d abelian groups. The cohomology d 17 for coefficients in
a module z4 isthen (cf.1X.7)

H”(II, A) =Extg(n) (Z, A)_z_EXt?Z(H)’Z) (Z, A) . (1-1)
Correspondingly, the homology d I7 for coefficientsG, will bedefined as
H,(II, G)=TorZ" (G, Z)=TorZ M.2)(G, Z). (1.2)

For a K-dgebra A, use exact sequences d A-bimodules which split
as sequencesd right A-modules, or those which split just as sequences
d K-modules. For a A-bimodule A, the cohomology and homology of
A will be

H*(A, A)=Ext{y_4 k-a) (A, A)=Ext},_, (4, 4); (1.3)

H, (A, A)=Tor~4K-4 (A A)= Torl?=4X (A, A). (1.4)

These equivalent descriptions are presented in terms d the bar resolu-
tion for algebras, which is given explicitly in § 2 — it is a special case
d the bar resolution (1X.7) for a resolvent pair o categories. This
chapter examines the properties o H, and H” and develops similar
{co)-homology for graded and for differential graded algebras, as well
as for monoids and for abelian groups.

2. The Bar Resolution for Algebras

Let A be an algebra over K. The identity element 1, gives a K-
module map I : K-»>A; its cokernel A/I(K)=A/(K1,) will be denoted
(simply but inaccurately) as A/K, with elements the cosets At K. For
each left A-module C construct the relatively free A-module (& = Q)

B, (4, C)=AR(AK)R--- R (4/K)RC, (n factors A/K). (2.1)

Asa K-modulg, it is spanned by elementswhich we write, with avertical
bar replacing “&’’, as

A 4] e=AQ[(Ah+K) Q- ® (4, +K)]®¢; (2:2)

in particular, elements d B, are written as A[]c. The left factor A
gives the left A-module structure d B,, and [4] ... |4,]c without the
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operator A will designate the corresponding element o (A/KY*&QC.
These elements are normalized, in the sense that

(] ... | A]e=0 (23)
when any one 4;¢K.
Now construct maps asin the diagram
6 a
C5By(A, Q)5 By (A, O3

The K-module homomorphisms s_,: C-+»B, and 5. B,—>B,,; are
defined by setting s_;¢c=I[]cand

Se(ATA) - | A ) ) =1[A| 4] ... |4)e, m=0. (2.4)

By the normalization, s, ,s,=0. Define left A-module homomorphisms
e: B,—~C and 9,: B,—~B,_, for >0 by &(i[]J¢)=A4c, and

Oy (AlAy) -+ | An] c)=}. MlAs| ... ]2, ¢
n—1
+i=Zl (1) A[A] ... | 2:2i4a] - | 2n] € (2.5)
+ (— 1) ALA] - [ 1] (R40).

This definition is legitimate because the right side is K-multilinear and
normalized: If some A;=1, the terms with indicesi—1 and i cancel
and the remaining terms are zero.

Theorem 2.1. For each left A-module C, e: B(A4, C)—C is a resolu-
tion of C by (A, K)-relatively free left A-modules which is K-spiit by the
contracting komotopy S With s2=0. Moreover, B{4, C) is a covariant
functor o C.

This can be proved directly from the formulas above. Alternatively,
apply the resolution o 1X.7 for the resolvent pair of categories £ with
& =|eft A-modules, # = K-modules, F(M)=A @M, e(m=1&m. Since
K-->A->A/K->0isaright exact sequenced K-modules, each K-module
M yields a right exact sequence

M=KQM »FM)=AQM ~(A/K) @M >0,

0 F(M)=(A/KYRQM. Also, s,: F(M)—>FF(M) is given by s(AQm)=
| ®(A+K) &m. Hence, with B(9,C) asin (I1X.7.3),
B,(#, C)=FF"0 C=AQ(A/K)*QC=B,(4, C),

with s given by (2.4). The formulas for ¢ and 3, provide the unique
boundaries for which s is the contracting homotopy. Hence B (9¢)=
B4, C).

There are several variants o the bar resolution, as follows.
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The un-normalized bar resolution §(%, C)=p§(A,C) (cf. 1X.6) has
B (A, C)=FF*C=AR4*QC, (2.6)

whereA"=AQ--- R4, with n factors. The contracting homotopy s, e,
and the boundary are given by the formulas (2.4) and (2.5) with each
Al4)...|A creplaced by AQ4L Q--. ®4,&c. Inthiscasethe boundary
may be written, much asin the singular complex d a space, in the form
9,=2(—1)d;, where d;: 8,—B,_, is the A-module homomorphism
defined by

G2 Q@h®  ®AQ)=24Q  Q4hln® - Q¢, 1=0,....,n (2.7)

(for 4=mn, the right sideis 4, Q---®4,.c}. Thm.2.1 holds with B (A, C)
replaced by (A, C), except that s? need not be zero in 8 (A, C).

The A-module map #5: 8,—B, defined by 7(ARALR-.- R4, R0)=
Al%4]-..|A cis a A-module chain transformation lifting 1c: C+C;
indeed, it is the canonical comparison map d 8, to B,. Hence, by the
comparison theorem,

Corodllary 2.2. (The "Normalization Theorem'. The projection
n: B(A,C)—B(A,C) is a chain equivalence o complexes of A-modules.

The kernel o # is theA-module generated by theuniond theimages
d the A-module maps s?: §,,—f,+1 defined by

STARL® - ®4,Q)=1Q - QLA LQ - BLBc  (2.8)

for =0, ..., n. With these s; and 4; asin (2.7), B(A4, C) isthe associated
chain complexd asmplicialA-moduleand » isthesimplicial normaliza-
tiond Thm.VIII.6.1.

For the bimodule bar resolution B(A,A), take C above to be A.
Each B, is then a A-bimodule; formula (2.5) with ¢ replaced by A’eA
shows that ¢ and each 9, is a A-bimodule homomorphism. Similarly,
sd (2.4) becomes a homomorphism o right A-modules. Hence

Corollary 2.3. If A isa K-dgebra, ¢: B (A,A)—A is a right-A-split
resolution of the bimodule A by (A-A, right A)-free bimodules, and a
K-qalit resolution o A by (A-A, K)-freebimodules.

The last clause does not mean that B (A,A) isthe categorical resolu-
tion for the resolvent pair (A-bimodules, K-modules). Note also that
B(A,O=B (A,A)R4C.

The left bar resolution applies to an augmented algebra ¢: 4—K,
and is B(4)=B (A, ,K), where K is K regarded as a left A-module by
pull-back along ¢. Thus B,(A4)=4 & (A/K)* is generated by elements

“Al4}...|A], whilesand @ are given by (2.4) and (2.5) with ¢ omitted,
and with the "outside' factor A,c in the last term o (2.5) replaced by
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e(A). Thus B(A)—.K is a K-gplit, (A, K)-free resolution d the left
A-module K. In particular, when K=Z and A=2Z(II), this is the bar
resolutiond 1V.5.

The reduced bar resolution for an augmented algebraA isthe complex
B(A)=K,®.+B(A), 0 B,(A)=K and B, (A)=(4/K)* for n>0. The
contracting homotopy doesnot apply to B, but theformulafor the bound-
ary still applies, with ¢ and the left operator A omitted: In (2.5) replace
the operator 2, by &(4,) and 4,.¢ by ¢(A,).The ""reduced bar resolution*
is not a resolution, but is useful for computations. The left and the re-
duced bar resolution can aso be formed without normalization.

Exercises

1. For an augmented algebra A, let X be any relatively free K-split resolution
o K by left A-modules. Show that the canonical comparisons (Thm.IX.6.2)
@ B(A)=X, y: X—B(A) over the identity satisfy py=1. -

2. (CaRTAN. ) For A as in Ex.1, show that the left bar resolution B(A) is
characterized up to isomorphismas a K-split resolution X o ,K with a contracting
homotopy s such that s?=0 and X, =4A®sX, _,.

3. The normalization theorem can be proved directly. Show that a bimodule
chain transformation ¢: B (A, C) = B(4, C) with e{ = ¢ can be defined recursively
with ¢,=1, {,6,=s{,_,9¢,, Where ¢,=¢(F*[1C). Prove that »{=1, and by
similar means construct a chain homotopy {ne=1, all for n asin Cor.2.2.

4. For left A-modulesC and A, show that the t-cocycles o the cochain com-
plex Hom,(B (A,C),A) can be regarded as factor sets for K-split A-module ex-
tensions o A by G.

3. The Cohomology of an Algebra

The n-th cohomology module d a K-algebra A with coefficients
in a A-bimoduleA isthe K-module

H*(A,A)=H"Hom,_4(B(4,A),A)), n=01 ... (3.4)

it isacovariant functor & A. Here Hom,_ 4 stands for bimodule homo-
morphisms. According to the normalization theorem we can replace
the bimodule bar resolution B (A, A) here by the un-normalized bar
resolution 8 (A,A). Both B (A,A) and /?2(A A) are right A-split (4-4,
K-A) relative projective resolutions d the bimodule A, and aso are
K-split (A-A,K) relative projective resolutions d A, so H*(A4, A) is
the n-th relative Ext functor in either case, as stated in (1.3).

We call H"(A, A) the Hochschild cohomology modules d A, since
they were originally defined by HocrscHILD [1945] using exactly the
formulas given by the bar resolution with K a field.

The complex Hom,_ 4, (B(A,A),A) used in (31) may be described
more directly. Consder K-multilinear functionsf on the n-fold cartesian
product A><-..><A to A; call f normalized if f(4,,...,A) =0 whenever
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one 4, is 1. For example, the function [4] ... |4,]Jc d (2.3)is K-multi-
linear and normalized. The universal property o the tensor product
B, (A,A)=4 R (A4/K)* QA states that each normalized K-multilinear f
determines a unique bimodule homomorphism f: B, (A4, A)-+A such
that always

FOQA ... [ A1) =F(A, ..., 4,).

Hence Hom,_,(B,(4, A), A) is isomorphic to the K-module d all
K-multilinear normalized  on the #-fold product. The coboundary 61 is
the function given, with the standard sign, as

6]‘(11: cee Zn+1)=(_:)"+1{}“1f(}*2» sees Z’n+1)
+ Z (_ 1')if(2'1.r (A lili-!—l’ cee An—{—l) (32)

t=1

+ (— 1)"+1/(117 LR A'n) }“n+1}'

In particular, a zero-cochainis a constant a<4 ; its coboundary is the
function f: A—4 with f(A)=ail— ia. Cal an element ac A invariant
if Ae=ail for all A4, and let A" denote the sub-K-module d all such
invariant elementsd A ; thus

H(A, A)y==A4=[a| Aa=aA for al cA]. (3.3)

Similarly, a 1-cocycle is a K-module homomorphismf: A—A4 satisfying
the identity
fade) =Mf () +F(A) Ay, Ag, Ae€d; (3.4)

such a function f is called a crossed homomorphismd A to A. Itisa
coboundary if it has the form f,(A)=ai— Aa for some fixed a; cal f,
a principal crosed homomorphism. Therefore HY(A, A) is the K-module
d all crossed homomorphisms modulo the principal ones, exactly as
in the case d the cohomology d groups (IV.2).

As in the case d groups, H2(A,A) can be interpreted in terms d
extensions by the algebra A. An extension by the algebra A is an epi-
morphism ¢: I'»>A o agebras. The kernel J d ais a two-sided ideal
in I, hence a I'-bimodule. For each n, let J* denote the K-submodule
d I' generated by all products 7,7, ...7, o n factors ;,¢J. Then J=
JJ>J3> ..., and each J" is a two-sided ideal o I'. An extension ¢
issaid to be cleft if ¢ has an algebra homomorphism ¢: A —I" as right
inverse (cp=1,); thatis, if I" containsa subal gebra mapped isomorphic-
aly onto A by 6. An extension ¢ is said to be singular if J=Kero
satisfies J2=0. In each singular extension the I'-bimodule J may be
regarded as a A-bimodule, for o y=0cy’ implies (y—y’)€J, so J3=0
impliesy =97 for eachj¢ J. This definestheleft action o each A=0c(y)
onj.
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Conversaly, given any A-bimodule A, a singular extension d@ A by
A is a short exact sequence (x,a): A —I"-»A where I' is an algebra,
a a homomorphismd algebras, A is regarded as a I'-bimodule by pull-
back along a, and x: A ~I"is a monomorphism d I'-bimodules. For
given A and A, two such extensions (x,a) and (X', @) are congruent if
there is an agebra homomorphism q: I'>I" with #'=p X, 0=0"p.
This gives the familiar commutative diagram which implies that o is
an isomorphism. One example d an extension d A by A is the semi-
direct sum, defined to be the K-module A& A with product defined
by(a,A) (a, A) = (@434 A4as, 4 4:); withza =(a,0), 0(a, | )=Alitisa
singular extension o A by A, cleft by ¢ with ¢4=(0,A). Any cleft
singular extension is congruent to this semi-direct sum.

Consider those singular extensions (x,a) which K-gplit, in the sense
that there is a K-module homomorphism u: A -»I" which is a right
inverseto a. (Any cleft extension is K-split; if K isafield, any extension
K-splits)) Identify each ac A with xacl’, sothat x: 4—I"istheidentity
injection. The right inverse » can be chosen to satisfy the " normaliza-
tion" condition %#(1,4)=1p, for if # does not satisfy this condition,
a=u(1,)—1p7c4 and «'(A) =u(A) —Aa is a new right inverse which
is normalized. Moreover, a[u(4,1,)}F4A =a[u(p) u(l,)], so there are
uniquely determined elementsf (A, 1,)€A such that

u(Ay) u(Ag) =1 (A1, Ag)+ (A Ap) . (3.5)
Cdl f thefactor set o the extension corresponding totherepresentatives u.

Theorem 3.1. If A isa K-dgera and A a A-bimodule, eech factor
st o a K-glit singular dgebra extenson & A by A is a 2-cocycle o
Hom,_4(B(4, A4), A). The assignment to each extension o the cohomology
class d any one d its factor setsis a 1-1-correspondence betwemn the st
o congruence classes d K-split singular algebra extensions o A by A
and H2(A4, A) . Under this correspondence the cleft extensions (in particular,
the semi-direct sum) correspond to zero.

Proof. Regard #(4) as a representative d A in the extension I
The description o the I-bimodule structure d A can be written in
terms d « as w(a=ia, au(d)=al, (3.6)
for any ac4, 1¢A. Since u is a K-module homomorphism,

w(ky g+ kado) =kyu () + Rau(dy),  kicK. (3.7)
With the factor set f for # defined by (3.5), the rule (3.6) gives
[0 (&) 9(2e)] 9 (Re) =1 (A, Ae) AatF (R g o)+ 06 (A Aa )

(A) [ (Ae) 4 (Ag)]=af (Az, Aa)+ [ (Aes Ao da)+ 9 (A1 Az e) -
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Asthe product in I' is associative,

Mrf(Ag, A)— (A s, As)+F(Aes Ao Ae) — [ (A1, Ag) 23=0. (3-8)

This is exactly the condition 6f=0 that the factor set be a 2-cocycle;
moreover the choice #(1)=1 implies that f is normalized. A change
in the choice d « to «’ by w/(A) =g (A)F % (A) for any K-linear g: A-+A
with the normalization g(1)=0 gives a new (normalized) factor set
f+ dg. Thus the extension uniquely determines the cohomology class
off.

Any element in the algebra I" can be written uniquely as a+ #(4).
The K-module structure d I' and the sum and product d any two such
elements are determined by the equations (3.5)— (3.7). Given A, A,
and any 2-cocyclef, these equations construct theextension!”; in partic-
ular, the condition §f =0 suffices to make the product in I" associative.
When f=0, the construction is the semi-direct sum, so the proof is
complete.

A two-sided ideal Jissaid to be nilpotent if j"=0 for some n.

Theorem 32, (J.H. C. WHitEREAD-HocHscHILD.) |If K 45 a field
and if the K-dgdra A has H3(A,A)=0 for evary A-bimodule A, then
any extenson d A with a nslpotent kernd is cleft.

Let the extension a: I'»A have kernel J with J*=0. The proof
will be by induction on n. If =2, the extensionissingular and K-split;
since H?(A, J)=0, the extension is cleft by Thm.3.1.

Suppose the result true for kernels with exponent n—1, and take
a with kernel j==0, J*=0. Then j? is properly contained in J, since
J?=J would give j*==J4=0. From the quotient algebra I}J2?, form
the commutative diagram on the left in

J>I—4 "5
b et b
JIP=Tipd,  ed I

The projection ¢ has kernel J2, whilea' has kernel J/J3, henceisasin-
gular extension d A. By the case n=2, & is cleft by some g~.Now
P @A)=I"isasubalgebrad I', and ¢ induces’: I"-»@A=A with
kernel J2. Since (J#)*~*¢ J"=0, the induction assumption shows p’
cleft by some ¢’, s0 a is cleft by cp'e.

This result includes the Principal Theorem d Wedderburn for an
algebra I' o finite dimension (as a vector space) over a field. Each
such algebra has a two-sided nilpotent ideal R, called the radical, such
that I'/R is semi-simple. The Wedderburn Theorem asserts that if I/R
is separable, then the extenson I'>IJR is cleft. This follows from
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Thm. 3.2, for I'/R separable implies (Thm.V11.5.6) bidim I'/R=0, hence
bidim I'/R<1, hence H2(I'|lR, A)=0 for al (I'JR)-bimodules A, hence
I'>TR cleft.

Note. For algebras o finite dimension over a field, Thm.32 is also valid
without the hypothesis that the kernel is nilpotent [HocHscHILD 1945, Prop.6.11;
[RosENBERG-ZELINSKY 1956]. The obstruction problem for the construction o
non-singular K-split extensions with a given kernel [HocHscHILD 1947] leads to
an interpretation of H3(A, A) parallel to that for groups (1V.8). Extensions which
are not K-split require a second, additive, factor set in place of the linearity o u
in (3.7); we return to this question in § 13.

The cohomology groups d a fixed K-algebra A are characterized
by axioms like those for Ext, as follows.

Theorem 3.3. For each nzo0, H"(A,A) is a covariant functor o
the A-bimodule A to K-modules. H® is given by (3.3). H" (A, A)=0 when
»n>0and A isa bimodule d the formA=Homg (4, M) for M a K-module.
For each K-split short exact seqwence E: A= B—C o bimodules and
eachnz otherei sa connectinghomomorphismg, : H"(A, C) - H*t1 (A A),
natural in E, swch that the long sequence

—>H"(A, A)—H*(A, B)—~H"(4, C) => H**1(4, A) ...

i sexact. These properties determine H" and the connecting homomor phisms
E, up t0 natural isomorphisms o H".

The proof isleft to the reader; note that Homg (A,M) isa' relatively
injective’ bimodule.

If e: A—K isan augmented algebra, each left A-module D becomes
a A-bimodule D, by pull-back on the right along the augmentation.

Proposition 3.4. For a left module D over an augmented algebra
(A, g) the Hochschild cohomology o the bimodule D, can be computed from
the left bar resolution by a natural isomorphism

H"(AD,) =H"(Hom, (B(A),D)). (3.9)
Proof. The canonical isomorphism Hom(K,D)==D d Ileft A-

modulesis also an isomorphism Hom (K, Dy=~D, d A-bimodules. Thus,
for any bimodule B, adjoint associativity yieldsa natural isomorphism

Hom,(B ®,(K), D)=Hom,_,(B, Hom (K, D))=~Hom,_,(B, D,).

When B is the two-sided bar resolution, B&®,{.K) is the left bar reso-
lution; hence the result (3.9).

Note. Suppose that the K-algebra A is projective as a K-module. Then A*
is K-projective(Cor. V.3.3), hence 8, (A,A) isa projective A-bimodule (Prop. V1.8.1).

Hence ¢: B(A4, A)—A is a projective bimodule resolution of A. In this case H*
o (3.1) is therefore given as an "absolute' functor Ext:

H" (A, A) g Ext)_4(A,A) (if A is K-projective)
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Using B for g, the same result holds for A/K projective as a K-module. CARTAN-
EiLenBerG define the "Hochschild" cohomology by the absolute Ext functor
in all cases, so their definition does not always agree with ours.

Exercises
1. Show that A4 is a sub-A-bimodule of A when 4 is commutative.

2. Construct a ' Baer sum' of extensions of A by A so that the correspondence
of Thm.3.1 maps the Baer sum into the sum in H%(A4, A).

3. Show that H(A, A) is the group of congruence classes of those bimodule
extensions 4> B A which K-split.

4. Show explicitly that each short exact sequence 4> B »A o bimodules
which is K-split is also split as a sequence o right A-modules.

5 If A isan augmented algebra and M a K-module then the cohomology of
M, pulled back to be a bimodule, may be cal culated from the reduced bar resolution
asH"(A, M,) = H*(Hom (B (A), M)).

4. The Homology o an Algebra

Two A-bimodules A and B have a "bimodule™ tensor product
A&,_4B; itisobtained from the tensor product 4 &y B by the identi-
fications ALRQb=a®RAb, AaRb=aRbA

(middle associativity and outside associativity, as in (V1.5.10)). The
canonical isomorphism A&Q, A=A has an analogue for bimodules.
Indeed, if A isa bimodule and M isa K-module, a natural isomorphism

9: ( A ) ®=QCx., (4.1)
may be defined by 6[aQ AQRmPA)]=41aiQm, for the expression
on theright is K-multilinear and satisfies the middle and outside associa-
tivity rules. The inverse is given by 67 (a®m)=a @ (1Qm &1).

The Hochschild homology modules o a K-algebra A with coefficients
in a A-bimodule A are defined viathe bar resolution to be the K-modules

( AA)=H,(AQs-4B(A,4)), n=0,1,...,. (4.2)

As for cohomology, this is an instance (1.4) o the relative torsion
functor, for sequences o A-bimodules split either as sequences o right
A-modules or as sequences o K-modules.

In the definition (4.2) we may replace B by the un-normalized bar
resolution (A, A) with 8, (A, ) =ARA* RA. By (4.1), AQa-aB,(A,A)
=ARA" Hence H,(A, A) isthe n-th homology module d the complex
of K-modules 4®A4" with aboundary 8=d,—d,+ ...+ (—1)"d,, where
the d; are "simplicia'* faces:

2aQLQ QL) =ahQ1Q -Q4,, i=0,
=aQhQ QA4 Q---®Q4,, 0<i<n, 4.3
=ﬂ'na®}'1®"'®ln—1: 1=n;
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in the last term, A appears in front in virtue d the " outside’ associa-
tivity rule. In particular 2(a®A)=a A— A a, so that H, is the quotient

da A, Ho(d, Ay=4/{A a— ad|ded, ac A}, (4.4)
by the sub-K-module generated by all differences 1 a— aA.
Much asin Thm. 3.3 we have

Theorem 41 Fx afixed K-dgebraA, eech H, (A, A) is a covariant
functor o the A-bimodule A to K-modules, with H, given by (4.4) and

H, (A, AQLRA)=0, #>0, L a K-module.

If E: A»B-—>C isa K-split short exact sequence d bimodules, there is
for eech n>0 a""connecting'* homomorphism E,-H, (A,C)—H,_; (A,A),
natwral in E, such that the long sequence

o H, 1 (A, O H (A, A)—>H, (A, B)—>H, (A, C)—>-.-

is exact. These properties characterizethe H, and E, «p t0 natura sso-
morphism.

The functorial behavior d the homology o algebrasis like that for
groups (I1V.2.6). Condder quadruples (K,A, A, C) where K is a com-
mutative ring, A a K-algebra, and A, C are A-bimodules. A change
o dgebras (+ in A, — in C) isaquadruple

{=(x02a7): K44, C)~>(K, 4, A C) (4.5)

where x: K->K’' and o: A—A' are ring homomorphisms such that
always g (k4)=(xK) (A and where a: 4,4, andy: ,C,—C (opposite
direction!) arehomomorphismsd A-bimodules;i.e.,a(ia)=(gA) (aa)and
a(aA=(aa)(¢ A). The category with these morphisms { is denoted
#*-; here the exponent T — indicates that the changeis covariant in
the first bimodule A and contravariant in C. Omitting C and y gives
the category #*. We also use the category %y, with K=K' fixed and
X the identity.

The complex AQ,_4B(A,A) d (4.2) and hence H,(4, A) is a co-
variant functor on &*; in particular, this gives the previous result
that H,(A, A) for A and K fixed is covariant in A. Similarly, the co-
homology H"™(A, C) is a contravariant functor on #-. The action d
a change (with a omitted) on a normalized cochain f for A', d the
form (3.2), is defined by (*f)(4;, ..., A =yf (@, ..., 0 A

Exercises
1. Show that the isomorphism (1.1) is natural over the category I -.
2. Let £: A—K be an augmented algebra. For M a right A-moduleand G a
K-module, provethat
H (A, My=H, (M®4B(4)). H, (A, G)=H,(G®BA).
Mic Lane, Honol ogy 19
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5 The Homology o Groups and Monoids

The cohomology o a group IT was treated in Chap. IV, using the
functor Homy; for Z(II)-modules. Now that we have at hand the tensor
product Q= &z, We can defineand study the homology o agroup 1.
It is just aseasy to do thisfor amonoid M, though the added generality
isnot d great moment.

A monoid isaset M with a distinguished element | =1,, and a func-
tion assigning to each pair %, yeM a ""product™ xyeM in such a way
that always (xy)z=x(y2) and |x=x=x1. The monoid ring Z(M),
like the group ring, consistsdf all finite sums 3 4, %, with k;¢Z, x;e M,
under the obvious product, and with augmentation the ring homo-
morphism & Z(M)-—>Z defined by (2 k%)=2 k. This ring Z(M)
may be regarded as the free ring on the monoid M in the sense o Prop.
IV.1.1. By aleft M-module A we mean a left Z(M)-module, and we
write ®y for @zan. If M is a free commutative monoid on n gen-
erators, Z(M) isthe polynomial ring in » indeterminates.

The homology & M with coefficientsin a right module G, is now
defined by the left bar resolution B(Z(M)) as

H,(M,G)=H,(GRyB(Z(M)), n=01,.... (5.1)

Since B(Z(M)) is a Z-split projective resolution o the left M-module
Z=,Z, we may also write thisdefinition in terms d the relative torsion
product as
H, (M,G)=Tor{ ® (G, Z)=Tor;™ (G, 2). (5.2)
In particular, Hy(M, =G, Z. We leave to the reader the descrip-
tion d the cohomology d a monoid.
For a free module the higher torsion products vanish, hence
Proposition 51 For IT a group and F a free II-module
H (I, ) =F ®pZ, H, (I, F)=0, n>0.
Note that if F isthefreelT-module on generators {#}, then FQz Z is
the free abelian group on the generators {t®1}.
The commutator subgroup [IT, IT] is the subgroup o i7 generated by
all commutators xy x 1y for x,y inIT. It isa normal subgroup o IT;

the factor group II/[11, 7] is abelian, and any homomorphism o I7
into any abelian group has kernel containing [IT,IT).

Proposition 5.2. For IT a group and Z the trivial 17-module
H,(II, 2y=Z, H,(II, Z)=IIj{II,II]. (5.3)

Proof. The homology d Z is that d the complex Z®HB(Z(H%)
which is the reduced bar resolution B(Z(Il)) d §2, with By=Z, B,
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and B, the freeabelian groups on generators [ x]and [} y] for x==1 =1,
and with boundaries o[ x]=0, o[x|y]=[Yy]— [ xy]F [x]. This gives
Hy=Z and each [x] a cycle. By the boundary formula, its homology
class satisfies cls[xy]=cls[x]Tcls[y]. Hence ¢ x=cls[Xx] gives a
homomorphism ¢: IIJ[II,I11-H,(II, Z). Since B, is free abelian,
[ X]—>#[IT, IT] defines a homomorphism B, —II/[I1, IT] which annihi-
latesall boundaries. Thusan inverse d @ may bedefinedas g cls[ x]=
%x[I1,IT], S0 ¢ is an isomorphism, as required for the second equation
of (5.3).

(Thg homology d a group (or a monoid) is a special cased the Hoch-
schild homology d its group ring.

Proposition 5.3. For a right module G over the monoid M there is
an isomorphism H,,(M ,G)=H,(Z(M), ,G) of the homology of the monoid
M to that d the algebra Z(M). This isomorphism is natural in G.

Proof. Take A=Z(M), a Z-algebra. For any A-bimodule B an iso-
morphism ,G ®4_41B=GR4(BR4,Z) is given by gQb->gR (b&1).
Apply thiswith B=B (A,A); it shows the complex used to define the
homology d A over ,G is isomorphic to the complex used to define
the homology d M over G.

A corresponding result for cohomology is
Proposition 5.4. For left IT-modules A thereis a natural ssomorphism
H*(IT, A)=H"(Z(IT)A) .

Proof. This is a consequence o Prop.3.4, for the cohomology o
the group IT on the left was defined by B(Z(II)), that d the agebra
Z(IT) by B(Z(I), Z(IT)).

These propositions reduce the (co)homology d groups to that d
algebras. Conversely, the (co)yhomology o the Z-algebra Z(II) reduces
tothat o thegroup IT. Thisreduction depends on two special properties
d the group ring Z(I1). First, y x=x®x definesa ring homomorphism
y: Z(IN)—-Z{II)QZ(II); indeed, ¢ is the coproduct which makes Z(IT)
a Hopf algebra (VI1.9). Second, Z(II) is canonically isomorphic to its
opposite ring. Indeed, if the opposite ring Z(ZI)°® consists as usua o
elements »°? for reZ(II) with product 7°?s°?=(s7)°®, then the function
E(X)=(x2® on IT to Z(IT)® has &£(1)=1, &(xy)=(£x)(5y), hence
extends (Prop.IV.1.1) to aring homomorphismé&: Z(II) —Z(II)°® which
is clearly an isomorphism. Composition with the coproduct gives a ring
homomorphism

¢
2 Z(0) 2> Z() @Z(IT) ~2% Z(IT) @Z(IT)°®; (5.4)
it is that ring homomorphism ¥ which extends the multiplicative map

(%) =2 (7).

19*
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This map y dlows a reduction d the (bimodule) cohomology d the
algebra Z(I1) to the cohomology o the groupl17. Each bimodule zCp
is a left Z(IT) Z(IT)**-module and hence also a left IT-module ,C,
by pull-back aong . These new left operators o 77 on C will be denoted
as xoc for xell; they are not the original | eft operators, but are given
in terms o the bimodule operators as xoc=xcx™. Similarly, C,
denotes the right 1T-module with operators cox=zx"1¢X.

Theorem 55. For a group II and a II-bimodule C there are natural
isomorphisms

H”(Z(H)' C)EH” (H' ZC) ’ Hn(II’ Cx)an(Z(H)t C) (55)

snduced by the chain transformationh: B (Z(I1)) —B(Z(II), Z(I)) defined
as
hy(2[%) .. %)) =2[x%] ... |2)(x % ... %), xell

I n brief, ""two-sided'* operatorsin the cohomology o groups reduce
to ""one-sded’’ operators (EILENBERG-MAQ_ANE [1947], § 5).
For this proof, write B-= B(Z(II)) for the left bar resolution and
B =B(Z(I7), Z(II)) for the bimodule bar resolution. Since By is the
freeabelian group on generators x[#,] ... | ,], the formulagiven defines
h, a a homomorphism BL— B, o abelian groups. For a left operator
yell,
h(9 28] .. | 5]) = y{alal o ] (%) Ty

this shows h: B*—,B a homomorphism d left 17-modules. Now con-
sider the diagram

1) s:, | ’a‘ [T h (5.6)

with 1: Z-Z(II) the injection. The contracting homotopies s above
and below are both defined by ""moving the front argument inside',
hence the commutativity hs= sh (with 2_y=1).Then ¢ and @ above
and below are uniquely determined recursively by the fact that sis a
contracting homotopy; it followsthat he = ah, | eL=¢h,. Alternatively,
these commutativities may be verified directly; only the initial and
final termsin the boundary formulas require attention. Thus h: Bt—B
isa chain transformation.

Now let h* be the induced map on the cochain complexesHom (B, C).
Composition with the pull-back Homy _;—>Homy gives the cochain
transformation

g: Homy_p(B, C) ~Homyg( B, ,C) > Homz (B, ,C).
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Explicitly, for an n-cochain f on the left, ¢f is
(¢f) (xl’ AR xn):f(h[xll lxn])'—:[f(xli RS ] xn)] (xl xn)—l'

But for an n-cochain g d B- an inverse to ¢ is given by

(‘P_lg) (%1, ..., xn)—_‘[g(xl’ tees xn)] (xl xn)'

Thus ¢ is an isomorphism on cochains, hence on cohomology. The
argument on homology issimilar.

The isomorphisms o this theorem may be described in more in-
variant terms as an instance d change o rings. In homology, regard
H,(Z(IT), C) via (1.4) as the relative torsion product Tor,(C, Z(T)) for
the pair o rings (Z(IT) QZ(IT*®, Z), and H,(I1, C) via (5.2) asthe
relative torsion product Tor, (C,, ,Z) for the pair o ringsZ(IT), Z. Now
x and | : Z—Z(I1) yield a morphism

(10, 1): (2D, Z; C,, Z)~(ZUD) @2(H)™, Z; C, Z(II))

in the **change d rings" category W++d (1X.8.10). The diagram (5.6)
displaysh asthe chain transformation foundin I X.8 from the comparison
theorem, so the isomorphism d the present theorem is just the induced
map (%, 1c, | )*for relative torsion products in the change d rings.

Note. Among explicit calculations of the cohomology and homology of groups
we cite LYnDoN [1950] for groups with one defining relation; GRUENBERG [1960]

for a resolution constructed from a free presentation of I7; WaLL [1961] for a
""twisted product™ resolution for a group extension.

Exercises

1. (CARTAN-EILENBERG, p.201.) For an abelian group G regarded as a trivial
II-module the homology and cohomology can be calculated from the reduced
bar resolution. Establish the exact sequences

0-H,(IT,Z)®G —~H, (IT, G) >Tor(H,_, (11, Z), G)—>o0,
0->Ext(H*—1(I1, Z), G) -» H" (II, G) > Hom(H™ (11, Z), G} 0.
2. For G an abelian group, show H,(II, G) = G® (ITj{I1, IT)).
3. Study the effect of conjugation on H, (I7, G) (cf. Prop.I1V.5.6).

4. (CARTAN-EILENBERG, Cor.X.4.2.)) If the abelian group I7 contains a monoid
M which generates IT as a group, then each I7-module A or Gisasoan M-module.
Show that the injection M —IT induces isomorphisms

H™(IT, Ay=H"(M,A), H,(M,G)=H,(IIG).

6. Ground Ring Extensionsand Direct Products

This section will study the effect upon Hochschild homology and
cohomology d certain standard constructions on algebras: Ground ring
extensions and direct products. Tensor products will be treated in § 7.
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Consder the ground ring extension from K to a commutative K-
algebra R. Each K-agebraA yieldsan R-algebraA®R=R®A4; there are
ring homomorphisms jx: K+R and j,: A—AR given by 7k (k) =Kk1z
and 7,(A)=1x®4, 0 that (jx,74): (K, 4)—(R,4%) is a change o a-
gebras. Each AR-module or birnodule pulls back along 74, to be a
A-module or bimodule. There is also a passage in the opposite direction.
Each K-module M determines an R-module MR=R@M and a homo-
morphism j,,: M —+M® o K-modules given as jy (m)=1Qm. Each
K-module homomorphism x: M—N determines an R-module homo-
morphism u®: ME>NE by uRrQ@m)=rQum, so that u®j=ivn.
Thus TR(M)=MR, T®(u)=u® is a covariant functor on K-modules to
R-modules. This functor preserves tensor products (with & for &k,
as always), since j, and 4y yield a natural isomorphism

g (MONFMEQeNF, @(r@m@n))=rimQixn (6.1)

with an inverse given by ¢[(rQm) Rr(rQn)]=rr"Qmn. We
regard ¢ as an identification.
For any R-module U and any K-module M there is a natural iso-
morphism
v: UQM=UQME, y(uQm)=uQgiym (6-2)

d R-modules, where U®QM on the left is an R-module via the R-
module structure d the left factor U. The inverse o o is given by
P {uQr(rQ@m))=ur @m. There is a similar natural isomorphism d
R-modules

x: Hom(M, Uy=Homg (MR, U), (4f)p@m)=rf(m) (6.3)

with inverse defined for each R-module homomorphism g: MR+U as
(x72g) (m) =g (1 Qm).

The homology and cohomology o an extended algebra A% with
coefficients in any AR-bimodule A is entirely determined by that o
A with coefficientsin A pulled back alongj4: A—AF to beaA-bimodule:

Theorem 61. For K-dgeras A and R, R commutative, and for eech
AR-bimodule A there are natural isomorphisms
H,(A,;4)=H, (AR A), : H' (AR, A)=H"(A,;4))
of R-modules, where H(A, ;/4;) is an R-module through the R-module
structuredf A. Here z,, isinduced by the change o algebras® = (jk, 4, 14):
(K,A, ;4,) (R, AR A) in #*, and & by o=k, 14, 14) in &~ (cf. § 4).
Proof. On the un-normalized complexesfor homology, 7,: AQ A"
ARy (AR)"is just the composited y: ARA*=A Qg (A™R with ¢: (A")R
=(AR*. By (6.1) and (6.2) both are isomorphisms, hence 7, is an iso-
morphism for the complexes and hence for their homology H, (4, ;4,)
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H, (AR, A). The argument for cohomology isanaogous, using x in place
d p.

