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1. I first learned of the following problem from Anthony Gardiner, a British
mathematician interested in education of young people. Determine all the num-
bers with at most ten digits for which the first digit on the left records the num-
ber 0s, the second digit the number of 1s, and so on. Thus, written to base 10,
(w0w1w2 . . . wn)10 has wi digits equal to i for 0 ≤ i ≤ 10. Play around with this
for small values of n.

This can be generalized to vectors (w0, w1, w2, . . . , wn), where for each k, wk is
the number of appearances of k. There are a few immediate observations. None
of the entries can exceed n; in fact, n itself cannot be an entry. The first entry w0

has to be positive. The sum w0 + w1 + · · · + wn is equal to the number of terms,
namely n + 1. If wi is positive for some i, then i is in the sequence somewhere wi

times, which suggests that most later terms in the sequence are likely to be 0.

2. One way to approach the problem is to realize that the number of terms in the
vector can be counted in three ways. It is clearly n+1. It is also w0 +w1 + · · ·+wn.
Finally, since there are w0 zeros, w1 1s, w2 2s, and so on, the sum of the terms can
be written as w1 + 2w2 + 3w3 + · · · + nwn. Since, equating these two expressions
leads to

w0 = w2 + 2w3 + · · ·+ (n− 1)wn. (1)

If w0 = 1, then w2 = 1 and wk = 0 for k ≥ 3. This leads to the possibility (1, 2, 1, 0).
If w0 = 2, then either w2 = 2 or w3 = 1 with all the other wk, except possibly w1,
vanishing. In the first instance, we are lead to (2, 0, 2, 0) and (2, 1, 2, 0, 0). However,
if w3 = 1, then a 3 has to appear somewhere, but it cannot possibly be w1.

So let us suppose that w0 = r ≥ 3. Then wr ≥ 1. Then

r = w0 ≥ (r − 1)wr,

so that wr ≤ r/(r − 1) < 2. Therefore wr = 1 and equation (1) forces w2 = 1,
w1 = 2 and wk = 0 for k 6= 0, 1, 2, r. Therefore

n + 1 = w0 + w1 + w2 + wr = r + 2 + 1 + 1 = r + 4,

whence r = n− 3. Since r ≥ 3, n ≥ 6 and we obtain the sequence

(n− 3, 2, 1, 0n−6, 1, 0, 0, 0),

where 0n−6 represents a string of n− 6 zeros. In particular, we obtain the vectors
(3, 2, 1, 1, 0, 0, 0), (4, 2, 1, 0, 1, 0, 0, 0) and (5, 2, 1, 0, 0, 1, 0, 0, 0).

3. Another approach to solving the problem is to use a method of “succes-
sive approximation”. Given a positive integer n, write down any vector w =
(w0, w1, . . . , wn) where each of the entries is a nonnegative integer not exceeding n.
From this, we construct a second vector w′ = (w′0, w

′
1, . . . , w

′
n) with w′i equal to the

number of times that i appears in the first sequence. We write w→ w′. If we keep
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doing this, one of three things will happen: (1) we will arrive at a sequence that
goes to itself, yielding a solution to the problem; (2) we will arrive at a periodic
orbit of sequences; (3) we will arrive at a sequence of with one entry equal to n+ 1
and all the rest 0. When n ≥ 3, the last will happen under circumstances that are
easy to avoid by our original choice of sequence.

A little experimentation reveals that the tendency under the operation is for the
number of positive entries in w to decrease. However, if the sequence of images is
eventually periodic, then, at some point, w′ must have at least as many positive
entries as w. Let us see when this might occur. Let n be a positive integer exceeding
2. We will use the notation 〈v0, v1, . . . , vn〉 to refer to any vector of nonnegative
integers vi with

∑
i vi = n+ 1 and 0 ≤ vi ≤ n, where the same numbers in different

orders are identified. (The parentheses will have the integers in a particular order.)

Let w be a vector in which there are k distinct positive entries ai (1 ≤ i ≤ k)
where ai appears with positive frequency bi, along with r zeros. Suppose b1 is the
maximum frequency. Then

n + 1 =

k∑
i=1

biai =

k∑
i=1

bk + r.

Then w′ has at most k + 1 entries consisting of the bi and possibly r. If w′ has at
least as many positive integer as w, then

b1 + b2 + · · ·+ bk ≤ k + 1,

or

(b1 − 1) + (b2 − 1) + · · ·+ (bk − 1) ≤ 1.

There are two possibilities. In the first instance b1 = b2 = · · · = bk = 1, and
w′′ = 〈s, k, 0, 0, . . . 〉 where s is the number of zeros in w′. In the second instance,
b1 = 2 and b2 = b3 = · · · = bk = 1 and w′′ has 1, 2 or 3 nonzero entries.

In any case, the orbit must arrive a vector with one, two or three nonzero entries.
With one distinct positive entry, we have 〈a, 0n〉 with a = n + 1 (not acceptable),
〈a, a, 0n−1 with a = 1

2 (n + 1 and 〈a, a, a, 0n−2〉 with a = 1
3 (n + 1).

