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The setting

The theory of the usual Pell’s equation x2 − dy2 = 1, where d is a nonsquare
positive integer is built on the fact that the left side is the norm of the quadratic
integer x+ y

√
d, namely

x2 − dy2 = (x+ y
√

2)(x− y
√

2) = N(x+
√

2).

The second factor is the second root of the irreducible quadratic equation t2−2xt+
(x2− dy2) = 0. The set of soluion of x2− dy2 = 0 is the sequence (xn, yn) given by

xn + yn
√

2 = (x1 + y1
√

2)n,

where (x1, y1) is the smallest or fundamental solution of x2 − dy2 = 1

There is a similar situation at the cubic level. Suppose that d is a noncubic
integer and that θ is its real cube root. For integers x, y and z, the number
x + yθ + zθ2 is the root of a cubic equation with integer coefficients whose other
roots are x+yωθ+zω2θ2 and x+yω2θ+zωθ2. The norm gd(x, y, z) of this number
is defined to be the product of the three roots:

gd(x, y, z) = (x+ yθ + zθ2)(x+ yωθ + zω2θ2)(x+ yω2θ + zωθ2)

= (x+ yθ + zθ2)(x2 + θy2 + θ2z2 − xyθ − yz − xzθ3)

= 1
2 (x+ yθ + zθ2)[(x− yθ)2 + (yθ − zθ2)2 + (x− zθ2)2]

= x3 + dy3 + d2z3 − 3dxyz.

The cubic analogue of Pell’s equation is

gd(x, y, z) = 1.

Since g−d(x, y, z) = gd(x,−y, z), every solution of the cubic Pell’s equation for
d > 0 corresponds to one for d < 0, so there is no loss of generality in assuming
that d > 0.

The norm of the product of two numbers of the form x+ yθ+ zθ2 is the product
of the norms, so that just as in the quadratic situation, we can use the quantity
x+ yθ + zθ2 to generate a bilaeral sequence of solutions to gd(x, y, z) = 1:

(xn + yn + zn) = (x+ yθ + zθ2)n

where n is an integer and (x, y, z) is the fundamental solution (apart from (1, 0, 0))
in smallest positive integers. (That there is a single generator is a consequence of
the Dirichlet unit theorem.)

Solving gd(x, y, z) = 1 depends on finding the fundamental solution. In the case
of the quadratic equation, there is an algorithm that involves continued fractions
that does this. However, in the cubic equation there seems to be no such systematic
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process and ad hoc methods and brute force computations are necessary. Some of
the fundamental solutions are pretty large.

Let S be bilateral sequence of solutions. The product

(x+yθ+zθ2)∗(u+vθ+wθ2) = (xu+dyw+dzv)+(xv+yu+dzw)θ+(xw+yv+zu)θ2

induce an operation of S,

(x, yz) ∗ (u, v, w) = (xu+ d(yw + zv), xv + yu+ dzw, xw + yv + zu)

, that makes S a cyclic group with identity (1, 0, 0). We have that

gd((x, y, z) ∗ (u, v, w)) = gd(x, y, z)gd(u, v, w).

As a side comment, we note that (x, y, z)−1 and z, y, x) are orthogonal vectors.

The inverse of (x, y, z) is equal to

(x2 − dyz, dz2 − xy, y2 − xz).

The fundamental solution

One strategy is suppose that a solution has a special form and then hunt for
values of d for which such a solution exists. Another is to check the situation for
special values of d that exhibit a pattern.

1. Can one of the variables vanish? x must be nonzero, for otherwise the left
side of gd(x, y, z) is divisible by d. If yz = 0, then we are looking for solutions of
x3 + dy3 = 1 where c = −d or c = −d2.

If y = ±1, then it is straightforward to find that, when d = r3±1, (x, y) = (r,±1)
satisfies the equation.

Thus, we have the solutions for gd(x, y, z) = 1:

(d;x, y, z, 0) = (r3 − 1; r,−1, 0), (r3 + 1,−r, 1, 0)

and the inverse solutions

(d;x, y, z, 0) = (r3 ± 1; r2, r, 1, 0).

For y = ±3, we get

(d;x, y, 0) = (19;−8, 3, 0), (37; 10,−3, 0), (182;−17, 3, 0), (254; 10,−3, 0),

(651;−26, 3, 0), (813; 28,−3, 0), (1588;−35, 3, 0), (1876; 37,−3, 0).

There are also other isolated examples with smaller numbers:

(d;x, y) = (17; 18,−7), (20;−19, 7), (1727;−71, 6), (1801; 73,−6), (635; 361,−42).

