
SQUARES OF THE FORM ab + k

A mathematical vignette

Ed Barbeau, University of Toronto

Look at the triple of integers: (1, 3, 8). It has the property that the product of any pair of them plus 1
is a perfect square. Similarly, the the triple of integers, (1, 2, 5), the product of any pair of them minus 1 is
a perfect square.

How many triples (a, b, c) of integers are there for which the products ab+1, cb+1, ac+1 are all perfect
squares? We can ask the same question with the plus sign replaced by a minus sign.

This is a particular rich area of investigation for students, because, one a few examples have been found,
there are a variety of ways in which students can identify patterns as well as obtain and extend general
results. It is important in this vignette that the students not be denied the pleasure of discovery. The
material that appears below is provided as a resource to the teacher, and should not be presented to the
student except to put her discovery into context and provide the tools for further research.

A more general question is, given an integer k, determine triples (a, b, c) for which ab+ k, bc+ k, ca+ k
are all squares. We can also ask whether we can find sets of integers with more than three entries for which
the product of any pair plus k is square.

1. Some preliminary investigations. By looking at particular cases, you might note that, if you
look at the Fibonacci sequence:

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, · · ·}

you will find that successive triples of alternate terms give a family of examples. Thus, for (a, b, c) with k = 1,
we have (1, 3, 8), (3, 8, 21), (8, 21, 55) and so on, while with k = −1, we get (1, 2, 5), (2, 5, 13), (5, 13, 34), and
so on.

With f0 = 0, f1 = 1 and fn+1 = fn + fn−1 for n ≥ 1, the validity of these triples depends on the
indentities

fnfn+2 + (−1)n = f2
n+1

and
fn−2fn+2 + (−1)n = f2

n.

Here are a few families that might be discovered:

(a, b, c) ab + 1 bc + 1 ca + 1
(r − 1, r + 1, 4r) r2 (2r − 1)2 (2r + 1)2

(1, (r − 1)(r + 1), (r + 1)(r + 2) r2 (r + 1)2 (r2 + r − 1)2

(2, 2r(r + 1), 2(r + 1)(r + 2)) (2r + 1)2 (2r + 3)2 (2r2 + 4r + 1)2

(3, r(3r + 2), (r + 1)(3r + 5)) (3r + 1)2 (3r + 4)2 (3r2 + 5r + 1)2

(3, r(3r − 2), (r + 1)(3r + 1)) (3r − 1)2 (3r + 2)2 (3r2 + r − 1)2

(4, r(r + 1), (r + 2)(r + 3)) (2r + 1)2 (2r + 5)2 (r2 + 3r + 1)2

We make two observations. The third and final examples in the list exploit the remarkable fact that the
product of four consecutive integers plus 1 is a perfect square. The second observation is that, except for the
first example, b and c are of the form f(r) and f(r+ 1) for a quadratic polynomial and we see a relationship
to the result in Vignette 4 on quadratic forms.

Two families of triples (p, q, r) for which pq − 1, qr − 1 and rp− 1 are all square are given by

(p, q, r) = (1, k2 + 1, (k + 1)2 + 1)

and
(p, q, r) = (2, (k − 1)2 + k2, k2 + (k + 1)2).
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It turns out that if we have two numbers a and b for which ab + 1 is a square, we can augment it by a
third c so that bc + 1 and ac + 1 are squares. If ab + 1 = m2, set c = a + b + 2m. Then

ac + 1 = a2 + ab + 2am + 1 = (a + m)2

and
bc + 1 = ab + b2 + 2bm + 1 = (b + m)2.

An alternative choice of c = a + b − 2m leads to ac + 1 = (m − a)2 and bc + 1 = (m − b)2. Similarly, if
pq − 1 = n2 and r = p + q + 2n, then pr + 1 and qr + 1 are both square.

In some cases at least, we can find infinitely many triples whose first two entries are given, with the help of
Pell’s equation. For example if (1, 3, u) is a triple for the case k = 1, and u+1 = 1×u+1 = y2, then we require
that 3(y2−1) + 1 = x2 for some x, or x2−3y2 = −2. Some solutions of this are (x, y) = (1, 1), (5, 3), (19, 11)
yielding the triples (1, 3, 0), (1, 3, 8), (1, 3, 120). Likewise, if (a, b, c) = (1, 8, u) with u = y2 − 1, we are lead
to x2 − 8y2 = −7 with solutions (1, 1), (5, 2), (11, 4) corresponding to (a, b, c) = (1, 8, 0), (1, 8, 3), (1, 8, 15).

2. Sets of four integers. (a, b, c, d) = (1, 3, 8, 120) is a set of four integers for which the product of
any pair plus 1 is a perfect square. This can be generalized to

(a, b, c, d) = (n− 1, n + 1, 4n, 4n(4n2 − 1))

or
(1, n2 − 1, n(n + 2), 4n(n3 + 2n2 − 1)).

