
Triangles with a 60◦ or 120◦ angle.

A mathematical vignette

Edward Barbeau

1. The Diophantine equations.

The By the Law of Cosines, a triangle with sides a, b, c and an angle of 120◦

opposite side c has its sides related by the equation

a2 + ab + b2 = c2.

If the angle opposite side c is 60◦, then the sides satisfy the equation

a2 − ab + b2 = c2.

Let f(a, b) = a2 +ab+ b2 and g(a, b) = a2−ab+ b2. Then it can be verified that

f(a, b) = g(a, a + b) = g(b, a + b).

Analogously to Pythagorean triples, we can look for triples (a, b, c) of integers that
are the sides of triangles containing an angle of either 120◦ or 60◦. Thus, we want
to find integer solutions for the equations

f(a, b) = c2 and g(a, b) = c2.

These equations can be written, respectively, as

(2a + b)2 + 3b2 = (2c)2

and
(2a− b)2 + 3b2 = (2c)2.

Thus, we can obtain solutions to the foregoing equation by solving the Diophantine
equation

u2 + 3v2 = w2

where w is even, and setting c = w/2, a = v and b = (u± v)/2.

For example, (a, b, c) = (3, 5, 7) satisfies

a2 + ab + b2 = c2

while (a, b, c) = (3, 8, 7) and (a, b, c) = (5, 8, 7) satisfy

a2 − ab + b2 = c2.

The corresponding solutions to u2 + 3v2 = w2 are

(u, v, w) = (13, 3, 14), (13, 3, 14), (11, 5, 14).

An alternative approach is to imitate the process for getting a general solution in
integers to the Pythagorean equation. We look for primive solutions of a2+ab+b2 =
c2 in which the greatest common divisor of a, b, c is 1. We note that, in this case,
c cannot be a multiple of 3. Suppose otherwise. Then (2c)2 is divisible by 9, as is
(2a + b)2 + 3b2. But then 2a + b is a multiple of 3, and so is b. Hence a and b are
both divisible by 3.
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We note that, for a primitive solution, at least one of a and b must be odd;
suppose that it is b. Rewriting the equation as

3b2 = (2c)2 − (2a + b)2 = [2c− (2a + b)][2c + (2a + b)],

we note that both factors on the right must be odd, and that the square of any odd
common divisor d of them must divide 3b2.

Modulo 3, (2c)2 ≡ (2a+b)2 ≡ 1, and 2a+b ≡ −(2b+1). Hence, either 2c−(2a+b)
or 2c− (2b + a) is divisible by 3.

Since d divides both 2c− (2a+ b) and 2c+ (2a+ b), then d must divide b as well
their sum 4c. But then d divides b and c and so divides a; thus d = 1. Therefore,
either

2c− (2a + b) = 3y2 and 2c + (2a + b) = x2

for some odd integers x and y,or

2c + (2a + b) = x2 and 2c− (2a + b) = 3y2

for some odd integers x and y.

Solving the first system for a, b, c yields 4c = x2 + 3y2, b = xy and 4a =
x2 − 2xy − 3y2 = (x− y)2 − 4y2. For a ≥ 0, we require that x ≥ 3y.

We can check that

2c− (2a + b) =
1

4
(8c− 8b− 4a) =

1

4
(2x2 + 6y2 − 2x2 + 4xy + 6y2 − 4xy) = 3y2,

and, which we will need later,

2c + a− b = 3

[
(x− y)

2

]2
.

Alternatively, solving the second system for a, b, c yields 4c = x2 + 3y2, b = xy
and 4a = 3y2 − x2 = 4y2 − (x− y)2. In this case,

2c− (2b + a) =
1

4
(8c− 8b− 4a) =

1

4
(3x2 − 6xy + 3y2) = 3

[
x− y

2

]2
and

2c + b− a =
1

4
(8c + 4b− 4a) =

1

4
(3x2 + 6xy + 3y2) = 3

[
x + y

2

]2
.