The direct product A=I<X d two K-algebras may be treated as
aspecial case d the direct product o two rings (1X.9). The Hochschild
cohomology H*(A,A) is Extf 5 (A,A), where R=A QA% is

(I<2) Q@ (I'<2)P= (I'QI'P) < {(I'Q X P) < (X QP) < (X QXP),
while Sistheimaged | : K—A®A°®; the projection d this image on
any one d the four direct factors d A4 QAP above is then the corre-

sponding image d K in that factor. Prop.1X.9.2 asserts that each
A-bimodule A has a canonical decomposition

A=IAI®IAII®IIAI®IIAII, A I"Alzf', A A (64)

into the bimodules shown; explicitly, ‘'4'=I'®, AR, I, etc. In par-
ticular, the A-bimodule A is represented as the direct sum A=I'@ X
d just two non-vanishing components; the I'-bimodule I' and the
Z-bimodule ~. Thm.IX.9.4 for the case o four direct factors now
implies
Theorem 6.2. For eech (I'<X)-bimodule A there are natural isomor-
phisms
H*(I'<X, A)=H*(I', TQ AQ )P H* (X, Z R4 AR4%), (6.5)
H,(I'<Z, A)=H, (I I'Q,AQ @ H,(Z, ZQ44@4Z). (6.6)
Specificaly, the projections I'cX—I" and A->I'QARQ4T" yidd
a morphism ¢’ in the changed algebras category & of § 4, hencea map
Ly H, (<2, A)—>H, (I ’'Q,AQ,T"). Replacement d I" by X' gives
L ; the isomorphism (6.6) is A—(Z, h, ¢y ). Similarly theisomorphism
(6.5), in the opposite direction, is induced by the projection I'< X -»I"
and the injection ' AQ,I'>A in k.

Exercises
I. If IIisagroup and K a commutativering, give a direct description of the
augmented K-algebra Z (IN)K. (It iscalled the group algebra of IT over K.)

2. If A isaA-bimodule, show that there is a unique AR-bimodule structure
on A% such that (jg.74.74): (K. A, A) (R, AR, 4F) is a change of rings in &#*.
Derive a natural homomorphism H, (A4, A)—~H, (AR, AR) and show by example
that it need not be an isomorphism. Note also that 4R pulled back by j4to be a
A-bimoduleis not identical with A.

7. Homology o Tensor Products
Consider the tensor product AQA’ d two K-algebras A and A'.
If A and A" are bimodules over A and A', respectively, then A® A4’
is a A®A’-bimodule, with left operators given as AR (aRa’) =
Aa®A’a’ and right operators similarly defined. In certain cases we
can compute the homology o A® A4’ from that o A and A'.
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Proposition7.1. If ¢: X—A4 and &': X' A’ are K-split resolutions
d left A- and A'-modules, respectively, then e®e: XQRX'->AQR4’ is
a K-split resolution d the left (A QA')-module AQA’. If X and X' are
relatively free 0is X ®X'.

Proof. The hypothesis that X is K-split means, asin Cor.IX.5.3,
that thereis a K-module contracting homotopy s of square zero. These
homotopies for X and X' combine, asin (V.9.3), to give a K-module
contracting homotopy for e®e': X QX'->A&®4’, also of square zero.

If X and X' arerelatively free, X,=AQM, and X;=A'QM, for
K-modules M, and M,, 0 (X®X'),=X (A4} Q(M,QM,), with
direct sum over p+g=mn, is also relatively free.

Applied to the bar resolution this gives

Corollary 7.2. For modules 44, ,.A’ there is a chain eguivalence

B(AA)DB (A A) T2 B(ADL), 404 (7-)

i n which the maps are chain transformations d complexes d left A A’-
modules commuting with ¢ and &.

Proof. By Prop.7.1, both sides are K-gplit relatively freeresolutions
of the left A@A*-module A®A’; apply the comparison theorem.

An explicit chain transformationis given by the following natural
map

HAQN [M®A| - |1,84,]aRa’} } 72)
=2 200 A Ain o A @A E o KilHid] e | B) '
indeed, the reader may verify that this is the canonical comparison.
Alternatively, f is the Alexander-Whitney map (VI11.8.7) defined on
B(4, A)=8y (A,A) by the smplicial structure of 8(A,A).
For A=A, A’'=A’, this corollary yields a chain equivalence
B(AA)®B (A A)== B(AR4, AQA) (7.3)
of AQA’-bimodules; the map f is again given asin (7.2).
Theorem 7.3. The homology and cokomology products induce homo-
mor phisms
pa: Hy(A, A) QH,, (A", A) > Hpy f(AQA, AQA"), (7.4
4 HY(A, A) QH™(A', A) >HM™(AQA', AQA') (7.5)
d K-modules, natural in the bimodules A and A’ and commuting with
connecting homomorphisms for K-split short exact sequences d bimodules

A o A'. For k=m =0, these products are induced by the identity map
d A®A'. The products are associative.
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Proof. The homology H,(4, A) is defined as H, (4 &®q B), where 2
is short for A ®A°® and B short for B(A, A). The homology product
d (VIIL.1.2) is the natural map

pu: Hy(AQeB) ®H,(4'Qa-B')~+H,y [ (ARA") RQaga (BRB')]

The right hand side is isomorphic to H;,,(A®A4’, AQA’) under the
equivalenceg, d (7.3), so the product 4 d (7.4) is defined &s gy 2y
in dimension zero (cf. (4.4)) it carries cls aQclsa to cls (a@a). If E
is a K-golit short exact sequence d A-bimodules, the tensor product
sequence E®g A’ is aso short exact, as a sequence d A-bimodules,
0 appropriate connecting homomorphisms are defined. They commute
with ¢, by Thm.VIII.1.3 and with the natural map g, and hence
with p4.

I n the above definition o this homology product, the bar resolution
B=B(A,A) may be replaced by any K-split resolutiond A by relative
projective A-bimodul es.

Thecohomology caseisanalogous. WriteHX(A, A) asH*(Homg(B, A)),
use the cohomology product

pH: HY (Homg (B, 4)) @ H"(Homy, (B’, A'))
—H*"(Homggo (BRB', AR A4’))
d (VIIIL.1.3), and compose with the isomorphism f* induced by the
chain equivalencef o (7.3) to definep asf* p¥. Sincef isthe Alexander-
Whitney map, $* may be regarded as a simplicial cup product. If
k=m=0, H°(A,A) is the K-submodule 44 d A consisting d the
invariant elements o A, asin (3.3). Now ac 44 and a’c A** imply that
aRa’'c (AR A)4®4 < the identity induces a K-module homomorphism

A1QA 5 (AQANBV=H (AR, AQA’).
The formula above for f in dimension zero shows that this map is 4.

Theorem 7.4. If A and A' are algebras over the samefield, the homo-
logy product for dsmodules A and A' yieldsfor each n a natural isomorphism
p,,:k > Hy(A4,A)QH, (A", AY=H,(AQA", AQA').

+m=n

Ifin addition A and A" are K-modules o finite type the cohomology pro-
duct is a natural isomorphism

P Y HYA, A)QH"(A', A)=H"(AQA', ARA").
Etm=n
Proof. The first isomorphism is an immediate application d the
Kiinneth tensor formula, as restated in Thrn.VIII.1.1. If 4 isd finite
type, each B, (A, A) isafree A-bimodule d finite type, so the Hom-&
interchange is an isomorphism and Thm.VI111.1.2 applies.
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This theorem was first proved by Rose [1952] before the techniques
d resolutions were known, so his proof depended essentially upon a
direct construction d the chain equivalence (7.3), using shuffles to
describe the map g.

For algebras over a field, " (A,A)=Ext}_4(A,A).

Using bidimA to denote the homological dimension o A as a bi-
module, this theorem shows, for algebras d finite type over a field,
that bidim (AQA’) =bidimA+ bidimA'.  Similarly, Thm.6.2 above

shows L . -
bidim(I™<2) =Max (bidim[’, bidim X).

This yields a fancier proof of the result (Prop.VIL.5.2) that bidim['=
O=bidim 2 implies bidm(I<2)=

Exercises

1. For G aright module and A aleft module over A, the k-th relative torsion
product is Hy (G®4B ®44), with B short for B(A,A). The external product for
the relative torsion functor is the map

pr: Torfh® (G, A) @Torld K (G, A3-Torid@4.K (G®G’, 494"
defined as the composite d the homology product for complexes, the chain trans-
formation
(GR®1B®14)B(G'®1B'®1rA4)=(GCRG)R104(BRB)®1@ +(AB4")

given by two applications o the middle-four interchange, and the chain equi-
valence g o (7.3). Show that 4 is natural, commutes with connecting homomor-
phismsin all four arguments, and reducesfor k=m = 0 to the middle-four inter-
change.

2 For K afield, show that the relative torsion product o Ex 1 glvesan iso-
morphism

2 Tor(G, A)®Tor,, (G’, A’) == Tor, (GG, AQA").
k+m=n

3. Show that the product 4 o thetextis(via (1.4)) aspecial cased theexternal
product for the relative torsion product.
4. Construct the analogous external product for the relative Ext functor.

8. TheCazadf Graded A gebras

If G, and 44 are modules over a graded K-agebra A, their tensor
product GQ,4A, as described in (V1.5.7), is a graded K-module. More-
over, thefunctor G& 4 A isright exact: Each K-gplit short exact sequence
A>>B-»C d left A-modulesyields a right exact sequence

G®AA——->G®AB—>G®AC—>O

of graded K-modules. To continue this exact sequenceto the left requires
the (A-K)-relative torsion products Tor, (G,C), each d which, like
G®44, must be a graded K-module Tor,={Tor, ,|$=0,1,...}. We
now describe how this comes about.
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The bar resolution applies to any graded K-agebra A, using the
general process d IX.7 for the resolvent pair d categories with &
the category d (automatically graded) left A-modules C, # that d
graded K-modules M, F(M)=AQM, e(m)=1&m, both categories
with morphismsd degreeo. Note that A={4,}, C={C,}, and M ={M}
are all graded K-modules. The explicit formulas for the bar resolution
in § 2 still apply, with the understanding that each A-module B, (4, C)
is graded; indeed, the degree o a generator B, is given by

deg A[4y] ... |A,) c=deg A+ deg 4;+ -+ deg 4,1+ deg c. (8.1)

This element has adso dimension # as an element d B, (A, C); in other
words, B (A, C) is bigraded by the submodules B,, , (A, C) d dimension
» and degree ¢ in the sense (8.1).

In consequence, the relative torsion functor TorX) is bigraded.
Indeed, if Gis a right A-module, this torsion functor is calculated as
the homology d the complex X=G ®,B (A,C), where each X,=
G®,B, isagraded K-module. Specificaly, X, isgenerated by elements
94| ---|A c with the degree given by (8.1) (with 4 there replaced
by g). The boundary homomorphism 2: X,—X,_, is d degree 0 in
this grading. For each dimension the homology Tor, (G,C)=H, (X)
istherefore a graded K-module, so may be written asa family {H,, ,(X)}
d K-modules. The relative torsion functor is the bigraded K-module

TortlX¥(G, C)=H,, ,(G®4B(A,C)). (8.2)

The first degree n is the resolution dimension; the second degree ¢ is
the"" internal" degree, inherited from the gradings d Gand C. Thestand-
ard long exact sequences for Tor, have maps which are o degree 0
in the internal grading #, hence may be regarded as a family o exact
sequencesin Tor,, ,, one for each p and variable #.

Similar remarks apply to the relative functor Ext,k,. It is the
cohomology d the complex Hom,(B (A, C),A), which is a complex
d 2-graded K-modules: That is, a family d complexes{Hom# (B, A)},
one for each integer 4. Therefore

Extfif (C, A)=H"(Hom, (B(A, C). A))

is a bigraded K-module, in which the second grading (by p) is a Z-
grading.

It suffices to know this functor for al modules € and A and second
grading $=0. This we prove by shifting degrees. For each graded
K-module M we denote by L(M) the same module with all degrees
increased by 1; formaly, L(M),,,=M,. The identity then induces
an isomorphism I: M —L(M) d graded K-modules, d degree 1, with
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inverse {: L{M)+M. A homomorphism g: M ->M’ d degree d is
afamily d K-modulehomomorphismsu,,: M, —M,,, ,; the corresponding
L{p): L(M)—>L(M’) o the same degree d is defined by L(u),1=
(—1)%p,: L(M), 1 —L(M’), 14415 in other words,

L(g)im=(—1)%€rlum, meM,, ImeL(M),,,.  (8.3)

The sign is the usual one for the commutation o morphisms L(u) and
| of degreesd and 1. Since L(p'u)=L(u’)L(u), L is a covariant functor
on the category d graded K-modules with morphisms o degree o,
while |1 M —L(M) is a natural transformation. A left A-module A
is a graded K-module with operators A @ A-~+>A, so L(A) is dso a left
A-module with operators

Ala)=(—1)%4(1a), acd,, LlacL(A),,,, (8.4)

L is a covariant functor on A-modules to A-modules, i: A—-LA is a
homomorphism d A-modulesd degree 1 and a natural transformation
d the identity functor to L. The sign in (8.4)is exactly that required
by the rule I(A a)=(— 1)%&*%€ 22 (7 a) for a homomorphism d degree1.

Composition with | yields a natural isomorphism
Hom?, (C,A)=Hom% }(C, LA)
and by iteration a natural isomorphism
Hom? (C,A)=HomY (C,L?A).

With C replaced by the complex B (A4, C), this yields the natural iso-
morphism
Ext}fx, (C,A)=Extl%(C, L?A), (8.5)

which for =0 includes the previous isomorphism. Similarly
Ext(y i (C, 4)=Ext{y)x (L C, 4). (8.6)

These functors Ext have proved useful for the Steenrod algebra for a
fixed prime number p; this is the algebra over the field Z, o integers
modulo ¢ consistingd all primary cohomology operations, modulo p —
Apawms [1960], LIULEVICIUS [1960].

Exercise

1. For A graded, regard the correspondinginter nally graded algebraA, =24,
simply as an ungraded K-algebra. Similarly A-modules G and C yield A ,.-modules
G, and C,. Prove that

Torids K) (G*, C*)= 3 TorS'AbK) (G, O).
5 X
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9. Complexesd Complexes

In any abelian category we may construct complexes; in particular,
there are complexes in the category whose objects are themselves
complexes and whose morphisms are chain transformations. These will
occur in our study d DG-algebrasin the next section.

A complex X d complexes may be displayed as a diagram

' d
Xpo oo Xpgn = Xy — Xpgq o

l 4 la' g
d d
Xp—l: ves _>Xp—1,q+1_’ Xp—l,q—_) Xp—l,q—l'_>' ..

with additional rows below and above. Each row X, is a complex with
boundary 4, while the successive rows form a complex under another
boundary & which is a chain transformation &. X —>X,, 1- Hence
o’d=d?'. Adjust the sign of d by setting 0" %, , __(—1) dx,,. This
gives two familiesd boundary operators

O Xpg>Xprg 0 Xpo>Xpaa

with &'¢'=0, 0”9"=0, and 99"+ ¢"&'=0. These imply formally
that (2’ 8")(8'+ &"’')=0. Thus the family X©°, &® defined by
x*,= > X,,, 0*=d+09"
p+g=n

is a (single) complex. We say that X© is obtained from X by conden-
sation; its degree is the sum d the two given degrees; its boundary
¢® the sum d the two given boundaries, with sign adjustment. This
sign adjustment may be made plausible by a more systematic presen-
tation.

Let o be any abelian category. Recall that a (positive) &-complex
X isafamily {X,} o objectsd & with X,=0 for p <o, together with
morphismsd: X, —»X,_, d & such that 92=0. These X are the objects
d the category & (&) d «/-complexes. The morphismsd &(&) are the
chain transformationsf: X —Y; they are families {f,: X,—»Y,} d /-
morphismswith af,=#,_, for all . A chain homotopy s: fa=f": X+Y
isafamily s,: X,—Y,, d &/-morphisms with 8s-sd=f—f". We also
use chain maps h: X+Y o degreed; that is, families{h,,:X,-»Y,H}
o /-morphisms with 8= (—1)?48. We do not explicitly introduce
the category with morphisms all such chain ""maps'” because our dis-
cusson d abelian categoriesis adapted only to the case d morphisms
d degree 0.

The lifting functor L o § 8 gives a covariant functor on &(«) to
Z (), which assignsto each complex X the complex L(X) with L(X), .,
=X, and differential L(9). The identity induces a chain map #: X —
L(X) d degree1; asin (8.3), L(&)i=—10. In brief, L raises all degrees
by 1 and changes the sign d the boundary operator.
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Theorem 9.1. Condensationis a covariant functor &(Z(«)) =& ().

Proof. Let X be a positive complex o positive complexes, in the
form

0<—-X0<-—X1<——~-<—Xﬁ_1<&- Xyeunns

Each X, is a complex, each 9, a chain transformation d complexes.
Replace by the diagram X’,

al
0Xg« X< <X <& X;,<—-,

where each 9 is a chain map d degree —1. More formally, set X,=
L*(X,). Thechain maps

Xp=LIP(X,) > P71 (X,) 2>

LYX, ) =X, ,
define @, as I1L?(9,)=L1#"*(9,)i*. Then 8,9,4,=0. Each Xj is an
&-complex with a boundary operator which we denote as ¢”. There-
foreX®=3 X, isan &-complex with boundary &'. On the other hand,
0p: )%,—*qu has degree — I, hence gives another boundary operator
in X" Now & is a chain map d degree —1 for the boundary ¢, s0
0"9=—a9". Therefore?®*=a+ d' satisfies 8*®*=0, 0 (XM, 8®) is
an «/-complex, called the condensation o X. This descriptiondf XM
agrees with theinitial description, since the boundary @” d X, is that
o X, with  sign changes due to # applications o L. Since X,, 2=0
forp>n only finite direct sumsare involved in the construction d X™.

Now let f: X—Y be achain transformation. |t isa family d chain
transformations {f, X —>Y,,} and determines f': X’—Y"’ as the family
Lh=LP(f,): X, Y, . Thus 1,8'=2"f, and &' fy=f,_,&'. Hencef*=2 f,
satisfies 9 f® = f#2®, <o isa chain transformation /®; X® — Y™, Thisshows
condensation a functor, as stated.

Proposition 9.2. Each chain hemotopy s: f=g: XY in Z(Z(H))
determines a chain homotopy S f8=~g®: XM+ YM ¢ thecondensed complexes.

Proof. We are given a family {s,: X —>Y,+,} d morphisms o
Z(HA) With 9p1155+5,_, —fP——gp Each s, is a chain transformation,
so determinesa chain map s,: X,—>Yy ., of degreel Specifically, s =
L+ (s,)1=1L1*(s,): L (X, )—+L"+ (Y,41). Since s, hasdegree1, 8"s,=
—s;a". On the other hand, by lifting, 8's’"+s"&’=f—g’. Adding,
s*=2 s, givesS™ X™ YMd degree1 with Ps™+ sTP=f*—g®; hence
s® isa chain homotopy, as asserted.
We dso consder the effect d condensation upon tensor products
d complexes. In theinitial category &, assume a tensor product which
is a covariant bifunctor on & to . A tensor product is introduced
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in the category (&) d «/-complexes X,Y by the usua formulas,
with (X®Y),= ¥ X,®Y, and
pHg=n
d=(0x Q1)+ (—1)1Q0: X,QY;>(XQY)p1g-1- (9.1)

In particular, if 4 isthe category d modules over some commutative
ground ring these formulas introduce tensor products in the category
#(%(A)) d complexesd complexes.

Proposition 93,  There is a unatwral isomorphism p: (X QY)®=
X°QRY".

Proof. For K and K single complexesin &(s#), and any p, q there
is a chain isomorphism g, ,: L#+(K QK') =L? K Q L'K’, given by

Vp, PR QE)=(— 1)1 PR QUL

Now let X and Y be complexesd complexes (i.e., in £(Z(«))). The
complex d complexesX® Y has (X®Y),=2 X, ®Y,, 0 they, , for
p+0q=n give a chain isomorphism d single complexes

Y L"((X®Y)n)5 Z LX) ®L(Y)

Thecomplex (X® Y)® isthedirect sum of the L*((X @ Y),,) ,with bound-
ary &+d'. Thecomplexxe@ Y®is (3 L*X,) @ (3, L*Y,) with boundary
determined by the usual tensor product formula (9.1) from the bound-
aries 3*=0'+9" in X®and in Y€ By construction, g, commutes with
the ¢ part d the boundary; a straightforward calculation shows
that it commuteswith &, and hence with the total boundary &°.

Note. The notion of a complex of complexes is not usually distinguished
from the closely related notion of a " bicomplex" , which will be discussed in XI1.6.
The superficial difference isjust one of sign, in theformula 8’y o= (—1)dx, ,.

10. Resolutions and Constructions

From algebras A we now shift to DGA-agebras U. When a U-
module A is resolved, two boundary operators arise: One from that
in A, the other from the resolution. Suitable combination o these
boundaries make the resolution into a single U-module, called a **con-
struction™; in particular, the canonical resolution o the ground ring
yields the ""bar construction B(U). This might be described directly
by the string d formulas (10.4)—(10.8) bdow, which yied the basic
properties d B (U), as formulated in Thm.10.4, as well asits relation
to the " reduced" bar construction d Cor.10.5. Instead, we first describe
the bar construction conceptually by condensing the canonical reso-
lution for a suitable relative category.
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Let U be a DGA-algebra (differential graded augmented algebra)
over the commutative ring K. Each left U-module A (as defined in
(VI.7.3)) is by neglect a DG-module (i.e., a positive complex d K-
modules). It follows that U determines a resolvent pair d categories

& = dl left U-modules A, with morphismsd degree 0,
A =al DG-modulesM,with morphismsd degreeo,

FM)=UQ®M, and e(m)=1QmecF(M). Write ¢: U+K for the aug-
mentation d U; by pull-back, ,K isaleft U-module. An augmentation
d Aord M isamorphism

g A=K, g M->K.
Proposition 10.1. Each left U-module A determines a DG-module
A=KQuA=A[J 4,
where Jisthe kernd of &: U—K. If A isaugmented, 0is A.

Proof. Recall (VI1.7) that the tensor product d U-modules is a
DG-module. Since J»» U -»K is an exact sequence d right U-modules,

JRQuA->URQuyA—-KQQuyA—>0

isaright exact sequenced DG-modules. But U @y A= 4, so the module
A on the right is isomorphic to the quotient & A by the image A o
JQuA. If A is augmented by ¢4, define an augmentation d 4 by
gk QRQa)y=Fke, (a). _

Cdl 4 the reduced module d A and p: A—>A=A/JA its projection.
The U-module A islike a "*fiber bundle” with ""group™ U acting on A
and ""base" A obtained by "dividing out" the action o U. The corre-
spondinganalogued an acyclic fiber bundleisa' construction™. (Warn-
ing: This terminology does not agree with that of CarTan [1955].)

A condruction for U is an augmented left U-module ¢.: C— K
which has a DG-module contracting homotopy d square zero. This
homotopy may be written as

t_y: KC, t,:C,»C,.,, n=0;

¢t_, is a morphism d DG-modules, t={z,|n=0} is a homomorphism
d graded K-modules, d degree 1, and

8Ct_1=1, 3t+ta=1—-—t_lb‘c, tt_1=0=tt- (10.1)

A construction C is relatively freeif there is a graded K-module D
and an isomorphism U @ D=C d modules over the graded algebra U.
The definition d the reduced module C then reads

6—")~=‘K8®U(IJ®D)=(K3®U U)®D=K®D=D,
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hence D may be identified with C, so a construction is relatively free
if thereisan isomorphism

¢: UQC=C (of modules over the graded algebra U).

To repeat: ¢ commutes with the operators by we U, but not necessarily
with the differential. Moreover, the projection p: C—-»C=C/JIC o
Prop.10.1 is given by p@u®t)=c(u)c. Hence i(f)=¢p(1RE) is a
monomorphism i: C—C o graded K-modules with 4 the identity
C—C. Wecan and will usei to identify C, as a graded K-module (not
as a DG-module) with a submodule o C.

Theorem 10.2. Condensation 1S a covariant functor on .#-split reso-
lutions X o K by U-modules to constructionsX© for U. If X i srelatively
free, 0 is X°.

Proof. Let gx: X— K bearesolution by U-modules X,,. By neglect
each U-module X, isa DG-module; that is, a positive complex. By the
same neglect X isa complex d complexes, so has a condensation X °=
DI X which is a DG-module under boundary operators &, &
and ¢*= 3’+a But if A is a U-module, then L(4) is a U-module
with u(llm)—( 1)d€g“l(um) Hence L? (X,) is @ U-module with differ-
ential d', while &: L?(X,)—~L?"1(X, ;) is a map d U-modules o
degree —1, so that, writing du for thed|fferent|al o #eU,

I"(ux)=(0u) x+ (—1)%B%u (8" %), O'(wx)=(—1)%“u(dx). (10.2)

The augmentation ¢y d X condenses to an augmentation &®: X®— K.
The contracting homotopy o X (present because X is #-split) condenses
by Prop.9.2 to a contracting homotopy s® of square zero in X°. This
s® satisfies the analogue o (10.1}; in particular

OO0 =1—5%¢% O's®+s%0"=0, (10.3)

If X isrelatively free, each X, has the form U&Q M, for some DG-
module M, . Thus L?(X,)=U QL?(M,), so X°*=U Q> L?(M,) shows
XO relatively free.

Next we condense the canonical comparison (Thm.IX.6.2).

Theorem 10.3. (Comparison theorem.) |If X K isa relatively free
resolution and Y— K an #-split resolution, both by U-modules, there
iS a unigue homomorphism @: X°+YO o augmented U-modules with

wX.C SSIKU S. Y., -

where s® i s the contracting homotopy of Y®.

The proof is by (IX.6.1); the submodule eM o X is here X®cX®.
Mac Lane, Homology 20
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The left bar resolution B{U) is an .#-split resolution d K by rela-
tively free left U-modules, so its condensation B®(U) is a construction
called the bar construction. Specifically, B®(U) is the graded K-module
2 UQLP((U/K)?); as a tensor product, it is generated by elements
which we write in the usual form as

ulogy] ... |1, =0 R+ K) R -+ @ (u,+K)

for « and #,cU. By normalization, this element is zero if any %K.
The degree d such an element is

deg(u[uy] ... |u,]®)=p-+ deg u+deg u+ -+ 4 deg u,; (10.4)
an element is multiplied by #»'¢ U by multiplying its first factor by u.
The augmentation is

e3m[1®)=e(w), (10.5)

and the contracting homotopy is determined by s_,(1)=1[]* and

s®(u[w] ... |%p]®)=1[te| ] ... |4,]®, p=0. (10.6)

The normalization insures that s®*s®*=0. The formulas for the two
boundary operators & and é&"” are most easily found from that for s®
by recursion on 4, using (10.3) and (10.2); they are

(1] .. |u,))=0u[wy) ... |%,]®

~—§1(- 1)o=2ufuy] ... |0 ... |u,)®, (10.7)
O (o] .. |,)®) = (—1)ommy [ug] ... |00,]®
-1
+ j§1 (—1)%ulwy| ... | w0004 .. |0, ]® (10.8)
4 (—1)Pu [“1[ |“p—1:|.3(up):

with the exponents ¢; o the signs given for ¢=0, ..., p by
¢;=i+deg u+deg u;+ --- +deg w;=deg (u [t ... |%]). (10.9)

Except for sign, &' is the boundary d a tensor product, and &' like
that of the bar resolution. Incidentally, the signs in (10.7) and (10.8)
can be read as cases d our usual sign conventions.

Thus Thm.10.2 gives

Theorem 10.4. For each DGA-algebra U the condensed left bar
construction B®(U) =ZPU®(U/K)" is an augmented left U-module with
augmentation £§, grading given by (10.4), boundary 8*=2&'+ 8" by (10.7)
and (10.8), and contracting homotopy by (10.6).




10. Resolutions and Gonstructi ons 307

This theorem can aso be proved directly from the formulas above,
with proofs o (10.2), (10.3), and 2'@"’+ 8" &'=0 en route.

In the sequel we use only the condensed bar construction for a
DGA-algebra, so we shall drop the now superfluous dot. The curious
reader may note that the signs occurring in this boundary formula
are not those arising in the bar resolution d § 2 for an algebra. The
change d signs can be deduced from the lifting operation LP; we have
avoided the meticulous control o this change by deriving the signs from
(10.2) and {10.3).

As for any U-module, the reduced bar construction B(U) has the
iorm K, ®yB(U), and B(U) is regarded as a graded K-submodule of
B (U).

Corollary 10.5. For each DGA-algebra U the reduced bar construc-
tion B(U) isa DG-module over K with B(U)= 2 L*((U/K)?). If elements
are denoted by [uy] ... |%,] for #;c U, the degree d these elementsis given
by (10.4) with % omitted, the boundary o=2"+¢" by (10.7) and (10.8)
with u=1 and with s, replaced by e(w,) in the first term on the right o
(10.8).

Note also that the projection p: B (U)—B(U)=B(U)/JB (V) is
given by p(Ulw| ... |u,]))=¢(u)[%|...|u,]; it is @ morphism of DG-
modules o degree zero. Theisomorphism ¢: B (U)=U ® B (U)isgiven
by @ (UL ... |%,])=4 @[] ... |u,]; it is an isomorphisn o modules
over the graded algebra o U, but does not respect the differential,
because ¢ 8= d'p.

The bar construction has the convenient property

s,K o sB(U)=B(U); (10.10)

in words, theimage d the contracting homotopy is exactly the reduced
bar construction, regarded as a graded submodule o B.

Corollary 10.6. Both B(U) and B(U), the latter with its contracting
homotopy, are covariant functors d the DGA-algebra U with values in
the category d DG-modules over K. Moreover, p: B—»B and i : B—~B
are natural transformations d functors.

Proof. If u: U=V is a homomorphism o DGA-agebras, then

B (V) pulled back aong g isa U-module, still with a K-module contract-

ing homotopy. Hence the canonical comparison o Thm.10.3 gives a
unique homomorphism

B(u): B(U)~,B(V) (10.11)

o U-modules with ¢'B(p)==¢. Moreover, JB(U) is mapped into
#(J)B(V), so B(x) induces a homomorphism B (x) such that B (u)=
B (p)p. These maps make B and B functors, as asserted.

20*
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Exercises

1. Describethe bar construction explicitly when K=Z, isthefield o integers
modulop and U=E (x) is the exterior algebra on a generator of odd degree.

2. Obtain aresolution of Kwhen K=Z,, U= P[x]/(+?), theringd polynomials
in an indeterminate x o even degree, modulo #?.

3. (Uniquenessd comparison.) If X —.K isarelatively free resolution, while
C isany constructionfor U with contracting homotopy t, there isat most one homo-
morphism ¢: X®-+ C o augmented U-modules with ¢ (X®)(¢_,Ku#C.

11. Two-stage Cohomology of DGA-Algebras

The cohomology o a DGA-algebra U with coefficientsin a (trivially
graded) K-module G can be defined in two ways or "' stages”. For stage
zero, regard U, by neglect, as a complex (= a DG-module); so that
Homg (U,G) and GRkU are complexes with (cojhomology the K-
modules

H*(U, 0; G)=H*Homy (U, G)),
H,(U,0;G)=H,(GRU), k=0,1,....

For stage one, the left bar construction B (U)withitstotal boundary &®
isaleft U-modulewhileGisa U-moduleby pull-back, so Homy ( B(U), ,G)
and G, &y B (U) are DG-modules with (co}homology the K-modules

H¥(U, 1; G)=H¥(Hom, (B(U), .G)), (11.1)
Hy(U,1;G)=Hy(G,QuB(U)), k=0,1,.... (11.2)

Since B (U)-=,K arises from a resolution, the definition o H,(U, 1; G)
resembles that o the (U, K)-relative torsion product Tor,(G,, K), but
it is not a relative torsion product because it uses the total boundary
operator 9* o B(U) and not just the boundary operator ¢ arising
from the resolution.

A homomorphism u: (U,g)—(V,E) d two DGA-algebras over a

fixed K is a homomorphism o DG-algebras with ¢u=e U—K.
Thus B (V) is an augmented U-module by pull-back, and g induces
B(u): B(U)—,B (V),a homomorphism o augmented U-modules which
commutes with the contracting homotopy. It follows that H, (U, 1; G)
isa covariant bifunctor o U and G and that H*(U,1; G) is a bifunctor
covariant in G and contravariant in U. The reduced (condensed) bar
construction isalso a covariant functor of DGA-algebras to DG-modules.

The (co)homology modules d U may be expressed by the reduced
bar construction. Indeed, since G is a K-module, each U-module homo-
morphism B (U)—,G must annihilate JB(U), where J is the kernel
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d the augmentation ¢: U—K, hence induces a K-module homomor-
phism B(U)=B(U)/JB (U)+G. This gives the natural isomorphism

H*(U, 1; G)=H* (Homy (B(V), G)). (11.3)
Similarly G, &y B (U)= (G&®K,) ®y B (U)=G&«B (U), 0
H,(U, | ; G)=H,(GCRxB(U)). (11.4)

If X-»,K isany.#-split resolution by relatively free U-modules, stand-
ard comparison arguments give

H*(U, 1; G)=H* (Homy (X°, ,G)) = H* (Homy (X*, G)),

and similarly for the functorial behavior and for homology.

""Suspension’ maps stage zero homology to that on stage one.
Let S: U—B(U) be defined by S(#)=[u]; note that Sis just the
contracting homotopy restricted to the subcomplex U o B(U). Thus
Sisahomomorphisnd degreet d graded K-modules with §S=—S29,
hence induces similar maps GQ UG ®B (U) and Hom(B (U), G —
Hom (U, G) and thus the homomorphisms

S*: Hk(U, 0; G)—)Hk+1(U,1;G), (11-5)
S H*Y(U, 1 ; G)—>H*(U, 0; G), (1.6)

called suspension, and to be used in the next section.

To study the dependence d H(B(U)) on H(U) we use a filtration
d the complex (DG-module) B. Let E=F, (B(U)) denote the sub-
module d B spanned by all elements w=[%\ ... |%,] with 2<p; we
say that such an element w hasfiltration at most $.

Proposition 11.1. For eech DGA-dgera U the associated complex
B(U) has a canonical family o subcomplexes F,, with F,CE C.--CF,C
... UF,=B(U). The elements in B(U) o total degree n liein F,. For
p=0, Ey=K, with trivial grading and differential, while if >0, there
is a natural isomorphism o chain complexes

FJF,_,=LUK)® - QL(UK)  (p factors). (11.7)

Only thelast statement needs verification. The "internal* boundary
operator ¢’ d B carries an element o filtration s to one d filtration p,
while the " external™ boundary operator & maps one d filtration $
to one d filtration p—1; F, isindeed closed under the total boundary
9=9+9". Moreover, the formation d the quotient E,/F,_, drops all
the &' terms from the total boundary, so the boundary in E/E,_, is
given by d' asin the formula(10.7), with »==1. Thisis exactly the for-
mula for the boundary in the tensor product d # copies d L(U/K),
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for the sign exponent ¢; isthat o the tensor product boundary formula,
and the minus sign in front o the summation is that introduced in
L(UJK) by the definition L(9)iu=—10u.

A chain transformation g: X —Y of complexesis called a homology
isomor phism if, for each dimension n, H,(u): H, (X)=H, (Y).

Theorem11.2. (EILENBERG-MACLANE [1953b].) Let u: UV
be a homomorphism o DGA-algebras over K whichis a homology isomor-
phism. Moreover, assume that K is a field or that K=2Z2 and each U, and
each ¥, is a free abelian group (<.e., a free K-module). Then the induced
map B(p): B(U)—B(V)is a homology isomorphism, and for each K-

module G pe: Hy(U,1; G)=H,(V,1;G);
u*: HYV,1;G)=H*(U,1;G).

The proof isan exercisein the use o filtration and the Five Lemma

First, u carries 1y to 1y, hence induces a chain transformation
U/K—V/K. We claim that this map is a homology isomorphism. Indeed,
the special assumptions (K afield or K=Z, U, free) show that 1 : KU
isa monomorphism; hence K - U -» U/K is an exact sequence o complex-
es, which is mapped by g into the corresponding exact sequence for V.
Therefore . maps the exact homology sequence o the first into that of
the second. For n=2, H,_,(K)=0 and the exact homology sequence
reduces to the isomorphism H, (U)=H,(U/K). For n=1 it becomes

0—~H,(U)—->H (U/K) —>Hy(K) ~>Hy (U} -~ H, (U/K) >0

with H,(K)y=K. Thisis mapped by x into the corresponding sequence
for V. Two applications o the Five Lemma give H, (U/K)=H, (V/K),
Hy(UKy==Hy(V/K), sou: U/K-—V/Kisindeed a homology isomorphism.

Next consider the map B(u): B(U)—B(V), given explicitly as

This map respects the filtration, so carries E,=F,(B(U)) into the
corresponding B =F,(B(V)). We claim that the induced map E,/F, _, —
EJ|F;_, isa homology isomorphism. Indeed, the quotient E/F,_, is just
an n-fold tensor product (11.7), and the induced map is u&Q--- Qu
(nfactors). If Kisa field, thisisa homology isomorphism by the Kun-
neth tensor formula (Thm.V.10.1). f K=Z and each U, and each V;,
is a free group, thisis a homology isomorphism by a consequence o the
Kunneth formula for this case (Cor.V.11.2).

Finally, we claim that x: E,—F’ is a homology isomorphism. The
proof is by induction on . For p=0 it is obvious, since fF=K=F;.
For larger g, « maps the exact sequence F,_, » F, » E/E,_, d complexes
into the corresponding exact sequence for E/. The corresponding long

(11.8)
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exact homology sequences give a commutative diagram with the first
row
Hy\q (1';/13;—1) —H, (E:—1) —H, (1';) —H, (I';/Fp—l) —H,_, (I';—l)

and vertical maps induced by g. By the induction assumption and
the previousresult for E/F, _,, the four outside vertical maps are iso-
morphisms, so the Five Lemma proves H, (F,) — H, (F,) an isomorphism
for every k.

Since in each total dimension #, E,B gives al o B for p large, it
follows now that B(u): B(U)—B(V) is a homology isomorphism.
Theisomorphisms (11.8) then follow by an application d the appropriate
universal coefficient theorem (K a field or K=z with B free).

Exercises

1. (The contraction theorem of EI1LENBERG-MAcLANE [1953b, Thm.12.1].)
If w: U—V, v: V- U are homomorphismsof DGA-algebras with gy=1 and a
homotopy t with a:+za=vp— 1, ut =0, tv =0, show that there is a homotopy
T with 81 +78=B(») B(u) —1, B(wi=0, fB(») =o0.

