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AN APPROXIMATION TO Q"ZnX 
BY 

J .  CARUSO AND S. WANER 

ABSTRACT.For an arbitrary (nopco~ected) based space X, a geometrical construc- 
tion C,X is given, such that C,X is weakly homotopy-equivalent to QnX"X as a 
e,-space. 

In The geometry of iterated Ioop spaces [3], J .  P .  May constructs functors C,, from 
spaces to (2,-spaces and natural maps a,,: C,,X -+ QnZ"Xwhich are weak homotopy 
equivalences if X is connected. We present here a related construction giving a 
functor E,,x which is an approximation to QnZnXfor arbitrary X. 

The philosophy behind our approach is that where May uses subcubes of the 
unit n-cube Inin his construction, we use signed subcubes and allow them to merge 
along a single coordinate; these are to account for the homotopy inverses that one 
loses when X is not connected. So far as we know, the first person to attempt to 
exploit this philosophy was Dusa McDuff [4]; surprisingly, the resulting space for 
particles has the wrong homotopy type, as she shows there. Apparently, a space of 
configurations of points is just too crude to give a good approximation. 

In the present work, we construct a natural map a,: enx+QnZnX.If a , - , :  
Cn- ,ZX +Qn-"Z"Xis May's approximation, a, factors as a composite 

it will then follow that a,, is an equivalence if p,, is, since ZX is connected. To study 
p,, we introduce a space ?;x and a map p,' from this space to the Moore loop 
space A C, - ,X,  such that we have a commutative diagram 

where p and n are homotopy equivalences. 
We then proceed by producing a quasifibration p: E,,X +C,,- ,EX with quasi- 

fiber ?;x and contractible total space, together with a comparison 
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of p to the Moore path space fibration p,. It will thus follow that b,' is an 
equivalence, and hence so are Pnand a,. 

The authors are much indebted to J. Peter May for his many helpful suggestions. 

1. Basic definitions. A little n-cube is (as in [3]) a linear embedding c: I "  + I "  
which is the product of n increasing linear functions ci: I -+ I. 

In [3], the little n-cubes operad enis defined as a sequence of spaces enJ, 
together with some structure maps relating them. Each enjis the space of j-tuples 
of little n-cubes whose images intersect only on the image of the boundary of their 
domains; we will use the term nonoverlapping for this condition. 

The operad (2, leads to a model for O"ZnX in which each little n-cube represents 
a map from Snto S "  of degree one. These are "labelled" by points of X, so that a 
point in this model CnX corresponds to a sequence of j maps S" -+ { x i ) + A S" L, 

ZnX, and one takes the "union" of these maps in order to obtain a map in OnZ"X. 
We are trying to examine the case in which X is not connected. In this case, one 
needs to allow maps of degree -1 to provide "homotopy inverses" to the maps of 
degree + 1. Also, the intermediate stages between (for example) a configuration 
with two oppositely oriented cubes, and the empty configuration, must be repre- 
sented. This leads to the concept of a "partial" little n-cube, which can be thought 
of as representing one piece of a piecewise linear map. 

Apartial little n-cube is defined to be an embedding c: A x In-'-+ I "  whlch is 
the product of an affine embedding c' of a closed nonempty subinterval A of I into 
I,  and a little (n - 1)-cube c". Note that c' may be increasing or decreasing (and 
we use the term positive or negative, respectively, to describe c), and A is allowed to 
be a single point (in which case we say c is degenerate). 

We say that a partial little n-cube c = c' x c" has slope m (m # 0) if either A is 
a point or c' has the form c'(t) = mt + b for some b, for t E A ;  thus degenerate 
cubes have all nonzero slopes. 

Here we wish to define a new space gnj using partial little n-cubes, but we need 
to have the cubes "fit together" properly. So we will say that two nonoverlapping 
cubes c: A x I"- '  -+I "  and d: B x I"- '  -+ I "  are attached at a (where a E aA n 
aB n (0, 1)) if cf(a) = df(a) and c" = d" ; that is, if c and d agree on {a )  x In-'. 
We say that c is attached from below by d (and, equivalently, d is attached from 
above by c) if c'(s) > dt(t) whenever s E Int A or t E Int B. 

We say that a set C = {c,, . . . , c,) of partial little n-cubes is an admissible 
configuration if 

(i) the cubes in C are nonoverlapping, all have slope m, = k m for some fixed m, 
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and 
(ii) for all c E C ,  c: A x In-'-+ I", if a E aA and a is different from 0 and 1, 

then c is attached at a by some nondegenerate cube d E C. 
We now define Gnj to be the set of j-tuples (c,, . . . , cj) of partial little n-cubes 

c,: A x In-'-+ I "  which are nonoverlapping and such that {c,, . . . , cj) is a 
disjoint union of admissible configurations. We make Gnj into a space by identify- 
ing each cube c: [a', a2] x I"-' -+ I "  with a tuple (a1, a2, ?, c") in I x I x 
Map(I, I )  x t?,-,,,, where E' is the piecewise linear function which equals c' on 
[a1, a2] and is constant on [0, a'] and [a2, 11. Then we topologize gnjas a subspace 
of ( I  x I x Map(I, 1 )  x en-,,,yunder these identifications. 