(These examples are drawn from a list in the article Computation of soutions of
x3 + Dy3 = 1 by H.C. Williams and R. Holte in Math. of Computation 31:139
(July, 1977), 778-785.)
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The examples for y = ±2,±3 can be identified as part of a regular patterns:

(d;x, y, 0) = (64r3 − 24r2 + 3r; (−8r + 1, 2, 0);

(d;x, y, 0) = (64r3 + 24r2 + 3r; 8r + 1,−2, 0);

(d;x, y, 0) = (27r3 − 9r2 + r;−9r + 1, 3, 0);

(d;x, y, 0) = (27r3 + 9r2 + r; 9r + 1, 3, 0).

More generally, we have

(d;x, y, 0) = (r6 − 3r3 + 3;−r3 + 1, r, 0);

(d;x, y, 0) = (r6 + 3r3 + 3; r3 + 1,−r, 0);

(d;x, y, 0) = (s3r6 − 3s2r3 + 3s;−sr3 + 1, r, 0);

(d;x, y, 0) = (s3r6 + 3s2r3 + 3s; sr3 + 1,−r, 0).

In the case of r = 6, there are more possibilities:

(d; (x, y, 0) = (1728r6 − 72r3 + 1;−72r + 1, 6, 0);

(d; (x, y, 0) = (1728r6 + 72r3 + 1; 72r + 1,−6, 0).

In addition, there are some solutions that do fall into a these patterns:

(d;x, y, 0)(17; 18,−7, 0), (20;−19, 7), (635; 361,−42), (5080; 361,−21, 0)

(17145; 361,−14, 0), (18745; 1036,−34, 0), (32006;−127, 14)

(32042; 667,−21, 0), (48949; 4097,−112, 0)

If x3 + dy3 = 1, then −dy3 = (x − 1)(x2 + x + 1). Suppose that x − 1 = r3. If
x = r3 + 1, then x2 + x+ 1 = r6 + 3r3 + 3. We can then take d = r6 + 3r3 + 3 and
y = −r, so we obtain

(d;x, y, 0) = (r6 + 3r3 + 3; r3 + 1,−r, 0).

This approach can be modified when x3 − 1 has a cubic factor r3 other than
x− 1. For example x3− 1 is divisible by 8 when x ≡ 1 (mod 8). If x = 9r+ 1, then
this generates the solutions

(d;x, y, z) = 64r2+24r+3; 8r+1,−2, 0) (d : x, y, z)+(64r2−24r+3;−8r+1, 2, 0).

If x3 − 1 is divisible by 27, then x has one of the form 9r + 1, and we get

(d;x, y, z) = (27r2 +9r+1; 9r+1,−3, 0) (d;x, y, z) = (27r2−9r+1;−9r+1; 3).

2. Another option is to look for solutions in which x = 1. In this case, the
equation reduces to

y3 + dz3 − 3yz = 0,

whereupon

d =
y(3z − y2)

z3
=

(−y)(y2 − 3z)

z3
.
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If z = 1, then a positive value whose square is less that 3 corresponds to a positive
value of d, as does any negative value of y whose square exceeds 3. This leads to
the cases:

(d;x, y, z) = (2; 1, 1, 1);

(d;x, y, z) = (r(r2 − 3); 1,−r, 1) (k ≥ 2).

Similarly, when z = −1, we are led to

(d;x, y, z) = (r(r2 + 3); 1, r,−1).

If z = 2, then d = y(6 − y2)/8 = (−y)(y2 − 6)/8, from which −y must be a
multiple of 8. This yields

(d;x, y, z) = (r(8r2 − 3); 1,−4k, 2).

Similarly, when z = −2, we are led to

(d;x, y, z) = (r(8r2 + 3); 1, 4k − 2).

Trying z = ±3 and z = ±4 provides

(d;x, y, z) = (r(r2−1); 1,−3r, 3), (r(r2+1); 1, 3r,−r), (r(64r2−3); (1,−16r, 4), (r(64r2+3); 1, 16r,−40.

These suggest the more general

(d;x, y, z) = (r(r2s3 − 3); 1,−rs2, s), (r(r2s3 + 3; 1, rs2,−s).

In particular, when r = 1, we get

(d;x, y, z) = (s3 − 3; 1,−s2, s), (s3 + 3; 1, s2,−s).