The consequence of this is that, for any triple representing a 120◦ triangle, we
can order the shorter sides so that 2c − (2a + b) = 3y2, 2c + (2a + b) = x2 and
2c+ a = 3[(x− y)/2]2 for some x and y. The quantities x and y will have the same
parity as b. For example, when (a, b, c) = (8, 7, 13), then 2c − (2a + b) = 3 × 12

and 2c + a − b = 3 × 32, while when (a, b, c) = (5, 16, 19), 2c − (2a + b)3 × 22 and
2c + a− b = 3× 32.
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2. Another approach to a2 + ab + b2 = c2.

A systematic way of generating solution to c2 = a2 + ab + b2 arises from the
observation that the right side is equal to (a + b)2 − ab and so less that (a + b)2.
Write

a2 + ab + b2 = (a + b− k)2

for some positive value of k.

The equation

a2 + ab + b2 = (a + b)2 − ab = (a + b− k)2

can be simplified to

(a− 2k)(b− 2k) = 3k2.

There are three obvious factorizations of the right side that we can use on the left
to get possible values of a and b:

(a− 2k, b− 2k) = (1, 3k2),

(a− 2k, b− 2k) = (3, k2),

(a− 2k, b− 2k) = (k, 3k).

These lead to the solutions

(a, b, c) = (2k+1, 3k2+2k, 3k2+3k+1) = ((k+1)2−k2, (2k+1)2−(k+1)2, (k+1)3−k3),

(a, b, c) = (3k, 5k, 7k),

and

(a, b, c) = (2k + 3, k2 + 2k, k2 + 3k + 3).

Replacing k by k − 1 in the last leads to

(a, b, c) = (2k + 1, k2 − 1, k2 + k + 1).

For some values of k, there will be other factorizations of 3k2 that will lead to other
solutions.

Here are some numerical solutions:

(a, b, c) =(3, 5, 7), (5, 16, 19), (7, 8, 13), (7, 33, 37),

(9, 56, 61), (11, 24, 31), (11, 85, 91), (16, 39, 49).

3. Geometry.

The following diagram illustrates how the 120◦ and 60◦ triangles are related.
Inscribed in the circle is an equilateral triangle whose side length is c.

The triangles
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A B

C

C1

C2

D

Triangle DBC is equilateral, and the length of AB is C. The 120◦

triangle is ABC and the two corresponding 60◦ triangles are ABC1

and ABC2. The segment AC1 is parallel to CB, and BC2 is parallel
to CA. Observe that the lengths of both AC1 and BC2 is the sum of
the lengths of AC and CB.

4. Cube roots of unity and a law of composition.

Let ω be a nonreal cube roots of unity, which satisfies the equations
ω2 + ω + 1 = 0 and ω3 = 1. Observe that

f(a, b) = a2 + ab + b2 = (a− bω)(a− bω2).

We begin by observing that

(a1 + b1ω)(a2 + b2ω) = a1a2 + b1b2ω
2 − (a1b2 + a2b1)ω

= a1a2 − b1b2(1 + ω)− (a1b2 + a2b1)ω

= (a1a2 − b1b2)− (a1b2 + a2b1 + b1b2)ω.

with a similar equation with ω replaced by ω2. From these equations,
we deduce that

f(a1, b1)f(a2, b2) = f(a1a2 − b1b2, a1b2 + a2b1 + b1b2),
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a fact that can be verified directly.

For two solutions (a1, b1, c1) and (a2, b2, c2) of the equation

a2 + ab + b2 = c2

, we define the operation ∗ by

(a1, b1, c1) ∗ (a2, b2, c2) = (a1a2 − b1b2, a1b2 + a2b1 + b1b2, c1c2)

which yields a third solution on the right side. When a1a2 > b1b2 (which
can be arranged by reordering the values of ai and bi if necessary), we
can obtain from two triangles with a 120◦ angle and integer sides, a
third such triangle. (In the case that a1a2 < b1b2, we can obtain a value
of g(a, b) in positive integers and thus a 60◦ triangle.)