The partial little cubes will occur only as parts of so-called "closed configura- 
tions" of little cubes, ones which have no unattached endpoint except on a I  x 
I"- 1, and such a configuration represents a map of degree + 1, -1, or 0, with 

finitely many changes of direction in the first coordinate. Note that we allow two 
successive cubes of the same slope, and introduce degeneracies later on to make 
this equivalent to one larger cube. This is necessary to account for the possibility of 
"smoothing out a wrinkle"; that is, where three cubes are attached in a row with 
the middle cube of opposite sign from the other two. To allow the middle one to 
shrink and become degenerate, we must topologize the space so that the resulting 
configuration is equivalent to one with the two end cubes replaced with one larger 
one which is their union. 

To facilitate this equivalence, we will define the union of two partial little cubes c 
and d, which are attached and have the same slope. Note that this implies that their 
domains A x In-' and B X In-' have disjoint interiors (since c and d are 
nonoverlapping), and agree as maps when restricted to the intersection of their 
domains at the boundary. Consequently, we define their union c u d: (A u B) x 
In-'+ I "  to be equal to c on A x In-'and to d on B x In- ' .  It is trivial to check 
that c u d is a linear embedding, and hence it is a partial little n-cube. 

We introduce here a weaker notion than that of attachment. We will call c and d 
adjacent if they are attached or if they satisfy all the data for being attached at a 
point a except that a = 0 or 1, and have opposite orientation (i.e., are not both 
positive or negative). 

We think of attachment as an "open condition" in that it holds for two cubes c, 
and c, throughout a whole neighborhood in gnj, and adjacency is a "closed 
condition" in that "nonadjacency" holds throughout a neighborhood. In some 
sense we can think of adjacency as the "closure" of attachment. 

Some further notation will make the technical arguments go more smoothly. Any 
partial little cube c, has the general form c, = c: x c:: [a,', a:] X In-'+ I", where 

where m,,, # 0 and mr,i > 0 for 2 < i < n. We shall refer to m,,  (or just m, for 
short) as the slope of c,, the other slopes not being of technical importance. In any 
such cube the endpoints a,' and a,? may be labelled by a: and a,- so that 
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c;(a,+) > c;(arP). We will use the notation a," where E stands for + or -, and a,-" 
will mean a,+ if E = -, and ar- if E = + . 

In [S], Graeme Segal discusses a variant of CnX which produces a strict 
topological monoid; this seems to be a model for the Moore loop space 
A(V-'Xnx). Recall that AX consists of points (a; w) such that a > 0 and a :  
[0, a]  +X takes 0 and a to the basepoint of X. If a > 0 and fa: [0, a] +I takes t to 
t/a, then (a; w) determines a point (a, w fap') of R x QX; if a = 0 then w is the 
trivial loop, and we associate (0, a,) to (0; a), where w, E S2X is the constant loop 
of length 1 .  Under these identifications we topologize AX as a subspace of 
R x QX. 

[Note. The usual topology is given by making w constant at the basepoint from a 
to IXI and considering AX as a subspace of R X x[~~"'].This agrees with the one we 
have defined, by an easy point-set-topological exercise.] 

This device also simplifies the proofs above, with "a" playing the role of a 
variable height of the ambient n-cube. Let GAj consist of ( j  + 1)-tuples 
(a; c,, . . . , 5 )  with a > 0 and the cr's linear embeddings, cr: [a,!, a:] x In-'+ 
[0, a] x In- ' ,  satisfying (i) and (ii) above and the further condition that mr = + 1 
for all r. If j = 0 we allow a > 0. 

Now for a > 0 the function fa: 10, a] -+ I defined above induces a map 

p' = (pr,, p) : eAJ-+R x enj 

given by pr,(a; c) = a and p(a; c,, . . . , c,) = (dl, . . . , 4 ) ,where 

dr = (fa x id) cr. 

We topologize $.AJ as a subspace under this inclusion, and we wish to show further 
that p is a homotopy equivalence. - -

In fact, we note that X, acts in a natural way on enjand on C?Aj by permuting 
cubes, and we have the following lemma. 

LEMMA1.1. The map p: 6?Aj -+ enjis a 2,-equivariant homotopy equivalence. If 
consists of configurations containing cubes of degenerate domain or with attached 

cubes of the same slope, then the inclusion i3enj+enjis a cofibration, and a -
corresponding statement is true for eAj. 

The proof of this is left to $5 .  