A two parameter family is given by

a = m

b = n2 − 1 + (m− 1)(n− 1)2

c = n(mn + 2)

d = 4m3n4 + 8m2(2−m)n3 + 4m(m− 1)(m− 5)n2 + 4(2m− 1)(m− 2)n + 4(m− 1).

We have seen that from any pair (a, b) for which ab + 1 = m2, we can take c = a + b + 2m and make
ac + 1 and bc + 1 square. This can be extended; let d = 4m(a + m)(b + m) to obtain ac + 1 = (a + m)2,
bc+ 1 = (b+m)2, ad+ 1 = (2m2 + 2am− 1)2 and bd+ 1 = (2m2 + 2bm− 1)2. (Exercise: check out cd+ 1.)

3. Families of sequences for different values of k. There are related infinite sequences for which
any three consecutive entries a, b, c satisfy ab + k, bc + k and ca + k are all squares. Here is the first family
with the squares for each triple given at the end:

k = −2 (1, 6, 11, 33, 82, 21, · · ·) (2, 3, 8), (8, 14, 19), (19.30, 52), (52, 85, 134)

k = −1 (1, 5, 10, 29, 73, 194, . . .) (2, 3, 7), (7, 12, 17), (17, 27, 46), (46, 75, 119)

k = 0 (1, 4, 9, 25, 64, 169, . . .) (2, 3, 6), (6, 10, 15), (15, 24, 40), (40, 65, 104)

k = 1 (1, 3, 8, 21, 55, 144, 377, . . .) (2, 3, 5), (5, 8, 13), (13, 21, 34), (34, 55, 89)

k = 2 (1, 2, 7, 17, 46, 119, 313, . . .) (2, 3, 4), (4, 6, 11), (11, 18, 28), (28, 45, 74)

k = 3 (1, 1, 6, 13, 37, 94, . . .) (2, 3, 3), (3, 4, 9), (9, 15, 22), (22, 35, 59)

k = 4 (1, 0, 5, 9, 28, 69, . . .) (2, 3, 2), (2, 2, 7), (7, 12, 16), (16, 25, 44)

k = 5 (1,−1, 4, 5, 19, 44, . . .) (2, 3, 1), (1, 0, 5), (5, 9, 10), (10, 15, 29)

Each sequence is obtained from its predecessor by subtracting the sequence (0, 1, 1, 4, 9, 25, 64, · · ·) of squares
of Fibonacci numbers. Hence the kth sequence is given by gk,n = f2

n − kf2
n−2 and satisfies the recursion

gk,n+3 = 2gk,n+2 + 2gk,n+1 − gk,n.
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When you get down to k = 12, you arrive at the sequence (1,−8,−3,−23,−44, . . .), and you can just
change the signs to get the valid sequence (8, 3, 13, 44, . . .). However, reversing 8 and 3, leads to a different
sequence yielding triplets: (3, 8, 23, 59, 156, 407, . . .).

The second family is similar:

k = −2 (1, 3, 6, 17, 43, 114, 297, · · ·) (1, 2, 4), (4, 7, 10), (10, 16, 27), (27, 44, 40)

k = −1 (1, 2, 5, 13, 34, 89, 233, · · ·) (1, 2, 3), (3, 5, 8), (8, 13, 21), (21, 34, 55)

k = 0 (1, 1, 4, 9, 25, 64, 169, · · ·) (1, 2, 2), (2, 3, 6), (6, 10, 15), (15, 24, 40)

k = 1 (1, 0, 3, 5, 16, 39, 105, · · ·) (1, 2, 1), (1, 1, 4), (4, 7, 9), (9, 14, 25)

k = 2 (1,−1, 2, 1, 7, 14, 41, · · ·) (1, 2, 0), (0, 1, 2), (2, 4, 3), (3, 4, 10)

Each sequence is obtained from its predecessor by subtracting the sequence (0, 1, 1, 4, 9, 25, 64, · · ·), so that
the kth sequence is given by hk,n = f2

n − kf2
n−1 and satisfies the recursion

hk,n+3 = 2hk,n+2 + 2hk,n+1 − hk,n.

4. Some more general families.

We denote by (k : a, b, c;u, v, w) a set of values for which ab + k = u2, bc + k = v2 and bc + k = w2.
Here are some solutions:

(−n : 1, n(n + 1), n2 + 3n + 1;n, n + 1, n(n + 2))

(n + 1 : 1, n(n + 1), n2 + 3n + 3;n, n + 1, (n + 1)2)

(n : 1, n2 + n + 1, n2 + 3n + 4;n + 1, n + 2, n2 + 2n + 2)

(−(n + 1) : 1, n2 + n + 1, (n + 1)(n + 2);n, n + 1, (n + 1)2)

(
n : 2,

n2 + 3n + 4

2
,
n2 + 7n + 16

2
;n + 2, n + 4,

n2 + 5n + 8

2

)
(
−n : 2,

n2 + 5n + 4

2
.
n2 + 9n + 16

2
;n + 2, n + 4,

n2 + 7n + 8

2

)
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