2. Obtain the filtration of Prop.11.1 for an arbitrary .4-split relatively free
resolution of ,K by U-modules.

12. Cohomology of Commutative DGA-Algebras

Let U and V be two DGA-agebras over K. Their tensor product
U®V is adso a DGA-agebra, while the tensor product  a U-module
by a V-moduleisa (U &® V)-module. I n particular, the bar constructions
B (U) and B (V) yidd an augmented (U & V)-module B (U) QB (V).
Now B(U)®B(V) is a construction, with a contracting homotopy ¢
givenin dimenson —1 bys_; ®s_;: K->B&B and in positive dimen-
sions by the usual formulat=s®1-+s_;e®s for the tensor product
d homotopies. Moreover, B (U)QB (V) is relatively free. Indeed,
B(U)=U®B(U) is an isomorphism d modules over the graded
agebrad U, so

B(U)®B(V)=UQB(U)QVRB(V)=URQVRB(U)QB(V)

is an isomorphism of modules over the graded algebrad U®V, and
B(U)®B (V) is relatively free. One may show that its reduced DG-
moduleis exactly the tensor product B(U) @ B(V) d the DG-modules
B(U) and B(V). Findly, by Prop.9.3, the construction B (U)® B(¥)
could also be obtained asa condensation — specifically, asthe condensa-
tion d the tensor product  the original bar resolutions. Hence we can
apply the comparison theorem to obtain homomorphismsd augmented
(U & V)-modules y
B(U®V)==B(U)QB(V). (12.1)
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Let us choose for f and g the canonical comparisons (Thm.10.3) with
IBURV) < t,K v ¢(B(U)QB(V)),
¢BU®B()] < s,K v s BURY).

By the comparison theorem again, there is a homotopy 1==2gf. On the
other hand, by (10.10), s_;KusB({UQV)=B(UQV), so

fe[B(U)RB(V)] < t4K v {(B(U) QB(V)).

This shows that fg is the canonical comparison o B (U)®QB (V) to
itself, so fg=1. Since f and g, as canonical comparisons, are unique,
they are natural in U and V.

A DGA-agebra U is commutative if u,cU, and #,c U, have u,u, =
(—1)??uu,; that is, if zr=n: UQU U, where 7: UQV>VRU
is the usual interchange and = the product map for U. Now the tensor
product U @ U isdso a DGA-algebra; a diagram shows that when U
is commutative its product mapping z: U® U —U is a homomorphism
of DGA-algebras. Therefore the " external™ product g o (12.1) in this
case gives an internal product in B(U) as the composite

ng: B(U)Y®B(U)-%> BURQU)22 B(U). (12.2)
Here B (U) isa U® U-module by pull-back along n: U® U — U, while
B (n) is the canonical map, as in (10.11). Therefore the product my o
(12.2) can be described as the canonical comparison.

Theorem 12.1. If U is a commutative DGA-agebra, then B(U) is
a commutative DGA-algebra with identity [] under the product mg.
Also mg is a homomorphism of augmented modules over U@ U. This
product induces a product B(U)QB(U)—B(U) such that B(U) is a
commutative DGA-algebra, and the projection B (U)—B(U) a homo-
morphism of DGA-agebras, while inclusion B(U)-+B (U) is a homo-
morphism o graded K-agebras.

Proof. The identity element of U is represented by the map
I: K»U. With B(K)=K, form the composite map d U-modules

B(U)=B(K)®B(V) —~2> B(U)®B(U) ~2> B(U).
Here we regard B ® B as a U-module by pull-back along | @1: KQU
—U®U andthen B (U)asa U-moduleby pull-back along 7y (I1)=1.
Hence the composite map is the canonical comparison o B (U) to itself,
so is the identity map. This shows that B(I)1gx=[] is the identity
element o B (U) for the product zz. Similarly

wp(1Q7p), (M ®1): B(U)@B(U)QB(U)—~>B(U)
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are both canonical, so must be equal. This gives associativity, and
makes B(U) a DGA-algebra. There is an analogous proof that the
product is commutative.

By definition, B=B/JB, where J is the kernel o ¢: U—K; there-
fore, by LemmaVIIL3.2, the kernel T @+ BQB-B®B is the
union d theimagesd /B &®B and B® JB. Since ag; is a homomor-
phism d (U ® U)-modules, it carries this union into JB and thus
induces a unique mapz: B BB with Z(p Qp)=p 5. From the
uniquenessd thisfactorization it followsreadily that B isa DG-algebra
under the product ® with augmentation given by B,=K, and that #
is a homomorphismd augmented algebras.

It remainsto show that i : B— B isa homomorphismfor the product :
g (1 Qi)=1i7: B(U)QB(U)—-B(U).

Since g is canonical, the image d 7 (¢ ®4) liesin BCB; on this sub-
module 7 isthe identity, and

ipap (1 Q1) =1 R (p Q) (( Q1) =i R(pL Qp1) =17,
as desired. This completes the proof. Note that the products in B and

U determine that in B; indeed, since s isa homomorphismd (U ® U)-
modules, we have

g [(1y Q2 B) @ (4 @ By) 1= (— 1) e o6b) g4, 04,7, (B RBy)  (12.3)
for any two elements?,, 5,¢ B(U).

Sinceg is canonical, it can be given by an explicit formula; the for-
mula is (except for signs) just the explicit map ¢ d the EILENBERG-
Z1LBER theorem, as given by the simplicial structure d B(U). As in
that case (VIIL.8), let t be a (+, g)-shuffle,regarded as a suitable per-
mutation o the integers{l, ...,++q}. For elements

by=[uw|...|w,), by=[w]...]v,] € B(V),
define a bilinear map (theshuffle product) «: E(U)@B‘(V)—»E(U@V)
by labelling the elements », ®1, ..., #,®1, 1Q7, ..., 1Qy, d URQV
in order aswy, ..., w,,, and setting

[ - |op]% [y ... [vq]=§_‘| (— 1) [y - .. | @eriprg)) » (12.49)

where the sum is taken over all (p, g)-shufflest and the sign exponent
¢(t) is given in terms d the total degrees as

e(t)=2(deg[w]) (deg[v;]), t()>t(p+)) i<p,i=q. (125
This sign is exactly that given by the sign convention, since the sum

is taken over all those pairs o indices (i,7) for which %, d degree
deg[#;] has been shuffled past »; o degree deg[v;].
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Theorem 122 The canonica comparison g o (12.1) is given, for
dements 3, and b, o B(U) and B(V), respectively, by

9l(uEy) @ (vBy)]=(— 1)1 B (u V) (B b,),

Proof. The formula is suggested by (12.3). 1t is clearly a homo-
morphism d modules over the graded algebrad U@V, and it carries
B(U)®B(V) into B(U® V), 0 is canonical. The proof is completed
by a verification that 8g=g@a. This is straightforward, using the defi-
nition d g and d 8=5*=0'49" in the bar construction. We leave
the details to the reader, or refer to EiLENBERG-MACLANE [1953 D),
where the proof isformulated in terms d a recursivedescription d the
shuffle product =.

Note that the formula(12.4) together with (12.3), in the form
(10,B1) # (143 Dy) = (— 1)\de8 %) e8Py 4, (By2 D),
completely determines the product in B(U). For example,
[] # [v] = [w] v] + (— 1)1 +eea L+ degol [y 4]
again, with an evident " shuffle’,
[4]* [v]| w] = [4]| v| w] £ [v| | w] L [v]w|u].
Corollary 123 If U is commutative, the dgebra B(U) is dtrictly
commutative.
Proof. For 5=[w,]...|u,], each term in Z*} occurs twice for two
shufflest, t, where
et)+e(t) = 2 (deg[w,]) (deg[u;])= (deg b)2.
"’
When deg6 is odd, the signs are opposite, so 6*5 =0, as required for
strict commutativity.
The essential observation is that each commutative DGA-algebra U
yields a commutative DGA-algebra B(U), so dlows an iteration to
form a commutative DGA-algebra B*(U) for each positive #. Thi s

gives an n-th stage cohomology (or homology) d U with coefficients
in the K-module G as

H¥(U, n; §=H"(Hom(B*(U), G)).

This may be applied when U=Z (1) isthe group ring d a commutative
multiplicative group 17. The n-th stage homology and cohomology
groups d this group 17, with coefficientsin the abelian group G, are

thus Hy(IT, »; G)=H,y(6 QB (Z()), (126)
Hk(17,n; G)=H"(Hom(l—3” (Z(H)), Q); 12.7)
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for =1, these are the homology and cohomology o I7 as treated in
Chap.IV. Note that the suspension S: B* »B»*+!1 d (11.5) gives homo-
morphisms
Se: Hy T, n; G)—>H, (T, n+1;G), (12.8)
S grits 17,01 1; G) - H*? (17n; G). (12.9)

Thedirect limit & H,, ,(I1, n; G) under S, givesanother set d "' stable™
homology groups H,(IT; G) for the abelian group II. They have been
studied by EiLENBERG-MACLANE [1951, 1955].

For generd =, the groups H*(71, »; G) have a topological interpreta-
tion in terms d the so-called Eilenberg-Mac Lane spaces K (1, n). Here
K(II,n) is a topological space whose only non-vanishing homotopy
group isx,=IT in dimension #. It can be proved (EILENBERG-MACLANE
[1953b]) that there is a natural isomorphism

HYK(T, n), G)y=H*"(IT, n; G),

with the corresponding result for homology.

Explicit caculations d these groups can be made effectively by
usingiterated alternative resolutions X, so chosen that X has an algebra
structure (CARTAN [1955]).

Exercises

1. Show that theimage d the contracting homotopy in B (U)®B (V) properly
contains B (U) @ B(V).

2. Prove Thm.12.1 from the explicit formula for the product =.

3. Show that B™(Z(I1)) vanishes in dimensions between 0 and n, and hence
that H?(I1, n; G) =0=Hy(Il, »; G) for o< p<mn.

4. Show that H"(IT,n; G =Hom(IT,G for »=1 and that, for n= 2,
H YT n;, Q) = Ext;(IT, G).

5. (The suspension theorem [EiLeNBERG-MacLaNe 1953b, Thm.20.4].) For
p<n, show that S* and S, in (12.8)and (12.9) are isomorphisms, whilefor p =n,
S is a monomorphism and S, an epimorphism. (Hint: Compare the complexes
Br+l(U) and B"(U) in the indicated dimensions.)

6. For any K-gplit relatively free resolution X —.K, written as X =U® X as
in Thm.10.2, let j:U—->X be given by j{«) =#®1 (assume1€U=X,). Show
that the composite psj: U--X, with s the contracting homotopy, gives the
suspension.

7. For any X asin Ex.6 find a product X ® X — X associative up to a homo-
topy.

13. Honol ogy of Algebraic Syst ens

For groups, monoids, abelian groups, algebras, and graded algebras
we have now defined appropriate homology and cohomology groups.
A leading idea in each case is that the second cohomology group re-
presents a group d extensions (with given operators) for the type o
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system in question: See Thm.IV.4.1 for groups, Ex.12.4 for abelian
groups, and Thm.3.1 for algebras. The third cohomology group has
elements which represent the obstructions to corresponding extension
problems; see Thm.IV.8.7 for groups and HocHscHILD [1947] for al-
gebras. The typical complexes used to construct such homology theories
have been described by a notion of “generic acyclicity’”” (EILENBERG-
MacLANE [1951]). Here we will mention various other algebraic systems
for which corresponding homology theories have been developed.

The 2-dimensional cohomology theory for rings operates with two
factor sets, one for addition and one for multiplication. Let 4 be an
abelian group, regarded as a ring (without identity) in which the pro-
duct of any two elements is zero. Let R be a ring. A singular extension
of A by R is thus a short exact sequence 4 > S-»R of ring homomor-
phisms » and g, in which S is a ring with identity 15 and 615=14. Regard
4 as a two-sided ideal in S, with S/4 =R. To each x€ R choose a represen-
tative u(x)€ S, with ou (x) =x. Then 4 is an R-bimodule with operators
xa=u(x)a, ax=au(x), independent of the choice of #. The addition
and multiplication in S is'determined by two factor sets f and g defined
by

w(2)+u(y) =f (%) +u(x+9), (13.1)

u(x)u(y)=g(xy)+u(xy). (13-2)

These functions f and g satisfy various identities which reflect the asso-
ciative, commutative, and distributive laws in S (EVERETT [1942],
REDEI [1952], SZENDREI [1952]). One can now construct (MACLANE
[1956]) a cohomology theory for a ring R such that H2(R, 4) has such
pairs of functions f, g as cocycles, with cohomology classes representing
the extensions of 4 by R. A part of the corresponding 3-dimensional
cohomology group H?(R, A) then corresponds exactly (MACLANE [1958])
to the obstructions for the problem of extending a ring T (without
identity, but with product not necessarily zero) by the ring R. The
results also apply to sheaves of rings (GrRAY [1961a, b]).

SHUKLA [1961] has extended this cohomology theory for rings
(Z-algebras) to the case of algebras A over an arbitrary commutative
ring K. The resulting cohomology of algebras is more refined than the
Hochschild cohomology, because the Hochschild cohomology deals
systematically with those extensions which are K-split, while in the
present case the use of a factor set (13.1) for addition reflects exactly
the fact that the extensions concerned do not split additively. SHUKLA’s
theory is also so arranged that every element of H?® corresponds to an
obstruction. HARRISON [1962] has initiated a cohomology theory for
commutative algebras over a field.
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A Lie dgebra L over K is a K-module together with a K-module
homomorphism x Qy —[x,y] of LQL into L such that always

[% x]=0, [x[y, 2]+ [ [z 2]+ [ [» y]]=0;

a typical example may be constructed by starting with an associative
algebra A and setting [x, y]=xy— yX. Conversely, each Lie algebra L
definesan augmented associative algebra L¢ as the quotient d the tensor
algebra T(L) d the module L by the ideal generated in T'(L) by all
eements x QY— Y& x—[X,y], for x,yeL. The algebra L¢ is called the
enveloping (associative) algebra of L. The homology and cohomology
d L are now defined for modules G,. and ;.C as

H,(L, G)=Tor¥(G,K), H*(L, C)=ExtL(K, C),

though, as in the case of algebras, it may be more appropriate to use
the relative Tor and Ext functors for the pair (L K). This theory is
developed in CARTAN-EILENBERG, Chap.XIII; cf. jacoBsoN [1962]. In
case K is a fidd, the PoiNcarE-Birkuorr-WiTT Theorem may be
used to give an alternative description d these cohomology and homo-
logy groups in terms d a standard complex constructed directly from
the bracket product in L. Indeed, this is the approach originally used
in the first treatment d the cohomology d Lie algebras (CHEVALLEY-
EiLENBERG [1948], KoszuL [1950b]). The 2-dimensional cohomology
group H2(L, C) corresponds to a K-split extension for Lie algebras
(CaRTAN-EILENBERG, XIV.5). In certain cases the elements d the
?-dimensiona cohomology group H3(L, C) are the obstructions to ex-
tension problems (HocHscHILD [1954]). Analogous results apply to
the analytic Lie groups (MACAULEY [1960]), and Lie triple systems
(YAmAGUTI [1960], HARRIS [1961]). Shuffleproducts have been applied
to Lie algebras by Ree [1958].

Just as the cohomology of rings starts with factor sets for both
addition and multiplication, it is possible to construct a cohomology
d Lie rings such that H2will involve factor sets for both addition and
bracket products. Such a theory has been initiated by DixmIER [1957];
it isto be hoped that subsequent investigation might simplify his for-
mulation.

Topologicaly, the bar construction startswith a** fiber'" U, constructs
an acyclic fiber bundle B (U) with the group U and the corresponding
base space B(U). The converse problem d constructing (the homology
of) the fiber from a given base is geometrically important. To this end,
J.F. Apams has introduced the cobar construction (W), where W is
a graded coalgebra over K. Thisisa formal dual d the bar construc-
tion; for details, see Apams [1956], [1960, P.33].
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Notes. The reduced bar construction B(U) is due to EILENBERG-MACLANE
[1950b]. CARTAN [1954] made the essential observation that B could be obtained
from the acyclic bar construction B and developed an efficient method of carrying
out calculationsby " constructions’

Chapter eleven
Spectral Sequences

If I" is a normal subgroup d the group /7, the homology af /7 can
be calculated by successiveapproximations from the homology o I
and that d II/I". These successive approximations are codified in the
notion d a spectral sequence. In this chapter we first formulate the
mechanism d these sequences and then proceed to severa applications,
ending with another general theorem (the comparison theorem). Other
applications will appear in the next chapter.

In this chapter, a "module™ will mean a left module A over the
fixed ring R — though in most casesit could equally well mean a A-
module or an object d a given abelian category. We deal repeatedly
with subquotients S/K d A, where K ¢ SCA: Recall (11.6.3) that each
module homomorphism a: 4A-~A"' induces for given subquotients S/K
and S'/K’ an additive relation ay.: S/K— S’/K’ conssting d dl those
pairs d cosets (s+ K, as+K") with s¢S, aseS. f § T, and U are
submodulesd A, the modular law asserts that Sn(TuU)=(S~T)uU
whenever S> U. It followsthat 1, inducesan isomorphism (the modular
Noether isomorphism):

1y: S[UG(SAT)]=(SvUoT), S>U.

Indeed, S/[Uu(SNT)]=S/[S~(TwU)]; by the Noether isomorphism
(I.2.5), thisis isomorphic to (SuT v U)/(TwU)=(SuT)/(UuT).

1 Spectral Sequences

A Z-bigraded module is a family E={E, ,} d modules, one for
each pair d indices ¢, =0, +1, +2,.... A differential d: E—»E d
bidegree(—r, r— 1) isafamily d homomorphxsms{d E,,~E, ,q¢ir-1}
one for each p, g, with @2=0. The homology H(E)= H(E d) d E under
this differential is the bigraded module {H, ,(E)} defined in the usual
way as

Hy (E)=XKer[d: Epq=>Ep 14sr1l[8Epis g pia- (11)

If E ismadeinto a (singly) Z-graded module E={E,} with total degree

n by the usual process E,=} E, ,, the differential d induces a differ-

p+g=n
ential d: E,—E,_, with the usual degree — 1|, and H({E,}, d) is the
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singly graded module obtained from the bigraded module H, ,(E) as
H”TF H,,.
q=n
A spectral sequence E={E", d'} isasequenceE?, E3, ... d Z-bigraded
modules, each with a differentia

& Ey o —=Ey ,ia, 1=2,3,.

d bidegree (—r,r —1), and with isomorphisms
H(E", &Y=E™*, r=2,3,.... (1.3)

Moare briefly, each E**! is the bigraded homology module d the pre-
ceding (E, 6).Thus E* and 4" determine E'*!, but not necessarily
ar*tt. The bigraded module E? istheinitial term o the spectral sequence
(occasionally it is convenient to start the spectral sequence with r=1
and initial term EY).

If E is a second spectral sequence, a homomorphismf: E—E’ is
a family & homomorphisms

f E'>E", r=2,3,...

d bigraded modules, each d bidegree (0, 0), with @’ f"'=/"d" and such
that each f+* is the map induced by / on homology (use the isomor-
phisms (1.3)).

It isinstructive to describe aspectral sequencein termsd submodules
d E? (ord E3, if thisbe present). First identify each E*+* with H(E', ")
via the given isomorphism (1.3). This makes E&8= H(E& d?) a subquo-
tient C?/B® d E? where C*=Kerd? and B*=Imd2 In turn, E*=
H (E3,dS)is a subquotient o C?/B2 and so is isomorphic to C3 B®, where
C3/B2=Ker d®, B¥Bt=Imd?, and B*CCS. Upon iteration, the spectral
sequence is presented as a tower

0=B'CB2C B3 .-+ ..+ CC3CCeCCt=E? (1,4)
d bigraded submodulesd E?, with E*+1=C7/B’, where
dr: Cr—l/Br—l__>Cr—1/Br—1, '=2' 3, .

(1.2)

has kernel C7/B'~! and image B’/B ~!. In informal parlance,
C7-1 is the module & elements which live till stager,
B! is the module d elements which bound by stager.

The module & elements which "*live forever™ is
CW=intersection d all the submodules C’, r=2, 3, ..

while the module d elements which " eventually bound" is
B*® = union d all the submodules B', r=2,3, ....
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Then BW ¢ CW, so the spectral sequence determines a bigraded module
E;oq—“ Conal B3 q» EWZ{E:q}' (1.5)

We regard the terms E* d the spectral sequence as successive approxi-
mations (via successive formation o subquotients) to E™. In this
representation (1.4), a homomorphism f: E—E’ d spectral sequences
is a homomorphismf: E2—E’2 d bigraded modules, o bidegree (0, 0),
such that f (C")¢ C’’, f(B")¢ B’7, and such that all the diagrams

Cr~1/Br—1 L Cr—I/Br—l
I Ve
ar
C;r-—;l/Blr*l____> C:r—l/Brr——l

are commutative. Alo f: E—E’ induces {™: E® »>E’'®,

A first quadrant spectral sequence E is one with E}, y=0 when p<0
or g<<0. (Thiscondition for =2 impliesthe same condltl onfor higherr.)
I'tis convenient to display the modules £7 , at the lattice points d the
first quadrant d the g, q plane:

E3
.d3 . [ ]
. . . (1.6)

° .- o & PN
hat >

The differential 4" is then indicated by an arrow. The terms of total
degree » al lie on the 45° line p+ g=mn; the successive differentias
go from a lattice point on this line to one on the next line below, At
each lattice point o Ej , the next approximation Ej'} is formed by
taking the kernel d the arrow from that lattice point modulo the image
d the arrow which ends there, asin

ar
r > BT > BT
EP-H,Q—'-H- Ep,q EP"', q+r—1*

The outgoing d' ends outside the quadrant if >, the incoming @’
starts outside if »>g-+ 1, so that

“\‘ Ef =E,, oo>r>Max(p,g+1). (1.7)

In words For fixed degrees ¢ and ¢, E}, , is ultimately constant inr.
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The terms E, , on the p-axis are called the base terms. Each arrow
d" ending on the base comes from below, hence from 0, so each E}}!
isasubmodule o E} ,, namely the kernel o d’: E} y—~E;_,,_,. This
gives a sequenced monomorphisms

E;?OZEgj)l—*"""E;,O__)E:,OQE::O' (18)

The terms E, , on the g-axis are called the fiber terms. Each arrow
from a fiber term ends to the left at zero, hence Ej , consistsd cycles
and the next fiber termis a quotient d Ej | (the quotient by the image
d ad’). This gives a sequence d epimorphisms

Eﬁ'q»Eg‘q—)Eg'q—»--»E%ff:Eg:’q. (1.9)

These maps (1.8) and (1.9) are known as edge komomorphisms (monic
on the base, epic on the fiber).

A spectral sequence E is said to be bounded below if for each degree
n there is an integer s=s () such that E} ;=0 when p< sand p+g=n.
This amounts to the requirement that on each 45° line (p+¢=m) the
terms are eventually zero as p decreases, thus a first quadrant or a
"third quadrant™ spectral sequence is bounded below.

Theorem 1.1. (Mapping Theorem.) |ff: E—E’isahomomorphism
d spectral sequences, and  f: E'=~E’* is an isomorphism for some t,
then /71 E"=E’" iS an isomorphism for r =t. If also E and E are bounded
below, /®: E®=E’® is an isomorphism.

Proof. Since f is a chain isomorphism and E*+*=H(E! &), thefirst
assertion follows by induction. When E and E are bounded below and
(9, q) arefixed,d": E} ,—~E}_, ., , hasimageo for sufficiently larger.
Hence Cj ,=Cg, and Cy/,=C,% for r large. Thus a’eC; liesin Cy/,,
S0 /7 an epimorphism makes f* an epimorphism. If acC*® hasfac B’ =
U B’", then fae B’ for somer. Hence ' a monomorphismfor al » implies
that f" is a monomorphism.

4

\ Exercises

1. Show that atower (1.4)together with a sequenceof isomor phisms0': C7—/C*

7/Br~1 of bidegrees (—r, »— 1) for r=2, 3, ... determines a spectral sequence
with\E?= C"~Y/B"~1 and 4’ the composite C’~Y B’~1-» C*-1/C’—~B’|B'~1-» C"-Y/ B},
and that every spectral sequence is isomorphic to one so obtained.

2. If E and E' are spectral sequencesof vector spacesover a field, construct
aspectral sequence E=E'®E” with E} ;=3 EY ,®E}* 4, Where the sum is
taken over all p’+p”"=9p, ¢'+¢"’=0, and 4’ is given by the usual tensor product
differential.

3. If E isa spectral sequenceof projectiveleft R-modules, C a left R-module
and G a right R-module, construct spectral sequences Homg(E, C) and G ®zE
and calculate the terms EM.

Mic Lane, Honol ogy 21
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2 Fiber Spaces

Before studying various algebraic examples o spectral sequences
it isilluminating to exhibit some d the formal arguments which can
be made directly from the definition d a spectral sequence. For this
purpose we cite without proof the important topologica example d
the spectral sequence d a fibration.

Let | denote the unit interval and P any finite polyhedron; recall
that a homotopy is a continuous map H: Px=I—B. A continuous
map f: E—B d topologica spaceswith {(E)=B iscalled a fiber map
if any commutative diagram o the following form

PLE
il i(x)=(»,0) for x¢P,
P=<I%B,

(all maps continuous) can always be filled in at L so as to be commu-
tative. Thisisthe " covering homotopy** property for f: Any homotopy
H d Pin B whoseinitial valuesH(x,0) can be' lifted"toamaph: P—E
with fh(x)=H(x, 0) can itsdf be lifted to a homotopy L d P in E
with f L=H and h(x)=L{#, 0). If bisany point in B, itsinverseimage
F={¢1p is called the fiber f | over b. If B is pathwise connected, it
can be shown that any two such fibers (over different points b) have
isomorphic (singular) homology groups. Henceone may form the singular
homology groups H,(B, H,(F)) d B with coefficientsin the homology
groups H,(F) d "the" fiber. Strictly speaking, we should use **local
coefficients”” which display the action o the fundamental group o
B on H,(F); this we avoid by assuming B simply connected. Since B
is pathwise connected, its Odimensional singular homology is

Hy(B)=Z, H,(B, H,(F))=H,(F).

The following spectral sequence has been constructed by SERRrRE
[1954] following LERAY’s construction [1946, 1950] for the case d
cohomology.

Theorem (LEraY-SERRE). If . E—~B is a fiber map with bae B
pathwise connected and simply connected and fiber F pathwise connected,
there is far each # a nested family d subgroups d the simgular homology
group H,(E),

0=H_; y11CHy yCHy yoy (- CHy 11 CHy o=H,(E), (2.1)
and a firg quadrant spectral ssquence such that

By =H,(B,H/(F)), Ep=H,[Hy 14 (2:2)
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If &5 is the iterated edge homommflhismon the base, the comflosite
H,(E)—~>H, (H,_, lgEg‘,’o—'i E} o=H,(B, Hy(F))=H,(B)

is the homomorphism induced on komology by the fiber map f: E—B.
If ¢ is the iterated edge homomorphism on the fiber, the composite

er
Hq(F)gHD (B! Hq(F));Eg,_—)E&oq_)Hq (E)
is the homomorphism induced on homalogy by the inclusion FCE.

This spectral sequence relates the (singular) homology o the base
and fiber, via E2, to the homology d the '"total space' E, with E®
giving the successivefactor groupsin the ' filtration™ (2.1) & the homo-
logy o E.

The universal coefficient theorem (Thm.V.ll .1) expresses the first
term o (2.2) as an exact sequence

0->H,(B) @H, (F) ~E} ,~Tor (H,_,(B), H,(F))>0.  (2.3)

In particular, if al H,_,(B) are torsion-free, E} ,=H, (B)QH, (F)

Assuming this result, we deduce several consequences so as to
illustrate how information can be extracted from a spectral sequence.

The LEraY-SERRE theorem holds when all homology groups (of B,
F, and E) are interpreted to be homology groups over the fiddd Q o
rational numbers. Write dimV for the dimension d a Q-vector space
V over Q For any space X the n-th Bettz number b, (X) and the Euler
characteristicy (X) are defined by

bo(X) =dim H,(X, 0),  2(X)=5 (—1)"b,();

m such\that b,(X)=0 for a>m. If X is a finite polyhedron, x(X) is
defined.

Cordllary 2.1. If f: E+B isa fiber space with fiber F, with B and
F connected as in the Leray-Serre theorem, then if x(B) and y(F) are
defined, 0 is ¢ (E) and g (E)=yx (B)x (F).

Proof. For any bhigraded vector space E’, define a characteristic as
2 (E) =X (—1)?**dimE} ;. By (2.3) for vector spaces,
?’q

E3 =H,(B)®H,(F), dimE},=b,(B) b (F)<eo,

and y(E?)=yx(B)x(F). Write C;, and Bj, for the cycles and the
boundaries o E} , under 4&'. The short exact sequences

‘4 4 +1
C;tq»Ep-q—)Bp—'v g+r—1» B;yq»c;lq—)E;lq
21*

mor&gﬁsely, z(X) is defined if each b, (X) is finite and there is an
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define ¢, Bf, and E't1=H{E"). In each sequence the dimension o
the middle term is the sum o the dimensions & the end terms, so

dimE}H!=dimE], ,—dimB}, —dimB;,_, ;.
Here the last term has total degree p—r—+g+r—1=(p+q9)—1, 0
2 (EY =y (E"); by induction y(E")=yx(E?). Since E} , vanishes for #
and g large, E®=E" for r large, and y (E™)=x(E2).Now by (2.1) and
(2.2),

dimH, (Ey=3 dim(H, JH, 1 )= 3 dmEg,,
Pprg=n pt+g=n

SO y(E)=x(E%)=x(E®) =y (B)y(F), as asserted.

Theorem22. (TheWanc sequence.) If f: E—S<is a yiber space
with base a k-sphere (k=2) and pathwise connected fiber F, thereis an
exact sequence

oo Hy(E) > Hy_y (F) > Hyy (F) > Hy o (B) >

Proof. The base S is simply connected and has homology H,(S*) =
Z=H,(S) and H,(S¥E0, for p==0,k; hence by (2.3)

E! =~H,/(F), E! =H(F), E%,=0, p=0,k.

k,q=—""q 0,9=

The non-zero terms d Ej , al lie on the vertical lines p=0 and p=Kk,
so_the only differential d” with =2 which is not zero has r=Kk. There-

fore Er=f3%=...=EK, EMl=FE;2_...—F%® The description o
E*1=E> asthe homology d (ER,d*) amounts to the exactness d the
sequence gk

oo 2
0—>EP,~E} ,~— E2 o1~ E i1 0. (2.4)

On the other hand, the tower (2.1) has only two non-vanishing quotient
modules, so collapses to 0 Hy ,=H,,_y 411 CHy ws=H,. With the
isomorphismsfor EW in (2.2), this amounts to a short exact sequence

0—>Ey,—~H,(E)>Ef, ,—0 (2.5)
with H, (E) in the middle. Now set g=#»—k in (2.4), put in the values
d E2in terms o H(F) and splice the sequences (2.4)and (2.5) together:

H, (E) 0
0 ELy_y—> Hyyy (F) = Hyay (F) > ESp_y >0

wu
0 H, ,(E).
The result is the desired long exact sequence. By LERAY-SERRE, the

homomorphism H,_, (F)-—>H,_,(E) is that induced by the inclusion
FCE.
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Spectral sequencesmay be used to calculate the homology d certain
loop spaces which are used in homotopy theory. Let b, be a fixed point
in the pathwise connected space B. The space L(B) d pathsin B has
as points the continuous maps t: I —B with t(0)=25,; here | is the
unit interval, and L(B) is given the " compact-open" topology. The map
p: L(B)—B with p(t)=t(l) projects each path onto its end point in
B; it can be shown to be a fiber map. The fiber £ (B)=p"1(3,) consists
o] the closed paths t [with t(0)=58,=¢(1)]; it is known as the loop space
d B.

Corallary 2.3. The loop space 2S* o a k-sphere, k =2, has homo-

logy
H,(QSY=z, n=0 (modk—1),

=0, #nxE0 (modk—1), #xn=0.

Proof. Since 2>1, S* is simply connected. so each loop can be
contracted to zero; this implies that Q(S") is pathwise connected, so
that H,(2S*=Z. The space E=L(B) d pathsis contractible, as one
may see by "pulling’ each path back along itsdf to the origin. Hence
E is acyclic (Ex.I11.8.1). Thus every third term H,(E) in the WANG
sequence is zero, except for H, (E), so the sequence gives isomorphisms
H, ,(2SY=H,_ ,(QS%. With the given initid value H,=2 this
aives the values stated above. 04

Is Igryctive to exhibit the

of this spectral sequence for T .
ee the attached diagram.) | d
The heavy dots denote the terms

E, ,=Z, and al others are zero. The 5%
onIy non-zero differential is d3; these ;
differentials applied to the elements I d
on the line p=3 "kill"" the successive
elements in the homology o the fiber. J
This diagramn may be constructed
directly, without using the WAaNG
sequence. We are given the base with
generators 1€ Eg o and x€ E 5; al ele-
ments lie on the vertical lines p=0 S

and p=13. Since E¥=0, every element

must be killed (i.e., become a boundary or have non-zero boundary) by
some differential. But d3istheonlynon-zero differential. Thereforeds x=
y=$0in E} 5 on thefiber. Theelement x @ ye EZ , must then also have a
non-zero boundary d3(x®y)=Yy' in E} , on the fiber, and so on.
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Theorem 2.4. (The GysiN sequence.) If f: E->B is a fiber space
With simply comnected base B a d with fiber F the k-sphere S¥ with k=1,
thereis an exact sequence

o> Hy(E) 2> H,(B) 22 H,_y_(B)>H,_, (E)>
Proof. Since H,(F)=H,(S)=0 for ¢=0, k, the term E? is
Ej ,~H,(B), ¢=0, g=Fk; E},=0, ¢+0,k.

The spectral sequence then lies on the two horizontal lines =0 and
g=Xk; the only non-zero differential is d*f?, and we obtain two exact
sequences A
0'>E°°o—>E: o—“"En—k 1, k—)En—k—l x>0,

0—=>Ep 4 1 41 —>H,(E) >Epy—0

which splice together to give the sequénce d the Theorem.

Exercises

1. If f: Sm— Sk is a fiber map with 2=2 and with fiber a sphere S* prove
that one must have m =2% — 1 and I=k — 1. (Fork =2, 4, and 8 there are indeed
such fiber maps; they are the Hopf fibrations; HoPF [1931, 1935], STEENROD
{1951], Hu [1959, p.66].)

In the following three exercises, f: E—»B is a fiber space with B pathwise
connected and simply connected and fiber F pathwisé connected.

2 If Hy(F)=o0 for 0<j<t and H (B)=0 for 0<i<s, obtain the exact
sequence

Hoy ((F)+Ho y (E)>Hg , 1(B)>Hg; o(F)—>--*
— Hy(B) - H, (F) - H, (E) - H, (B) +0-

3. If H;(B)=o for dl i70/, prove that H, (F)=H, (E)for all n.
4. If H;(F)=o for all{> o0, prove that H,(E)=H,(B) for al n.

5. Given the LERAY-SERRE spectral sequence E and Q the field o rational
numbers, define a spectral sequence E'= Q®E o vector spacesover Q and show
that EN_H (B, QQ® H,(F,Q) and Ep3=H} j/H}, 3 441, Where theH appear
in atowerlzke 21 Wlth]} (E)replaced by H,, (E,

3. Filtered Modules

A filtration Fd a module A is a family d submodulesF:,A, one for
each p¢Z, with
..(14;_1,4@«;/1(1:“1,1(..., (3.1)

Each filtration F o A determines an associated gr aded module GF A=
{(GF4),=FEA|F,_,A), consisting d the successive factor modules in
the tower (3.1). f F and F' are filtrations & A and A', respectively,
a homomorphism a: 4—A4’ o filtered modules is a module homomor-
phism with a(l;A)(Iv;’A’. A filtration F o a differential Z-graded
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module A is a family d sub-DGz-modules F 4, as in (3.1), with the
corresponding definition d a homomorphism. This filtration induces a
filtration on the Z-graded homology module H(4), with F, (H(A4)) defined
as the image d H(E,4) under the injection E,A-—>A4. Since A itsdf is
2-graded by degrees », the filtration F o A determines a filtration
FEA, d eaxch A, and the differentiad d A induces homomorphisms
d: F,A,—~FA, , for each p and each n. The family {F,4,} is a Z-
bigraded module; it is convenient and customary to write the indices
d the grading as (p, q), where # is the filtration degree and ¢g=n—¢
the complementary degree; the Z-bigraded module then has the form
{FA,.. We use “FDGz-module” to abbreviate "*filtered differential
Z-graded module™
A filtration F o a DG;-module A issaid to be boded if for each
degree there are integers s=s(n)<<t=t(n) such that FA4,=0 and
EA,=A,. Thisamounts to the requirement that the filtration d each
A, has "'finite length": 0=EA,(E,, A, (---CFA,=A.,.
A spectral seguence {E}, &’} issaid to convergeto a graded module H
(i bols, E3& H) if thereisafiltration Fd H and for each p iso-
moyphisms Ey’=F,H|F,_,H d graded modules. Here, for givenr and
/gy/ii;%%% etr%gnt aéied moduIeE;~{E,q, g=0, +1, ...} (graded

The associated spectral sequence o a filtration may now be defined.