We are now ready to define our approximating spaces. Let X be any based 
-

space. As noted in the lemma, 2, acts on enJby permuting cubes. It also acts on 
the cartesian power XJ by permuting factors, and hence on the product gnJx XJ 
diagonally. It is clear that this still defines an action when restricted to the 
subspace enJx Xj of elements ((c,, . . . ,c,), x , ,  . . . , x,) for which xr = x, 
whenever c, and c, are attached to each other. We define 
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-
where the equivalence relation on the union of the 22,-orbit spaces is generated 
by the relations 

( (~1,. . . > c,), XI, . . . 3 xj) ( ( ~ 1 )  . . . 7 Cj-l)> . . . > Xj-l) 

whenever x, is the basepoint * of X, or 9 is degenerate, and 

( ( c 1 7 . . . > c j ) 7 x 1 7 . . . 7 x j ) f f ( ( c 1 ? . . . ? C j - l  
 U c ~ ) , x I ? . . . ~ + - ~ )  

if and 9 are attached and are both positive or negative; of course this implies 
that x,-, = x,. The ---equivalence classes are referred to by the notation 
[(cI, . . . , c,), xl,  . . . , x,], or [(c), X] for short. 

It is obvious how to define En(f) for a continuous map f: XI -+ X,. One can 
therefore check that Enis a continuous covariant functor. 

How does this new functor relate back to the theory of operads and specifically 
to (?,,-spaces? We answer this by giving an action of enon E,,x. 

The action of (?,, on Enxis given by composition of partial little cubes in E,,x 
with little cubes in en,,. Specifically, define 

and then let the (?,, -structure map 8,: en,,X (E,,x)~+ E,,X be given by 

Ok(b; [(cl), . . . [(ck), ~ k ] )= [ ( Y ( ~ ;  ~ k ) ) ?  ~ k ] 'C1> . . . 9 
. . . 9 

This structure yields an H-space structure on E,,x by use of a fixed choice of 
b E en,,.Specifically, we choose b = (b; x b", b; x b") where b" is the identity 
on I " - '  and 

b,!(t) = i ( i  - 1 + t) fori = 1 and2; 

thus 

T([(c), x], [(d), Y] )  = [ ( ~ ( b ;c, d)), x, y]. 

Similarly, E;x is an associative topological monoid under the multiplication q' 
defined by 

cp/([(a; c,, . . . , c,), x l ,  . . . , xj], [(b; dl, . . . , d k ) , ~ l ,. . . , Y ~ I )  

= [ (a  + b; c1, . . . , c,, Tadl,. . . , ~,dk) ,  XI, . . . 2 x,,Yi, . . . ?yk] 

where Tadr is obtained from dr by translation by a in the first coordinate. We have 
the following lemma: 

LEMMA1.2. If X is a nondegenerately based space, then E,,x and E ~ xare 
homotopy-equivalent as H-spaces via the map y induced from y: eLj+ enj. 

PROOF. First filter both spaces by the number of cubes; that is, let 5Enxbe the 
image of LI;,, gn,,xXr  and similarly for F , ~ A X .Then it is clear that F ,~ , ,Xis 
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built up from 5- ,Enxby the pushout diagram 

where the "fat wedge" V xJconsists of all j-tuples of points of X, at least one of 
which equals the basepoint, and the horizontal arrows are the identification maps 
induced by -. Then since X is nondegenerately based, V XJ XJ is a Z,-equi-
variant cofibration, in the sense that it has a representation (k, u)  as a strong 
NDR-pair where v: xJ+10, m) is a 2,-invariant function and k,: xJ+Xj is a 
Ej-equivariant homotopy. Further, the proof of Lemma 1 shows- that.. aGnj c+ Gnj is 
a 2,-equivariant cofibration, and that the homotopy h,: enj++ enjconstructed 
there has the property that two cubes never become attached under h, unless they 
were so at t = 0. Thus we can combine these representations to get a 2,-equivariant 
representation of (cnj FXJ, acnj2XJ u cnjxV X j )  as an NDR-pair, and 
hence the left-hand inclusion in the diagram is a cofibration. The corresponding 
statements hold for 5~~as well. 

The argument of [I, Theorem 2.7(ii)] is now easily adjusted to the current 
situation, and the first statement in Lemma 1 yields that (I: E;x+ Enxis a 
homotopy equivalence. The following diagram is homotopy-commutative: 

and the lemma follows. 
We need the following lemma, which helps us to believe that enxactually 

approximates &"ZnX,and will be used at a crucial step later on. 

LEMMA1.3. Under the given multiplications, Enxand E;X are H-groups. 

PROOF. It clearly suffices to prove this for just CnX, and we will give a based 
involution q: Enx4 Enxsuch that cp(1, q) 2:0, whence it follows that ~ ( q ,1) 2:0 
as well. -

Let c = (c,, . . . ,5) be in enj, and let d be the result of "turning c upside 
down". That is, if cr = ci x c:, the corresponding dr should have the same domain 
as c,, and should satisfy dr(s, t) = (1 - ci(s), c:(t)) there. 

Let v[(c), XI = [(d), XI. 