However, this operation also provides us with a tool to generate
freely infinitely many such triangles from values of f(r, s), for arbitrary
integers r and s, even if it is nonsquare. For, from the converse of the
cosine law, any triangle with sides (a, b,

√
a2 + ab + b2) with a > b has

a 120◦ angle, as does the triangle with sides

(r, s,
√
r2 + rs + s2)∗(r, s,

√
r2 + rs + s2) = (r2−s2, 2rs+s2, r2+rs+s2).

Taking r = 2 and s = 1, for example, yields the triangle with sides
(3, 5, 7).

Does every 120◦ triangle arise in this way? If (a, b, c) are the sides of
the triangle, then we have to solve the system

r2 − s2 = a; 2rs + s2 = b

for positive integers r and s. Since r =
√
a + s2, we have that 2s

√
a + s2 =

b− s2. Squaring and rearranging terms leads to

3s4 + (4a + 2b)s2 − b2 = 0.

Thus s2 is the positive root of

3t2 + 2(2r + s)t− b2 = 0.

The discriminant of this quadratic is

4[(2a + b)2 + 3b2] = 16(a2 + ab + b2) = 16c2

and its positive root is

1

3
[2c− (2a + b)].
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Thus, the system is solvable for integers r and s when

s2 =
1

3
[2c− (2a + b)]

and

r2 = a + s2 =
1

3
[2c + a− b]

are both squares. We have seen that we can order the sides a and b so
that 2c− (2a + b) = 3y2. In this case

4(a, b, c) = (x2 − 2xy − 3y2, 4xy, 4x2 + 12y2),

so that and 1
3
(2c + a − b) is square. Thus, we can get all the 120◦

triangles by this “squaring” operation.

We can use this “squaring” approach to get parameterized families.
If (a, b) = (t, 1), we get the family of triangles

(t2 − 1, 2t + 1, t2 + t + 1)

whose first few members are (3, 5, 7), (8, 7, 13), (15, 9, 21), (24, 11, 31).
If (a, b) = (t + 1, t), we get the family

(2t + 1, t(3t + 2), 3t(t + 1) + 1)

whose first few members are (3, 5, 7), (5, 16, 19), (7, 33, 37), (11, 85, 91).

Correspondingly, there are parameterized families of 60◦ triangles
with integer sides:

(2t + 1, (t + 1)2 − 1, t2 + t + 1),

(t2 − 1, (t + 1)2 − 1, t2 + t + 1),

(2t + 1, (t + 1)(3t + 1), 3t(t + 1) + 1),

(t(3t + 2), (t + 1)(3t + 1), 3t(t + 1) + 1.

The function f(a, b) has another interesting property that allow us
to obtain parameterized families of triangle. Since

f(t− 1, 1)f(t, 1) = (t2 − t + 1)(t2 + t + 1) = t4 + t2 + 1 = f(t2, 1),

we have the 120◦ triangle

(t− 1, 1,
√
t2 − t + 1) ∗ (t, 1,

√
t2 + t + 1) ∗ (t2, 1,

√
t4 + t2 + 1)

= (t2 − t− 1, 2t,
√
t4 + t2 + 1) ∗ (t2, 1,

√
t4 + t2 + 1)

= (t4−t3−t2−2t, 2t3+t2+t−1, t4+t2+1) = ((t(t−2)(t2+t+1), (2t−1)(t2+t+1), (t2−t+1)(t2+t+1)).

These are similar to (t(t − 2), 2t − 1, t2 − t + 1), which we essentially
have found in another way.
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5. 120◦ triangles with consecutive integer sides.

Suppose that b = a+1. After multiplying by 4, the equation f(a, b) =
c2 becomes

3(2a + 1)2 + 1 = (2c)2.