An alternative route is to begin with gd(1, ks,−s) = 1 when d = k3 +r, provided
that 3k = rs. The most obvious cases where r divides 3k are r = ±1,±3,±3k,
as well as s = 3t when k = rt. These yields the possibilities for solutions:

d Solution Inverse of solution
k3 + 1 (1, 3k2,−3k)
k3 − 1 (1,−3k2, 3k)
k3 + 3 (1, k2,−k)
k3 − 3 (1,−k2, k)
k3 + 3k (1, k,−1)
k3 − 3k (1,−k1)
r3t3 + r (1, 3rt2,−3t)
r3t3 − r (1,−3rt2, 3t)

3. The solutions of the equation for d and d2 are related. We have that (u, v, w)
satisfies gd2(u, v, w) = 1 if and only if (u, dw.v) satisfies gd(u, v, w) = 1. The
correspondence between the solution (d2 : u, v, w) and (d : u, dw, v) is carried over
to products of such corresponding solutions with respect to ∗.

Thus, every solution for the parameter d2 gives rise to a solution for the param-
eter d. However, not every solution (d;x, y, z) has y divisible by d, and so will not
generate a solution for the parameter d2. However, it can be shown (by looking



5

at the products of the fundamental solution modulo d) that some power of the
fundamental solution will have the value of y divisible by d.

For example, the solution (9; 4, 2, 1) gives rise to (3; 4, 3, 2), and the soution to
(2; 5, 4, 3) gives rise to (4; 5, 3, 2).

4. If d = rs3, then gd(x, y, z) = gs(x, ry, r
2z), so that we can obtain solutions for

d = rs3 if we can find solutions for d = s that with the second and third variables
divisible by r and r2 respectively.

5. When d = s3 + 2s, then gd(2, 3s,−3) = 8. Hence

gd((2, 3s,−3) ∗ (2, 3s,−s)) = gd(4− 18sd, 12s+ 9d,−12 + 9s2) = 64.

If s = 2r is even, then each entry is the square of (2, 3s,−s) is even; if we divide
them by 4, we get a solution of gd(x, y, z) = 1. We have that

r d Solution Inverse solution
r 4r(2r2 + 1) (1− 36r2(2r2 + 1), 3r(6r2 + 5), 3(3r2 − 1))
1 12 (−107, 33, 6) (9073, 3963, 1731)
2 72 (−1205, 174, 33)
3 228 (−6155, 531, 780

Appendix. Using the information from above and taking inverses, we get the
following table:
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d positive solution mixed solution
2 (1, 1, 1) (−1, 1, 0)

(5, 4, 3) (1,−2, 1)
(19, 15, 12) (1, 3,−3)

3 (4, 3, 2) (−2, 0, 1)
4 (5, 3, 2) (1, 1,−1)
5 (41, 24, 14) (1,−4, 2)
6 (109, 60, 33) (1,−6, 3)
7 (4, 2, 1) (2,−1, 0)

(1,−3, 3)
9 (4, 2, 1) (−2, 1, 0)

(649, 312, 150) (1, 12,−6)
10 (181, 84, 39) (1, 6,−3)
11 (89, 40, 18) (1, 4,−2)
12 (9073, 3963, 731) (−107, 33, 6)
14 (1, 2,−1)
18 (1,−3, 1)
19 (−8, 3, 0)
24 (1,−9, 3)
26 (9, 3, 1) (3,−1, 0)

(1,−27, 9)
28 (9, 3, 1) (−3, 1, 0)

(1, 27,−9)
30 (1, 9,−3)
36 (1, 3,−1)
37 (10,−3, 0)
43 (−7, 2, 0)
52 (1,−4, 1)
58 (1,−8, 2)
60 (1,−12, 3)
61 (1,−16, 4)
63 (16, 4, 1) (4,−1, 0)

(1,−48, 12)
65 (16, 4, 1) (−4, 1, 0)

(1, 48,−12)
67 (1, 16,−4)
68 (1, 12,−3)
70 (1, 8,−2)
72 (−1295, 174, 35)
76 (1, 4,−1)
91 (9,−2, 0)

110 (1,−5, 1)
120 (1,−15, 3)
122 (1,−25, 5)
124 (25, 5, 1) (5,−1, 0)

(1,−75, 15)
126 (25, 5, 1) (−5, 1, 0)

(1, 75,−15)
128 (1, 25,−5)
130 (1, 15,−3)
140 (1, 5,−1)
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d positive solution mixed solution
182 (−17, 3, 0)
198 (1,−6, 1)
207 (1,−12, 2)
210 (1,−18, 3)
213 (1,−36, 6)
215 (36, 6, 1) (6,−1, 0)

(1,−108, 18)
217 (36, 6, 1) (−6, 1, 0)

(1, 108,−18)
219 (1, 36,−6)
222 (1, 18,−3)
228 (−6155, 531, 78)
225 (1, 12,−2)
239 (1, 6,−1)
240 (1, 6,−1)
254 (19,−3, 0)