Now for z E G X ,cp(z, q(z)) consists of equal and opposite configurations facing 
each other across the "equator" $ x I"-' of I n .The required homotopy is defined 
by moving both configurations toward each other at constant speed, attaching 
cubes when they meet at the equator, and dropping them from the configurations 
when they become degenerate. This can be made more precise, but less clear. 
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2. The maps a,, P,, and Pi. Throughout this section, let 


z = [(c,, . . . , c,), x,, . . . ,x,] E 6 , ~ .  

Take S" = In/aI".  Thus for a based space X, 

ZnX = X x In/* x Inu X x a In  and QnX= { a  E Map(In, X)lw(aIn) = *). 
Using these notations, we define a natural map a,: E,x -+ Q"ZnX. With z as above, 
let a,(z): In-+ ZnX be given by 

on elements u E In. 
To see that this is a continuous map, one notes that it is so on the image of each 

little cube, and is constant at the basepoint on the closure of In- U ,im cr. 
Hence it is continuous if it is well defined. The only possible difficulty occurs when 
u E im c, n im c, for two different indices r and s. Then 

u = (ci(are), c:l(v)) = (c;(a,-'), cS1'(w)), 

and by the definition of Gnj it follows that either c;l(u) and cyl(u) are on dln, so 
that [x,, cr- '(u)] = * = [x,, c,- '(u)], or 0 < a,-" 1, in which case are = a , -hnd 
c: = c:. Then cr-'(u) = (a,", u) = (a,-" w) = c,-'(u) and x, = x,. This shows that 
an(z) is well defined. 

To see that a, is itself continuous, consider the maps 15,~:Gnj x XJ +QnZnX 
induced by composing a, with the identification map. The continuity of a,, will 
follow from that of each of the Gnj's. 

We wish to divide Gnj x Xi into small enough pieces that the continuity of tinj is 
visible on each. Accordingly, if R- is any symmetric binary relation on the indices 

w 

1, . . . ,j ,  we define the subspace (?fj of enjto consist of j-tuples (c,, . . . ,5 ) such 
that c, and c, are adjacent if r R s, and are nonattached otherwise. For any R, th s  
is a closed (possibly empty) subspace, and such subspaces cover cnjas R ranges 
over all symmetric binary relations. Thus to test the continuity of iinjwe can 

- . 
restrict our attention to a single subspace 6?fj x XJ. 

If (c,, . . . ,c,) E ??fj and k is the equivalence relation generated by R, then we 
say that c, and c, are in the same closed configuration if r k s. For example, if R is 
the empty relation, 6?fj consists of tuples of j little cubes, no two of which are 
attached, and the closed configurations in points of 6?fj consist of single cubes. 

If 1 < k < j and ik is the number of closed configurations containing exactly k 
cubes (equivalence classes under I?of size k), then the operation of dropping all 
other closed configurations induces a map 6?fj +(qi)'", where q i  is the sub- -
space of en,,of tuples of k cubes all in the same closed configuration. Letting k 
vary and extending to the product, we obtain an embedding 

where Axkis the diagonal in x k ,  and j = 2 ki,. But &,,, is easily seen to be 
continuous when restricted to q~X A x k ,  and since we can fit the resulting 
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compositions back together, the continuity of k j  on all 6:j xXJ follows. Pre- 
cisely, let q = i,, and consider the product 

It is clear that this is continuous and takes 2fjxXJ into the subspace 
On(V:=, ZnX) under our identification. Restricting the domain and range to the 
latter two subspaces gives a continuous map ti;.. Now composition with the q-fold 
folding map V: V:=, ZnX-+ ZnX induces a map V,: On(//:_, ZnX)+OnZnX, 
and hnj is the composite 

Hence gnJ is continuous, and hence so is an. 
We pause to make a remark. The above discussion indicates that we might be 

able to filter Cnxby the number of closed configurations, rather than by the 
number of cubes, as we have done. Indeed this is the case: if j < k, let gnnj,,denote 
the subspace of Gn,, of tuples (c,, . . . ,c,) which can be joined into < j closed 
configurations, and define F,'&xto be the image of 

Then it is not hard to check that the inclusion F;_ ,en?+?enxis a cofibration. 
It is clear that the en-structure given above for CnX agrees with the standard 

structure on OnZnX under a,,;thus the approximation theorem will show that fnx 
and OnZnX are weakly equivalent as (?,,-spaces. 

For convenience we wish to factor LY, through Oan- ,,where the embedding an-,: 
Cn- ,ZX +On-'Znx is May's approximation [3]. If z E Enxand s E I ,  define 6,: 
Sn-I+EnX by letting b,(t) = an(z)(s, t) for t E In-'.We will show that this map 
has image lying in that of an- ,; it follows at once that an itself has image lying in 
O im an- ,  = im Oan- ,, and hence that a,, = Oan- , o j3, for some continuous map 
pn: Cnx+OCn- ,ZX. 