Theorem 31 Each filtration F d a differential Z-graded module A
determines g, spectral sequence (E7, d'), r=1, 2,..., Which is a covariant
functor d (¥, A),together with natural isomorphisms

Ey=H(FA[F,_,4); i.e., Ej; ,=H, (FAIF,_,4). (3.2
If F is bounded, E§=>H(A); more explicitly, there are natural zsomor-
phisms
EP=F,(HA)F,_(HA); ie, EP=E(H, 4)|F_,(H,. A4). (33)
For the proof we introduce the submodules
Z,=alacE,A, dack,_,A], r=0,1,... (3.4
d F,4. An element o Z; may be regarded as an " approximate cycle
d level r"; its boundary need not be zero, but liesr stageslower down
in thefiltration. In particular, Zy=F, A. Each Z}, is2-graded by degrees
from A, so we may regard Z’ as the bigraded module with
Z; 77 [alaEFAP+q’ aaep;—rAp+q—1] . (35)

Given this notation, the spectral sequence d the filtration F d A

is defined by taking

Ey= (2B A)[(0Z7h 1 o0E ), 7=1,2, ...
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whiled’: E, —Ej;_, is the homomorphisminduced on these subquotients
by the differential 2: A—-A. From these definitions the proof d the
theorem is fussy but straightforward. In detail:

Set E}=F, A|F, ;A and let 5,: F,A—E; be the canonical projec-
tion. Consider the additive relations

2 2
Eg+r— Eg —AEg—r

induced on these subquotients by o: A—A. Thus &, consists o the
pars (n,a, n,_,9a) for acZj (indeed, this is exactly why we need
Z;). Moreover n,a lies in the kernel d 0, if dacF,_,_,A4, so (where
"Def'" meansthe "*domain d definition™)
‘ Def 8,=1n,2}, Ker d,=n,Z}"

Next, & consists.d the pairs (mp+,0.7,00) for beZy.,,, whilen,,,b=0
if also beF,,, ;4; that is, if beZ57;_,. Hence (where "*Ind" means
the " indeterminacy-)

In view o the inclusions 8Z;,+1,_1<6 +,<Z;,+1<Z; we can introduce
for each p and r asubquotient d E as

Ey=mpZ3)n, (0 Zy34), r=0,1,2,...; (3.6)
the formulas above show that ¢ induces homomorphisms

E;+v__) E' E;—'

with image and kernel
Im df=7,(0Z4.1,) 0 (0Z537-1),

Ker dy=n, (Z5+) /1, (02533 0) -

Therefore (dropping the subscripts 1 and 2) d’d’=0 and
H, (E", &)=, (Z5+Y) 0y (225, ) =E5+.

Thus we have a spectral sequence. Whenr=0, Z3=F, A and d°: E} —Ej
is just the differential o the quotient complex Ej=F,A/E,_;A. This
gives (3.2).
This spectral sequence can aso be derived from the towers
0Z;1, CBZ5C8Z3 1 - <Z§<Zl<z° F,A

P

=

B} CB,C By - <C,,<C‘<C°=E$

The tower on the first line, taken modulo F,_, 4, gives that on the
second line, with By=7,8Z}53;_, and C;=n,Z;. By IL6 the additive



3. Filtered Modules 329

relation o,: F,A/F,_,A—F,_,AlF,_, ;A amounts to an isomorphism
Def 82/Ker 022 1M 0,/Ind &,.

But this isomorphismis just C5/Cyt= B3*}/B}_,. This gives d’ as the
composite

E,=C}/By—> CyJCy = By*YBy_, > C}_,|By_,=E}._,

with z the projection, ¢ the injection. This yields the spectral sequence,
much as in Ex.1.1 (except that C* there is C’*! here).

To describe E,H[E, _,H, write C=Kerd and B=24 for the cycles
and boundaries, respectively.in A. Then F inducesonC and B filtrations
|I:|;C=CmI§,A, E,B=Bn~FE,A. By définition, F,(HA)=(F,CuB)/B.

ence

F,(H A)|F,_,(H A)=(F,CuB)/(F,_,CuB)=F,C|(F,.,C F,B),
by a modular Noether isomorphism. Another such,
F,(HA)|F,_,(HA)=(E,CuF,_,A)/(F,BuF,_,4) (3-7)

represents F,H|F,_;H as a subquotient d F,4/F,_,A
The numerator d Ej in (3.6) is (Z,uF, ,A4)|F,_;ACF,A|F, ,A;
the denominator is (8Z,;}_,wF,_;A4)/F, 1A, SO

E,=(Z,VF,_ 1A)/(aZ'+];_1UI';_1A),

, _ (3-8)
B, =250 9F 145102535 1,0 r a0 B3 Apyy). }

Now suppose F bounded, and consider a fixed (p, q) corresponding
to a total degree n=4+-q. In the numerator o E} ,, an element acZ, ,
for » large has dacF,_,A4,., ,=0, hence acF,C,,,. Thereafter the
numerators are F, Cp_,_un —14,4,. As for the denoml nator, for » large
every element in E, By, is the boundary o an element in F,,, ,4;
that is, d an element in Z;f; . Thereafter the denominators equal
E B, ,wF,_14,,, But E* is defined as intersection d numerators
divided by union d denominators, so

Eg,=(F, Cp+qU‘F;’—IA#H)/(FPBP+4UFP-1AP+7) ’ -9

which is exactly F,H/F,_;H as given in (3.7).This proves (3.3).

In the literature, E* is usually defined from H (A)by the formula
{(3.9), so the "convergence" isomorphism (3.3) asserts that this defini-
tion agrees with ours.

The convergence (3.3) holds under weaker conditions than bounded-
ness (for a thorough study, see EiLENBERG-M OORE [1962]). For example,
cal a filtration F d the DGz-module A convergent abowe if A is the
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union of al F,4 and bounded beow if for each degree n there is an
integer s=s(n) such that FA4,=0.

Proposition 32. If F is bounded below and convergent above, then
(3.3) holds and the spectral sequence d F i's bounded below.

Proof. Since F is bounded beow, the intersection d the numera-
tors d Ej} is F,CuF,_;A. Each element d F, B is a boundary @a for
some aeA UFA hence acF;A for some t. Then acZ;;1_, for r=
t—p+1, so E,BUF, ;A again is the union d the denominators
9Zy 3 _vF, 14, and we have (3.3).

In the formula(3 8) the numerator term Zj gives " approximate'*
cycles d level r; while 8237 _, in the denomlnator is a submodule
d the boundari&s (boundariesfrom r levels up). The proof has so chosen
these approximations in this quotient that each has the next asits
homology. An alternative formula (for the same spectral sequence)
appearsin Ex.1.

The filtration F d a DG-module A iscanonically bounded if F.; A=0
and F,A,=A, in each degreen.

Theorem 3.3. | fF isa canonically bounded filtration d a (positively
graded) DG-module A, the spectral sequence d F liesin the first quadrant
and the induced filtration & H A is finite, d the form

0=F ,H,ACRH,ACEH,AC---CF,H,A=H, A

“with successve quotiertts F,H,/F, ,H =Ey, ,, under isomorphisms
induced by 1,. For exam/ple the LERAY-SERRE theorem arises from a
canonically bounded filtration d the singular chains d a fiber space.

Proof. Since F_;A=0, E}=H(F,A/F,_,A)=0 for p<o0. Since
EA= A, q<0|mpI|&eF A,,+q-F 14,4, and hence E}, =0 for g<o.
Therefore all non-zero Ej , liein the first quadrant o t e (#, 9)-plane,
and the induced flltratlon d H,(4) isfinite as displayed.

For n=1 the filtration d H; amounts to a description d H, asthe
middleterm d a short exact sequence

A
0—Eg, — H,~> ETy 0.

For each n, the filtration & H,, yields a monomorphism Eg°, —H, (4)
and an epimorphism H, (A)—Eg,. Combined with the edge homomor-
phisms we get maps

Ey.—~H,(4), H,(A)—>E3,, (3-10)
each induced by 1,. In general, the spectral sequence d F determines

not H(A4) but its subquotients F,H/F,_,H, asserting that each is in
its turn a subquotient d E}=H(F,A[F,_;4).
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Theorem 3.4. (The mapping theorem) Let A, A' be DG,-modules
with filtrationsF and F' bounded bdow and convergent above. If a: (F,A)—
(F', A" is a homomorphism such ¢kat for some t the induced map

a: E'(F,4)=E"(F', 4"
is an isomorphism, then @ is an isomorphism for s« = r =t and moreover
oty H(A)—H(A")is an isomorphism.

Proof. Sincebothspectral sequencesare bounded below, the previous
mapping theorem (Thm.1.1) showsa" and a"*: E*® —E’* isomorphisms.
Condder the induced map a; H,(4)—H,(4’) on homology for a fixed
degree n, and the corresponding «,, ,: E,H,—F, H,. Since both filtra-
tions are bounded below there is an s with EH,,=0=FE'H,. The con-
vergence isomorphisms (3.3) give the horizontal sequencesin the com-
mutative diagram

o5 -IH"(A)-—>FH (A) >BL0_,—>0
e oo, a®
= 0->F_;H, (A )-—->F H, (Al) +Ep w—p—>0.
Since «® is an isomorphism, induction on ¢ and the Five Lemma show
®, 4 an isomorphism. Now the filtration F is convergent above, so
H, #(A=UEH,(A); it followsthat a, is an |somorph|sm as required.

For ¢t=1 the hypothesis d this theorem requires that the induced
map H,(F,A|F, ,A)—~H,(F, A’|[F,_y A") be an isomorphism for all n
and $. This special case d the theorem was proved in Thm.V.9.3 and
againin Thm.X.11.2.

Let a, 8: (F,A)—(F’, A') be homomorphisns d FDG,-modules.
A chain homotopy s: a~ g is said to have order <t if s(F,A)CE,A
for dl 2.

Proposition3.5. |f s: a=~p 4s a homotopy d order =¢, then

o=g: E'(F,A)=E'"(F', A)
for r>¢, and a, =p5,: H(4)>H(A').

Proof. The result &, =g, followsfrom the existence d the chain
homotopy (irrespectiveof its" order'). For therest, it sufficesto consider
y=a—p, s: y=0 and prove y'= 0. Write E}, , as the subguotient (3.8).
if acZ,, then ya=2sa-t+sda, where aaeF,,_ 4, o saaeF,, 14’
sincet<r, whilesa ¢ I«},+,_1A dsa=ya—sdacF A’ s0sacZ,;_,(4").
Thus yacdZ;3,_wE_, A isin the denominator d E,’, so determines
zero there.

Exercises

1. Show that Ep=Z}4/(0Z534yvZ57Y), withd": Ep > E}_, induced by 8: 4~
A, gives a spectral sequence |somorph|cto that of Thm.3.1. (Theseformulasare
often used as the definition.)
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2. If thefiltration Fd the differential graded module A iscanonically bounded,
show that its spectral sequence yields an exact sequence

Hy(4) 3 B2 oS> EL, 5 Hy(4) 2 B2 g0,
If E,,q—o for o<g<t and all p, show that eg: HP(A)~E o forogp<t and
establish the exact sequence

e an+l e e
Hy y(A) = E}yro—> B = Hy(d) 2> Ef4—>0.
3. (Theexact sequenced ""terms o low degree”; cf. Ex.2.2.) In Ex.2 suppose

E} ,=0 wheneither o<g<t! or 0<p<s.

Establish an exact sequence, with H; short for H;(4),

ep 2 d"” 2 74 ‘p 2
H = Eipy,0— Eos41—1—> Hy 1> Espi1,0 >

4. (Thetwo-row exact sequence.) In Thm. 3.3 suppose there are two indices
0=<a<b such that E},,q=0 for % a, b and all p. Derive the exact sequence

z
~—>Ey pp>H,>Ey_4,—> Ef_p1,3~>H, ;>

with ¥=b—a* 1. (Hint: cf. the WanG sequence & Thm.2.1)
5. Establish a 'two-column' exact sequence analogous to Ex. 4.

6. If A" and A" are FDG-vector spacesover afield, and if afiltration of 4’®@A4"”
is defined by F,(4'®A4") = ZF (A’)®F -(47) for p’4p”’=9p, prove for the
associated spectral sequences that E(4 '®A") =EAYQEA").

7. In the spectral sequence d a filtration F of A, show E} , isomorphic to
the image o the homomorphism

Hy, (FA|F,_,A)>H,, (F, 1A[Fp_y4), 7zt

induced by the identity. (This description may be used to define the spectral
sequence o a filtration; see FapeLL-HurEwicz [1958, p.318].)

4. Tranggression

In a first quadrant spectral sequence E the last possibly non-zero
differential on aterm E} , in the baseisthe differential @?: E3 ,—~E} ,_,
which goes from the base al the way to the fiber. With the edge homo-
morphismseg, + this yields a diagram

0 E§ p1
l ler
o»E;fo»Eg,oi Ef, y—>EZp 10 (4.1)
p
E}o O

with exact row and columns. When (as we have assumed here) the
spectral sequence starts with r=1, the additive relation

T_epldpe E:,OQE%'P_]_, ﬁ_—_z, 3) .
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iscalled the transgression. Any additiverelation (Prop.I1.6.1) isa homo-
morphism from a submodule d its domain (here called the module of
transgressiveelements) to a quotient module d its range; in this case,
(4.1) represents T as the homomorphism 4 from the submodule EL,
d Ej, to the quotient module E3 ,_, o E p—1- Replacing E* by E?
in this definition d = gives an additive relatlon v Ep —E; ,_,, ds0
called transgression. Each transgression uniquely determines the other
via the edge homomorphism e: Ej , ,—~Ej ,_,, for z=¢7’; since e
is an epimorphism, ee*=1, 0 t'=ex.

Proposition 4.1. The transgression in the spectral ssquence E d a
canonically bounded filtration & A is the additive relation

7: Ej o—Ej 5,
induced by 2: A+A.

Proof. Here E is a first quadrant spectral sequence. |ts edge terms
can be written explicitly from (3.8). Since 04,.,CA,=F,A,, 4,.,=

Z;L 1, —r+2 fOr any »=2, s0, on the base, (3.8) becomes
E} o= (Z} 0w F,_14,)[(04,10F,_14,), r=2,3,.... (4.2)

The denominator is independent o r ; this verifiesthe fact that the edge
homomorphisms ¢, are monic. Also Z , is {,C, whenr=z1 and C is
the kernel & 2. Hence on the fiber (3.8) is

By =RC[0ZI7Y \_rgs  7=1,2,.... (4.3)

The numerator is independent d » (edge homomorphisms e, are epi c)

The transgression is the composite relation r=ez'd?¢z*, where ez
and ez' are induced by 1, and @? isinduced by &. The composte-c is
then the additive relation induced by 9, as one sees by calculating ¢
asthe set o all pairs d cosets (a+ Dj o, da+Dg , ) for acZ%, and
D3 4 the denominator of Ej ,, or by applying the composition principle
for additive relations (Prop.11.6.3).

The edge maps (3.10) and the transgression can be computed directly
from A and two subcomplexes defined by the filtration, without using
the whole spectral sequence, but using a generaization d the familiar
homology connecting homomorphisms.

If L and M are subcomplexesd a (not necessarily positive) complex
K, the connecting relation

e=e(K; L, M): H,(K|M)—~H,_ (L) (4.4)

is defined to be the additive relation induced by ¢: K ->K. Here each
homology group is to be regarded as a subquotient d K ; for example,

H,(K[M)=C\ (K, M)|(0K, 1o M,),
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where C, (K, M) is the module o relative cycles (all k¢K, with oke
M, _,). Thusg consistsd the pairsd homology classes (k+ (2K, ,uM,),
ok+aL,) for al keC,(K,LAM). If M=L, the connecting relation o
is just the usual connecting homomorphism &, for the short exact
sequence L »K -+ K[L d complexes. More generaly,

Proposition 4.2. |f L and M are subcomplexes of the complex K,
with L, _,<M,_, and L, CM,,, then p=p(K; L, M) can be described via
connecting homomorphisms as the composite relation

e(K; L, M)y=y0y=0p7": H,(K|M)—~H,_,(L)
where 8 and y are énduced by the identity in the commutative diagram

H,(K)~H, (lK/L) 2, o (L) ~H,_,(K)
B 14
H,(K)~H,(K|M)™ H,_, (M)~ H,_,(K).

Proof. The hypotheses L,_,<M,_, and L,(M, show that the
identity induces homomorphisms 8 and y as displayed. By the equi-
valence principle (Prop.11.6.2), g and ¥ are the additive relations
induced by 1. By the composition principle (Prop.I1I.6.3), each o
g, prand 14, turnsout to be theadditiverelationinduced by 81=18;
hence the result.

This result shows that Def p=Im g and Ind g=Kery.

In §10 we need information as to the effect d a chain equivalence
on the connecting relations, asfollows.

Lemma 43. Let f: K—K’ be a chain transformation which induces
homology isomorphisms f,: H,(K)=H, (K", while L, M are subcom-
plexes & K and L', M' subcomplexes & K with f(L)L', f(M)CM/,
0 that f induces chain transformations g: L-L', h: K/M —>K'[M'.
Assume that g, and %, are homology ssomorphisms and that L, af,,
Ly M, for k=n—1, n, asin Prop.4.2. Then the diagram

e=e(K; L, M): H..(-lKlM) - H"_i(L)
L -4
o'=e(K'; L', M"): H,(K'|M)—~H,_,(L’)
i S commutative.
This result computes o’ from g as o’ =gy e A3*, or conversely.

Proof. Since f, and g, are homology isomorphisms, the exact
homology sequencesfor L, K, K/L and L', K', K’/L’ show that f induces
a homology isomorphism ¢: K/L - K'[L'. By Prop.4.2 we may compute
the connecting relations p=4& = and p'=4g, ' from the rows o
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the commutative diagram

H,(K/M) < H,(K|L) % H, (L)
lho , Pe 8

H,(K'|M)<-H, (K'|L') %> H,_, (L)
Since the diagram commutes, §’ @, =h,8, or = hgl=@ 1f'~1. But k,
and ¢, are isomorphisms, so0 @, B1=p""1h,. Now g,0=g«9 1=
O @B r=0.8 1hy=0'h,, as desired.

Theorem4.4. If Fisa canonically bounded filtration d a DG-module

A the" edge effects” in the spectral sequence d F can be computed from A
and its suwbcomplexes L=F,A and M, where M,=F,_,4,00F,A,,,.
Specifically, the edge komomorphisms

H,(RA)=E;,—~H,(4), H,(4)—>E}=H,(4]M)

areinduced by the injection E,A+ A and the projection A—A|M, respec-
tively, while the transgression = is the connecting relation g (A; KR4, M).

Proof. By (4.3),
E},=F,C\J0F Ay =H,(FA).

By (4.2) and the definition o H, (4/M) by relative cycles,

Ero=(Z5 0 F14,)/(04,4,F, 1 4,)
=C,(4, M)/(24,,vM,)=H,(4]M).

But the maps ¢ and e are induced by the identity, whence the first
result. Similarly, each d = and o is the additive relation E} —Ej ,_,
induced by 9, so t=q, asdesired.

The situation may be visudized in terms d the complexes

FA4A->4

AIM.

Since M, > (FA), for n=1, the transgression can also be described in
terms d ordinary connecting homomorphisms, as in Prop.4.2. This
theorem shows how additive relations clarify a result o Serre (loc. cit.,
1.3; hisnotation R=F4, S=AIM).Inthecased afibermapf: E->B,
H(4)=H(E), H(F,A) is the homology d the fiber, H,(AIM)=E} ,=
H,(B, Z) that d the base. Thus Prop.4.2 gives for transgression the
following "*geometric™ description (in which it originated): A homology
class o the baseis transgressiveif it can be represented by a cycle z
such that z= fc, for ¢ a chain d the total space with é¢ in the fiber.
An image d cls z under transgression is then the homology class, in
thefiber, o any such dc.
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5. Exact Couples
An aternative description d spectral sequences can be given via
""exact couples( IVASSEY [l 952]). Though not necessary to the sequel,
they throw some light on the origin and nature d spectral sequences.
An exact couple €={D,E;i,j, k} isa pair d modulesD, E together
with three homomorphismsi ,7, k,

D—>D
€ N (5-1)
E

which form an exact triangle in the sense that kernel = image at each
vertex. The modules D and E in an exact couple may be graded or
Z-bigraded; in the latter case each d 4,7, k has some bidegree.

The exactnessd € shows that the composite j&: E —E has square
zero, henceis a differential on E. Form the homology module H(E, j k)
for this differential. Construct the triangle

iD—" . iD
¢ Py G5 (5-2)
H(E,{k)
where i' isinduced by i and j and %' are given by
7(d)y=jd+TkE, Rk(et+jkE)=ke, ecE, {fke=0.
Observe that id=0 implies dekE, so jdefkE and | is well defined.
Similarly jke=0 implies keciD, s0 K is wdl defined. Cdl € the
derived couple o €; it is a functor o € under the evident definition
d homomorphisms for exact couples. A diagram chase proves

Theorem5.1. The derived couple o an exact couple is exact.
There is a whole sequence d derived couples. Iterate ¢ (r—1)-times
. pLp5H. 4D

J
E

1','1—' “
e D.
Here s*—7: D—D and 44~ are additive relations, with
Ind (ji*~") =j (Ker#’~Y), Im(jit~")=k20Ck1(7-1D).

Set
D'=¢"1D, E'=k('D)[j(Kers ). (5.3)
Then 4, 4+, and k induce homomorphisms 4,, 4,, k, in the triangle
D - . p
(X4 ,& V7 r=1,2,...,
E

called the r-th derived coupie of €.
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Theorem 5.2. The »-t& derived couple € is exact with €1=¢, €2=¢",
and &7+ is the derived couple of €.

Proof. For r=1, E1=E. For r=2, exactness d € gives :+D =710,
ker i=KE, hence E2=4"1j10/{kE= H(E,{k) and thus €2 the derived

couple d €. For r>2, D"*1=4{D’=4 D"; we need only show that
Er+1 is the homology d E’ under the differential j,k,: E"—>E". TO ex-

hibit this differential, write the definition (5.3) d E" as

=C/B, C=k?2(1D), B=j(Keri 1.
An element  E” is a coset ¢+ B, where ke=i""1d for some 4, and

ik, (c+ B)=j,(k¢)=jd+ B, kc=1"14d. (5.4)
I't will sufficeto prove

Ker(j,k) =&1('D)/B, Im(jk)=j(Ker 7)/B.

First 7,k, (c+ B)=0 givesjd=7a for some a<D with *~1a=0. By the
exactness d Q, d—a=<d’ for some d’, SO ke=1"d’ and cek (s D).
Conversdly, kc=#4d' gives 7,%, (c B)=0; the kerndl is as stated.
Similarly Im(j,%,) consistsby (5.4)d elementsjd4- B with 7d=7kc=0
and conversely 7d=0 implies #~1d=kc for some c; this gives the
stated image. Since €+! is the derived couple d €, it is exact by
Thm.5.1.

Corollary 53. An exact couple o Z-bigraded modules D, E with
maps of bidegrees
degi=(1, —1), deg7=(0,0), degk=(—1,0) (5.5)
determines a spectral ssquence (E, 6) with d'=y,k%,, r=1, 2, ....
Proof. Given (5.5), the couple €" has maps o the following bide-
greesdegi,=(1,—1), degj,=(—7r+1,7r—1), degk,=(—1,0).

It followsthat deg(j,k,)=(—7,7r—1), SO each E'*! is the homology
d E" with respect to a differential @ d the bidegree appropriate to a
spectral sequence.

An exact couple € with bidegrees (5.5) may be displayed as

i t
l i 3 l i
> Ey 0 —’Dp 1q+1‘—>Ep g1~ Dp_gqps— -

v b, .
"%Ep—{-lq — —->E —> p—1.q —>_..

> Epyag 1_’£p+14 1_’ Epirq- 1“> )qu—-

i I

Mac Lane, Homology 22
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Each sequenceconsistingd a vertical step ¢, followed by two horizontal
stepss and k, followed by a vertical stepii, ... is exact; indeed the dia-
gram may be regarded as the intercalation d these various exact se-
quences, which have the terms D in common. The description d the
r-th derived couple at indices (p, g) is visble in the diagram: Form
E}, , as a subquotient d E, ,with numerator obtained by pulling back
(al ong k) theimage d the compostevertlcal map "1, and denominator
obtained by pulling forward (along4) the kernel o the corresponding
7 (see (5.3)).

Each filtration F d a 2-graded differential module A determines
an exact couple as follows. The short exact sequence d complexes
F,_,~FE,A->FAJF, A yields the usua exact homology sequence

i ] k
o> H, (B, yA) 2> H,(EA) > H, (B A, _A) > H, (. 4) -

where i is induced by the injection, 1 by the projection, and k is the
homology connecting homomorphism. These sequences for all # com-
bine to give an exact couplewith

D, =H, ,(F,A), E,,=H, (FAIF,_,4), (5-6)

and with degrees d i, 4, k asin (5.5). Cdl this the exact coupie d the
filtration F.

Theorem 54. The spectral sequence o F is isomorphic to that o the
exact couple o F.

Proof. The spectral sequence d the exact couple (5.6) d F has
E'=&t(Imd ) fj(Kers=Y), i1 HF,_,4)—~>H(F,A).

Regard E,=E;=H(F,/F,_,) and hence aso each Ej as a subquotient
module of F,(F,_,. Consider the numerator of E". Each homology class
d Ej is represented by a "relative cycle” ccF, with dceF,_,, while
k(clsc)=cls(dc)cH(F,_,) lies in ¢ *H(F,_,)CH(E,_,) if dc=a+ b for
some b¢eF, ; and some acF,_,. Then c-b isin the module Z; d (3.5
and ¢=(c—b)+ be Z; F,_,4. This is the numerator o (3.8).

On the other hand, the denominator d E? is given by 7 (Ker s ~1).
The kernel d #~': H(F,A)—~H(F,,,_;4) consists d the homology
classes d those cycles ce F,4 with c=20b for some b¢F,,,_,4, hence
for beZ5t_,. Thenj(cls c)—cIs(ab) has 86¢8Z555_1uF,_,. Thisis the
denominator o (3.8). All told, £ is given by the formula (3.8) used to
definethe spectral sequence di rectly from the filtration. I n both cases,
d"isinduced by ¢: A—A.

Corollary 55. I n the spectral ssquence of an FDG-module the first
differential 4 may be described in terms of the maps 7 and k o the exact
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homology sequence for F,A[F, ;A as the composite d'=jk

By =H, o (BAIE, 1 A) ™ Hypf s (B A, yA)=E .

Note that the sequenced derived couples contains more information
than the spectral sequence aone, sinceit involves not only the E', but
aso the D" and the mapsi,, 4,, &, which determine the successivediffer-
entials d.

An exact couple need not arise from a filtration. An exampleisthe
Bockstein exact couple (BRowDER [1961]; cf. aso Ex.II1.4.2) for a
complex K o torsion-free abelian groups. Let / be a prime number,
Z, the additive group d integers modulol, and Z ~Z -»Z, the corre-
sponding exact sequenced abelian groups. Sinceeach X, istorsion free,
K»»K +K®2Z, isashort exact sequenced complexes. The usual exact
homology sequenceis an exact couple

H(K) H(K)

HEK®Z)

d 2-graded (not bigraded) abelian groups.

Another instance arises from tensor products. The tensor product
applied to a long exact sequence yields an exact couple and hence a
spectral sequence. Indeed, factor the long exact sequence

Ay 1> Ay—>A4, 1A, 3>
d left R-modulesinto short exact sequences
Tty KP)_)AP—»K#'—I’ KP—I»AP—I'»Kp—z: ven,

For a right R-module G and each $ we obtain the usual long exact
sequence

. Tor, (G, K,) - Tor,(G. 4,) %> Tor, (G, K,_y) *> Tor,; (G.K,) — ---

with connecting homomorphismsi. These assemble into an exact couple
with
D, ,=Tor, (G, K,), E,,=Tor, (G, 4,)

with the degrees o 1,7, k asin (5.5); moreover d=jk: Tor, (G, 4,)
—Tor, (G, 4,_,) is the homomorphism induced by the given mapping
A,—~A4,_,. Similarly, if Cis aleft R-module we obtain an exact couple
with

D, ,=Ext™(C, Kp),  E,=Ext™?(C, 4,)

and with the degrees d 4, 7, and k asin (5.5).
22+
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Exercises

. For an exact couple € with " first quadrant™ term E, show that D,

Di’,q ; forp <0 and q<o. Describe the upper and lower edges o the correspondqng

diagram for €.

2. Show that the exactness of the derived couple &’ can be deduced from
the Ker-coker sequence for the diagram

ElikE ™, B iD>o
Yime  is )
0~>k1iD—k1iD— 0.

The following sequence o exercises describe spectral sequences in terms o

additive relations and is due to D. Purpe [1962].

3. A differential relation d on a module E is an additive relation d: £E—FE
with Ker & >Im d. Define H(E, d).

4. Show that a spectral sequence can be described as a module E together
with a sequence o differential relations d,, »=2, 3,... such that d,+10:d,E,
d;-4E=d; 0. (Hint: define E, ., = H(E, d,).)

5. Show that the spectral sequence o an exact couple € is E together with
the differential relations d, =ji ="+, »=2, 3, ....

6. Show that the spectral sequence of a filtration F is that o the module
EO—Ep with EJ = E,/E,_, and differentials the additive relations d': Fy/E,_,—
—/Fp—_y_1 induced bya (r=0,1,...).

6. Bicomplexes

Many useful filtrations arise from bicomplexes. A bicomplex (or, a
""double complex™) K is a family {K, ;} & modules with two families

0 Ky K, 14, 0" Ky, —>Ky, (6.1)
d module homomorphisms, defined for all integers$ and ¢ and such that

28'=0, &&'+9'¥=0, 99" =0. 6.2)
Thus X is a Z-bigraded module and &', &' are homomorphisms d bi-
degrees (—1,0) and (0, —1), respectively. A bicomplex is positive if
it liesin the first quadrant (K, ,=0 unless =0, q=0). A homomor-
phismf: K —L d bicomplexesisa homomorphlsm d bigraded modules,
d degree o, withfe&'=2'f and tor=2a't. The objects K, , in a bicom-
plex may be R-modules, A-modules, graded modules, or objects from

some abelian category. The second homology H'" of K is formed with
respect to &' in the usual way as

Hyo(K)=Ker (a": Kyp.q —)Kﬁ.q—l)/a”Kt,qﬂi (6.3)

it is a bigraded object with a differentia d. Hj,,—~H,_, , induced
by the original &’. In turn, its homology

H,H, (K)=Ker(a: Hy,~H, 3 )]0'Hy 1, (6.4)
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isa bigraded object. The first homology H'(K) and the iterated homology
H'"H'K are defined analogously.

Each bicomplex K determines a single complex X=Tot(X) as
X,=2K,, 0=0+0" X,->X, ,. (6.5)
p+g=n

The assumptions (6.2) imply that &2=o0; if K is positive, so is X, and
in this case each direct sum in (6.5)is finite. This totalization operator
has already been used. Thus, if X and Y are complexes d K-modules
with boundary operators & and 8, respectively, X®Y is naturaly

abicomplex {X, ®¥,} with two boundaries

xRy =(0'7)Qy, ' (xQy)=(—1)"*2Q8"y

which satisfy (6.2); the tensor product d complexes, as defined in
Chap.V, isTot(X® Y). Similarly Hom (X, Y) is a bicomplex.

The first filtration F* of X =Tot (K) is defined by the subcomplexes
E with

(FpX)y=3 Ky os- (6.6)
hsp

The associated spectral sequence d F iscaled the first spectral sequence
E d the bicomplex.

Theorem 6.1. For the first spectral sequence E' o a bicomplex K
with associated total complex X there are natural isomorphisms

Epl=H,H](K). (6.7)
I'f K,,=0 for p<0, E ?*=H(X). If K is positive, E lies in the first
quadrant.
In other words, this spectral sequence shows how the iterated
homology H'H" approximates the total homology d X.

Proof. Let E=E bethe first spectral sequence. Asin (3.2), E} ,=
HH,,(F X/F,_, X). But thedefinition (6.6)d thefiltration F showsthat
(P;X/I'; 1X),4,=K, ,. ThereforeE} ,=H, ,(K).Moreover, 4t: E! - E?
is induced by o= &'+ a”, which under the isomorphism Ei=H"K
corresponds to d. Therefore Ed= H(EL,d)=H H"K, as asserted in
6.7
( S)ince each X,, is the union o all F,,’X,,, the first filtration is conver-
gent above. When K, ,=0 for p<0, F/;X=0, and the filtration is
bounded below. This gives the convergence E' 2= H (X) .For K positive,
(6.7)shows that E liesin the first quadrant.

It is instructive to give a proof d the theorem directly from the
definition

E} =23 oF 1 X,) (0751, ,0F_1X,), n=p+q.
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An element a¢ F, X, has the form
=8yt & 1,011 Fp_ngrat 7, @p,q€Kpqs
0a=0"ay 4 (04 4+ 0" 0y _1,011)+ (0'@p1,412+0"ap_s i 0)+ -+,

where we have grouped terms d the same bidegree. Hence a¢Zj | if
&"a,,=0and acZ} if

8”“{,,(1:0, 3'ai,,q+ 3"(1‘,_1’,14_1:0.
ThereforeE% =L, /M, ,, where

L,,= [aM[ "ay,=0 and &'a,,=—08"a, 4,y forsome a, ;,.],
M, ,=[8byy 8y 444] 8"bp+1,q=0] .

In L thefirst conditionon «, , makesit a a*-cycle, so that it determines
cls”aMeH,, y; the second condition asserts that this homology class
liesin the kernel f &': H}, ,—~H}_4 ,. The term &b, ,., in M can vary
a, , by a 2"-boundary, leaving cls”a, , unchanged; the term &'b,,, ,
can vary cls"a;,q by &'(cls”b,.,,). Hence the correspondence given
by a, ,~>cls’ (cls”a a,,) provides the desired isomorphism Ej ,=H,H,'.

The second flltratlon F' and spectral sequence E™ are deflned
similarly. To keep $ as notation for the flltratlon degree, write the
bicomplex as K ={K, ,}, so that a : Then F' is defined
by (Fy X),=2 K, s, » for h=<p and hasan asouated spectral sequence
E™ with E;’§:H" {{K, »})- When K, ,=0 for p<<0, this converges
to the filtration F' o‘ H(X) If K is positive, both spectral sequences
liein the first quadrant and converge to different filtrations F and F*
d the same graded module H(X).

Exercises

Let X and Y be complexes of abelian groups, with each X,, a free group

In the first spectral sequence of the bicomplex K=X@®Y, show that qu,_

H,(X®H,(Y)). Use the Konneru formula, with the explicit generators of V.6

for Tor, applled as in Prop.V.10.6, to show that @2=43=-.-=0 and hence that
E?=E®™ in this case.

2. Describe E3 , by a quotient L/M, as in the second proof of the text.

7. The Spectral Sequenced a Covering
If a group | 7 operates properly, asin IV.11, on the right on a path-
wise connected space X, then X isa'regular covering' d the quotient
space (= orbit space) X/IT under the canonical projection
f: X—>X|/II.

Each « in17 carriessingular simplicesd X into such, so the total singular
complex S (X) and its homology H(S(X),C) are both right I7-modules.
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Theorem 7.1. If I operates properly on the pathwise connected space

X while C is any abelian group, thereis a first quadrant spectral sequence
E with

E} =H,(II, H (X, C))?H(X/H, 0), (7.1)

[

As aways, the convergence means that there is a filtration F o
the graded group H,,(X/I1, C) and an isomorphismd E3’, to the associ-
ated (bi)-graded group GyH,.,(X/II, C).

For the proof, first recall how the various homologiesare computed.
The singular homology H(X, C) is that d the complex C&® S(X).For
any right IT-module A, such as H(X, C), the homology H,(17,A) is
that d A®,B (1), where B(II) is the bar resolution for I7 — any
other projective resolution d the trivial 17-module Z would do as well.
Finally the homology o the orbit space XjII is computed from its
singular complex S(X/IT). There is an isomorphism d complexes

g: S(X)OnZ=Ss(X/I) (7.2)
defined as ¢ (T"®1)=fT" for each singular smplex T' in X. Indeed,
since Z is a trivial 17-module, T'u®1=T7"'®1 for each ucll, s0 ¢ is
well defined on &,. By LemmalV.11.3, each singular n-simplex T
in X/IT can be lifted to asingular n-simplex T' in X and these T', one
for each T, are free II-module generators d S(X). Thus S,(X) ®zZ
is the free abelian group with generators T'®p1, f T'=T, and ¢ isan
isomorphism. The bicomplex

Ky, =(C®S,(X))®r B, ()
has two filtrations F and F*’ and the corresponding spectral sequences

Ejl=HyH,(K), E,;=HyH,(K),
each converging to the associated graded group d H(Tot K) under
the corresponding filtration F* or F".

For the first spectral sequence, Hy , (K)=H,(C®S,(X)®zB (17))
isthe homology H,(IT,C®S,(X))d 17. If C=Z, thisis just the homo-
logy o IT with coefficientsin the free II-module S, (X),which hasbeen
calculated to be S, (X)®gZ for ¢=0 and zero for ¢>0. Since S, ;B
is a complex of torsion free abelian groups, the universal coefficient
theorem gives

Hy (K)=CQS,(X)®nZ, g¢=0,
=0, g=>0.
By (7.2), the complex on the right is C® S(X/II). Therefore
E} =H,H/(K)=H,(X|II,C), g¢=0,
=0, g>0.
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Hence the spectral sequence "'collapses™ — it lies on the horizontal
axis g=0, has all differentials zero, so is equal to its limit with

H,(TotK)=H, (X/II, C). (7.3)

In the second spectral sequence we write the indicesd K as K,
C®S,R®nB,, so that p will still denote the filtration degree. The flrst
homology H uses only the boundary in S, (X); since each B, is afree
II-module, this gives

Hy o (K)=H,,,({C®S,®nBy}) =H,y (X, C) @u B, (I).

The second homology Hj is then the homology of the group Z7 with
coefficientsin H, (X, C), so that
E,3=H/H,(K)=H,(II, H (X, C)). (7.4)

pa=
This gives the spectral sequence d the theorem. As for any canonically
bounded filtration, it converges to H(Tot K) as given in (7.3) by the
first spectral sequence. Hence the conclusion (7.1).

This proof is a typical case o two spectral sequences, one d which
collapses s0 as to determine the limit d the second.

Cordlary 7.2. If 17 operates properly on the pathwise connected
acyclic space X there is a natural isomorphism H,(II, C)=H,(X|II, C)
for each p, where Cis any abelian group regarded as a trivial II-module.