Let x = 2c and y = 2a + 1. Then we are looking for solutions of
the pellian equation x2 − 3y2 = 1. The fundamental solution of this
equation is (x, y) = (2, 1) and the general solution in positive integers
is given by (x, y) = (xn, yn) (n ≥ 0), where

xn + yn
√

3 = (2 +
√

3)n.

Thus, we have the sequence of solutions

(x, y) = (1, 0), (2, 1), (7, 4), (26, 15), (97, 56), (362, 209), (1351, 780), (5042, 2911), . . . .

The sequence {xn} and {yn} satisfy the recursions

xn+1 = 4xn − xn−1, yn+1 = 4yn − yn−1,

xn+1 = 2xn + 3yn, yn+1 = xn + 2yn,

for all positive integers n. Since x = 2c, we are interested in only those
solutions with positive values of x. The first two 120◦ triangles obtained
in this way are (7, 8, 13) and (104, 105, 181), with the corresponding 60◦

triangles (7, 15, 13), (8, 15, 13), (104, 209, 181), (105, 209, 181).

6. Solutions of u2 + 3v2 = w2.

In section 1, we have seen that the triangles with integer sides are
related to solutions of u2 + 3v2 = w2, where w is even. (If we have a
solution with odd w, we can get one with even w by multiplying each
variable by 2. Note that, if w is even, then u and v must have the same
parity.

By starting with a solution of this Diophantine equation, finding the
related 120◦ triangle and then considering its analogous 60◦ triangle,
we are led to define the following operation which takes solution to
other solutions:

U(u, v, w) =

(
u + 3v

2
,
|u− v|

2
, w

)
,

V (u, v, w) =

(
|3v − u|

2
,
u + v

2
, w

)
.

This takes integer solutions with w even to other integer solutions.
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When u ≥ v, then U2(u, v, w) = (u, v, w), and when v ≥ u, then
V 2(u, v, w) = (u, v, w).

We can also define a second operation on the triples of solutions
to u2 + 3v2 = w2. We can rewrite the equation as a Pell’s equation
w2 − 3v2 = u2 with fixed u, and note that if the equation is satisfied
by (u, v, w), it is also satisfied by (u, 2v + w, 2w + 3v). This allows us
to construct infinitely many triangles.

For example: W (11, 5, 14) = (11, 24, 43). To construct a triangle, we
consider instead (22, 48, 86) to yield the 60◦ triangles (13, 48, 43) and
(35, 48, 43) and the 120◦ triangle (13, 35, 43).

7. table of triangles.

Side opposite angle 120◦ triangles 60◦ triangles
7 (3, 5, 7) (3, 8, 7), (5, 8, 7)

13 (7, 8, 13) (7, 15, 13), (8, 15, 13)
19 (5, 16, 19) (5, 21, 19), (16, 21, 19)
31 (11, 24, 31) (11, 35, 31), (24, 35, 31)
37 (7, 33, 37) (7, 40, 37), (33, 40, 37)
43 (13, 35, 43) (13, 48, 43), (35, 48, 43)
49 (16, 39, 49) (16, 55, 49), (39, 55, 49)

181 (104, 105, 181) (104, 209, 181), (105, 209, 181)

Solutions of u2 + 3v2 = w2 Solutions of u2 + 3v2 = w2

(1, 1, 2)
(11, 5, 14), (13, 3, 14) (1, 4, 7)
(1, 15, 26), (23, 7, 26) (11, 4, 13)
(37, 5, 38) (13, 8, 19)

(11, 24, 43)
(47, 8, 49)

(73, 7, 74)

8. Questions.

1. Do we get all the triangles from the solutions of u2 + 3v2 = w2.

2. Is the side opposite the angle of a primitive triangle always 1 more
than a multiple of 6? What are the possible values of the longest sides?
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3. Can we “generate” all the triangles from a single one in some
way?