So choose s E I ,  and examine b,(t) = LY,(z)(s, t). If s ej? U ,im c:, then b, is the 
constant map at *, which is certainly in the image of an-,.  Otherwise let r,, . . . , r, 
be the indices r for which s = c:(sr) for some s, E I ,  allowing at most one index 
from any attached pair. This latter clause is to ensure that the cubes c: for 
r = r,, . . . , r, are distinct even when two cubes are attached at s,. Now regardless 
of the choices made, the value of b,(t) is * if t ej? U f='=, im(c:), and is [x,, s,, u] if 
t = c:(u) for u E In-'and r = one of r,, . . . , r,. This is identical to the definition 
of an-,(y)(t), where 

Therefore, b, E im an-,,  and this proves that an(z) E im Oan-,, by the above 
remark. 
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Finally, we need P,': e , ' ~+AC,- ,ZX. Let z' = [(a; c,, . . . ,c,), x,, . . . ,x,]. 
Then let p,)(z') = (a; w), where w: [0, a] + Cn- ,ZX is given by 

w(t) = pn(p(zl))(t/a) if a # 0. 

We now have a commutative diagram: 

We will proceed to prove 

THEOREM2.1. If X is a space with nondegenerate basepoint, then P,' is a weak 
hornotopy equiualence. Therefore pnis a weak equivalence, and a,,:Cnx+QnZnX is a 
weak equivalence of C?, -spaces. 

3. The total space and the main diagram. Let l2X denote the Moore paths in X, 
that is, pairs (a; w) with a > 0 and a :  [0, a] +X such that w(0) = * . Then the 
image of p,' in ACn- ,ZX IICn- ,ZX is the subspace of all loops of the form 

where each a, is a continuous function [0, a] +I such that 
(i) a, is piecewise linear with finitely many pieces, 
(ii) on each piece, a, is either constant at 0 or 1, or has slope +1, 
(iii) a,(O) = 0 or 1, 
(iv) a,(a) = 0 or 1. 
We will let our model EnX of the path space consist of all partial paths of such 

loops; equivalently, define EnX as the space of all Moore paths (a; w) of the above 
form which satisfy (i), (ii), and (iii). 

It is easy to see that EnX is contractible via the standard path-space contraction, 
and that pn maps ~ L X  is the into EnX homeomorphically as p-I(*),  where p 
restriction to EnX of the endpoint projection map 

pe: ncn-,XX +cn-,zx. 
The following diagram commutes: 

and the main theorem will follow once it is shown that p is a quasifibration. 
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4. The quasifibration property. Recall the Dold-Thom criterion for a quasifibra- 
tion over a filtered base space [2]. A subset V of C,-,EX is said to be distinguished 
if p :  pP'(V) + V is a quasifibration. The criterion implies that C,-,ZX is dis- 
tinguished if: 

(i) every open subset of F,C,- ,EX - 5-,C,-,EX is distinguished, and 
FoCn- ,Z X is distinguished, and 

(ii) there is a deformation h, of a neighborhood U of F,- ,C,- ,EX in qC,- ,EX, 
and a covering homotopy H,:p - '(U) + p  - '(u) such that: 

(1) h, is the identity and hl(U) c F , - ,C,- ,EX, 
(2) H, = id and for all t,pH, = hg,  
(3) for all z E U, the map H I :p -  '(z) +P-'(hlz) 

is a homotopy equivalence. 
Here we give C,-,ZX the filtration of [3]; that is, F,C,-,EX is defined to be the 

image of be<,en- x under the identification. 
PROOFOF (i). FoCn- ,ZX = * ,which is obviously distinguished. 
Let V be an open set in F, - F,- ,. We will construct maps 

which will be inverse homotopy equivalences over V; it follows that V is dis- 
tinguished. 

Let y = [(c;', . . . , cj"), [x,, sl], . . . , [x,, s,]] E V. We can assume x,, . . . ,x, E 

X - * and s,, . ,. . ,s, E (0, I), so it makes sense to define s = max, sr. Then we 
can let w(y, 0) be the path with slopes + 1 from the basepoint toy, where 0 denotes 
the element of height zero in C;X. That is, w(y, 0) = (s; T) where 

.(t) = [(c"), [XI, o,(t)], . . . , [x,, u,(t)]], 0 G t < s, 

with ur(t) = max(s, - s + t, 0). Note that a(s) = y. 
Now for any z E E;x define 

W(Y, z) = P,(z) + W(Y, 0) 

where the + denotes addition of loops and paths. 
We have already defined p, and it remains to define q: p -'v + CLX. Let 

(a; w) E p- 'v,  with y = w(a) as above. Then let 

q(a; w) = P,-'((a; @)+ ( - W(Y, 0))) 

where "-w(y, 0)" denotes the reverse of the path w(y, 0). 
The path w(y, 0) + (- w(y, 0)) is actually a canonically contractible loop at the 

basepoint, and (- w(y, 0)) + w(y, 0) is a canonically contractible loop at y, and so 
it is obvious that (p, q)  o w and w o (p, q) are homotopic to the respective 
identities over V. 