Proof. Since X isacyclic, H, (X, C)=0 for ¢=0 and is C for g=0,
so the (second) spectral sequence collapses, so has E2 isomorphic to the
limit, as asserted.

This result is the homology paralel & Thm.IV.11.5 on the cohomo-
logy o X/II. Asin that case, this corollary could be proved directly
without the use d spectral sequences. Put differently, the spectral
sequences dlow us to generalize Thm.1V.11.5 to apply to spaces which
are not acyclic. For example:

Corollary 7.3. If the space X has Hy(X)=Z and H,(X)=0 for
0<g<t and if IT operates properly on X, then

H,(X/II,C)=H,(II,C), o0=n<t.
For n=¢thereis an exact ssquence
H,y(X[II, C)->H, 1 (I, C)~H(X, C)Qu Z ~H,(X|II, C)~H,(I1, C)~0

Proof. The universal coefficient theorem gives H, (X,C)=C and
H (X, C)=0 for 0<g<?. The spectral sequence d the theorem then
hasE;,:ofor 0<g<t,and hence E,=E} y=H, (I1, C). Thefiltration
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o H,(X/II, C) amounts to the exact sequence
0—EQ,—H,(X[IT, C)—E=H,(IT,C) >0,

while the description o EJ, as the homology d Eg , under @**! is the
exact sequence
e 4+l
H,.,(X/II, C)> E},y o> E ,—>E,—0.

Replacing Ef,, , by its value H, ,(IT,C), using (X.5.2) to calculate
E} . =H,(17H,(X,C))=H,(X,C)®zZ, and splicing these sequences
gives the result. This exact sequenceis a particular case d the " exact
sequence o terms o low degree” (Ex.3.3).

This result determines H, (X/IT) for n<<¢ and H,(X/II) up to a certain
group extension. A complete determination d H,(X/II) in terms d
H(II) and H(X) requires an additional invariant, a cohomology class
ke H**+(II, H, (x)), asintroduced by ErLENBERG-MAc LANE [ 949,19501.

The spectral sequence d a covering is due to CARTAN-LERAY [1949] and to
Cartan [1948]. For further applications, see Carran-EILENBERG, p.356; Hu
[1959], p.2871ff.; HiLTON-WYLIE [1960], p.467.

Exercise

1. Show that the use of the first spectral sequence in the proof above may
be replaced by proving that 1®e: C® S (X)®@nB(II) >~C® S (X)®pZ isahomo-
logy isomorphism, where ¢: B—Z is the augmentation (use the first filtration
and Thm.3.4).

8. Cohonol ogy Spectral Sequences

For cohomology it is customary and convenient to write a spectral
sequence with upper indices and the usual change d signs as Eff=
E”, _, (thesign d r is not changed). The same spectral sequence E
then appears as a family E, d bigraded modules, r=2, 3, ..., with
differentials

d,: Epa_s Eptra-ril (8.1)

d bidegree (r,1—7) and with H(E,, d,)=E,,,. Comparing this with
the previousd": E} ., ,—,+1—E} 5, We see that the formulasfor spectral
sequences in the upper indices are obtained from those in the lower
indices by reversing all arrows and moving each index up — or down,
as the case may be — without a sign change. The limit, E,, is defined
as before.

A third quadrant spectral sequence E is one with E} ,.=0 when
$>0 or ¢>0; equivalently, all non-zero termslie in the first quadrant
d the upper indices, and the diagram is simply (1.6) with arrows re-
versed (differential from fiber toward base, increasing the total degree
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by 1). The edge homomorphisms on the base are epimorphisms

EfO—>Ef0—>... > ELO, = E8,

on the fiber are monomorphisms

0,9 _ 10, 0, 0,
EQf=EQly—EQ —- - —>E°.

The transgression z: Eg ,_,— E? , is the additive relation (fiber to base)
induced by 4,, and defined by (4.1) with all arrows reversed.

Let A be a DG,-module, written with upper indices (4*=A4_,)
and a boundary operation 6: A*—A4**1. A filtration F d A, written
with upper indicesF?=F_,, appears as a tower d differential 2-graded
submodules

WOFPTIASFPASFPYIAS L (8.2)

— often called a descending filtration, though it's really the same fil-
tration in a different notation. Thm.3.1 appliesdirectly (only the nota-
tion is changed): Each such F yields a spectral sequence{E,, 4,} with
Et=H(FPA|FF*1A) and

EP 9= (ZDIOFPHIAPHY) [(8Z8TfHLat - FPHIAPHY)

where Z89=[a|acFPA?*¢, 6acF?1'A?*4+Y], and d, is induced by 6.
If Fis bounded, there are natural isomorphisms E2,~F*H A/F?*'H A,
where F?H denotes the filtration of HA induced by F. These isomor-
phisms also hold if F is convergent above (U F?4=A) and bounded
bdow (for each » there is an s with FSA"=0). Note that bounded
"below'" appears asa bound at the right in the descendingfiltration (8.2).

The filtration F is canonically cobounded if F°A=A and F**'4"=0
(note that this is not the same as canonically bounded). This implies
that the complex A is positive in upper indices (4*=0 for #<0). An
argument like that for Thm.4.4 proves

Theorem8.1. A canonically cobounded filtration d a DGy-module
A vyields a "third quadrant” spectral sequence. The initial edge terms
are given in terms d the subcomplexes F'A and L, where L?=Z%°, as
E$*=H"(A/F'A) and Ez°=H"(L), and the edge homomorphisms H" (A)
—E%" and E¥°—>H"(A) are induced by theidentity 1,. The transgression
7 E¥*1—~FE%% fo n=2 ¢s the additive relation induced by 6, and is
also the connecting relation g=p (A; L, F'A)

o(d; L, Fl4): H* Y(A/FtA)—H"(L), #»n=2.
Explicitly, the edge terms are given for r =2 by
EPO=FPCP|§ZE—1T L2 C=Ker[d: A—>A4], (8.3)
E%9=(Z09LF149) /(8 A1~V L F1A49).
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Similarly, exact couples and bicomplexes may be written in upper
indices. Many cohomology spectral sequences have an (exceedingly
useful) product structure, arising from the cup product in cohomology.

Exercises
1. Under thehypothesesd Thm.7.1, obtain a third quadrant spectral sequence
ER9=HP(II, HY(X, C))17_>Hn (x/I, C).
2. ProveThrn.8.1.

3. If E}, 4 is a spectral sequence of vector spaces over some field, and V is
a vector space, describe Hom(E3, 4, V) as a spectral sequence with upper indices.

9. Restriction, Inflation, and Connection

Our next example d a spectral sequence deals with the cohomology
d a group II with a given normal subgroup I'. Certain preliminary
concepts relating the cohomology groups d I7 and I" are needed.

If I"isasubgroup d 17and A aleft IT-module theinjection x: I'>17
gives a change d groups (X, 14) which induces a homomorphism

res®: H*(II, A)—H"(T, 4), (9.1)

called restriction, which is natural in A. Also ACT'CIT gives res) resf =
resZ. Let AT denote, as usual, the subgroup d those elementsa in A
with ta= afor every tel". If I"isa normal subgroup d 17, A7 is a left
(I7/T")-module. The projection ¢: IT--IT/I" and the injection j: AT—4
give a change d groups (a,j): (I7, A)—(II/T", A¥) which induces a
homomorphism
inf@7: H"(II|T, AT) —-H" (11, A) (9-2)

cdled inflation, which is natural in A. Moreover, there is an additive
relation

oy H* (I, A)—H*Y(II]T, A7), #>0 (93)
called connection, and to be defined below.

Recall that H" (I, A) = H*(Homg (B(II), A)),where B (17)= B (Z (17))
is the bar resolution. Each feHomg(B,(II), A) can be written asa
homogeneous cochain; that is, as a function f (%,, ..., x,)€4 d #+1
arguments x;ell with f (X%, ..., xx,)=xf (x,, ..., %,), normaized by
the condition that f(x,, ..., x,)=0 if x;=x,,, for any <. Moreover

n+1 . R
6f(x0: A xn+1)=(—1)"+1.20(— 1)7(7‘0’ SREFE7 PR xn+1) .

Then restriction is induced by the chain transformation ¢ given by
@ ) tos -~ s ta)=F {0, s b}, GEl (9-4)
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For geHomy,r(B, (ZI/I), A),inflation is induced by the cochain trans-
formation a* with

(0*8) (%9, .-+, %) =8{0 %y, ..., 0%,), x€ell, o xell. (9.5)

These transformations a* and ¢ may be recorded in the diagram
d chaintransformations

L K

Homy (B (IT), 4) = Homn(lll’i(ﬂ), 4)
i N (9.6)

Homy(B (), 4) 2> Homp(B ("), 4)

I !
s S ,

o complexes denoted as L, K, S', S. Note that the (/I/I')-module
B(I/I') is aso a 17-module by pull-back along a, so the complex L
at the left is canonicaly isomorphic to Homg(B(I/I"),A  with
cohomology H*(IT]I", AT) and a* is B (af where B(a): B (IT) - B (II/T).
Each IT-module is dso a I-module, by pull-back along the injection
x: I'>II, so each IT-module homomorphism is a I™module homomor-
phism. This monomorphism i: Hom;--Hom, gives the vertical chain
transformation 4: K—S' in the diagram (9.6), while % induces
B (x)*: S’ S there. Clearly y=B (x)*.
The chain transformation B (»x)* is a cohomology isomorphism

B (¢)*: H"(Homp(B(II), A))=H"(Homp(B(I'), A))=H"(I', A). (9.7)

Indeed, since17 is a union d cosets I'y o I, the free I[I-module Z (/1)
on one generator is the direct sum o the free I-modules Z(I")y. Hence
any free IT-module is adso a free I~module, s0 ¢: B(I)-+Z isdso a
free I'resolution d thetrivial I~module Z. The map B (x): B (I") - B (17)
is a chain transformation lifting theidentity 1,, hence by the comparison
theorem gives an isomorphism (9.7).

Next, if I'is anormal subgroup d 17and A all-module, each H" (I, A)
is a (II/I")-module. First, for any zB, Homp(B, A) is a (I1/I")-module
under the definition (Hopf algebra structure!)

(xf)(B)=xf(xb) forf: B—A, xcll, beB. (9.8)

Indeed, xf so defined is a I'-module homomorphism when f is, for,
with tel, (xf)tb)=xf(x2 D ==x(x2¢X)f(x2b)=t[(xf) J by the
normality d I'. This makes Hom, a II-module, but since ¢ f=f for
tell, it may be regarded as a (I1/I')-module. This module structure is
natural in B, so Hom,(B(II), A) is a (ITIF)-module. By the isomor-
phism B(x)* o (9.7), H'(I", A) becomes a (II/I")-module, as asserted.
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An explicit formula for this (II/I")-module structure in termsd cocycles
o B(I") isgiven in Ex.3—5 below.

Lemma9.l. For I' normal in 17, the image o the redriction lies in
H"'(I", A)"".

Proof. By (9.6), restriction is the composite y= B (x)*¢. For each
17-module homomorphism f: B{II)+A, (9.8) gives x f={ for each
xell. Hence, if fis a cocycle, clsf in H" (I, A) isinvariant under each
operator of I1.

In the diagram (9.6), the definitions (9.5) and (9.4) show a*: LK
a monomorphism and : K —S an epimorphism, with composite y a*
zero in dimensions greater than 0. Hence we are in the situation o
a complex K with two given subcomplexes a*L and M =Ker g, with
(c*L)*CM" for n>0 and S=K/M; in this situation (4.4) defines a
homology connecting relation

o=o(K;0*L,Kery): H*(S)—~Hr+1(L)
Take this to be the connection g, o (9.3). Explicitly, ¢ is the additive
relation consisting o all pairs d cohomology classes
(clssp f, cls; g), feK®,  gel"tl, {Sf=o*g.
The last condition implies that dg=0 and éy f=0.

Lemma 9.2. The module Def ¢ for the connection g liesin H* (I, A)™".

Proof. Take (clssy f, cls,g)cp as above, and define a cochain
heS'™ for x;ell by

B(%g, oo, %) =F{%g, ..., %, )+ (—1)"g(1,0 %, ...,0%,),

wherethesecond term on theright in effect implicitly usesthecontracting
homotopy in B{II/I"). Since the values o g lie in AT, this function h
is indeed a I-module homomorphism h: B,(17)—A. A calculation
with the boundary formula in B (Z), using é6f =a* g and dg=0, shows
éh=0. Moreover, B (x): B(I")+B (17)carries h in S into f in S,
soany clsgy f in Def g isrepresented by clsg.2in H" (S). I n this complex
S we can compute the action o any x¢Il. Let %, be the cochain with
Ry (%9, ves %,_q)=g(ax,1,a%,,...,a%,_,). The coboundary formula
and the definition (9.8) show that

(5 b hm 1) (%, ..., %) =88 (0 2,1, 0 %y, ..., 0 %) =0.

Hence x h—# is the coboundary o %,, so the cohomology class o h
in S isinvariant under x, as asserted.

By Lemmas 9.1 and 9.2 we may rewrite restriction and connection as
res: H" (17,A)—-H" (I, AY" and o: H" ([, A)F—H" (IIIT, A).
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Two minor observations Wl be needed in the next section. For
modules (mC, B, and p4 there is a natural isomorphism

Homﬂ/l’ (C’ HOmI’(Bv A));Homn’ (C® Bv A)l (99)
where Homp has operators as in (9.8) and C& B has ""diagona'* opera-
tors x(c@hb)=(xc@xb). The map in (9.9) is given by adjoint associa-
tivity. To check that it respects the operators indicated, consider any
group homomorphismf: CQ B—-4. Thisliesin Hom; on the right if

FlreQxb)=2f(cQb), ccC, beB, xell. (9.10)
For fixed ¢, f (c®—) liesin Hom on the left if
fcRtb)=if(cRb), tel °o.n)
while the condition that f yield a map in Homg is
fxc @bV )=xf(cQx71b"), beB. 9.12)

Now (9.12) with »’=xb is (9.10), while (9.10) with x=tel has tc=c,
hence gives (9.11). Thus the conditionsleft and right on f are equivalent.

Lemma 9.3. For arty freel7-module F artd arty IT-module A,
H"(IIT", Homp(F, 4))=0, n>0.

Proof. (Cf.Ex.6.) |t sufficesto take for F the freel7-module Z (17)
on one generator. The cohomology in question is that d the complex

Homyy (B (IIT"), Homp(Z (IT), A))=Homy (B @Z (II), 4).

An n-cocyclef d this complex has f((u,, ..., #,) ®X)eA for w,ell|I.
Definean (t— 1)-cochainh, usinge: IT —IIIT, by & ((t5, ..., ty—1) @ X)=
f((#9, -+ thy—1,aX) ®X). Then his alT-homomorphism and the condi-
tion 6f((%, ..., #,, ax) ®X)=0, when expanded, gives f=6h. Hence
every cocycle d positive dimension rt is a coboundary, q.e.d.

Exercises

1. Show how the restriction homomorphism may be calculated from any free
II-module resolution of Z.

2. If I=TI><A, identify II/4 with I" and show that inffJ/4res?=o0.

3. For a change of groups ¢=(, &): (I, A, ) >(I", A", ¢’) show that the
homomorphism g*: H*(I”, A')~H™(I, A) of (IV.5.9) may be calculated from
freeresolutionse: X -Z and e: X’+Z of Z asatrivial I~ or I”-module, respec-
tively, as the composite

@* =f*ay: H*(Hompm(X’, A'))~>H"(Homp(X’, A))>H"(Homp(X, A)),

where i1 X - X’ is a Imodule chain transformation lifting 1,.
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4. For I' normal in 17, each 17-module A is a I'-module under the induced
¢’: '~ AutA. For each x¢Il, show that the definitions{,¢=x¢tx for ¢cI" and
a,a=xa Yied achange of groups

or=, o) (A4, @) > ([, 4, ¢)

with o,,=g,0,. For X —Z al7-module resolution and f as in Ex.3 show that
ayf*: Homp(X, A)»Homp(X, A) is the module operation of # on Homp, as
defined inthetext.

5. Use Exs.3, 4 to prove that the module operation of xcII on H*(I', A)is
given on a (non-homogeneous) cocycle 2¢ Hom(B, (I'), A) by clsh-sclsh', where
H is defined by conjugation as

By, ..., t) =2f(x 4%, ..., 72, %), t,el’, »€17.

6. Using (9.9), show that pF free implies Homp(F, A) relatively injective,
for the pair of rings Z (II/I"), Z. Hence give a second proof of Lemma 9.3.

10. The Lyndon Spectral Sequence

Theorem 10.1. For I' a normal subgroup o II and A a 17-module
there is a third gzcadrant spectral seqzoence {E,, d,}, natural in A, with
natural isomorphisms

Ept=H?(IIT, H*(T', A))3 H**4(IT, A);

converging as shown to the cohomology o 17.

Here HY(I', A) is a (II/I"'}-module with operators as described in
$9. This spectral sequence thus relates the cohomology d the subgroup
I' and d the factor group ZI/I" to that d the whole group 17.

Proof. Using the bar resolutions, form the bicomplex K with
Kp’quOmmp(Bp(H/P), Homp (B, (IT), A))
=Homy(B,(IIII") ® B,(II), 4),

as by (9.9), and with two differentials given, with the standard signs
for a coboundary and a differential in B,® B,, for feK#? by

(OB =(— )PV QY"),  beBpy, VB,
(") (B'Rb”)= (— 1)1 (B’ Rob"), b'eB,, b"e¢B, ;.

The condition &' 6"+ 6" 6'=0 is readily verified. The first and second
filtrations d this bicomplex yield corresponding spectral sequences E'
and E", both converging to H(Tot K).

For the second spectral sequence E’’ the filtration index is still to
be denoted as p, so we write K%#=Homy(B,, Homp(B,, A)) for the
terms d K, with second degree labelled as . Asfor any bicomplex,
Ey?i=H"?H'Y(K). But H'?(K) is the cohomology ot I7/I" with co-
efficients in Homp(B,, A). By Lemmag.3, this is zero for ¢>0; it is
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[Homy(B,, 4)]%T=Hompg(B,, A) for g=0, this because any H° (I, M)
is the group MM of 17-invanant elements o the /7-module M. Next,
calculating H#? d Hompg(B,, A) gives the cohomology d 17, so that

E’z’paq__f:d:Hp(H,A)’ g=0,
=0, g>0.

The non-zero terms all lie in the base ¢=0, so the spectral sequence
collapses. For each total degree n there is only one non-zero quotient
in the filtration & H"(TotK), hence an isomorphism

H(IZ, A)=H" (TotK). (10.1)

The proof shows that this isomorphismisinduced by the chain trans-
formation
{: Homp(B{I), A)—~>Tot K

which assigns to each f: B, (II)-~A the element  fe K%* defined by

¢ H{((wRb)=1(p), wueIll', beB, ().

For the first spectral sequence, Eg»‘=H'?H"?(K). Let S denote
the complex Homp(B (1), A), as in (9.6); the cohomology d S' is
H(T, A). Now K?=Homp(B,(II|I"), S), with B,(IIII") a free (II/I')-
module, is exact as a functor S, so

H'IQ(KP):'_:HomH/p(Bb (H/I‘) ,Hq(sl))EHomH/p(Bp(H/F), Hq(_[‘, A)).
Taking H'? gives the cohomology d II/I", hence an isomorphism
0: Edi=H?(II|", H(T', A)). (10.2)

This spectral sequence converges, as for any positive bicomplex, to
H(Tot K), which by (10.1) just above is H"(II, A), q.e.d.

Proposition 10.2. In the Lyndon spectral sequence E=E the edge
tarns are

EpOS=HP(IIT, AT), E%i=HUT, A"T=H(I, )" (103)
ad EYi=H! (I, A). The edoe homomorphism
H™(IT, A)—ES*=H"(T, A)
on the fibe isthe restriction somomorphism res?. The edge homomorphism
H™(IIT, A"y=2E3°—~H"(II, A)

on the base i's the inflation infYT. The transgression 7 is the connecting
relation ¢ of (9.3),

r=pfrt HY,A)—~H"IIII', A"), »n>1. (10.9)
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The isomorphisms (10.3) are special cases o (10.2). Note that the
edge homomorphism on the fiber has its image in Ey*=H"(I", A)",
exactly asfor therestriction map (Lemma9.1) and that thetransgression
7 hasits domain of definition contained in H*~*(I", A)”, exactly as for
the connecting relation ¢ (Lemma9.2).

Proof. For the spectral sequence E o the first filtration the edge
effects are calculated by Thm.8.4 from the subcomplexes F'K and L
o TotK, where L?=2%° using the injection :: L-Tot K and the
projection n: Tot K —+Tot K/F1K. Thisgivesthefirst line o the follow-
ing diagram, in which the second line presents the complexes used in
§9 in the calculation o res, inf, and p:

Fi 1

L N Tot K — (TotK)/F'K

2 . I , lo (10.5)
Homp (B (/1)I"), A) — Homp (B (IT),A)— Homp(B(I), A).

The maps A 7, ¢ comparing these two lines will be defined in terms
d the homogeneous generators (%,,...,%) o B(/). Specificdly,
L?=Z00CF?K consists of all geK?® with dgeK?+%9; that is, with
d''g=0. Since B, (II) is the free abelian group on generators (X, y) with

0==10"g(0'Q(x, ¥))=g ('@ () —g (' R(x), beB,{II).

Therefore g(b’®(x)) is independent o xell, and A g) b'=g(b@(1))
defines a chain isomorphism A: L==Hom; (B(I/I"), A). An element d
degree » in Tot K isan (n-+1)-tuple A= (hC, 4, ..., &) with AP e K#:»—#.
It liesin FIK if #°=0. But B,(II[I")=Z (11|}, so

hoeHommp(Bo(H/F), Homp(Bn (F), A))%Homp(B" (P), A) .

Thus (g h)(b"")=h°((1)&b" ) definesa chain isomorphism ¢ on the right
in (10.5). Finally, astraightforward calculation showsthat the definition

(nh) (%o, - -, x,,):pzoh?((axo, s O X)) Q% .0, K,))
with o: IT—IIT", h=(°, ..., #"), gives 5: Tot K—~Homg(B(I1),A), a
chain transformation which makes the diagram (10.5) commutative.
Now ¢: Homg(B(IT),A) —Tot K as described under (10.1) has#{=1;
since ¢ induces a cohomology isomorphism (10.1), SO does .

The vertical maps in (10.5) are thus all cohomology isomorphisms.
In the spectral sequence, the edge homomorphisms on base and fiber
are (Thm.8.1) induced by ¢« and = respectively; under these isomor-
phisms they correspond to the inflation, as induced by &+, and the

Mac Lane, Homology 23
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restriction induced by . Similarly, Lemma4.3 shows that the trans-
gression, regarded as the connecting relation for the top line, agrees
with the group-theoretic transgression computed (asin §9) from the
bottom line.

The terms d low degree in this spectral sequence yield an exact
sequence

0->HV(IIIT, AT) 5 H\(IT, A) =5 HY(T, )"

in 10.6

-2, H2(IT|T, AT) % H2 (1T, A). } (106
I n higher degrees the spectral sequence provides a more refined analysis
d the kernels and images d the maps inf and res, in terms d a whole
sequence d functors E#4(I1, I', A) which may be regarded as ""mixed"
cohomology groups d the two groups I7 and I'.

As an application, we prove

Cordlary 10.3. If I'is a normel subgroup o a finite group II with
index k=[II: I'] primetoits ode £=[I": |], then fo each II-module A
ad each »>0, there is a split exadt ssquence

inf res

0—H*(II[I", AT) 2 H*(IT, A) =5 H*(T", A)7 -0 (10.7)
which thus gives an isomorphism H" (17, A)H* (IT/T", ATY® H*(I", A)"

Proof. By Prop.1V.5.3 we know that each element & H(I", A)
for (PO has order dividing h, while each dlement d H?({I/I", M),
for p>0 and M any ({I/I")-module, has order dividing k. Therefore
Epi=H?(II)I", H(I', A)) for >0 and ¢>0 consists d elements with
order dividing both h and k, hence is zero. The non-zero terms d the
spectral sequence thus lie on the edges (=0 or ¢=0), and the only
non-zero differential is the transgression (fiber to base)

d,: H*Y(I', Ay =E%"* > E™°— H*(IT|T", AT).

This is a homomorphism o an abelian group with elements d orders
dividing h into one with elements d orders dividing k, where (h,k)=1;
hence d,, is zero. Thus all differentialsin the spectral sequenceare zero,
E,=E,_, and there are only two terms (those on the edges) in each
total degree n. The filtration d H*(II, A) thus amounts to the exact
sequence stated. This sequence splits; indeed, a standard argument
using the Euclidean algorithm will show that any exact sequence
B>»C-»D d abelian groups with kB=0, #D=0, and (h,k)=1 must
split.
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Exer cises
(All the exercisesrefer to the Lyndon spectral sequence)
1. In the filtration of H™(II, A) show that F*H" may be characterized as
the image d the inflation map, and FtH" as the kernel o the restriction.
2. Establish the exact sequence
0—>FIHYF*H? > Epl > ESO - HS(I1, A).

3. (HocHscHILD-SERRE [1953].) Supposemz1 and H" (I, A)=0foro<z<<m.
Show that inf: H”(H/p' AI‘)%H”(H, A) is an isomorphism for #<<m, that the
transgression z in dimension misahomomorphismz: H(I", A)X — H™+1([I/T", AT),
and that the following sequence is exact
0> H™(IIT, AT)2% pm(17, 4) =5 Hm(T, 4)8 Z> Em+L ([T, A7) 55 Hmy(T, 4).

4. (HocHsCHILD-SERRE [1953]; HaTToRI [1960].) Suppose m=1 and H* (I, A)
=0 for I <n<m. For 0<n<m establish the exact sequence

inf

o H™(IIT, AT) — H"(II, A) ~»H*~Y(II)’, H\(T", 4))
—H"YIIT, ATy > H* (T, A) —---.

5. For C a right IT-module, establish a first quadrant spectral sequence con-
verging to the homology o I7,

H,(IT, H,(T, €)) = E} 03> H(II, C).

11. The Comparison Theorem

In the manipulation o spectral sequencesit is useful to be able to
conclude from limited data that two spectral sequencesare isomorphic.
The comparison theorem now to be established does this for first
quadrant spectral sequences E d modules over a commutative ring,
provided there is a short exact sequence

0—E} sQEg ;> E3 /= Tory (Ej_y o, E} ) =0 (11.1)

for the term E?&. This hypothesis frequently holds. For example, in the
LERAY-SERRE spectral sequenced a fiber space with simply connected
base space, (2.2) gives E% ,=H,(B, H,(F)), which by the universal
coefficient theorem yields the exact sequence

0—H,(B) QH, (F)—~E3 ,~>Tor (H,_,(B), H,(F)) ~0.

Since B and F are both pathwise connected, E} (=H,(B,Z)=H,(B)
and Ej ;,=H,(B, H,(F)=H,(F), and the sequence reduces to (11.1).

Theorem 11.1. (Comparison Theorem.) Le f: E—E’ ke a homo
morphismd first quadrant spectral sequencesd modules over a commutative
23*
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ring, each d which satisfies (11.1), such that f commutes with the maps
%,0,%,8 in (11.1). Write f; ;: Ej ,—~E4 .. Thenany two d the following
conditions émply the third (and hence that f is an isomorphism) :

(i) 2ot E2o—Ey2 is an isomorphism for all =0,
(i) /3 ;2 Eg,,—Eq, is an isomorphism for all q=o0,
(i) /2, E,—~E,% i's an isomorphism for all p, q.

In view o the geometric applications, we read (i) as “‘f is an iso-
morphism on the base™, while (ii) is “f is an isomorphism on the fiber'",
and (iii) is" fis an isomorphism on the total space".

Proof. That the first two conditions imply (iii) is elementary. By
hypothesis, the diagram

0——)E?;’o(gEﬁ_q——>E2’q——>Tor1 (E;—l,o: Eg‘q) -0
BRI R
0 -)E;?o ®E6’2q—>E;’2q —Tor, (E;2——1,0 R E:,,zq) —0

has exact rows and is commutative. Conditions (i) and (ii) imply that
the outside vertical maps are isomorphisms. By the short Five Lemma,
so is the middle vertical map #; ,. This isomorphism o the complexes
(E2, d?2), (E'%,4'?) implies that o their homologies E3, E’3, and so on
by induction to give (iii), since each E} , is ultimately constant.

The other casesd the proof exploit the fact that a spectral sequence
can be regarded as an elaborate congeries d exact sequences in the
bigraded modules

E', C=kerd’, B =imd’ and G'=E'"/B.

In the application o the Five Lemma (initsrefined form, Lemmal.3.3)
we shall write down only the first row  commutative diagrams like
{(11.2).

To prove that (i) and (iii) imply (ii), consider the property
(ii,) f2,: E%,—Eg%, is an isomorphism for 0<g<m.

Since Ej =Eg,, (iii) implies (iiy). Hence it will suffice to prove
by induction on m that (i), (iii),and (ii,,) imply (ii,,). Given {ii,), the
diagram (11.2) shows that f} , is an isomorphism for g=m. By a sub-
sidiary induction on =2, we prove that

a monomorphism for g=<mand all #,
an isomorphism for g=m—r+-2 and all #.

15,418 { } (11.3)
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This holds for »r=2; assume it for some r. The Five Lemma for the
commutative diagram on the exact sequence

dar
0>Chg>EL = B}y g1r1
which defines the kernel C* o d shows for the map ¢” induced by / that

¢ O aCl sl monomorphism for g=m, (11.4)
£3° “£3 7724 771 an isomorphism for g< m—r+1. '
Now 4" gives an epimorphism EM,q r+1-> B . SM, forr gri1
is aso an epimorphism, hence so is the map b mducedqby f:
b Bhg—>By,  isan epimorphism for g<m. (11.5)
Next, E7*+1 is defined by the short exact sequence
O—>B;,q—>C;,,q—>E;TqI—>O. (11.6)

Form the corresponding two-row diagram. For ¢=m the first vertical
map is an epimorphism by (11.5), and the second a monomorphism by
(11.4); hence by the Five Lemma the thlrd vertical map £, is a mono-
morphism. If, moreover, q=m— (r+4 1) 2= m—r+ 1, the second
vertical map isanisomorphism by (11.4), hencesoisf;!}!. Thiscompletes
the inductive proof of (11.3).

Next we claim that
Ch mmpt ® isan epimorphism for r =z p = 2. .7)
For »>p, d": E,—~E]_, hasimage zero, s0 E,=C}, f,=c}. For r large,
Ip,a=1p¢> SO cp’, in (11.7) is an |somorph|sm by the hypothesis (iii).
We may then prove (11.7) by descent on r. Assume (11.7) for »41
and take the diagram on (11.6) with g=m—p-2. The first vertical
map is epic by (11.5); since E;*=C;FL, the third is epic by the case
d (11.7) assumed. Hence, by the short Five Lemma, ¢}, 4 isepic, proving
(11.7).
Finally, we prove by descent on » that f; ,,., iS an isomorphism for
r=2. It holds for large r by (iii); assume it for »--1 and consider the

two-row diagram with first line
dr
1
0—>C) e yr2=>Er yoyia— Eg i1 —>Efmi1—0.

The first vertical map is an epimorphism by (11.7) for =, the second
is an isomorphism by (11.3), and the fourth is an isomorphism by the
assumption o descent. Hence the third £, ,,., is an isomorphism. For
r=2, this completes the induction on m in the proof o (ii,,).

The proof that (ii) and (iii) imply (i) is analogous.
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Notes. .Spectral sequences were discovered by LErAY [1946, 1950] for the
case o cohomology; their essential features were noted independently by L vynponN
[1946, 1948] in the case d the spectral sequence for the cohomology o a group.
The algebraic properties o spectral sequences were effectively codified by KoszurL
[1947]. Their utility in calculations for the homotopy groups o spheres was deci-
sively demonstrated by Serre [1951]. The equivalent formulation by exact
couplesis due to Massey [1952]; for still another formulation see CARTAN-EILEN-
BERG, XV.7. The LErRAY-SERRE theorem has been proved by acyclic models
[GucEnHEIM-MooRE 1957]; for other proofs see Hu [1959, Chap.IX], HirTon-
Wy LIE [1960, Chap. X]- and, with aslightly different notion of fiber space, FApeLL-
Hurewicz [1958]. LyNDON's spectral sequence was originally defined by a fil-
tration of Hom(B(IT), A); his sequence satisfies Thm.10.1, but it is at present
not known whether it is isomorphic to the spectral sequence we define, which
uses a filtration due to HocHscHILD-SERRE [1953]. These authors established the
edge effects (Prop.10.2) only for the Lyndon filtration; our proof direct from the
Hochschild-Serre filtration depends upon our description o connecting relations,
which was concocted for this purpose. The LyNnpoN spectral sequence has been
used by Green [1956] to prove for a finite p-group IT o order p" that H,(I1, Z)
has order p* with k <n (n— 1)/2. For IT finite, VEnxov [1959] proved topologically
that the cohomology ring H(II, Z) is finitely generated as a ring; the algebraic
proof o this result by Evens [1961] uses the product structure of the Lynpon
spectral sequence. Among many other applications of spectral sequences, we
note BoreLr’s [1955] proof o the SwviTH fixed point theorem and FEDERER's
application to function spaces [1956]. I n the comparison theorem, due to MoorE
[CARTAN Seminar 1954—1955], we follow the proof o Kupo and Arakr [1956];
a closdly related proof by Zeeman [1957] includes the case where the given iso-
morphisms are assumed only up to specified dimensions. EiLENBERG-M OORE [1962]
study convergence and duality properties of spectral sequences in an abelian
category.

Chaptertwelve
Derived Functors

This chapter will place our previous developments in a more general
setting. First, we have already noted that modules may be replaced
by objects in an abelian category; our first three sections develop this
technique and show how those ideas d homological algebra which do
not involve tensor products can be carried over to'any abelian category.
Second, the relative and the absolute Ext functors can be treated to-
gether, as cases d the general theory d '"proper™ exact sequences
developed here in §§ 4—7. The next sections describe the process d
forming "'derived” functors. Homg leads to the functors Ext}, &g
to the Tor®, and any additive functor T to a sequence d "' satellite™
functors. Finally, an application d these ideas to the category d com-
plexes yields a generalized Ko~nNeTH formulain which the usual exact
sequence is replaced by a spectral sequence.
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1. Squares

Many manipulations in an abelian category depend on a construction
d "squares”. Let a and 8 be two coterminal morphisms and consider
commutative square diagrams

D% B D" % B
#| e 8| 18 (1.1)
A5 C, A 5C

formed with the given edgesa and 8. Cdl the left hand square couni-
versal, for given a and B, if to each right hand square there exists a
unique morphism y: D”"—D with §"”=§'y, a''=a'y. A couniversal
square (also called a “‘pull-back’ diagram), if it exists, is unique up
to an equivalence d D, so that a and 8 together determine «’ and g’
up to aright equivalence. GABRIEL [1962] calls D a fibred product.
Such couniversal squares are familiar in many branches d Mathe-
matics and under more general assumptions (than those made in an
abelian category). In the category d sets, if a and g are injections,
D is just theintersection d the subsets A and B d C. In the category
d topological spaces, if 8 is a fiber map and a: 4—C a continuous
map into the base space d §, then g’ is the so-caled ""induced™ fiber
map. | n any abelian category, the couniversal square for C=0 is

ADB>=. B
=
A —o0.

Theorem 1.1. (Sgware Construction.) To given coterminal mor-
phisms a, § in an abelian category there exists a couniversal sqware (1.1).
In terms d the direct sum A€ B with its projections 7z; and #,, D may
ke described as the domain of veker (am,— 8 m,), With a' =m,», f'=mv.

Proof. For D, », a', and §’ as described, consider

B
v “/' T”s\gt
D" DLAPB C. (1.2)
N oA
A
The two triangles are commutative, by definition d a and 8. The
square (better, the diamond) on D is commutative, for
af =amy=(xm—f 7)) v+ =0+

Moreover, for any second commutative square on a and g, with upper
corner D’ asin (11), the couniversality d A® B provides&: D" —~ADB
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with mé=8"", myé=a"". Therefore 0=o "' —B "' =(am,—f 7,) £, O &
factors through veker (am,—g =,) asé=vy for somey (see (1.2)). Then
B’ =myy=fy and a"’=a'y. If y,: D" D is another morphism with
B'=Bvy, "=y, then mvy,=mvy for 1=1,2, SO Vy,=vy. But
Vv is rnonic, so y,=y, and y is unique, as required for couniversality.

For modules A, B, C, the corner D might have been described as
the module o all pairs (a,b) with aa=4&; our argument has shown
how to replace the use d the elements a, b by the difference a 7, — 8 7,
and the formation d kernels.

Theorem 1.2. In a couniversal sguare, # monic implies 8’ monic,
B epic implies 8’ epic, and symmetrically for a.

The proof uses the direct sum 4® B, with projections z; and in-
jections ;. First take g rnonic. Suppose f'w=0 for some w. Then
Brovow=Ffew=af’'w=0; as B is monic, m,» 0w=0. But ds0 m;rw=
B'w=0, so Vo=0 and v monic gives w=0. Therefore #’ is left cancel-
lable and thus rnonic.

Next take B epic. Suppose w(am—p n,)=0 for some w. Then
O=w(xm—f 7)) te=—0w f mty=—w f, O w=0. Hence a 7;— f 7, IS
epic, thus is the cokernel d its kernel v. Now suppose that & 8'=0
for some &. Then 0 & =& mwv, 0 5=, factors through a7z, — B wy¢
cokerv as & my =& (o m;;— B ;o). Therefore0=¢& myty=—&'f mpt,=—&'B,
S0 B epic gives&'=0, hence 5z, =0, 5=0, and p’ is epic.

Under duality (reverse arrows, interchange '‘rnonic and "epic™,
etc.) the axioms d an abelian category are preserved. The dual square
construction starts with coinitial morphisms a, 8 and constructs the
commutative square on the left in

c54 C54

boiob o

B-=D, B> D"

s0 asto be universal (or a "' push-out' diagram). Here, universal means
that to any other such commutative square with a lower right corner
D" there exists a unique y: D-D" with .... For instance, in the
category d groups (not an abelian category) with ¢ and 8 monic, such
a universal sguare exists with corner D the free product of the groups
A and B with amagamated subgroup C (NEUMANN [1954], SPECHT
[4956)).