If n ≥ 4, we obtain the orbit

〈a, a, 0n−1〉 → (n− 1, 0, . . . , 0, 2, 0)→ (n− 1, 0, 1, 0n−4, 1, 0)

(n− 2, 2, 0n−3, 1, 0)→ (n− 2, 1, 1, 0n−5, 1, 0, 0)

(n− 3, 3, 0n−3, 1, 0, 0)↔ (n− 2, 1, 0, 1, 0n−7, 1, 0, 0, 0)

When n = 3, then a + a = 4, so a = 2 and we get the orbit

〈2, 2, 0, 0〉 → (2, 0, 2, 0),

ending in a fixed point.
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If n 6= 5, we get the orbit

〈a, a, a, 0n−2〉 → (n− 2, 0, . . . , 0, 3, 0, . . . , 0)→ (n− 1, 0, 0, 1, 0n−5, 1, 0)

(n− 2, 2, 0n−3, 1, 0)→ (n− 2, 1, 1, 0n−5, 1, 0, 0)

(n− 3, 3, 0n−3, 1, 0, 0)↔ (n− 2, 1, 0, 1, 0n−7, 1, 0, 0, 0)

When n = 5, the a = 2 and we get the orbit

〈2, 2, 2, 0, 0, 0〉 → (3, 0, 3, 0, 0, 0)→ (4, 0, 0, 2, 0, 0)→ (4, 0, 1, 0, 1, 0)

→ (3, 2, 0, 0, 1, 0)→ (3, 1, 1, 1, 0, 0)↔ (2, 3, 0, 1, 0, 0).

When a 6= b, we get

〈a, b, 0n−1)〉 → 〈n− 1, 1, 1, 0n−2〉 → (n− 2, 0, 2, 0n−4, 1, 0)

→ (n− 2, 1, 1, 0n−5, 1, 0, 0)→ (n− 2, 3, 0n−1)→ (n− 1, 0, 0, 1, 0n−6, 1, 0, 0)

(n− 2, 2, 0n−3, 1, 0)→ . . .

When n 6= 4 and a 6= b, we have

〈a, a, b, 0n−2)〉 → 〈n− 2, 2, 1, 0n−2〉 → (n− 2, 1.1, 0n−4, 1, 0)

→ (n− 2, 3, 0n−1)→ (n− 1, 0, 0, 1, 0n−6, 1, 0, 0)

→ (n− 2, 2, 0n−3, 1, 0)→ . . .

For n = 4, then 2a + b = 5 and (a, b) = (2, 1), (1, 3). We get the orbits

(2, 2, 1, 0, 0)→ (2, 1, 2, 0, 0),

ending in a fixed vector, and

(1, 1, 3, 0, 0)→ (2, 2, 0, 1, 0)→ (2, 1, 2, 0, 0).

Finally, we have, with a, b, c distinct positive integers,

〈a, b, c, 0n−2〉 → 〈n− 2, 1, 1, 1, 0n−3〉.

We treat the case n = 4, 5, 6 separately:

〈2, 1, 1, 1, 0〉 → 〈1, 3, 1, 0, 0〉
→ (2, 2, 1, 0, 0)→ (2, 1, 2, 0, 0).

(3, 1, 1, 1, 0, 0)↔ (2, 3, 1, 0, 0, 0).

〈4, 1, 1, 1, 0, 0, 0〉 → (3, 3, 0, 0, 1, 0, 0)→ (4, 1, 0, 2, 0, 0, 0)

→ (4, 1, 1, 0, 1, 0, 0)→ (3, 3, 0, 0, 1, 0, 0).

When n ≥ 7, then

〈n− 2, 1, 1, 1, 0n−3〉 → (n− 3, 3, 0n−4, 1, 0, 0)↔ (n− 2, 1, 0, 1, 0n−4, 1).
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4. To sum up, we have the fixed vectors (1, 2, 1, 0), (2, 0, 2, 0), (2, 1, 2, 0, 0) and

(n− 3, 2, 1, 0n−6, 1, 0, 0, 0)

for n ≥ 6. This includes (3, 2, 1, 1, 0, 0, 0), (4, 2, 1, 0, 1, 0, 0, 0) and (5, 2, 1, 0, 0,
1, 0, 0, 0).

We have the following period-2 orbits:

(3, 1, 1, 1, 0, 0)↔ (2, 3, 0, 1, 0, 0)

and
(n− 2, 1, 0, 1, 0n−7, 1, 0, 0, 0)↔ (n− 3, 3, 0n−4, 1, 0, 0)

for n ≥ 7.

Finally, there is one period-3 orbit:

(4, 1, 0, 2, 0, 0, 0)→ (4, 1, 1, 0, 1, 0, 0)→ (3, 3, 0, 0, 1, 0, 0)→ . . . .