PROOFOF (ii). Here we assume that (X, * ) is a strong NDR-pair (see the 
appendix to [3]); this implies that there is a neighborhood V of * and a homotopy 
k,: X -+ X sending V to itself such that k, is the identity and k,(V) = * . Let 

and for some r ,  sr < f or sr > 5 or x E V) 
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Consider the function f: I + I defined by 

ifu < f ,  

f(u) = I: (3u - 1) i f f  < u <;, 
if $ < u. 

Let 

0 if u < v, 
1 u - u  ifu < u < ? ,  

1f 3 v ( ~ ) = - 3 u - v - $  i f f < u < u + ? ,  

u + u i f v + f < u <  1 - v ,  

,1 i f l - v < u  

for 0 < v < f . Thenf, induces a homotopyf;: S '+S I ,  and recalling the definition 
Z X  = X A S ', we can define a deformation h,: U + U by letting 

h,(y) = ~ , - , ( k ,A I ) (y )  for 0 < t < 1. 

This can be covered by a homotopy H, as follows: let (a; w) Ep-'(U) with 
w(a) = y. Then define 

where 

1Now clearly f,(,-,, is piecewise linear with slopes +- 1 for 0 < u - a < ?, and so 
Z, is a path in EnX ending at h,(y). Hence H, covers h,. 

It is trivial to verify that h,(U) U, that h, and H,, are the respective identities, 
and that h,(U) C_ 5-, .Hence we are left with showing that HI  is an equivalence 
on fibers. 

But suppose y E U, and let 5 be right translation in C ~ Xby the element whose 
image under pnis the loop 

H , ( ~ ( Y ,0)) + ( - w(h,(y), 0)). 

Then 5 is an equivalence by Lemma 1.3, and 

commutes. But w and (p, q)  are equivalences. Hence H,  is an equivalence. 

5. Proof of Lemma 1.1. Let EnJ be defined precisely as G:j except that the slopes 
m, are allowed to be any nonzero number, rather than just ?I. Then the map p 
factors as 
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where i is the obvious inclusion and 

~ ( a ;c,, . . . , c,) = ((fa x id) 0 c,, . . . , (fa X id) 0 cj). 

Now with the condition on mr relaxed we have an inclusion gnJ-+ Gnj defined by 
sending (c) to (1; c), and this inclusion is a Xj-equivariant homotopy inverse to y-
via the evident linear homotopies. Thus we are left with proving that eij is a-
2,-equivariant-deformation retract of end. 

The deformation is constructed in two stages. For the first stage we recall the 
language of the definition of q.The domain of any cube cr is of the form 
[a,', a,?] X In- ' ,  and if X is a closed configuration we will define the collective 
domain of X to be the set 01) (X) = U C,+3i [a:, a:], that is, the union of the first 
coordinates of the domains of cubes in X. 

By the definition of Gnj, if (a; C) E Gnj then 9 ( X )  will either be all of [0, 11 or 
will be contained in [0, 1) or (0, 11. 

Our first goal will be to deform Gnj inside the space of points (a; c) 
satisfying the following condition: 

(S) If cr belongs to a configuration X with 01)( X )  = [0, I], then )mr) > 1. 
Obviously 6?ijG @). 

It seems apparent that if a cube (a; c) is "stretched out" far enough it will get 
inside @j; the present problem is to define "far enough" in a continuous manner, 
which we do as follows, Let 

where meas(J) assigns to any interval J its measure, and m max(ml, 1). Then we - = 

define A,: enj+enjby 

A,(a; C) = ((1 - t + tm)a; d), 

where 

dr = f ~ l - r + r , ) a  0 fa 0 cr: [a,!, a:] x I"-' +[0, (1 - t + tm)] x In-'. 

This is obviously the identity for t = 0, and at t = 1 the cubes dr have slope 
m . mr. To see that A ,  has image in e j ,  suppose dr E X ,  where X is a closed 
configuration in (ma; d )  = Al(a; c). Then if 9 ( X )  = [O, 11, the corresponding 
configuration X' in c must have had 9 ( X 1 )  = [0, I]. Choose cubes c,,, . . . , crk in 
X' with 

then 

Thus the slope of d has absolute value Im. mrl > 1. 
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The continuity of A, follows from that of m, and this holds because 

is a continuous function of a,! and a:, and because the factor l/lm,l is kept from 
going out of control by the fact that [ f ,  $1 is bounded away from the endpoints of 
I.Hence A, deforms :?,, into @). 

One may object that A, is not the identity on q) for all t, but at least 

A,(@)) @), SO the inclusion of @) in Enj is a Xj-equivariant homotopy 
equivalence, which is all we really need. 