Exercises
1. If 7o is defined with 7, ¢ epic, then t¢coker[o (ker T a)].

2. For % rnonic, ¢ epic, and %, o coterminal, prove that x and @ in the square
construction are determined by the explicit formulas x’c ker g, o’ccoim(ax'),
with g= (cokerx)a. (UseEx.1.)
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3. If o(kera) =0 with g epic, show that there isa monic 4 and an epic awith
po=oa.
4. In a commutative diagram
& 7

> e—>

Ll

=325

let both sguares be couniversal. Show that the square with top and bottom edges
n &, B isalso couniversal.

5. Construct a couniversal diagram to n given coterminal morphisms.

2. Subobjects and Quotient Objects

A subobject d A isdetermined by arnonicx:e+A, andistheright
equivalenceclass (all 0|6 an equivalence) d this x. The classA, d all
subobjects d A may be treated as a set (axiom at end o 1X.1).

The ordinary inclusion relation for submodules is matched by the
definition that cls 2, < cls %, if and only if there is a morphism o with
x=x,w; this w is necessarily rnonic. The set A, is partly ordered by
this relation < and has a zero 0, with 0, < cls » for eachx; namely, 0, is
the class d any zero morphism 0: 0'— A4, where 0’ is any zero object
d the category.

In an abelian category, each morphism a with range A has a stand-
ard factorization a=?2¢ (4 rnonic, a epic) and ima=cls?¢ A,. We
may thus describe A, as the set d all images & morphisms « with
range A; then equality and inclusion are given by

Proposition 21. | n an abelian category, morphisms a,, a with the
same range A have (when “<’ stands for "if and only if")

imey=imo, & ©0,=0,0, for some epics gy, 05;
ima<ima, < oo=«,w  for someepicaand somew;
im O(.=0A = o=0.

Proof. Thestandard factorization d «,0,=u,0, givesima, =im «,0,
=ima,. Conversdly, if «, and a both have image cls X, they have
standard factorizations oy =#x g,, as=2x g, With g, and g, epic. The
square construction on g; and g, yields, by Thm.1.2, epics ¢; and a,
with g,0,=g,0,, hence o0, =0,0,. The rest o the proof is similar.

An element d A, will be written as acA4, or as ima for some a
with range A, according to convenience.

Each morphismé: A—B givesamapb,. A,+B, d sets, defined by
& (ima)=im(f«), rangea=A4.

The correspondence 4 —A4,, £—£&, provides a "' representation' o each
abelian category by partly ordered sets with zero. We may aso treat
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A, as a''pointed set”. By a pointed set U is meant a set with a distin-
guished element, say 0y U. Amapf: U—V d pointed setsisafunction
on U to V with f 0y=0y; in particular, f=0 means that f =0, for
every #e U. Pointed sets with all these mapsf as morphisms constitute
a category, in which we can define many familiar notions as follows:
For every f: U—V:

Kernel f=[all uluc U, f u=0y],

Image f=all v| f u=v for some uc U7,

f issurjectiveif and only if Imagef=V,

f isinjectiveif and only if f #,=f u, implies«, = u,.

If (f,9): U>V—->W, cal (f,g) exactif Imagef=Kernel g. Asin abelian
categories, (f,g) is exact if and only if gf=0 and Kernel g C Imagef,
where ““C’’ denotes set-theoretic inclusion.

The fundamental properties d the subobject representation can be
formulated in these terms:

Theorem 2.2. |f &: A—B is a morphism in an abelian category.
then5: A, — B, isamap d partly ordered sets with zero; that is&,0,=0p
and a<td in A, implies £ a<£.d. Alo

(i) 5=0 & &,=0;
(ii) £isepic & &, issurjective
(iii) & is monic & &, isinjective & Kernel &,=0.
I T the composite n & isdefined, (5 &), =7, & and
(iv) (5,) isexact & (&, 7,) IS exact.

Proof. If ime,<ima, in A,, then by Prop.21 «,0=ua,w for some
o and some epic a, 0 §xo=~& a,w and im (£ a) _S_im(5a,). Hence &,
respects the partial order. Property (i) isimmediate.

If & isepic and im B¢ B, the square construction provides &' and
B’ with & epicand & 8'=p &', whence, im g’=im g and &, issurjective.
Conversdly, if &, is surjective there is an awith range A andim (§a)=
im1y, so bag,=a, for epicsa, and a,, whenceé is epic.

If £ismonic, £, ima=E&,im«’ implieséxno=£a’qs’, henceao=a'c¢’ and
ime=im &, S0 & is injective. If & is injective, Kernel & is evidently
zero. Findly, i Kernel §,=0, £a=0 implies im(& a)=¢, (ima)=0,
hence ima=0 and a=0, s0 £ is monic. This proves (iii).

For : B—C, the definition d ker ¢ B, shows that

Kernel 55,=[b|b¢ B, and b=<ker7]; (2.1)
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in other words, ker n is the maximal element of the subset Kernel #,;
note that we write ""ker'* for a morphism in an abelian category, ""Ker"
for module homomorphisms, and ""Kernel'* for pointed sets. Similarly,
for&: A—B,

Image &= (b|b¢ B, and <im £]. (2.2)

Indeed, if a hasrange A, & ima=im(& «)<im&; conversely img<im¢
implies # a=5a for some epic a and some a with range A, so £&,ima=
im (5a)=im g. This proves (2.2).

For 5 defined, (5 &),=1,&, follows by definition, and (2.1) and
(2.2) give part (iv) o the theorem.

Quotients are dual to subobjects. In detail, let B? denote the set
d all quotients of the object B; that is, the set o all left equivalence
classes o epics a with domain B. The set B? is a partly ordered set
with zero; the zero is the class o 0: B—0’; theinclusion clsa=c¢ls ¢
is defined to mean v=p ¢ for some §, necessarily epic. For modules,
this inclusion has its expected meaning: If a: A—~A4/S, ©: A—-A4/T,
then clsaz=cls T means SC T, and hence 4/T=(4/S)/(T]S).

Each 5: 4—B induces &: B?— A7 (reversedirection!) by s4(cls o) ==
coim (g &). By the duality principle we do not need to prove the dual
d Thm.2.2. Recall that thedual o a theorem isformulated by reversing
all arrows and leaving unchanged the logical structure o the theorem.
Thus "domain® becomes "'range’, and &, becomes £7. The set-theoretic
notions are part d thelogical structure o the theorem, so ‘g, injective”
becomes ‘&7 injective’.

Theorem2.3. If &: A—B is a morphism in an abelian category,
then &7: B?—> A7 4s a map d Partly ordered sets with zero. Also

(i) =0 & &=0;
(ii) & 1S monic & &7 1S surjective;
(ifi) & is epic & & 4s injective & Kernel ¢2=o0.
If the composite S is defined, (& )?=7?&7 and
(iv) (&, ) isexact & (7, &) is exact.

These properties have a more familiar form when stated in terms
d the "inverse image' o subobjects (Ex.5, 6).

Exercises

1. Verify directly that each of the assertions of Thm.2.3 holds in the abelian
category of all R-modules.

2. If n& is defined, show that im & <ker 5 if and only if coker £=coimy
and that ker <im & if and only if coim # = coker 5.
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3. An anti-isomorphism @: S—T of partly ordered sets S and T isa 1-1 cor-
respondence such that s <s’ implies ¢ s = ¢ s’. Prove A, anti-isomorphic to 44
under the correspondence cls x — coker .

4. Prove that A, is a lattice (1.8), with (cls )~ (cls ») given in the notation
o the square construction by cls A u’) = cls(u A), and with (cls A)v{cls ) given
by duality.

5. For &: A—B define&%: B;— A, by & im = ker [£7 (coker §)] (inthe notation
o Ex.3, &=¢1&¢). Prove that & is characterized by the properties & (£*im ) <
imj? & ima<impg implies ima<&°imf. For modules, conclude that & (imp)
is the inverse image of the submodule im 8 under &.

6. Restate Thm.2.3 in terms of the maps &°.

7. Show that ima is the greatest lower bound d the monic left factors of a.

3. Diagram Chasing

Various lemmas about diagrams (Five Lemma, 3><3 Lemma, etc.)
hold in abelian categories. The usual proofs by chasing elements can
be often carried out by chasing subobjects or quotient objects instead.
We give three examples.

Lemma31l (The Weak Four Lemma.) In any abelian category
a commutative 2><4 diagram

A—-B —->C —=D

I

A'—>B'5C'—>D’
with exact rows (%.e., with rows exact at B, C, B', and C') satisfies
(i) 5 epic, 5 and @ monic imply ¢ monic,
(ii) @ monic, & and ¢ epic imply % epic.

Proof. Consider the correspondingdiagram for thesetsd subobjects,
and write acA,, b'eB;, etc. To prove (i), consider ceC, with {;c=0
(or, more briefly, take ¢ which goesto 0 in C;). Let c go to d in D,.
Then cand henced go to 0in D;; sincew, isinjective, d=0. By exactness,
there is a b which maps to c; this b maps to some &’c B;. Both B and
c map to 0 in C;, so, by exactness, there is an @ which maps to b'.
Since &, isepic, thereisan a which mapstod and thustob'. Let a map
to &, in B,. But b and 4, in B, have the same imagein B.; since 7, is
injective, b=5,. Then a maps to b to ¢, which is zero by exactness o
A->B—C. We have shown that Kernel is 0; by Thm.2.2, part (iii),
¢ ismonic.

This proof o (i) is exactly like a chase d elements in a diagram
d modules. The dual proof, using quotient objects, gives (ii).
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There is a proof o (ii) by subobjects. Given any ¥#¢B;, a simple
chase gives a b¢ B, with the same image in C; as b’; thusg, , b=g, b’
With elements, we could subtract, forming n,6—b' in Ker ¢. Instead,
write b=im g, b =impg’; then im(g¢ n f)=im(p ). By Prop.2.1, there
are epics a,, a with gpnfe;=¢f'0,, and hence p,im(nfo,— ' a,) =
Exactness at B' and & epic yield a new element b,=im f,¢B, which
maps to im(n B o,—fB’a,) in B;. Prop.2.1 again yields epics a,, a, with
N f103=mn p 0610,— B’ 0,0,, s0

b’ =im (8’ 0,0,) =7, (im(B 010,— B, 03))

shows &'ex, B, , so # is epic. In this fashion, Prop.21 can be used to
"subtract" two subobjects with the same image, much as if they were
elements o a module.

The weak Four Lemma also gives the Five Lemma (Lemmal.3.3).
Recall that x |a means that (x, @) is a short exact sequence.

Lemma3.2. (The 3<3 Lemma.) A 3>3 commutative diagramin
an abelian category with all three columns and the last two rows short
exact sequences has its first row a short exact sequence.

We prove a little more. Call a sequence («, f): A—B —C |eft exact
if 0'~A—B—C isexact (i.e, exact at A and B). Thus («, 8) left exact
means that «cker g.

Lemma3.3. (Theskarp 33<3 Lemma.) A 3><3 commutative diagram
with all three columns and the last two rows left exact has its first row
left exact. If in addition the first column and the middle row are short
exact, then the first row is short exact.

Proof. Consider the diagram (zeros on the top and sides omitted)
AI —G_) BI _5_> Cl
Lol

A —B —C

Lol

A”'_> B”‘_‘) Cll

By assumption, A’—B is monic and has «: A’->B’ as right factor;
hence « is rnonic. Since 4'—C’—C is zero and C'—C is monic, § «=0.
To prove exactness at B', take b in B; with image 0 in C;, and let b
map to bin B,. Then b and b map to 0 in C;; by left exactness o the
row at B, there is an a which maps to b. Then a maps to 0 in By and
hence to 0 in 4. By left exactness o the first column, there is an a
which maps to a. Then «,4’ and b' have the same image in B,; since
B’->B is monic, «,a’="¥". This shows the row exact at B'. Again the
proof is like a chase d elements.
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Now make the added assumptions and use the diagram o the
corresponding sets d quotient objects, with all mappings reversed. To
prove 8 epic, by Thm.2.3 part (iii), consider ¢’ C*? with image 0 in B".
By (ii)d the same theorem, thereisa cwhich mapstoc'. Let calso map
to be B?. Since b then mapsto 0 in B’Y, exactnessd the middle column
at B givesa ' with image b. But b and hence b’ go to 0 in A. By the
short exactness d the first column, b already goesto 0 in A" . Exact-
nessd the row at B givesac¢” withimageb". Let ¢' mapto¢, in C%.
Then ¢ and ¢; have the same image in B, 0 ¢,=c¢ by exactness. The
original ¢, as theimage d c", is now zero, so § is epic as desired.

Again, the proof uses quotients to avoid subtraction. For complete-
ness, we adjoin

Lenmna 3.4. (The symmetric 3><3 Lemma.) If a commutative 3><3
diagram has middle row and middle column short exact, then when three
d the remaining four rows and columns are short exact, 0 is the fourth.

Proof. Use duality and row-column symmetry d Lemmas.2.

Note. There are severa other ways o establishing these and similar lemmas
in an abelian category.

Therepresentation theorem (L uskIN [1960]) asserts that for every small abelian
category & thereis a covariant additive functor T on & to the category of abelian
groups which is an exact embedding — embedding means that distinct objects or

~._morphisms go to distinct groups or homomorphisms, exact, that a sequence
Mct in & if and only if itsimage under T is an exact sequence d abelian groups.
Frevp’s proof {1960] of this theorem studies the category o all functors T and
embeds a suitable functor in its injective envelope, as constructed by MiTcHELL
[1962] following the methods o EckMANN-ScHopPF. Using thisimportant represen-
tation theorem, the usual diagram lemmas can be transferred from the category

d abelian groups (wherethey are known) to the small abelian category .

An additive relation r: 4— B in an abelian category can be defined to be a sub-
object d 4 B, much as in 11.6. Under the natural definition of composition,
the additive relations in & constitute a category with an involution » —#»-1. PuPPE
[1962] has developed an efficient method o proving the diagram lemmas by means
o such relations (which he calls correspondences); moreover, this provides the
natural definition of the connecting homomorphisms for exact sequences o com-
plexesin &«. Also, PupPE has achieved a characterization of the category of addi-
tive relations in & by a set o axioms, such that any category satisfying these
axioms is the category o additive relations of a uniquely determined abelian
category.

Exercises

The first two exercises use the " subtraction” device noted in the proof o
the Four Lemma.

1. Prove the strong Four Lemma (Lemmal.3.2) in an abelian category.

2. Prove the middle 3><3 Lemma: If a commutative 3><3 diagram has all
three columns and the first and third rows short exact, while the composite o the
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two non-zero morphisms in the middle row is zero, then the middle row is short
exact (cf. Ex.I1.5.2).

Note. Unpublished ideas  R. G. SwaN give a method o chasing diagrams
using morphismsa: P+A with projective domain in place d the elementsd A.
This method applies to an abelian category which has barely enough projectives,
in the sense that for each non-zero object A there isana: P+A with projective
domain P and a= 0. Let 4, denote the class d all such a (including zero); each
§: A— B induces a map &p: Ap—>Bpo‘ pointed sets defined by&,,(a):&a: P-B.
The method is fomulated in terms o these mapssp, as in Exercises3—9 below.

3. An epic 7 is zero if and only if its range is 0’, and dually.

4. For %, A monic,y X=0and y A=0imply y(xul ) =o.
The remaining exercises use Ex. 3 and 4 and chase diagrams in an abelian category
& which is assumed, as in the note, to have " barely enough" projectives.

5 Prove: §: A—B isepicif and only if £,(4,) = B,.

6. Prove: &: A—B is monic if and only if Kernel §P=0'

7. If né=o0, then kerp=im¢ if and only if Kernel n,=Imageé,.
8. Using the principles o 5—7, prove the weak Four Lemma.

9. By the same methods, prove the 3><3 Lemma

\ 4. Proper Exact Sequences

In a number d cases we have dealt with a special class o exact
sequences in an abelian category and with the corresponding Ext
functor; for example, in the category d modules over a K-agebra A,
Ext4 k, Usesthoseexact sequencesd A-moduleswhich split assequences
d K-modules.

Another example arisesin the category d abelian groups. An abelian
group A issaid to be a pure subgroup d the abelian group B if a=m b
for an integer m impliesa=wma for somea’cA; thatis,if mA=mB~A.
Equivalently, A is pure in B if and only if each element ¢ d finite
order in the quotient group C=Bj4 has a representative in B d the
same order. By Ext,(C,A) we denote the set o (congruenceclasses of)
pure extensions & A by C. Topological applications of Ext, appear
in EILENBERG-MAC LANE [1942], algebraic applications in HARRISON
[1959], Nunke [1959], Fucms [1958], and Mac LANE [1960]. That
Ext; isabifunctor to abelian groups, enteringin suitable exact sequénces,
will be a consequence d our subsequent theory.

I n any abelian category & let #be aclassd short exact sequences,
we write x%¢ to mean that (x,a) is one d the short exact sequences
d P, xe#,, to mean that x%Pe for somea, and ¢¢ £, to mean that x Po
for some x. Call & a proper class (and any one d its elements a proper
short exact sequence) if it satisfies the following self-dual axioms.
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(P-1) I »x%o, any isomorphic short exact sequenceisin #;
(P-2) For any abjects A and C, A»A@ C-»C is proper;
(P-3) If %4 is defined with x¢#,,, Ac#,, then xAc#,;
(P-3") If o7 isdefined with oe £, 1¢ £, then o1¢ Z,;

(P-4) If » and A are monic with x1¢#,, then i¢#,;
(P-4 If aand r are epic with ¢rc £, then gc £,

These axioms hold in all d the examples adduced above. They hold
if #istheclassd all O-split short exact sequencesd a relative abelian
category [0: &/—.#, or if &2 isthe class d all short exact sequences
d the given abelian category.

g?ﬁﬁl\e elementary consequences. The first two axioms imply
th& % 1S 3R alowable classin the sense of IX.4, S0 & is determined
byl%Mr Z . Also, any left or right equivalent o a proper # is proper;
when range A, clsx consists d proper monics and is caled a
pr[z%gf $0%8et & A By (P-2), 0'~> 0" A+A is a proper short exact
sequence, and dually; hence 1, and O: 0’— A are proper monic, 1, and
0: A—0" proper epic. A morphism a: 4—B is called proper if kera
and coker a are proper; asin Prop. 1X.4.1, this amounts to the require-
ment that ima and coima be proper. Any equivalence 8 has both
ker 8 and coker 8 proper, hence is proper and in both £, and £.,.

Proposition 4.1. Thedirect sum of #wo proper short exact sequences
i S proper exact.

Proof. Morphisms«,: 4;,— B; have a direct sum
0 P oy=1,0, 7+ tp057,: A, D A,—~B,D B,, (4.1)

where z;: 4,@ 4,4, and +;: B;—B,® B,. If x|o and A|z, an easy
argument shows (x )| (¢® 7). Hence it is enough to show that
%, Ac P, imply x®DAcP,. Since xDA=(x=D1)1D A), it suffices by
(P-3) to prove x®1¢£,. Thus we wish to prove for each D that
(%, 0): A>>B-»C proper exact implies (x®1,6’): ABD»BD®D-»C
proper exact. Here we have d=a n, where z: B&D—B is a pro-
jection d the direct sum, hence proper by (P-2).Therefore ¢'=0n
is proper by (P-3’), hence »€D lcker ¢’ proper, as required.

Two proper short exact sequences E=(x,a) and E’'=(X',¢’) from
Ato C arecalled congruent if thereisa morphism8 with 8 x=x',d 6=a.
By the short Five Lemma, any such 8 is necessarily an equivalence.

Proposition 4.2. If the proper short exact sequence E=(x,a): A~
B-»C splits by a morphism a: C—B with aa=1., then ais a proper
monic and E is congruent to the direct sum. Conversely, any sequence
congruent to the direct sum splits.
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Proof. Since ¢(1— as)=0, 1— ao factors through xckero as
1—ao=x8, and fa=0, fx=1,. The resulting diagram A= B=C
may be compared with the direct sum diagram by the usual equivalence
8: AD C—B with a=81, and ¢, the injection C+A@ C. Now 8 isan
equivalence and hence proper. Also a==0 ¢, iS the composited proper
monics, hence is a proper monic. The converse proof is easier.

For any objects C and A, Extis(C, A) is now defined as the set of
al congruence classes o proper short exact sequenceskE: A B-»C;
by the axiom (I X.I)on sets d extensions, we may take Extis to be a
set. Now Ext} has all the formal properties found for Extk; with R a
ring:

Theorem 4.3. For each proper class # d short exact sequences in
an abdlian category &7, Extly(C, A) is a bifunctor on «. The addition
E,+E,=V,(ED E,)A; makes it a bifunctor to abelian groups.

The proof is like that for R-modules. The essential step is the de-
monstration that Extk is a contravariant functor o C; asin Lemma
I11.1.2, we must construct to each proper E and each morphismy: C'-—>C
d & a unique commutative diagram

E’: 0—>A-3¢-,-?D-?-l‘> C'—>0
“ w‘8 ly (4.2)
o a
E:0A—B—C(C >0

with first row E proper exact (hereo is the zero object 0’). First build
the right-hand sguare by the square construction o Thm.1.41. By
Thm.1.2,¢’ is epic. Form a second square

4% ¢

=

B35 C.

The couniversal property d the first square providesx': A—D with
Bx'=» and ¢’»'=0. The diagram (4.2) is now constructed and is
commutative.

To prove E' exact, consider any & withe’é=0. Thuse f E=y 0'£=0,
so B & factors through xeker o as f E=» a=f »’a for some a. But also
o'E=0=0"%'a, S0 the couniversality d D for the coinitial maps & and
%' With range D givesé=x"ua. Since any & with ¢'§=0 factorsthrough
%', and o'’ =0, we have x’¢ ker g’.

The proof that E is proper uses a direct sum. By the square
construction, D, 8, and ¢’ are defined by the left exact sequence

O~y M,
—_—

0-~D2> B&C’ C, mv=8, myv=0c'.
Mac Lane, Homology 24




370 Chapter X11. Derived Functors

Thisv need not be proper, but
Vo' = (Tt ) v =4y B A+ 1y 0 K =y,

By axiom P-2, y¢&,; then axiom (P-4) shows x'c#,, and thus E
proper.

From the couniversality d the square on D it now follows that the
morphism (1,8,Y): E'-~E d proper short exact sequences is couni-
versal for morphisms («, 8;,Y): E;—E, exactly as stated in Lémma
I11.1.3.

Now define Ey to be E': This gives a right operation by y on E;
from the couniversality d E it follows that Extls is a contravariant
functor d C. The proof that Extl(C, A) is covariant in A is dual, so
need not be given; the proof that it is a bifunctor can be repeated
verbatim (Lemmalll.1.6); a similar repetition, using Prop. 4.1, shows
that ExtL(C, A) is an abelian group.

A long exact sequenceis proper if each d its morphismsis proper.
An n-fold exact sequence S starting at A and ending at C can be written
(viastandard factorization d its morphisms) as S=E,o--.0E,, a com-
posite d n short exact sequences. By Prop.1X.4.1, Sis proper if and
only if each d its factors E; is a proper short exact sequence. Cal two
n-fold sequences S and S from A to € congruent if the second can be
obtained from the first by afinite number o replacementsd an E; by a
congruent E; or d two successivefactors by therule (Ea)oF= Eo (aF)
or Eo(aF)= (Ea)oF, where E and F are both proper and a is any
matching morphism. Now the set Ext%(C, A) has as elements these
congruence classes o such n-fold sequences S, with addition and zero
as before. The properties d Ext% are exactly those summarized in
Thm.IIL.5.3.

These properties may be restated in different language. A graded
additive category ¢ is a category in which each homg (C, A) is the set
union d a family o abelian groups {hom” (C,A), n=0, 1, ...} in which
composition induces a homomorphism hom(B, C)®Qhom (A, B)—
hom (A, C) d degreeo d graded abelian groups, and such that # becomes
an additive category when only the morphisms hom®(C, A) are con-
sidered. In particular, each morphism d a graded additive category
has a degree. Now regard a proper n-fold exact sequence S starting
at A and ending at C as a morphism d degree n from C to A, while
the original morphismsfrom C to A are taken to have degree 0. The
properties d Exts may now be summarized by

Theorem 4.4. Each proper class # o short exact sequences in an
abelian category & determines a graded additive category &x{s?) with
objects the objects of «# and hom} (A,B)=Ext%(4, B); in #articular, with
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hom% (A, B)=homg(4, B). In & cogbosition is given by Yoneda
cogbosition d proper long sequences and d Ahomomorphisms with long
sequences, while addition is defined by cls(S,+ S,) =cls (I (S, D S,) 4,).

If & is any proper class o short exact sequences in the abelian
category 7, then congruent proper long exact sequences Sand S are
also congruent as improper long exact sequences. This gives a natural
transformation Ext’s(C, A)—>Ext%(C, A) d bifunctors. Prop.4.2 asserts
that this transformation is a monomorphism for »=1. This may not
be the case when »>1; in any event, in an elementary congruence
(Ea)oF=Eo(aF) in &/, aF is proper does not imply F proper.

Note. The idea of systematically studying exact sequences d R-modules
which S-split is due to HocuscriLp [1956], with hints in CARTAN-EILENBERG
[1956]. Homological aspects o the case o pure extensions of abelian groups were
noted by HARRIsON ([1959] and in an unpublished manuscript). Possible axioms
for proper exact sequences were formulated by Bucuseaum {1959, 1960], HELLER
[1958], and YoxnEDA [1960]. Our axioms are equivalent to those  BucHSBAUM.
BuTLER-HORROCKS [1961] consider the interrelations of several proper classes in
the same category; instead of the proper class Z, they treat the subfunctor
ExtlpCExtl. The functors Ext for the category .#= Morph (&) o morphisms
o &/ appear to have a close relation with those for & [Mac LANE 1960b].

Exercises

I, [Bucuseaum.] Show that (P-2) may be replaced by the requirement that
af=1,4 impliespc#,,.

2. [HerrLer.] If x€#,, and xu is a proper morphism, « is proper.

3. Construct an example of two pure subgroupsin Z, &Z, to show that », Ac#,,
need not imply » + A2,

4. Construct an example o an impure extension F o abelian groups and an
o with o F pure.

5 If #and & are proper classes of short exact sequences, so is #n&.

6. [HAarrISON.] If S is afixed module, show that the class o all short exact
A>>B-»C with Hom (S,B) -~Hom (S, C) an epimorphism is a proper class.

5. Ext without Projectives

If =/ has enough proper projectives for the given proper class #,
each object C has a proper projective resolution ¢: X —C. Then the
natural isomorphism Ext%(C, A)= H"(Hom(X, A)) holds, just as for
modules (Thm.II1.6.4). Asin that case, we can establish the standard
long exact sequences for Ext%. Instead, we give a direct proof, using
neither projectives nor injectives.

24*
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Theorem 5.1. For & a proper class d short exact sequences in an
abelian category &, E=(X,0): A>> B»C a proper short exact sequence,
and G any object there is an exact sequence d abelian groups

SExt (A, G) 2 Ext%(C, G) = Ext% (B, G) > Extly (A, G) = ...

withmaps given by composition; i n particular, E" (cls S)=(—1)"cls(SoE).
The dua d this theorem asserts the exactness d the usua long

sequence with E placed in the second argument, asin Thm.II1.9.1.

Proof. It is immediate that ¢"E*~'=0, %"¢"=0, and E"»x"=0.
Write “o”|»™” for “(¢", X")" is exact. We must prove

E* Yo", o"|x", «#"|E", n=0,1,...; E1=0.

For n=0 and for E°|d, the proof is that for modules, with minor va-
riants.

To show oYfs?, consider E’€Extp(B, G) with E’x=0. This states
that E'x splits, so the definition (4.2) & E'X amounts to a commutative
diagram . n
E'x: 05>G—GCHAS> A0

“ » l‘u o’ i"
E':0->G— . — B —>0
i ¥

|
EO: G’ “9 Y T> C’

with » monic by the square construction (Thm.1.2). Moreover, ¢ ¢'¢
coker u, for o ¢’ u=0x m,=0, while if & u=0 for some 5, then & ’'=
& 4y =0, whence é=n ¢’ for some n with 0=n¢'u=nx n,. Since =,
isepic, =0, and # thus factors through o as#=¢ o. Hence & factors
through o ¢’, so ucker(00') is proper by (P-3).

Tofill in the dotted portion d the diagram, use the proper injection
15: A>GD A, take pecoker (u t,) and a=p X'. SINCE0 6" t,=0 % Tty =
01, =0, 0¢’ factors through ¢ aso ¢'=7 ¢ with 7 proper epic by (P-4).
Now replace both G's in the top row by 0, =, by 1, and x by x ¢,. The
resulting 3><3 diagram has proper exact columns and the first two
rows exact; by the 3><3 Lemma the third row is exact, and proper
as 7 is proper. This row is therefore an E,c Exty(C, G); the diagram
states that E,o=E'. Hence o|».

Lemmab.2. If " E" for all proper E, then E®|o™+! and o"+1|x"+1,

In the proof, we omit the subscript # on Extgz and write »; and
og for the two non-zero morphisms o a short exact sequence E =
(% , og). Thisgives the convenient congruences (Prop.111.1.7)

#gE=0, Eog=0.
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First suppose that Scc¢Ext"+*(C,G) has ¢*t1S=0. Write S as a
composite S=ToF for T<eExt®. Hence 0=Soe=T(Fo); the hypo-
thesis (with E replaced by Fo) gives UeExt" with T=UXx,, hence
S=U(xug,F). But (xp, F)o=xp,(Fo)=0, s0 the assertion E%|q! pre-
viously proved givesamorphisma with xz,F=a E. Thus S= U{xz F)=
(Ua) E=4 E"(U o), asdesired.

Second, we wish to prove that SecExt*+!(B,G) with Sx=0 can
be written as S= V¢ for some VecExt**+!. The proof is similar, using
o't instead o E°| .

The proof d the theorem is now reduced to showing »*| E" for all
n=1.

Next consider »!| E*, which assertsthat if Fec Ext!(A,G) hasFE=0,
then F=F'x; for some F'. To deal with this we must enter into the
several-step definition d the congruence relation F E=0. We actually
prove alittle more:

Lemma53. For FeExt!(A,G) and EcExt!(C,A), the following
three properties are equivaent:
(i) F=F'xg for some F'c Ext!;
(iiy E=opE' for some E'cExt};
(iii) FE=o.
To prove that (i) implies (ii), write the commutative diagram for
the morphism F—F’ defining F'xz as

F: O—>G——>OG—>A—+0

|, |
F: 0—>G——>0——> B0
P

C=C

with last columnE. Here x is monic by the square construction for
F'u. Insert ozo’ at the dotted arrow. Thismorphismis proper epicand
also in coker x, by aproof likethat for ¢’ in the previousdiagram. The
middle column is now a proper short exact sequence E', and the
diagram states that ¢z E’'=E, as required. The proof that (ii)implies
(i)isdual to thisone.

The hypotheses d the lemma insure that FEccExt?(C, G) is de-
fined, and (i) implies that F E= (F'#;) E=F'(3zE)=F'0=0, which is
(iii). Dually, (ii) implies (iii). To prove the converse, let F#E denote
the property d F and E given by the equivalent statements (i) and (ii).
Now the zero o Ext2(C, G) has the factorization 0=F,E,, with

F: G%G»0, E, 0-~C3%C,
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and F3E,, since F,=#zF' with F': G>» GO C—»C. Assume FE=0
asin (iii); this congruence is obtained by a finite number k o applica-
tions d the associative law F'(y E')= (F'y)E' to F,E;=0. We now
show that F# E, by induction on the number k o such applications.
Since F# E,, we need only show that Fy$E’ impliesFHy E', and
conversely by duality. Now, by (ii), Fy+# E’ states that E'=gg, E"”
for some E’. The diagram defining £y,

Fy: .__}._“I«l).

” lﬂ - lv

¥
o—>0——>0,

yields y oy, =0z 8 for some . Therefore y E'=(y op,)E" =0z (B E");
by (ii), this states that F4y E'. The converse proof uses (i) in place
d (ii)for the relation # . We have completed the proof that (iii) implies
(i)and (ii).

Lemmab4. Condition (ii) d Lemma5.3 is equivaent to:
(ii") For some morphism o and omMe E', Fe=0and E o E.

Proof. Since For=0, (ii)implies (ii"). To prove the converse, write
F as G D-»A. For any object L, the dual sequence induced by F
begins
0—hom (L, G) —hom (L, D) =% hom(L, A) = ExtL(L, G);

we aready know this portion to be exact. Therefore Fa=0 with
a: L—A gives a=gzf$ for some f: L—D. Thus, given (ii’), we get
E=aE' =0z (E"), whichis (ii) d the Lemma.

These lemmas are the first step d an inductive proof o

Lemmab55. For #>0, SecExt"(4,G), and E<Ext!'(C,A) the

followingthree properties are equivaent
(i) For some S’ccExt”, S= S'sxg;

(ii) For some morphism « and VMe E', Sa=0 and E=aE;

(i) SEO.

The implication (iii)=> (i) will show »"|E" and complete the proof
d the theorem.

To prove that (i) implies (ii), write S’ as a composite TF', with
F'c¢Extl. This gives S= S'uz=T(F'xg). Apply Lemmab3 t0 F=F'xg
and E; it proves E=ogpE’ with Sop= T(Faz)=0, which is (ii).

To prove that (ii) implies (i), use the induction assumption. Given
E=a«E' and Sa=0, write S as a composite T F with TecExt*1.
Now T(Fa)==0, so by induction [(iii) implies (i)] there isa T"cc Ext*~!
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With T=T"xg,. Thus S=TF=T'(xp, F) and (¢pF) a=xp, (Fa)=0,
SO (xp, F) E=0. By Lemmas.3 [(iii) implies (i)], this gives xz F=F'xy
for someF', so S=(T'F) xg, whichis (i).

Both (i) and (ii) imply (iii); to get the converse implications, let
S#E again stand for the relation between Sand E given by the equi-
valent statements (i) and (ii). Then SE=0 implies S3: E, by induction
on the number d stepsin the congruence SE=0, just asin the proof
d Lemma 53

Note that the condition (ii) d this lemma may be interpreted to
say that the congruence SE =0 may be established by one associativity
SE=S(aE') = (Sa) E' involving E, with the remaining associativities
al applied within Sa.

Note. The theorem thus proved was established by Bucussaum [1959]; the
above arrangement of theproof iswholly dueto STEPHEN ScHANUEL (unpublished).

6. The Category d Short Exact Sequences

Let # be a proper classd short exact sequencesin an abelian cate-
gory . Construct the category Sesg(2?) (brief for short exact sequence
d &) with

Objects: All proper short exact sequencesE=(x,a) d «,

MorphismsI™ E—E’: All triples I'=(a,,y) d morphisms d &/
which yield a commutative diagram

E: 0545 B5C >0

R

E: 04" B -5 C' —0.

Under the evident composition and addition o morphisms, Sesg(2)
isan additive category. However, Sesz(%7) is never an abelian category.
To see this, note that a morphism (a,8,y) with a=/20 necessarily
has y=0, for y a= ¢’f=0'0=0 with ¢ epic impliesy=0. The composi-
tion rule (a8, y) (.8, v )= (ad, BB, yy’) shows that a and g monic
in & imply (a,8,y) monicin Sesg(2/}. Dually, 8 and y epicin & imply
(a,8,y) epic in Sesg(Z). For the zero object 0 and any object
G=0" in & construct the morphism I"= (0,1, 0),

0>0—->G—>G—0

o Jp

0->G—->G—>0—0,

d short exact sequences. Since 0 and 1 are monic, I" is monic; since
1 and o are epic, I'is epic. But I"is not an equivalence, as it must be
in an abelian category.
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The cause d this phenomenon is not difficult to see. If we take
the "termwise" kernel d this morphism I, we get the short sequence
0'—0'->G which is not exact; the same applies to the "termwise”
cokernel G—0'—0’. Indeed, the Ker-Coker sequence d Lemmall.5.2
indicates that these two sequences must be put together with 1,: G—G
to get an exact sequence. (Using additive relations, one may obtain
the ker-coker sequence in any abelian category.)

Now embed Sesz(7) in the category #(7) with
Objects: All diagrams D: A—-B-—C in & (no exactness re-
quired),

Morphisms I': D—D’: All triples I'=(a,8,y) d& morphisms d </
which yield a commutative 23 diagram, as above.

Since (&) is a category o diagrams in an abelian category, it is
abelian; moreover, (a,8,y) is epic in (&) if and only if «, 5, and y
are al epic in &, and likewise for rnonics. A short exact sequence
D' = D »D" in &#(&7) then correspondsto a commutative 3><3 diagram

D: A -B -C'
Lol

D: A -B »C

Lol

DII: AII% BII__> CI’

in &, with columns exact in .. Call D’'> D D’ allowable in & (&)
if all rowsand columnsin this diagram are proper short exact sequences
o . Thisdefinesan allowable classd short exact sequencesin & (<7},
in the sense d 1X.4, and hence defines allowable morphismsd & ().

Proposition 6.1. A morphism I'=(a,B,y): D—>D" d L () isan
allowable epic [an allowable monic] d (&)  and only f D and D"
are proper short exact sequences d 7 and «, 8, and y are proper epics
d & [respectively, proper monics d 7.

Proof. The condition is clearly necessary. Conversely, given a, £,
and y proper epic, form the 3><3 diagram with second and third rows
D and D”, first row the kernelsd «, 8, and y with morphismsinduced
by those d D. By the 3<3 lemma, the first row is short exact; by the
axiom (P-4), thefirst rowis proper. Henceall rowsand columnsare proper
exact, so I'is allowable.

Now "*proper'” projectives are defined as were "alowable' projec-
tives (1X.4). Given a proper class#, an object Pd & is called a proper
projective for 2if it has the usual lifting properties for the proper epics,
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that is, if each proper epico: B-»C inducesan epimorphism Hom (P, B)
—Hom (P, C). We say that there are enough proper projectives if to
each object A thereisa proper epic =: P+ A with P proper projective.

Theorem 6.2. If Pand Q are proper projective objects d the abelian
category 7, then F: P—P&® Q—Q s an allowable projective object in
F(A).

Proof. Given any commutative diagram in <,

F: 0>P5POQ 050
Z | ke ook
E:0-4% B (o0

r fa l6 ]
E: 04— B —C->0

with exact rows and I': E—E' adlowable epic, we are required to find
a morphism Z’': F—E d the first row to the third so that I'Z’'=Z:
F—~E'. By Prop.6.1, «, §, and y are proper epicin &« ; thusye is proper
epic. Since P and Q are proper projectives in &, £ can be lifted to
&: P+A withaé&'=£and{ too: Q@-—>B withyocw={. Take ¢,: Q—
PO Q. Nowd'(Bw—1n t))=y 6 0~ mats=L—L=0, so f w—n ¢, factors
through x'cker ¢’ as g w—n t,=x'w’, for some o’: Q—A'". Since « is
proper epic and Q proper projective in &7, o’ lifts to y: @—A4 with
ay=o’, and
Bo—ni=x'ay=LBxy.

Definey’: RBBQ—B and ¢’: Q—C, using ;: PO Q—P, by

N=n&'m+ (0—xy) 7, {'=ocw.
Then Z'=(&,%',¢’): F—E is the required morphism.

We now show that there are enough allowable projectives, not for
al the objects o & (), but for the objectsin Sesgz(?) C F ().

Theorem 6.3. If the abelian category o/ has enough proper projec-
tives, then 10 each proper short exact sequence E: A>> B—»C of & there
is an allowable projective F and an allowable epic Z=(£,#,{): F>E
of F(L).

We will construct an F d the form given by Thm.6.2. Since & has
enough proper projectives, we can find proper projectives P and Q
and proper epics &: P—A, w: @Q—B. The composite{=0w: Q—C
is proper epic, while n=x & m-+ w m,: PP Q->B provides a morphism
Z=(&19,0): F-E. But £ and { epic, by the short Five Lemma, imply
7 epic. Hence Z is allowable by Prop. 6.1, provided only that # is proper.
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But # is determined by # 4y =x &, n 4, =w, SO may be written as the
composite
P& 0% 422 BB -2 B.
Both factors £ w and I (x® 1) are proper epics, the latter because
it isequivalent to the (proper) projection =, d a direct sum, asin the
diagram
A@B Ve(x® 1) B

v |l
ADB B
with ¢ and@ automorphisms o A . B defined by
meu=1, mEt,=0, @epu=—x, TQIlL,=1,
mya=1, myu=0, myy=x, Ty tp=1;

(with elements, ¢(a,b) is (a,b—x a) and y(a,b)=(a b+ a)). The
proof is complete.

This theorem constructs allowable projective resolutions:

Theorem 6.4. Let & ke a proper class o short exact sequencesin the
abelian category . To each proper short exact sequence E o &7 there
is an dlowable projective resolution ¢: K —E in & (), represented by a
commutative diagram

e X, X, > > X >A—>0

| Lo

oW, >W,_y - —->Wy B -0 (6.1)

Lo |

oY, Y, ;> =Y ->-C—->0

in o, with each ronw a proper projective resolution in «/, each column
d K a proper short exact sequence (of proper projective objects) in &,
and ech W,=X,@Y,.

Proof. Thm.6.3 constructs ¢: K—E by recursion, with each K,
an allowable projective d (&) d the foom F d Thm.6.2. Thus K,
is a proper short exact sequence X, W, »Y, with X,, W,, and Y,
proper projective (andW,=X,®Y,). Each 8: K, -~K,_, and ¢: Ky—E
is an alowable morphism o % («7), so the rows d the diagram above
are exact and proper in &. Observe that K may be regarded either
as a complex d short exact sequences, or as a short exact sequence
X>>W-Y o complexesd . Observe aso that X > W-»Y, though
split as a sequence o graded objects, need not be split as a sequence
d complexes (= graded objects with boundary 8).



7. Connected Pairsof Additive Functors 379

Exercises

1. If .# isthe category of all left R-modules, show that every monic in Ses(.#)
has a cokernel in Ses(.#), and dually. (Use the Ker-coker sequence.)

2. A morphism I'={«, 8, y): D—D’ is allowablein &£{«) if and only if D
and D' are proper short exact sequences of & and the induced map ker §—>kery
is proper epic in & (or, dually, the induced map coker a—coker f# is proper
monicind) .

7. Connected Pairs of Additive Functors

The systematic treatment d functors T: & —Z% in the next sec-
tions (§§ 7—9) will assume

(i) & is an abelian category,

(ii) & isa proper classdf short exact sequencesin «,

(i) £ isa selective abelian category (IX.2).
This formulation includes both relative homological algebra (e.g., with
& theclassd suitably split exact sequences) and ** absolute’ homological
algebra, with & all short exact sequencesin «/. In £ we use the class
d all short exact sequences. For the applications intended, £ might as
well be the category d all modules over some ring or algebra

An additive functor T: o —£ is a functor (covariant or contra-
variant) with T{(«+B8) = T(«)+ T'(8) whenever «+ 8 is defined. This con-
dition implies T(0)=0, T(—a)=— T(x), and T(4D B)=T(4)D T(B).
Henceforth we assume: all functors are additive.

Study the effect d a covariant T upon al the proper short exact
sequences (x,0): A»B-»C d « Cdl T

9-exact if every 0—T(4)—~T(B)—T(C)—-0 isexact in £,

right #-exact it every T(A)—T(B)—T(C)—0 is exact,

left 9-exact if every 0—T(4) > T(B)—T(C) is exact,

half 9-exact if every T(4) —T(B)—T(C) is exact.

If T is 9-exact, it carries proper monics to monics, proper epics
to epics, and proper long exact sequences to long exact sequences.
Moreover, for any proper morphism «, a #-exact functor has

T(kera)=ker(Ta), T(ma)=im (T a), (7.1)
T(cokera)=coker(Ta), T(coima)=coim(Ta). '
Right exact functors can be described in several equivalent ways.

By a proper right exact sequence in the category & we mean a sequence
(¢,0): D—-B—>C->0 exact at B and C with « and o proper.
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Lemma 7.1. A covariant additive functor T is right 9-exact if and
only if either

(i) T carries proper right exact sequencesin & to right exact sequences
inW, or

(if) T(coker a)=coker (Ta) for every proper a in <.

Proof. Since cokera=o0 states that (a,0) is aright exact sequence,
(i) and (ii) are equivalent, and imply T right Z-exact. Conversely,
let T beright #-exact. Each proper right exact sequenceD B —C —0
in & yields two proper short exact sequences

K
¥
D

¥
0—->A—-B—->C—>0;

T carries each to a right exact sequencein £, 0 T(D)—>T(B)—T(C)
is right-exact.

Similarly, T is left 9-exact if and only if T'(kera)=ker(Ta) for
a proper.

If T: & -2 is a contravariant functor, then, for all proper short
exact sequencesA~»B »>C d &, T is

9-exact if every 0—>T(C)—-T(B)—>T(A)—>0 isexact in £,

right #-exact if every T(C)—T(B)—T(4)—0 is exact,

left 9-exact if every 0—T(C)—>T(B)—T(4) is exact,

haf 9-exact if every T(C)—T(B)—>T(4) is exact.

The analogue d Lemma7.1l holds; in particular, T is right 9-exact
if and only if it carries each proper left exact sequence in & into a
right exact sequencein £.

A 9-connected pair (S,E,, T) d covariant functors is a par o
functors S, T: & —£ together with a function which assigns to each
proper exact E: A= B »C in & a morphism E,: S(C)—>T(4) d #
such that each morphism (a,8,y): E+E:- d proper short exact se-
quences yields a commutative diagram

SO T(4)
s |r@ (7.2)
S(C) 2 T4, %

(in the indicated category #). Cdl E, the connecting morphism o the
pair. The condition (7.2) states that E, is a natural transformation o
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functors of E. This condition may be replaced by three separate
requirements:

If Eiscongruent toE', E, = E}, (7.2a)
If y: C'—C, then EV)s=EFExyx, y£=SW), (7.2b)
If a: A—A’, then (aE)y=axEy, ox=T(x). (7.2¢)

Indeed, (7.2) with a=1 and y=1 gives (a). If (I,8,y): E—E’, then
E'y isby definition E, so (7.2) gives (b).Dually, (7.2) withy=1 gives (c).
Conversely, given (@), (b),and (c) with (a8, v): E—E’, the congruence
aE=E'y o Prop.III.1.8 gives (7.2).

If E,splits, then (Eq),=0. For, if E, splits, the morphism (1, 7;, 0)
maps E, to the sequence 4-A4->0. Since Sis additive, S(0)=0, 0
(7.2) gives 0=S5(0)=T(1) (Eq)x = (Eo)x-

For each proper E: A —»~ B -+ C, the long sequence

) S(o) E. T(x) T{o)

S(4) S(B) S(C) I(4) I(B)—T(C) (73)

is a complex in # (the composite  any two successive maps is zero)
and a functor o E. Indeed, write E=(x, a); both xE and E¢ split,
so T(x) E,=0 and E, S (o) =0, while S{c) S(») =S (0 #)=S(0)=0.
For example, if & is the category o R-modules, with £ all short
exact sequences, thefunctors S(A)=Tor,+, (G,A)and I'(4)=Tor, (G,A)
for fixed G and » constitute a connected pair with the usual connecting
homomorphism.
A morphism (f,9): (S, Ey, T) —(S,E , T) o connected pairs is
a pair o natural transformationsf: $’— S, g: 7'—T do functors on &/
such that the diagram
$(0) 5 T'(4)
|1 [E%) (7.4)
S(©) 2 T4, R,

is commutative for each proper E. I n other words, a morphism (7, g)
assigns to each A morphismsf (A): S'(4) —-S(A)and g (A): T'(4)—>T(4)
o Z# which taken together form a chain transformation o the com-
plexes (7.3). These conditions on f and g may be summarized as

fa:ﬂ::a*f’ gE:ﬁ:zE*f: foxp=0xg, (748.)
where oy is short for S’(a) or T7(«), as short for S(a) or 7'(a).

A connected pair (S, E,, T)isleft @-couniversal if to each connected
pair (S’, E4, T') and each natural g: 7'—T thereis a uniquef: $'—S
such that (f,g) is a morphism o connected pairs. Briefly, (S, E,, T)
left-couniversal means. Given g, (7.4) can be filled in with a unique




382 Chapter XI1. Derived Functors

natural f. Similarly, (S,E, , T) right 8-couniversal meansthat to a given
f there is a unique g. Also, (S’, E4, T") is right 8-universal if, given
(S,E, ,T) and f, there is a unique g which satisfies (7.4).

Given T, the usual argument shows that there is at most one left
couniversal pair (S,E,, T) up to a natural equivalence o S. This
pair — and, by abuse d language, this functor S — is called the left
satellite  T. Note the curiousfact that if (S, E,, T) istheleft satellite,
0is (S, —E,, T) — just change the signsd every E, and f in (7.4).

Theorem 7.2. If .« has enough proper projectives, the following con-
ditions on a 9-connected pair (S,E,, T) d covariant functors are
equivalent :

(i) (S,E, ,T)isleft 9-couniversal,
(ii) For each proper short exact sequence K »» P-»C the sequence
0—S (C)=T(K)—~T(P), X, (7.5)

i sleft exact whenever Pis proper projective.

Since there are enough projectives, there is for each object Cd .«
a proper epica: P-»C with P a proper projective; this gives a proper
exact sequence

E.: 0>K5P—>C—0, x=x. (7.6)

It is the first step in the construction d a proper projective resolution
d C; we cal it a short projective resolution.

To prove that (ii) implies (i) we must construct f to a given g in
(7.4). For E=E; the commutative diagram:

S'(P) - S'(C) =& T"(K) =% 1/(P)
i1y Je® |e®) (7.7)
Y E, T (%)
0—>S(C) =% T(K) —> T(P), R,

with top row a complex, has its bottom row exact, by hypothesis.
Hence E, is monic, so that f(C), if it exists, is unique. On the other
hand, T(x) g(K) Ey=g(P)T'(x) E4x=0, s0 g(K) Ey factors through
E, eker(T(x)) as g (K)Ex=E, & for some unique é: 5'(C)-S(C). Take
f (C)=¢&. This fillsin the dotted arrow to make the diagram commute.

Now take any proper short exact sequence E'= (X', &): A’»B'»C(’
and any morphismy: C—C’ d «/. The diagram

E: 0-K—->P—->C—0

15 (7.8)
E:0>4"->B—->C-0, .
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in & has P proper projective, so may befilled in (comparisontheorem!)
to give a morphism (a,8,y): E-E’. We clam that

E,S(y)f (O=g(A)ExS'(y): S'(C)~>T(4), & (7.9)
Indeed, « E= E'y and, inthenotation (7.4a), £y yf =a, E,f =a, gEy—
goyEy=g Eyyi. We specidize this result (7.9) in two ways.

First, let y: C—C’ be any morphism d /. Choose for E' the short
projective resolution E;. used to define f (C) by g(K')Ex=E,f(C),
asin (7.7). Then 4’=K’ and E,, is monic, 0 (7.9) gives S(y)f (C)=
f(C) S’(y). This asserts that f: $'—S is natural. With C=C and
y=1, it shows that f (C) is independent d the choice d E.

Second, let E' be any proper short exact sequence ending in C'=C.
Take y=1. Then (7.9) becomes E,f (C)=¢ (A") E}, which states that
f and ¢ commute with the connecting homomorphisms and hence, as
in (7.4), constitute a morphism (S, Ey, T') —(S, E,, T) o pairs.

Before proving the converse, note that (7.7) suggests that S(C)
might be defined as the kernel o 7T(K)—T(P). Regard each proper
short exact sequenceE: A »» B -»Casa complexin &, say in dimensions
1, 0, and —1. Then T(E): T(4)—-T(B)—T(C) is a complex in &;
its one dimensional homology H, (T(E)) isthe (selected) object o #
which makes

0—H,(T(E))*T(4) ->T(B), X, (7.10)

exact. Each morphism I'=(a,8,y): E—~E’ d proper short exact
sequencesin &7 gives a chain transformation T'(I"y: T(E) -T(E’) and
hence induces a morphism

H(I'): Hy(T(E))—H,(T(E")), X,
which is characterized by u'H, (I")=T(a) #. Moreover H,(I") depends

only ony, E, and E', and not on a and 8. For, let Iy=(a,, B,,Y):E—>E’
be any other morphism with the same y. In the diagram

0>A4->B—C
e 27 oo o
04" B¢, o,
' (B—PB)=0, 0 f—Pp=u's for some s. B—A’'. AlD x»'(a—a,) =
(B—PBo) x=x"s x, o al told sx=a—a,, 2's=f—fB,. Thus s is a homo-
topy I'=I3,. Since T is additive, T(s) is a homotopy T(I")=T(I):
T(E)—>T(E"), so Hy(I"Y=H, (I'y). Now there exists:
To each object C d & a short projective resolution E¢,
To eachy: C—C’ in & a morphism I,.=(—, —,Y): Ec—~E,.,
To each proper exact E in & a morphism Ag=(—, —, 1): Ec—E.
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We now have

Lemma7.3. Given T: o —=Z covariant and the data above,
SO =H(T(E)), SW=H(T): S()~S(C)
define a covariant additive functor S: </ -—>%, while, for x4 as in (7.10),
Ey=p Hy(4g): S(C)—~>T(4)

defines a natural transformation which makes (S, E,, T) a 9-connected
pair satisfying (i) of Thm.7.2.

Proof. By the observation on H,(I'), S(C) is independent d the
choice d Ec. Al S(l)=I; by compostion, S(1y.)=S(y1) Sya)-
If I'=(a,B,y): E-E’isa morphism d proper short exact sequences,
I'Ar and Ag. I,: Ec—~E’ agree at y, s0 E, is natural. Property (ii)
holds by construction.

This proves that (i) implies (ii) in the theorem, for any left couni-
versal (S,, E4, T) must agree with the one so constructed, which does
satisfy (ii). This construction aso gives an existence theorem:

Theorem 7.4. If .« has enough proper projectives, each covariant
additive functor T: & —£ has a left satellite (S,E,, T).

Corollary 7.5. Let (S,E,, T) be a 9-connected pair. If to each -
connected pair (S’, Ey, T) with the same T there is a unique natural
transformation f: S$’—S such that (f, 1): (S, Eg4,T)—(S,E,,T) is a
morphism & pairs, then (S, E, ,T) is left-P-couniversal.

Proof. Use the hypotheses to compare (S, E,, T) to the left satel-
lited T, whichis known to exist and to be couniversal.

Thedua d Thm.7.2is

Theorem 7.6. If &7 has enough proper injectives, then a P-connected
pair (T,E,, S) d covariant functors isright 9-universal ifand only f
each proper short exact sequence

0—>C—»J—->K—0, <,
with J proper injective induces a right exact sequence
T(J)>T(K)—S(C)—o0, A.

Moreover, given T, the S with this property is uniquely determined;
it is caled the right satellite  T. Each T thus has a left satellite (co-
universal) and a right satellite (universal).
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Proof. Dualization reversesall arrows, both in & and in W, replaces
" projective’ by "injective’, givesE, from T to S, and leaves T and S
covariant.

A P-connected par (T,E*, S) d contravariant functors consists
d two such functors T, S: &/ —% and a function which assigns to
each proper short exact E: A» B>C in & a complex

T(C)—>T(B) —>T(A)£>S(C)—>S(B)—>S(A), X,

which isafunctor & E. The pair isright universal if and only if to each
natural f: T—T" and each connected pair (T”, E#, S'), there isaunique
g: S—S’such that (f, g) isa morphism d pairs.

Theorem 7.7. | nthe presenced enough proper projectives, the contra-
variant pair (T,E*, S) is right Z-unsversal if and only if each proper
K> P-C with P proper projective induces an exact sequence

T(P)T(K)—S(C) -0, R.

Example: For D a fixed module, T(C)=Ext"(C,D), S(C)=
Ext*+1(C,D).

Proof. This reduces to the previous result if we replace &/ by the
opposite category «7°P. Recall (1.7) that &7°? has an object A* for each
object A d « and a morphism a*: B*+A* foreacha:A->B in «,
with (e 8)*=pg*e*. Thus monics in & become epic in «7°?, the opposite
d an abelian category is abelian, and the opposites d a proper class
Z d short exact sequences d &/ constitute a proper class in «/°P.
Each covariant T: & —% gives a contravariant T*: «/°?—% with
T* (A*)=T(4). Moreover, "enough injectives” becomes "' enough pro-
jective~".All arrowsin &-diagrams are reversed, those in W-diagrams
stay put, and Thm.7.6 becomes Thm.7.7.

A similar replacement in Thm. 7.2 shows that a contravariant pair
(S,E*,T) is left couniversal if and only if 0—>S(C) -T(K)—=T(]) is
exact for each C~ J K. Then Sis aleft satellited T.

Exercises

I. Cdl adiagram 4, B*5 4, "cartesian™ if it satisfies the usual direct sum
identities w4, = 1=my1y, and ¢ 7, £ t, 7ty = 1. Prove that an additive functor takes
every cartesian diagram into a cartesian diagram, and, conversely, that any functor
with this property is additive.

2. Let T: & > &, not assumed to be additive, be haf #-exact. Prove it addi-
tive (cf. Ex.1 and Prop.1.4.2).

3. If T iscovariant and left P-exact, show its left satellite zero.

4. If (S,E,, T) isleft couniversal and T haf #-exact and covariant, prove
(7.3) exact, provided has & enough proper projectives.

5. DeriveThm. 7.6 from Thm. 7.2 by replacing both & and & by their opposites.

Mac Lane, Homology 25
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8. Connected Sequencesd Functors

A P-commected quence {T,,, E,} d covariant functors is a sequence
(..,T,, E,, T,_4, Ep—1,..) Of functors 7,: &/ -2 -in which each pair
(T,, E,, T,_;) is P-connected; in other words, such a sequence assigns
to each proper short exact E d ./ a complex

c T (O) 25 T (A) T, (B) > T, (C) 5 Ty (A) >+ (84)

which is a covariant functor & E. The sequenceis positive if 7,,=0 for
n<<0 or negative if T,,==0 for »>>0; in the latter case we usualy use
upper indices.

Positive connected sequences may be described more directly in
terms d graded additive categories. Recall (Thm.4.4) that &/ can be
enlarged to a graded additive category €s(2?) with the same objects
and with the elements d Ext%(C, A) regarded as the morphismsd
degree n from C to A. From the range category © we can construct
the category #£+ d graded objects d 9, with morphisms d negative
degrees. In detail, an object ® o #* is a family {R,} d objects d Z,
with R,=0" for < 0; while an element & homX(R, %’) is a morphism
w: =R’ o degree — k; that is, afamily & morphisms{u,: R, —R,_}
d 9, with the evident composition. Then #* is a graded additive
category. If # is the category d modules over some ring, #* is the
category o graded modules over the same ring, with morphisms d
negative degrees.

For graded categories, functors are defined as usual, with supple-
mentary attention to the degreesd morphisms. Thus if ¢ and &' are
graded additive categories, a covariant functor S : ¢ —+## assignstoeach
object G d ¢ an object T(G) d s and to each morphismy: G,—G,
d degree d in ¢ a morphism 5 (y): T(G,) ->Z(G,) d the same degree
in 2, with the usual conditionsZ (15) =1z and T (y1ye) =T (y1) T(ys)
whenever y,v, is defined. The functor ¥ is additive if T(y;+yq)=
T () + T(y,) whenever y,+y, is defined. A natural transformation
f: T'—>% d degreedisafunction which assignsto each Ge% amorphism
f(G): T'(G) =T (G) o degree 4 in 4 such that

L) F(G)=(— 1" §(Gy) T(y)
foreachy: G, —>G,in €.
In particular, consider such functors on &z(7) to W+.

Proposition 8.1. There is a 1-1 correspondence between covariant
additive functors T: Ep()—%* and positive P-connected SEQUENCES
{T,, E,} d covariant additive functors 7,,: & —~%.
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Proof. Let 5:&x(a7)+W+ be given. Theobject function d 5 assigns
to each object A an object {T,(4)} d W+.The mapping function d 5
assigns to each morphism o &{2?) a morphism d £*. In particular,
each morphism a: A—-A o & is a morphism d degree 0 in &(<7),
50 5 assignsa family of morphisms {T,,(«): T,,(4) >T,(4')} & Z; these
make each 7, an additive functor T,; &/ —%. Moreover, each proper
E: A»B+C in& isamorphisnE: C—A4 d degree1 in &z(%/), SO
the mapping function d 5 assignsto E a morphism d degree | inW+;
that is, a family o morphisms {E,=T, (E) T,(C)—~T,_,(A)}in W.
The compositionrules5(Ey)=5(E)5(y)and £ (aE)= 2 (a)% (E)show
that these morphisms E, satisfy the conditions (7.2a), (7.2b), (7.2¢)
which make (T,, E,, T,_,) a connected pair. Thus ¥ determines a posi-
tive 8-connected sequence d functors{T,: &« —%}.

Conversaly, each such connected sequence d functors determines
the object function T (A)={T,(A))and the mapping functions 5(a),
T (E)for morphismsd degree 0 and | in &%. Now a morphismd higher
degreein &4 is just a congruence classd long exact sequences S. Each
such is the Yoneda composited short exact sequences E, so the T(E)
determine each ¥(S); the rules (7.2b) and (7.2¢) show that two con-
gruent long exact sequences have the same T (S); indeed, this £ (S)
is the "iterated connecting homomorphism™ determined by the long
exact sequence S. Finaly, to show this functor 5 additive we must
prove that 5(E+ EY=5(EN-5(E"). This follows from the definition
E+E' =WV, (E®E’) A; of addition and the rule (E®E’),~E,DE,
for connecting morphisms, which is a consequence d the condition
(7.2) for a connected pair.

This gives the asserted I1-1 correspondence. The same applies to

maps:

Proposition8.2. I1f S, 5: &a(/)+W+ are two covariant functors,
a natural transformation j: T'—% of degree d is a family d natural
transformationsfi;, T, ~T,,, ;: & —>Z} which commute with all connecting
morphisms:

To1a(E) 14(C)=fur(4) T,(E), E: A»B~C. (8.2)

In other words, for d=0, f isa chain transformation d the complex
(8.1) for ¥’ to that for T.

A covariant functor 5: &4(7) -2+ is called couniversal if to each
covariant S &() -Z* and each natural transformation f,: Ty—T,
in & d the components d degree 0, there exists a unique natural
transformation f: ¥'->% o degree 0 extending f,. In other words, a
couniversal positive connected sequence d covariant functors is such
a sequence starting at 7,, extended to the left, and couniversal for all

25*
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such connected sequences. Thus 7, uniquely determines S, up to a
natural isomorphism.

Theorem 8.3. Let & have enough proper projectives. A covariant
functor S: Ep(F) —>R* is couniversal ¥ and only if, for each proper
short exact sequence K P > C d & with P proper projective, the sequence

0—>T,(C) >T,_(K) >T,_,(P), 2, (8.3)
isexact for every »>0.

Proof. Given this condition, some other 5': (%) —2%*, and some
fo: To— T, We construct by recursion on » the requisite natural trans-
formations| T,—T,.If f,,...,f,_, areaready constructed to commute
with the connecting homomorphisms, the condition (8.3) shows by
Thm.7.2that (7,,E,, T,_,) isleft couniversal, so will construct a unique
fn: T,—T, with E,.f,=f,_, E,,. Hence Sis couniversal.

Conversdly, suppose that € is couniversal. From I, we construct
the left satellite S;, and construct in turn each S,;: & -Z as the left
satellite o S,_;. The resulting connected sequence satisfies (8.3), hence
is couniversal, so must agree with the unique couniversal S for the
given 7,. Therefore any couniversa S satisfies (8.3). This argument
also proves an existence theorem:

Theorem 8.4. Let & have enough proper projectives. Each covariant
functor T,: & —Z is the component o degree O for a couniversal functor
S: &a()—R* in which the n-th component 7, is the n-th iterated left
satellite d 7.

Since 0 P+ P is exact for each proper projective, condition (8.3)
impliesthat T, (P)=0 for each#>0. Thm.8.3includesthe weaker result :

Cordlary 85. If S satisfies 7,,(Py=0 for each projective P and
for each »>0, and if the long sequence (8.1) is exact for each proper exact
E d «, then € iscouniversal.

In particular, if « isthe category d all left modulesover some ring
R and G is a fixed right R-module, Thm.V.8.5 asserts that the functors
T, (A)=TorEk (G, A) satisfy this condition.

Corollary 8.6. If U: Z—>%' is exact and covariant, while {T,,, E,}
is a couniversal positive connected sequence, 0 i s {UT,, UE,}.

Proof. Since E,: T,,(C)—>T,_,(A) isa morphismd £ while U is a
functor, UE,;: UT,(C)—UT,_,(A)isamorphismd £’'. Since Upreserves
exactness, condition (8.3) for couniversality is preserved.

Note. If U isnot exact, the descriptiondf the left satellite of the functor U T,

intermsof U and T, involvesan important spectral sequence[ CARTAN-EILENBERG,
XVI, § 3; GROTHENDIECK 1957, p.147].
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To handle negative connected sequences
- >T(C) >TY(A) >TY(B) >T1(C) >T2(4) —>-

d covariant functors T": »/ -4, use the graded additive category #-;
its objects {R"} are families d objects of #, with R"=0 for »<0; its
morphisms g of degree £=0 are the families {,,: R* —-R'*** o mor-
phisms of #. A covariant functor S: &s(f)—%- is then a negative
connected sequence of functors 7*: &/ —%, much asin Prop.8.1.

Contravariant functors require attention as to sign. Thus if 9 and
¥ are graded additive categories, a contravariant S: ¢ —»s# assigns
to each object G an object S(G) in s, and to each morphismy: G, -G,
of 9 a morphism Z(y): L(Gy) >T(G,) d the same degree in #, with
z(h;) = 15((;) and

T(yrye) = (— 1) B G F (3 ) T(yy), (8.4)

in accord with the sign conventions. A natural transformation {: ¥'—-%
d degreed isa function which assignsto each object Gd %a morphism
f(G):T(G)—~>T(G) o degreed in s in such wise that

Z(y)f (G =(— 1) =0 f () T(y)

— just as usual, except for sign.

Exercises
1. Show that the condition Z,, (P)=0 cannot be dropped from Cor.8.5: Use
T;(A) =Tn(A) eTn—l(A)'

2. Describe a contravariant additive functor 8: & z() %+ as a suitably
connected sequence of functorson & to %.

9. Derived Functors

A standard method is: Take a resolution, apply a covariant functor
T: o -4, take the homology d the resulting complex. This gives a
connected sequence d functors, called the derived functors o T.

I n detail, let o7 have enough proper projectives. Each object A thus
has a proper projective resolution e: X —A. If ¢': X’—~A’ is a second
such, the comparison theorem lifts each «: A— A’ to achain transfor-
mation f: X —X’, and any two such are homotopic. Since T isadditive,
it carries homotopiesto homotopies, and so the induced chain transfor-
mation T(f): T(X) —=T(X’) in £ isdetermined up to a homotopy. There
fore L,(A)=H,(T(X)) defines a function d A, independent d the
choice & X, and L,(0)=H,(T(f)): L,(4)—>L,(4") makes each L,
a covariant functor & . |t is the #-th left derived functor o T.
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Now let E: A> B-»C be any proper short exact sequence in .
Take an alowable projective resolution ¢: X—FE in the category o
short exact sequences d 7, as in Thm.6.4; this amounts to a short
exact sequence X W-»Y o complexes in & with X—A4, W-B,
and Y—C proper projective resolutions, moreover, W, =X, @Y, for
each n. As T is additive, this last shows that T(X} - T (W)-»>T(Y) is
a short exact sequence d complexesin £, so gives connecting homo-
morphisms H,,(T(Y)) -H,_,(T(X)) for »>0. Since X is a resolution
d Aand Y oned C, thisis a homomorphism E,=L,(E}: L,(C)—
L, ,(A).The genera comparison theorem for allowable resolutions
(Thm.IX.4.3) shows this independent o the choice d the resolution K
and shows that L, (E) is a natural transformation d functorsd E.

Theorem 9.1. For each additive covariant functor T: &/ —£, the left
derived functors L,: «-+% and the connecting homomorphisms L, (E)
constitute a positive connected sequence d functors with L, right 2-exact.
This sequence i s couniversal for the initial component Ly. If T is right
9-exact, Ly=T.

Proof. If P is proper projective, the resolution P+P shows
L, (P)=0 for n>0. For each proper exact E, the exactness d the long
sequence (8.1) for L,=T, follows from the usual long exact sequence
for the homology d T(X)» T(W)-»T(Y). In particular, L, is right
exact. The connected sequence(L,, L,(E)} satisfies the conditions o
Cor.8.5, hence is couniversal.

Suppose that the origina T is right £-exact. In any resolution,
the portion X, —»X,—4->0 is right exact; hence so is T'(X;) —»T(X,)
—~T(4)—~0. This gives Ly(A)y=Hy(T(X))=T(4), a natural isomor-
phism.

This theorem is d interest when T is right exact. It can then be
read either as a characterization o the sequenced left derived functors
d T as the couniversal sequence for Ly=T, or as the statement that
the left satellites d T and their connecting homomorphisms can be
calculated from resolutions.

To have a definite derived functor L, one must choose a resolution
X for each A. This sweeping use d the axiom d choiceislegal in small
categories .« and possible in all those relevant examples d categories
in which there is a canonical way d choosing a projective resolution.
If the range category £ is not a category d modules, but any abelian
category, the proof above requires that we know the exact homology
sequence, with its connecting homomorphisms, for an abelian category.
We haveindicated only too briefly in § 3 how thiscould be accomplished,
using additive relations.
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Let us summarize the properties d the derived functors in this case.

I. A covariant functor ¥: &a()—>£* is a positive connected
sequence{T,, E,} consistingd covariant functors T; & ~>% and homo-
morphisms E,,: T,(C)—T,_,(A4) natural in E. It assignsto each proper
E: A> B-»C acomplex

T, (4) STy (B) T, (C) 5 T,y (A) >+ 9-1)

in #£. Supposethat & hasenough proper projectives. Each right #-exact
covariant T: &/—% has a left derived functor T: x{) —Z* whichis
determined by T, up to natural isomorphism, by any oned thefollowing
three conditions:

(la) T,=T and 5is couniversal,

(Ib) T,=T, (9.1) is exact, and T,(P)=0 for »>0 and P proper
projective,

(Io) T,,(A)=H ,(T(X)) for someproper projectiveresolutione: X —A,
while E, is similarly calculated from short exact sequences o such
resolutions.

These considerations may be dualized: Replace one or both o the
categories &/ and £ by its opposite. For example, replacing &« by
£/°P gives

II. Let T: & —>% be a right P-exact contravariant functor and
suppose that & has enough proper injectives. For each object A take
a proper injective coresolution e: A—Y. This Y is a negative complex
Y°—Y1...; application d the contravariant T yields a positive com-
plex T(Y): T(YO)« T(YV)«...; that is[T(Y)],= T(Y". Its homology
H,(T(Y))=T,(A) is the n-th left derived functor 7, & T. For each
proper E, coresolutions d E give a corresponding connecting homo-
morphism E,: T,(A4)—1,_,(C), natural in E. They constitute a pos-
tive connected sequence{T, E,} d contravariant functors which assigns
to each proper E: A > B-»C a complex

o> T, (€) =T, (B) =T, (4) 25T,y (C) >+ -- (9.2)

in #. This sequence{T, E,} may aso be described as a contravariant
functor 5: &a(#)—>%*. Given the right exact functor T: &/ -2, its
left derived functors may be characterized by their construction from
injective coresolutions or by either d the properties:

(Ila) T,=T and 5is couniversa; that is, given 5': &(«) —%*,
each natural f,: T,— 1, extends to a unique natural {: T'—&,

(IIb) T,=T, (9.2) is dwaysexact, and T, (J)=0 for >0 and each
proper injective J.
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The categorical dual d | (replace & by &P, # by #°*) is

III. Let T: o —>Z be left #-exact and covariant (sample, T(4)=
Homg (G, A)). Its right derived functors are 7% (A)=H"(T(Y)),where
E: A+Y is a proper injective coresolution (assume enough injectives).
With the corresponding connecting homomorphisms they constitute a
negative connected sequence d covariant T*: & —% which assigns to
each E a complex,

.. > TP 1(C) 5 THA) T (B)>T*(C) > --- (93)
in #Z; that is, a covariant T: &a(«)—>%-. The T" are characterized
intermsd T by either o the properties

(IIIa) T°=T and 5 is universa; that is, given S': () >%",
each natural /°: TO—T'® extends to a unique natural {: 5%/,

(IIIb) T°=T, (9.3) is exact, and T"(J)=0O for »>0 and each
injective J.

Finaly, replace £ in case | by %°P

IV. Let T: &/—>Z be left #-exact and contravariant (sample:
T(A)=Homyg (A, G)). Suppose that & has enough proper projectives.
A projective resolution e: X —A gives a negative complex T(X) in £,
hence derived functors T"(A)=H"(T(X)) and connecting homomor-

phisms which constitute a negative connected sequence {T*, E*} and for
each E a complex

o > T HA) D THC) > T (B) T A) > - (94)
that is, a contravariant S: &z(of) —>%- characterized by either
(IVva) TO=T and £ is universal, or
(IVb) TO= T, (9.4)isexact, and T" (P)=0 for #>0 and each pro-
jective P.
To summarize (exampleswith G a fixed module):

I, Variance Derived T Resolution Type, T, (A)

| Rightexact Co L eft couniversal  projective Tor, (G, A)
II Rightexact Contra Left couniversal  injective ?

IIT  Left exact Co Right universal injective Ext"(G,A)

IV Left exact Contra Right universal proj ective Ext (A G)

Thus a change in variance or a change from left to right switches the
type d resolution used.

For example, if A isa K-algebra, & the category d left A-modules,
& the class 0 K-gplit short exact sequences d A-modules, and # the
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category o K-modules, then Homy, (C, A) is left exact. As a functor
d C it is contravariant (case 1V); its right &-derived functors are
Ext{; « (C, A). As a functor & A, Hom, is covariant (case III); its
right £-derived functor is again given by the sequence d functors
Extl; x (C, A), this time with the connecting homomorphismsin the
second argument A.

Notes. Characterization d functors. For categories d modules, right or left
exact additive functors are often given just by the usual functors @ and Hom.
Specifically (WATTs [1960], EiLENBERG [1960]), if C is a fixed S-R-bimodule,
the tensor product with C gives a covariant functor T, (A)= C®pA d p4 which
is right exact and carries (infinite) direct sums to direct sums. Any functor T
on the category & R-modulesto the category d S-modules with these properties
hasthisform for some C; namely, for C= T(R). Again. any left exact contravariant
functor T on R-modulesto S-modules which converts (infinite) direct sums into
direct products is naturally equivalent to the functor T(4)=Homg(4,C) for
some left (R® S)-module C (to wit, C= T(R)). Finally (WATTs [1960]) any co-
variant left exact functor from R-modulesto abelian groups which commutes with
inverse limits has the form T(4) = Homg (C, A) for asuitable C. MITCHELL [1962]
has generalized these theorems to suitable abelian categories.

Bifunctors. Let T,(C, A) be a bifunctor, additive and right exact in each
variable separately. Replacing both arguments by projective resolutions, taking
the total complex o theresulting bicomplex and its homology givestheleft derived
functors 7, (C, A) — as for example for Tor, (C,A) as a bifunctor (Thm.V.9.3).
This and related cases, with differencein variance, are treated in detail in CARTAN-
EiLenBerG. This theory is not needed for C @ A, because this bifunctor becomes
exact when either o the variables is replaced by a projective, so the derived func-
tors can be constructed by the one-variable case. A relevant example is the tri-
functor C®B®A for three modules over a commutative ring, which must be
treated as a functor o at least two variables. Its derived functors, called Trip,,
occur in the KonneTa formulas for the homology o the tensor product o three
complexes (MacLaNE [1960]). At present, there appears to be no way o charac-
terizing derived functors o two or more variables by "universal'' properties or
by "axioms'. For example, a suitable definition o a tensor product o two abelian
categories would alow the reduction o bifunctors to functors o one variable.