Now we give a retraction v of @) onto GAJ.Whereas X made adjustments in the 
"vertical" direction, v will adjust the "horizontal" direction by affecting the 
domains of the c,'s. For example, if X is a closed configuration with collective 
domain in [0, 1) or (0, 11 and containing cubes whose slopes are in the interval 
(-1, 0) u (0, l), it is easy to shrink down the domains of the cubes coherently, 
keeping the images the same, so as to obtain cubes with slopes + 1. The fact that 
our tuples satisfy (S) will let us perform a similar operation on all closed configura- 
tions. 

Recall the notations a, and a: from the first definition. Then if (a; c) E @I, 
recursively define pairs of numbers (b,, e,) as follows: 

a,- ifa,- = O o r l ,  
br = { es if c, is attached from below by c,, 

and 

er = min(max(0, b, + c;(a,?) - c;(a,')), I), 

so e, is just b, + ci(a:) - cj(a,') adjusted to lie within I. 
These pairs give us the domains for the cubes in v(a; c). Namely, define d,': 

[min(b,, e,), max(b,, e,)] + I by requiring it to be linear and defining 

drl(br)= c;(arP) and drl(er)= dr1(b,)+ 1 e, - brl . 
Then let d, = d,' X c,! for all r, and define v(a; c) = (a; d). 

We must check that (a; d) is a well-defined element of G i j .  First note that since 
le, - brl < Ic;(a,)2 - c;(a,!)l = ci(a:) - ci(arP), the image of d, is contained in that 
of c,, so the images of d,, . . . , 4 will still be disjoint on interiors. Obviously each d,' 
is a linear map with slope + 1, so it only remains to check the attachment condition 
(ii). For that we need a technical lemma giving us control over the b,'s and e,'s. 

LEMMA5.1. Let X be a closed configuration in (a; c) E q).Then if Oi)(X)= 
-

10, 11, 1 - 1 m, 1 + 1 m, 1 - a, < b, < 1 m, 1 a,- for all c, E X. Otherwise either Oi)(X) 2 
[O, 1) and b, = ImrJar-, or Oi)(X)  (0, 11 and b, = 1 - lm,l + Im,l . a,- for a0  
cr E X. 

PROOF.This is proved by induction on the number of cubes "below" c, in X. 
That is, we show as the base of the induction that the appropriate relation holds if 
c, is not attached from below, and then in the induction step we suppose that c, is 
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attached from below by c, and then show that the same relations hold for c, as for 

cs. 
So suppose that c, E X is not attached from below. Then b, = a,- = 0 or 1. If 

9 ( X )  = [0, I] then by (S), Im,l > I so that 
-

b, < Imr)ar and (1 - b,) < )m,)(l - a,-). 

If 9( X )  = [O, 1) then b, = a,- = 0 and so b, = (mr(ar-,and similarly if 9 ( X )  = 

(0, 11, b, = 1 - Im,l + (mrlar-. 
Now suppose c, is attached from below by c,. Then 6, = es. If this is 0 or 1, then 

the above argument shows that the appropriate relation holds. Otherwise e, E (0, 1) 
and so by definition 

and since I mrl = (m,(and a: = a,-, we obtain 

Hence b, and Im,l a,- satisfy the same relation as 6, and I m,l asp,and similarly for b, 

and l + (mr(- lmrlar-. 
This lemma implies that condition (ii) holds for (a; d) .  To see this, suppose that 

0 < 6, < 1. Then if 9 ( X )  = [O, I], (mr(ar-> 0 and (m,((l - a,-) > 0; if 9 (X)  c 
[O, 1) then 0 < br/(mrl = a,- < 1, and if 9(X)  C (0, 11 then 0 < (1 - br)/(mrl = 

1 - a,- < 1..In any case 0 < a,- < 1 and c, is attached from below by some cube 
c,. But then we have b, = e, E (0, I), le, - b,l = ci(a:) - c,'(a,-), and so 

Hence d, is attached from below by d,. On the other hand, if 0 < e, < I, then a 
similar argument shows that 0 < a: < 1; hence c, is attached from below by some 
cube c,. Then we compute that 6, = e,, dsf(bs)= drf(er).In each (m,(= Im,l = 1, so 
all the conditions for (ii) are satisfied. 

We have demonstrated that v: @) +2:) is well defined, and we must check that 
it is continuous. By the argument given for cu,, it will be enough to show that v is 
continuous on a single closed configuration. So suppose (a; c) consists of a single 
closed configuration, and suppose further that all the cubes in c are actually 
attached. Then a neighborhood about (a; c)  will still have all cubes attached and 
the numbers b,, e, for any point in this neighborhood will be calculated by the same 
formulae, and one can see that they vary continuously with (a; c).  Now if some 
pair of cubes, c, and c,, is adjacent but not attached, with a,+ = a,- = 0 or 1, then 
the argument given to check condition (ii) implies that e, = a: so that b, = a,- = 

a: = es. Thus in a neighborhood of (a; c) the formulae for 6, and e, still hold and 
hence vary continuously. It follows that v is continuous. 

Now one can see that instead of adjusting all the slopes m, to 2 1, we could use 
the above procedure to adjust the slopes to any fixed fraction u of the difference 
between (m,)and 1, replacing m, by (1 - u)m, + u . sgn(m,). As u varies from 0 to 
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1, this defines a homotopy from the identity to v, which is constantly the identity 
on $?:j. Hence 6~~is a deformation retract of @,Sj), and the symmetry inherent 
throughout this discussion implies that the map p is a 2,-equivariant homotopy 
equivalence. 

We now prove the second statement of Lemma 1 for Gnjj the proof goes over 
word-for-word to a proof of the corresponding statement for eAj. 

Let afsnjdenote the subspace of configurations containing attached cubes with 
equal slopes. Then define u: Gnj -+[O, I] by 

if (c,, . . . , cj) E atGnj, 
u(c,, . . . ,C,) = 

min (a: - a,!) otherwise. 
r =  I , .  . .,j 

Degenerate cubes have a,! = a: so u-'(O) = a&nj. Further the only cluster points 
of outside a'Gnj have degenerate cubes; hence u is continuous. This map will 
be half of the data required to show that (gnj, is an NDR-pair,- proving the 
second statement. The other data will be a homotopy h,: enj4 enjwith ho the 
identity, hZlaGnjthe identity- on aGnj for all t, and with h, retracting the neighbor-
hood u-'[O, i)into aenj. 

This is defined as follows. First, if c = (c,, . . . ,c j ) ,  define numbers E,, called the 
excess of c,, by 

0 if c, is not attached from below, 

the measure of [a,', a:] n [a,!, a:] if c, is attached by c, from below. 

The number E, represents the maximum extent to which c, can be coalesced along 
its bottom face. These numbers do not vary continuously with c, but in fact all the 
discontinuities occur where ar- = 0 or 1. Therefore let g(t) = min(3t, 1) for t E I, 
and define 

where E = 0 if mr > 0 and E = 1 if m, < 0. Then E: clearly varies continuously with 
c. For technical reasons we modify them again by letting E, = rnin(~:,u(c)). 

Fix t E I. We can "shorten" each cube in c by an amount ter as follows. Let b, 
and e, be defined recursively by: 

ar- if cr is not attached from below, 
br = ( 

e, if c, is attached from below by c,, 

if c, is not attached from above, 

e, = max(br, a,.+ - t6,) if cr is attached from above by c, and a,- < a:, 

min(br, a: + ti3) if cr is attached from above by c, and a: < a,-.r 
+er is well defined because if ar- = a, ,c E aenjand so E, = 0 for all s. In fact, the 

technical point referred to above guarantees that if u(c) = 0 or t = 0, then b, = a,-
and e, = a,? for all r. 
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Now define linear maps d:: [min(b,, e,), max(b,, e,)] --+ I by specifying 

if a,- = 0 or 1, 
dr'(br) = { ) if cr is attached by cs from below, 

and 

That this actually takes values in I follows from an exercise which shows that 
c:(a:) > drf(er)for all r. Similarly one checks that (d' x c") = (d; x c;', . . . ,d,' 
x c;') satisfies conditions (i) and (ii) for kJand we can define h,(c) = (d' x c"). 
The continuity of h follows from that of the numbers E,. 

Now the facts noted about the numbers b, and e, translate to the statement that 
h, is the identity and that h, is the identity on uP'(O) for all t .  Thus we need only 
show that h,(u- '[O, f )) is contained in aGnJ. 

If 0 < u(c) <; then let cr have minimal domain, so that [a,', a,?] is wholly 
contained in either [0, $1 or [;, 11. We suppose m, > 0; the argument for m, < 0 is 

2similar. If [a,', a:] C [i,11 then g(la,- - 01) = 1 and E, = E, = a, - a,' = u(c). 
(Since a,- = a,! E (0, l), cr is attached from below by a cube cq with [ad, a:] n 
[a,', a:] = [a,!, a;].) Hence either bq = eq so that di is degenerate, or eq = a: - E, 
= a,' + (a,? - a,') = a;. Thus b, = a:, and e, = max(b,, a,? - <) = b,, if c, is at-
tached from above by c,, or e, = a: = br if not. Hence d: is degenerate. 

On the other hand suppose [a,', a,?] C [0, $1. Then a,+ = a,? E (0, 1) so that c, is 
attached from 'above by a cube c,. Then [a,', a:] G [a,', a:] c [O, $1, the first 
inclusion following by the condition a: = a: and minimality, and the second by the 
fact that a,' < a: = a: < $. Now it follows that E, = E, = a: - a,', and since 
b, > a,- = a,', e, = max(b,, a,+ - E,) = max(b,, a,? - (a,? - a,')) = 6,. Thus d: is 
degenerate. It follows, then, that h,(c) E agnJin either case. This completes the 
proof. 
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