Other constructions o derived functors. If Ty isright exact and covariant on
the category o all modules, each SccExt*(C, A) gives an iterated connecting
homomorphism S: T, (C)—T7, (A),s0 each ¢ T,, (C) yields a natural transformation
Ext"(C,A)—>T,(A) o functors of A. Indeed, T, (C) may be defined [YonEDA
1960, HiLToN-REES 1961] as

T, (C)= Nat hom, (Ext" (C, A), T(4))

This provides another definition of the torsion products. We have already remarked
that an additive category & is a "'ringoid" (usual ring axioms, but compositions
not everywhere defined). In the same sense, each covariant additive functor T
on & to the category o abelian groups is a left “ef-moduloid”’ (axiomsfor a left
module over a ring; compositions not always defined), while a contravariant S
isaright «/-moduloid. YoNEDPA [1960] has defined a corresponding tensor product
S®,,T and used it to construct satellites. Again, let T be a contravariant additive
functor. The short exact sequences E: 4>>B-»C ending in a fixed C may be
partly ordered by E’ < Eif thereisa morphism(a, 8, 15): £'— E; these E then from
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a ""directed” class; the direct limit o the kernels o T(4) — T(B) taken over the
directed class gives the right satellite o T [BucHsBaum 1960], defined in this
way without assuming that there are enough projectives. This construction has
been studied further by AmiTsur [1961]; ROGHRL [1962] gives an existence theorem
for satellites of half exact functors, with applications to the theory o sheaves.
For any additive functor which is not half-exact one must distinguish the derived
functors, the satellites, and the cosatellites; their interrelations are studied in
BuTLER-HORROCKS [1961].

Derived functors d non-additive functors have been studied by DoLb-Puprre
[1961] usingiterated bar constructions. Indeed, the homology groups H,, ., , (I, n; G)
o IT provide many examples o non-additive functors (EILENBERG-MACLANE
[19544a]). The classical example is the functor I o J. H. C. WHITEHEAD [1950].
For each abelian group A, I'(4) is the abelian group with generators [y (a) | a€41,
relations y (—a)=y(a) and

y(a+bdte)—ylatb)—ylatc)—ybt+o)+y(a)+y (@) +y)=0.

These are the relations valid for a "square’™ y (a)= a?.

10. Productsby Universality

The universal properties d derived functors may often be used to
construct homomorphisms, such as the cup product for the cohomology
of agroup I1. In the notational schemed § 7, take Z to be the category
d abelian groups, & the category d all left 17-modules, and # the
classd 2-split short exact sequencesd 17-modules. We first show that
there are enough proper injectives in .

To eachabeliangroup M construct then-modul e ,=Hom,(Z(IT),M )
with left operators defined for each fe Jiy by (xf) r=f(r x), with x€ll,
reZ(Il). These are the left operators induced by the right 17-module
structured thegroup ring 2 (17)Definea homomorphisme=e¢y: > M
d abelian groups by setting e(f)=f (1) for each f: Z (17)->M . This has
the usual couniversal property, dual to that o Prop. V1.8.2:

Lemmal0.1. If A isaleftl7-module and h: 4--+-M a homomorfihism
o abelian groups, there exists a unigue 17-module homomorphismy: 4 — Ji,
with ey=h.

Proof. Consider A-> M- Ju- The condition ey=h requires for
each ac A and x¢l7 that

h(xa)=e[y(xa)]=[y(xa)]1=[*(r a)] 1=(r a)x.
Conversaly, if one definesy by (y a)x=h(xa),y isall-map and satisfies
ey=h.

A standard argument now showsthat each jy isrelatively injective.
Moreover, if A is any 17-module, the Lemma gives a unique 17-module
homomorphism y: A->Hom,(Z(IT), A)=]; with ey=1,. Hencey is
proper monic and y: A-»J; embeds each A into a proper injective.
Therefore there are enough proper injectives.
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For each 17-module C let C# denote the subgroup o 17-invariant
elementsd C. The covariant functors

H?(C)=H? ([T, C)=Ext} 2 (Z, C)
have connecting homomorphisms for each proper E,
E,: H?(C)—>H?*1(4), E: A» B->C,

defined (say) by Yoneda composition, and giving the usual long exact
sequence. Moreover, H?(J)=0 for $>0 and J proper injective (any
extension d a proper injective splits). Hence the H? (C) are the right
derived functors o H®(C)=C".

Lemma 10.2. For each fixed integer q and each fixed 17-module C',
the functors H?(C) @ H?(C’) constitute the components o a universal
sequence d functors with 9-connecting homomorphisms E, &1.

Proof. Let Ey: A J—»K beany 2-split short exact sequence with
J proper injective. For >0, H#~1(J)->H?*"* (K )—>H?(4) >0 (= H?(]))
isexact. Asthe tensor product over Z isright exact, so is the sequence

HP1(J)QH!(C')—HP1(K)QH?!(C')—H? (A)QH!(C')~0.

This is the condition parallel to (8.3) in the dual & Thm.8.3; hence
H?(C)®QH(C') is the universal sequencefor itsgiveninitial component
HO(C)@H?(C').

Lemma 10.3. If CQC’ hasthe diagonal J1-module structure [ X(c®¢')
=xc®ux C for xell], then for fixed g and C' the functors H?*+4(C QC’)
of C constitute a P-connected sequence d functors with connecting homo-
morphisms (E@C'), .

Proof. Since E is Z-split and exact, the tensor product
EQRC: AQC'» BRC' »CRC’

isexact and 2-split, hence gives the required (natural) connecting maps.

Similarly, for # and C fixed, the functors H?(C) ® H?(C’) constitute
a universal 9-connected sequence, when the connecting homomorphisms
1®E, are defined with the usual sign:

(IQE,) (6R0c)=(—1PoRE, 0", acH?(C), ¢'cHIC"). (10.1)

Moreover, the H?*t4(C®C’) constitute a #-connected sequenced func-
torsd C with connecting homomorphisms (CRQ E’), .

For p=0, H°(C)=C" is the subgroup o 17-invariant elementsd C.
Now ceCT and c¢'cC'T give c®c’c(CRC), so the identity induces
a homomorphism CZQC7-»(CRC)".
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Theorem 10.4. Thereexistsa uniquefamily o group homomorphisms
f£1: H?(C)QH!(C)—H*(CRC) (10.2)
defined for all =0, ¢=0 and all 17-moddes C and C, such that
(i) 1*° isthe map induced by theidentity, as above,

(i) 7 4s natural in C and C, $=0, q=0,

(i) P UEL @1 =(EQC)PS  p=0, g0,

(iv) P (IQEL)=(CRENY  p=o0, ¢=0;
the latter two for all Z-spiiz short exact sequencesE and E'.

The last two conditions assert that the maps f commute with the
connecting homomorphisms.

Proof. We are given *°. For g=O and C fixed, the left hand
side d (10.2) is 8-universal, while the right hand side is #-connected.
Hence the maps /%, natural in C, exist and are unique subject to (iii)
for g=0. These maps are also natural in C. For consider y: C'—D".
Then y#° and /%y are two natural transformationsd the8-universal
functor H? (C)®HY(C") to the 8-connected functor H? (C®D") which
agree for =0 and hence for all .

Now hold $ and C fixed. In (10.2), /7 is given for ¢=0, and by
(iv) must be a natural transformation d a universal to a connected
sequence. Hence it exists and is unique; as before it is aso natural
inC.

Our construction gives (iii) only for g=0; it remains to prove it
for g>0. For ¢ fixed, let ¢* be the left-hand side and y? be the right-
hand side d (iii). Both are maps

¢’ - HY (OQH! (C)=H* "1 (AQC)

of a universal to a connected sequence o functors & C. They both
anticommute with the connecting homomorphismsgiven by E'. Indeed,

by (iv),
(AQEN ' =(AQE )4 TV UEL 1) =L 1 QE ) (Ex 1),
"t (| QE,)=f+14+1(E, 1) (I1BE)),
and (IQE,) (E, ®1)=— (E, ®1) (IQE,,) by the definition (10.1). Also
(AQE )= (AQE")W (EQC)4 1?7,
PHARE,)=(E QAT IQE,)=(EQA)s (CRE" )W,

and (AQE)o(EQRC’) is congruent to — (EQR4"Yo(CKQE’) by the
33 splice lemma (VIII.3.1). Since ¢°=Yy0°, the uniquenessd the maps
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on a universal sequence gives ¢?=19? in al dimensions. This completes
the proof.

Now the cup product (as defined — say — by Yoneda composites
d long exact sequences) for the cohomology d groups satisfies exactly
the conditions for the maps ¢ d our theorem. Thus we have still
another construction d these cup products (V111.9). This construction
may be used to " calculate’ these products for 17 cyclic.

A similar argument in H,,(IT, C)=Tor .2z, C) will construct a
product which agreeswith the internal product for the relative torsion
functor. If 17 is finite, these two products can be combined in a single
product [CARTAN-EILENBERG, Chap.XII].

11. Proper Projective Complexes

Let o be the abelian category d positive complexes K (of left mo-
dules over some ring), with morphisms all chain transformations
f: K+L. Cadl a short sequence o complexes KHSL5M proper exact
if, for all #,

(i) 0>K,—~L,—~M,—0 is exact, and

(i) 0—~C,(K)=C,(L)-~C (M)—o0 is exact,
where C,(K) denotes the module d n-cycles d K. Since (i) implies
that (ii) is left exact, (ii) may be replaced by

@iy C,(L)—C, (M) is an epimorphism for all n.
In other words, a chain epimorphism g: L—M is proper if to each
meM with dm=0 there exists an /eL with gi=m and 0l=0. Equi-
valently, a chain monomorphism f: K->L is proper if to each leL
with 9l¢fK thereisakecK with al=2f k. With these characterizations,
the reader may verify that this class o proper short exact sequences

satisfies the axioms o § 4 for propriety. Since a long exact sequence
is a Yoneda composite d short exact sequences, we have

Lemmalll A sequenced complexes ---—>K—->L-+M —-N—-.. s
proper exact if and only if, for every dimension n=o, both .-- > K,
L,»M,—»N,—---and .-+ —»C, (K)—>C,(L)—>C,(M)—~>C,(N)—>--- are
exact.

Proposition 11.2. If K>>L M is a proper short exact sequence
d comfilexes, then each d the following sequences is exact for all n:

(iii) 0B, (K)—=B, (L)—=B, (M)—o0,

(iv) 0—-H,(K)—>H,(L)—~H,(M)—0,

(v) 0-+K,B,(K)->L,/B,(L)—>M,B,(M)—>0,

(vi) 0—K,/C,(K)—L,/C,(L)—>M,/C, (M)—>0.




398 Chapter X11. Derived Functors

Proof. The modules B,_,(K)=28K, d boundaries are defined by
the exactness d the short sequence C,(K)~K, »B,_, (K). These
sequences for K, L, and M form a 3>3 diagram with rows (ii), (i),
and (iii), so the 3><3 lemma gives (iii). The homology H,, (K) is defined
by theexactnessd B, (K)»=C,, (K)—»H, (K); the 3><3 lemmagives (iv).
The proofs d (v) and (vi) are similar, via B, » K,» K,[B, (K) and
the dual description d the homology modules by the exact sequences
H,(K)»K,B,(K)»K,C,.(K).

Next construct proper projective complexes. To each module A and
each integer » introduce the special complex U= U{4, n) with U,=A
and U,,=0 for m==n. If K isany complex, each module homomorphism
a: A—C (K) defines a chain transformation k=#(a): U(4, #)—+K
with &, the composite 4—~C,(K)—K,; al chain transformations
h: UK have this form.

To each module A and each integer » introduce the special complex
V=V(4,n) with V,=V,,,=A4, al other chain groups zero, and
9:V, 1, —~V, theidentity 1,. Then H,, (V)=0forall m. If K isacomplex,
each module homomorphismy: 4->K, ., definesa chain transformation
h=h({y): V(4,n)—>K with &, =y, k,=0y,; al h: V+K have this
form.

Lemmall3 For a projective module P, the special complexes
U(P,n) and V(P, n) are proper projective complexes.

Proof. Let g: L-»M be a proper epimorphism o complexes and
h=h(y): V(P, n)—M any chain transformation. Now g, ;: L, >M, 4
is epic, s0 y: P->M,,, liftsto 8: P—L,,, with g,.,8=Y. Therefore
h(y) lifts to h(8): V—L. The corresponding argument for U uses the
fact that C,(L)—C, (M) is epic. We then have

Lemmalld. If B, and Q are projective modules, then
5= UB,9® 3 V(0,7 (1)
n=0 n=0

isa proper projectivecomplex with H,, (S)=F,, B, (S)=Q . Any complex
K with all H,(K) and B, (K) projective has this form.

Proof. The direct sum o proper projectives is proper projective.
Set Q_,=0. The complex S has the form

s> Qn+1@Pn+1® Qn_>Qn®Rt® Qn—l_)

with & induced by theidentity ¢,—Q,,, so H(S) and B(S) are asstated.
The last assertion follows by induction from the fact that every ex-
tension by a projective module splits.
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We can now prove that there are enough proper projective complexes.

Lemma 115. For each complex K there exists a proper projective
complex S d the form (11.1) and a proper epimorphism h: S»K o
complexes.

Proof. For each n, there is a projective module P, and an epimor-
phism p,: F,»H, (K); lift ¢, to a homomorphisme,,: P,—C, (K).This
o, determines A(x,): U(F,, n)—K. For each », there is a projective
module Q, and an epimorphism a: @, B,(K); since K,,,—~B, is
epic, lift a, to a homomorphism vy, @,—K,,,. This y, determines
hy,): V(Q,, »)—~K. For S asin (11.1), these chain transformations
h(x,) and k{y,) combine to give h: S—K. If s,=¢,+ P+ ¢s_1€Sn,
then %s,=0y,4,+ %P0+ Vn_194—1, 0 h is epic. To show it proper
epic, we must show that 04 s,=0 implies as,=23s, for an s, with
hs.=0. But ks, iS 9,_1g,_1- SINCE Y,_19,_, IS @ cycdle & C,(K)
whilea, and g, are epic, there are p,, in B, and ¢, in Q, with y,_,q, .=
%yt 8yugy. Then s,=—g,—p,+¢, S, has ds,=ds,=¢, ; and
h's,=0, as required.

These results combine to give

Propostion 11.6. For each (positive) complex L there exists a proper
projective resolution

Y, Y e 5S> L0 (11.2)

in which each Y, is a proper projective complex d the form (11.1).

Here Y={¥,} isa complex d complexes; each ¥, is a graded module
{Y,,,} with a boundary homomorphism &": Y, ,—Y,,_, with 78" =o.
The resolution itself provides chain transformations @ with ¢"9=2 2",
Change the sign d @ (just as in the process d condensation, X.9) by
setting &'=(—1)%0: Y, ,—»Y,,,. Then (Y,a,d") is a positive bi-
complex.

For positive complexes K and L d right and left R-modules, re-
spectively, we now introduce certain ' hyperhomology'* modules. Take
a resolution Y o L, asabove, and form K ®Y, where & is Q. Thisis
a trigraded module {K,®Y, ,}, with three boundary operators given
by 0,=0: K,QY, ,—» K, 8Y,,,

ou(k®y)=(—1)"*k @0y, omk@y)=(—1)"*kR8"y; (11.3)

itisatricomplex (each o d squarezero,each pair d &'s anticommutative).
The corresponding total complex T=Tot(K®Y) has T,=2 K, RY,,
for p+g+r=n, 0=20;+ 9+ 5. An application d the comparison
theorem for proper projective resolutions shows H, {T") independent d
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the choice d the resolution Y. We define the Ayperkhomology modules
d Kand L to be

R,(K, L)y=H,(Tot (K RY)). (11.4)

Remark. Theoften usedfact that the tensor product d two complexes
is a bicomplex applies to functors other than the tensor product. Let
T(4, B) be a covariant bifunctor & modules A and B with valuesin
some additive category%. If K and L are positive complexesd modules,
T applies to give a bigraded object 7(K,, L) in ¢ and the boundary
homomorphismsd K and L induce morphisms

o =T, 1): T(K,, L)>T(Ky_y, L),
' =(—1PT(, 8): T(K,, L)>T(K,, L)

which satisfy &'9'=0, ¢"¢""=0, and 6’3":—6”8;, tne latter because
T isabifunctor. Therefore T(K, L)={T(K,, L)), d, d ) is a bicomplex
in ¥ with an associated total complex Tot[T(K, L)]. f homotopies
are to be treated, one assumes T biadditive; that is, additive in each
variable separately. When T is the tensor product, T'(K, L) is the fami-
liar bicomplex K QL.

Exercisss

1. Let K—’>L~5>M be a sequence d complexes with gf =0. Show that it is
a proper short exact sequence if an only if both (iii) and (iv) & Prop.11.2 hold,
and asoif and only if both (ii)and (iii)hold. Find other sufficient pairsd conditions.

2. Show that every proper projective positive complex has the form given in
Lemmail.4.

3. Show that R, (K, L) is independent o the choice of the resolution o L,
and prove that it can also be computed from a proper projective resolution of K,
or from resolutions d both K and L.

4. Study proper exact sequences for complexes not necessarily positive.

5. Let & be a proper classd short exact sequencesin an abelian category &
Study the corresponding proper classin the abelian category o positive complexes
in&.

6. Each additive functor T: & -># induces a functor T on &-complexes K
to 9-complexes. For Sleft exact and T right exact, construct natural maps

H,SK—~SH,K, TH,K-—-HTK.
Extend to bifunctors, and obtain the homology product as a special casefor T'= Q.

12. The Speatral Kiinneth Formula
Spectral sequencesprovideageneralizationd the KUn~eTd formula.

Theorem 12.1. If K artd L are positive complexes d right artd |eft
R-modules, respectively, artd if

H(Tot[Tor,, (K,L)]¥0 for all m>0, (12.1)
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there is a first quadrant spectral sequence {E} ,, 4,} with
E?z,q=s§=qTorp(Hs (K), H(L)), E; ,ZHEKQL). (12.2)

The hypothesis (12.1) for this theorem requires that each d the
complexes Tor, (K, L), defined asin the remark o § 11, has zero homo-
logy for sm>0. The stronger hypothesis that each K, is flat would
imply that each Tor, (K,L)=0 for m>0, hence (12.1).

For positivecomplexes, the previousKNNETH Theorem (Thm.V.10.2)
isincludedinthisone. I n detail, the hypothesesd that theorem required
that C,(K) and B, (K) beflat; i.e., that Tor,(C,, G=0=Tor, (B, G
for al Gand »>0. Since C,,(K)~K, »B,_, (K) is exact, the following
portion d the standard exact sequence for the torsion product

Tor, (C, , G)—Tor, (K, , G)—Tory (B, 1, G

is exact, so each Tor, (K,,, G)=0, K,, isflat, and (12.1) holds. Moreover,
B, (K)»C,(K)-»H,(K) is exact, so Tor,(C,,G—Tor,(H,, G~
Tor,_;(B,, G is exact, and therefore Tor,(H, (K),G)=0 for p>1.
The spectral sequence (12.2) thus has E3 ;=0 for =0, 1, hence con-
sists d two columns only, and so has zero differential. The filtration
of H,(K&®L) amounts to an exact sequence with Eﬁm and E} ,_;, as
follows:

0~ ) H(K)QH,(L)—-H,(KQL)—» 1Torl(Hs(K), H,(L))—0.

s+i=n sti=n-—

Thisis the usual KtnNETH exact sequence. | n other words, the present
theorem shows that higher torsion products d H(K), H(L) affect
H(K® L) via a suitable spectral sequence.

This theorem will be derived from a more genera result.

Theorem 12.2. If K and L are positive complexes of right and left
R-modules, respectively, with hyperhomology R, (K, L) definedasin § 11,
there are two first quadrant spectral sequences

Eyl BR(K, L) LBy, (123)
Ejle=H, (Tot[Tor, (K,L)]), Epe= 2 Tor,(H,(K),H,(L). (124)

Under the previous hypothesis (12.1), the first sequence collapses
to the base, gives R, = E; =H, (KQL), hence yields the result o the
first theorem.

Proof. Choose a proper projective resolution Y d L and form the
triplecomplex K &Y d (11.3) with threeboundary operators o;, &y, 941 -
Mac Lane, Homology 26
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By totalizi ng thefirst and third indices, construct a double complex with
SHZ KQY,,, 0=0+0y, 09'=0;.

Then Tot X=Tot(K&®Y) has homology R(X,L). The two spectra

sequences d this double complex will yield the result.

I'n the first spectral sequence, E;*,=H},H,'(X). In each dimensiont,

=Y, ,—» .- =Y ,—~L,—0 is a projective resolution o L,, so the
torsion product Tor, (K, L,) may be calculated from this resolution
as H;'(K ®Y); the remaining boundary & = &;+ 8;;; is then the bound-
ary operator d the complex Tor, (K, L). Hence E’? is as stated.

For the second spectral sequence, write X with renamed indices
as X, ,, so that p isthe filtration index for the (second) filtration, and
E,3=HyH, (X). For fixed p, X, ,=2 K,QY,, with s+t=gq is just
the complex Tot (K®Y,) with boundary o= + drrr. 1N each complex
Y, the modulesd cyclesand d homologlesareprojective, by construction,
so the KtnNETH tensor formula (Thm. V.10.1), with hypotheses on the
second factor, appliesto give

Hy(X,)=H, (K QY,) = Z H (K) QH,(Y,).

Now each Y, has the form S o (11.1), s0 each H,(Y,) is projective,
while the definition d proper exact sequences d complexes shows that
for each t

- —=>H,(Y,)>H(Y,_) > —H,(Yy) >H, (L) >0

is a projective resolution d H,{(L). Taking the tensor product with
H (K) and the homology with respect to &' is the standard method d
computation for Tor(H,(K), H,(L)). Therefore we get the formula d
(12.4)for E, 5.

This theorem can be regarded as the formation from K and L d
alargecollectiond ‘“‘hyperhomology invariants™: The modules® (K, L),
the two filtrations d R, and the two spectral sequences converging, as
above, to the graded modules associated with these filtrations. For
example, if theground ring R isthe ring d integers, the result becomes:

Corollary 12.3. If K and L are positive complexes G abelian groups
with hyperhomology groups R (K, L), there is a diagram

2 H,(K)QH,(L) 2 H,(K)®H,(L)
pta=n M pt+g=n—1 Y
—)Hn_l(Torl (K, L)) —->R,—>H, (KRL) ——>1’~I,,_2('I‘or1 (K, L))—> R,
¥ ¥
S Tor,(H,(K), H, (L)) S Tory(H, (K), H, (L)
ptg=n—1 ptg=n—2

with (long) exact row and short exact columns.
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HereTor, (K, L)isshort for Tot[Tor, (K,L)].

Proof. Over Z, Tor, vanishes for p>1, so the first spectral sequence
has only two non-vanishing rows (=0, ¢=1) and only one non-zero
differential d2: E% —E2_, ,; hence the exact sequence

0—>E % —~H,(KQL)SH,_5(Tor; (K, L) }>E;%5 1—0.

Spliced with the exact sequences expressing the filtration d ®,,, this
yields the long horizontal exact sequence above. The second spectral
sequence has only two non-vanishing columns (=0, $=1), hence has
all differentialsd?=d%=...=0; this yields the vertical exact sequences.

The reader may show that the composite map
H,(K)QH, (L) >R, —~H,(KQL)
in this diagram is the homology product; the composite map

H, ,(Tor, (K, L)) >R, > Tor,(H,(K), H,(L))

is a corresponding ** product' for the left exact functor Tor,, as defined
in Ex.11.6.

Note. The hyperhomology modules are due to CARTAN-EILENBERG; the treat-
ment in terms of proper exact sequences is due to EiLENBERG (unpublished).

26*
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simplex (11.7)

A ,4 4Diagonal map (I11.2.1);
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A Algebra

II  Multiplicative group

2 Algebra

2 Algebra

o« Associative map for tensor pro-
duct (VI.2.3); (VI.8.3)

7 Adjoint associativity (V.3.5);
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List of Standard Symbols
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l.gl.dim. Left global dimension of a
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Tor Torsion product
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Adjoint associativity 95, 144, 194

Adjoint, left 266, 269 (Note)

Affine independence 54

— simplex 54

— transformation 54

Alexander-Whitney map 241

Algebra 173
Augmented — 180
Bigraded — 180
Exterior — 179, 183
Graded — 177
Hopf — 198
Opposite — 182
Polynomial — 179, 182
Separable - 214
Symmetric — 184 (Ex.)
Tensor — 179
Total matrix — 214
Ungraded — 180

Allowable class (in a category) 260

Analysis (of a morphism) 254

Annihilator 146

Anti-isomorphism 364 (Ex.)

Associativelaw 173

—~ — for diagonal map 197

— __ for tensor product 142, 145, 194

Associativity 25, 249
Adjoint — 95, 144, 194
Middle— 138, 186
Outside — 187

Augmentation 180

— d DG-algebra 192

— d DG-module 304

— o graded algebra 180

— d group ring 104

Augmentation
— o singular complex 57
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Inner — 124
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— class 124
Axioms
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Categorical — 268, 271
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Reduced — 283
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— function 138
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— module 176

Bilinear function 141
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Index
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— group 35
— module 10
— on Hom(K,L) 43, 190
— on Homy 191
Dimension 39
Finitistic — 203
Homological — 201
Krull — 220
Left global — 202
Mic Lane, Homologie

Index

Dimension
Left injective — 203
Right — 203
Weak — 203

Direct product 27, 32
Semi — — 105
— — O algebras 212, 295
— — o morphisms 33

Direct sum 15, 27

External — — 15 18

Internal — — 19

Semi — — 286
Divisibleabelian group 93
Domain

— o definition d relation 52
— o function 9

— d homomorphism 10

— o morphism 25

Dual 27

— basis 147

— module 146

— statement 27

Edge homomorphisms 321, 335
Eilenberg-ZilberTheorem 239, 241
Endomorphism 10, 143
Ringd — 21, 143
Enough projectives 261, 367 (Ex.),
377
Envelope, injective 103
Enveloping algebra 317
Epic 252
Epimorphism 10, 251
Equivalence 25, 252
Chain — 40
Left — 252
Right — 252
— principle 53
Equivariant cohomology 136
Essential extension 102
Euler characteristic 323
Exact
— couple 336
— functor 263, 379
— homology sequence 45
— sequence 11, 256
— triangle 193 (EX.), 336
Half — functor 379
Left — functor 379
Left — sequence 23, 365
Proper — sequence 367,
370
Right — sequence 23, 379
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Excision axiom 62
Extension
Algebra— 284
Central group — 112
Cleft — 284
Crossed product — 125
Essential — 102
Ground ring — 213, 294
Group — 108
Module — 63
Morphism o — 63, 109
Operator — 108
Singular — 284
Exterior algebra 174, 179, 183

Face operator 235
Factor set 111, 285
Factor system 69
Factorization, standard 254
— through 12, 66, 252
Fiber
— map 322
— terms (of spectral sequence) 321
Fibred product 359
Filtration 165, 309, 326
Bounded — 327, 330
Canonically bounded — 330
Convergent — 329
Descending — 346
First — 341
Second — 342
— o bar construction 309
— o bicomplex 341
— o tensor product 165
Finite type (module) 20, 219
First quadrant spectral sequence 320
Five Lemma 14, 365.
Flat module 163
Four Lemma 14, 364
Free
— graded module 195
— group 122
— module 19
— ring (over a group) 104
Relatively — module 196
Function 8
Mapping — 29, 31
Object — 28, 31
Functor 28
Additive — 23, 71, 263, 379
Contravariant — 22, 29
Covariant — 22, 28, 379, 386
Exact — 263, 379

Index

Functor
Faithful — 263
Forgetful — 262
Half exact — 379
Left derived — 389
Left exact — 379
Normalized — 259
Right exact — 379

Generators (of a module) 20

Graded algebras 177
Internally — 180, 215
Tensor product o — 181

Graded modules 175
Associated — 326
Internally — 177
Positively — 175
Trivialy — 175

Graded object 177 (Note)

Graded set 177 (Note)

Graph d homomorphism 52

Group
Changed — 108
Cohomology — 115
Differential — 35
Free — 122, 123
Relative homology — 61
Singular cohomology — 57
— algebra 199, 295 (Ex.)
— ring 104

Group extension 108
Pure — — 367

Gysin sequence — 326

Hilbert Syzygy theorem 217
Hochschild (co)yhomology modules 283,
288°
Holomorph o a group 105 (Ex.)
Homogeneous
— elements 177
— generator 119
— ideals 178
non — generator 118, 119
Homological dimension 201
Homologous cycles 35, 40
Homology 35
— classes 35, 39
— group 35, 57
— isomorphism 310
— modules 39
— product 166, 221, 296
Homomorphism 10
Boundary — 35, 56, 235



Index 419

Homomorphism Injective

Compositiond — 11,195 — module 92

Connecting — 45, 51,96 — object (ina category) 261

Crossed — 105, 284 — resolution 95

Diagonal — 68 Interchange

Edge — 321 Hom-® — 195

Induced — 13, 36 Middlefour — 194

Principal crossed — 106, 284 Internal

— d agebras 177

— o bimodules 143

— o coalgebras 197

— o DG-algebras 190

— o differential groups 36

— o graded algebras 177

— o graded modules 175

— o Hopf algebras 198

— o A-modules 184

— d modules 10

— o spectral sequences 319
Homotopy 39, 57

Chain — 40

Contracting — 41, 265, 267
Homotopy classification theorem 78
Hyperhomology groups 400, 402

Ideal 10
Graded (two-sided) — 178
Graded left — 178
Graded right — 178
Homogeneous— 180
Nilpotent — 286

Prime — 218
Proper — 218
Identity
— element 9

— function 9, 10
— morphism 25, 249
Image 10, 255

Inverse — 13, 363

— o morphism 255
Indeterminacy 52
Induced
- additive relation 53
— homomorphism 13, 36, 255
— relation 53
Inessential extension 102
Inflation homomorphism 347
Injection (identity) ¢
Injective

Allowable— 261

— complex 95

— envelope 103

— function 251, 362

— direct sum 19
— grading 177, 180, 215
— homology product 221
Intersection 13, 18, 364 (EXx.)
Invariant element 122, 284
Inverse 11, 25
Left — 11
— image 13
Isomorphism 10
Modular Noether — 318
Natural — 29
Noether — 13
Iterated connecting homomorphism 97

Ker-coker sequence 50
Kernel 10, 252, 362, 363
Abstract — 124
Koszul Resolution 205, 218 (Ex.)
Kronecker product 182
Kiinneth
— Formula 166
— Formulafor abelian groups 168
— spectral sequence 400

Left

— derived functor 389
— equivalence 252

— exact functor 379

— exact sequence 23, 265
— module 9

— satellite 382

— universal pair 381
Leray-Serre Theorem 322
Liealgebra 317

Lifted map 20, 87

Lifting functor 301

Line segment 54

Loop space 325

Lyndon spectral sequence 351ff., 358

Map
Alexander-Whitney — 241
Diagonal — 197, 244
Monotonic — 233
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Map
Simplicial — 235

Mapping

— cone 46, 47

— cylinder 46

— function 29, 31

— theorem 321

Middle

— associative 138

— four interchange 194

— linear 138

Module 9
Bigraded — 176
Cyclic— 20
Differential graded — 189
Flat — 163
Free — 19, 195

Relatively — — 196

Free graded — 215
Graded K- — 175
Graded U- — 191
Injective — 92
Internally graded — 177
Left A- — 184
Left R-— 9
Monogenic— 20
Projective — 20
Quotient — 11
Reduced — 304
Relative projective — 265, 273

Right — 9, 138
Semi-simple— 203
Simple — 203

Simplicial — 233
Submodule — 10
Trigraded — 176
Trivial — 105§
Trivially graded — 175
Unitary — 9
Monic 251
Monogenic module 20
Monoid 290
Monomorphism 10, 251
Monotonic maps 233
Morphism 25, 249
Allowable — 260
Connecting — 380
Null — 259
Proper — 368
— o connected pairs 381
— o exact sequence 63, 83
— o group extension 109
Multiplicator 137 (Note)

Index

Natural

— isomorphism 29

~— transformation 29, 30, 32, 386
Negativecomplex 41

n-fold exact sequence 82, 83
Nilpotent ideal 286

Noether, Emmy 63 (Note)
Noether isomorphism 13, 318
Noetherian module 219
Norm 110

Normalization 114

— Theorem 236, 282
Normalized

— function 281, 283

— functor 259

— gmplicial complex 236
Null

— morphism 259

— object 258

Object 25
Allowable projective — 261
Null — 258
Quotient — 252, 363
Relatively projective — 265
Simplicial — 233
— Function 28, 31
Obstruction
— o abstract kernel 126
— d homomorphisms 72, 74
Opposite
— algebra 182
— category 28
— ring 157
Orbit 131
Order (of homotopy) 331

p-Group 132
Pair o spaces 61
Pairing 148 (Ex.), 247
Partly ordered set 33. 362
Pathwise connected space 57 (Ex.)
Poincaré 63 (Note)
Pointed set 362
Positive
— bicomplex 340
— complex 41
— grading 175
Preadditive category 250
Product 173
Crossed — 125
Cup — 245, 394ff.
External — 220, 221



Product
Fibred — 359
Homology — 166, 221, 296
Hopf wedge — 231
Internal — 221, 232
Kronecker — 182
Relativetorsion ~— 274, 275
Semi-direct — 105
Simplicialcup — 245
Tensor — 138
Torsion — 150, 154
Wedge — 228

Projection

— o cartesian product 18

— on quotient 11

Projective
Allowable— object 261
Relative — 265, 273
— equivalence 101 (Ex.)
— module 20

Proper

— class 367

— long exact sequence 370

— morphism 368

— openset 134

— operators 134

— projective object 376

— right exact sequence 379

— sequenced complexes 397

— short exact sequence 367, 379
— subobject 368

Pull-back 90, 143

— Lemma 140

Pure subgroup 367

Quotient

— agebra 178
— group 11

— module 11

— object 252, 363
— space 134

Range

— o afunction 9

— d a homomorphism 10
— d amorphism 25
Reduced

— bar resolution 283

— module 304

Relative

— abelian category 263
— boundary 61

Index

Relative

— cycle 61

— ext functor 269

— homology group 61

— projective object 265

— torsion product 274, 299
Relatively free

— — complex 267

— — module 196
Residuefield (of alocal ring) 219
Resolution 87
Allowable— 261
Allowable projective — 261, 378
Bar — 115, 268, 271, 280
Free — 87
Injective — 95
Koszul — 205, 218 (Ex.)
Minimal 217
Projective — 87
Short projective — 382
Resolvent pair (of categories) 265
Restriction homomorphism 347
Right
— equivalent 252
— exact functor 379
— exact sequence 23, 379
— module 9, 138
— satellite 384
Ring
Changed — 90, 276
Integral group — 104
Local — 219
Opposite — 157
Regular — 220
Semi-simple — 203
— d quotients 219

Ringoid 250
Satellite
Left — 382
Right — 384

Selective abelian category 256
Semi-direct product 105
Sequence
Allowableexact — 261
Left exact — 23, 365
Negative and positive — 386
Proper exact — 370, 375
Right exact — 23, 379
S-split — 275
Short exact — 12, 16
Split exact — 16, 260
Weakly split — 260
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Sets
Category of — 26
Pointed — 362
Simplicial — 233

Sheets o a covering 134

Short Five Lemma 13, 256

Short projective resolution 382

Shuffle 243, 313

Signature (of a shuffle) 243

Signs (commutationrule) 164

Simplex 54

Simplicial

— cup product 245

— map 235

— module 233

— object 233

— set 233

Singular

— complex (of a space) 56

— extension (of an algebra) 284

— homology 57

Space
Acyclic— 57
Contractible — 58
Covering — 134
Pathwise connected — 57 (EX.)
— with operators 134

Spanned 181 (EX.)

Spectral sequence 3181f.
Cohomology — 345
Convergent — 327, 329
First — o a bicomplex 341
First quadrant — 320
Second — d a bicomplex 342
Third quadrant — 345
— . d acovering 343
— —— d afiltration 327
— _ d an exact couple 337

Split
Relatively — 263
S — 273
Weakly — 260

— extension 67, 108
— sequence d complexes 47
— short exact sequence 16, 260
Squares 359
Standard affinesimplex 54
Strong Four Lemma 14, 366 (Ex.)
Subalgebra 178
Subcomplex 41
Submodule 10
Graded — 175
Subobject 252, 361

Index

Subobjekt
Proper — 368
Subquotient 13
Subring 273
Summands (direct) 18
Surjective function 251, 362
Suspension homomorphism 309,
315 (Ex.)
Switchback 45, 52, 98
Symmetric algebra 184 (Ex.)
Syzygy, Hilvert Theorem 217

Tensor product 138 ff.
— . O algebras 295

o bimodules 143, 187
— o complexes 163
o DG-algebras 190
o graded algebras 181
o graded modules 176
o modules 138, 186
3><3 Lemma 49, 365, 366
3><3 splice 227
Torsion coefficients 42
Torsion product 150, 154, 224

Relative — 274, 299
Transformation

Chain — 40

Natural — 29, 386

— o bifunctors 32
Transgression 333
Tricomplex 399
Trilinear function 142

Union d submodules 13, 18
Unitary module 9
Universal

— Coefficient Theorem 77, 1701f.
— covering space 135

— diagram 16, 27

— pair d functors 382, 384
square 360

Verticesd simplex 54, 57 (Ex.)

Wang Sequence Theorem 324
Weak Four Lemma 14, 364
Weakly split sequence 260
Word (in free group) 122

Y oneda composite 82

Z-graded

— algebra 180

— module 175

Zero

— object 249, 250

— in partly odered set 33




