Triangles with a 60° or 120° angle.

A mathematical vignette

Edward Barbeau

1. The Diophantine equations.

The By the Law of Cosines, a triangle with sides a, b, c and an angle of 120° opposite side c has its sides related by the equation

$$a^2 + ab + b^2 = c^2$$

If the angle opposite side c is 60° , then the sides satisfy the equation

$$a^2 - ab + b^2 = c^2.$$

Let
$$f(a,b) = a^2 + ab + b^2$$
 and $g(a,b) = a^2 - ab + b^2$. Then it can be verified that $f(a,b) = g(a,a+b) = g(b,a+b)$.

Analogously to Pythagorean triples, we can look for triples (a, b, c) of integers that are the sides of triangles containing an angle of either 120° or 60°. Thus, we want to find integer solutions for the equations

$$f(a,b) = c^2$$
 and $g(a,b) = c^2$.

These equations can be written, respectively, as

$$(2a+b)^2 + 3b^2 = (2c)^2$$

and

$$(2a-b)^2 + 3b^2 = (2c)^2.$$

Thus, we can obtain solutions to the foregoing equation by solving the Diophantine equation

$$u^2 + 3v^2 = w^2$$

where w is even, and setting c = w/2, a = v and $b = (u \pm v)/2$.

For example, (a, b, c) = (3, 5, 7) satisfies

$$a^2 + ab + b^2 = c^2$$

while (a, b, c) = (3, 8, 7) and (a, b, c) = (5, 8, 7) satisfy $a^2 - ab + b^2 = c^2$.

The corresponding solutions to $u^2 + 3v^2 = w^2$ are

$$(u, v, w) = (13, 3, 14), (13, 3, 14), (11, 5, 14).$$

An alternative approach is to imitate the process for getting a general solution in integers to the Pythagorean equation. We look for primive solutions of $a^2+ab+b^2 = c^2$ in which the greatest common divisor of a, b, c is 1. We note that, in this case, c cannot be a multiple of 3. Suppose otherwise. Then $(2c)^2$ is divisible by 9, as is $(2a+b)^2+3b^2$. But then 2a+b is a multiple of 3, and so is b. Hence a and b are both divisible by 3.

We note that, for a primitive solution, at least one of a and b must be odd; suppose that it is b. Rewriting the equation as

$$3b^{2} = (2c)^{2} - (2a+b)^{2} = [2c - (2a+b)][2c + (2a+b)],$$

we note that both factors on the right must be odd, and that the square of any odd common divisor d of them must divide $3b^2$.

Modulo 3, $(2c)^2 \equiv (2a+b)^2 \equiv 1$, and $2a+b \equiv -(2b+1)$. Hence, either 2c-(2a+b) or 2c-(2b+a) is divisible by 3.

Since d divides both 2c - (2a + b) and 2c + (2a + b), then d must divide b as well their sum 4c. But then d divides b and c and so divides a; thus d = 1. Therefore, either

 $2c - (2a + b) = 3y^2$ and $2c + (2a + b) = x^2$ for some odd integers x and y,or

 $2c + (2a + b) = x^2$ and $2c - (2a + b) = 3y^2$

for some odd integers x and y.

Solving the first system for a, b, c yields $4c = x^2 + 3y^2$, b = xy and $4a = x^2 - 2xy - 3y^2 = (x - y)^2 - 4y^2$. For $a \ge 0$, we require that $x \ge 3y$.

We can check that

 $2c - (2a + b) = \frac{1}{4}(8c - 8b - 4a) = \frac{1}{4}(2x^2 + 6y^2 - 2x^2 + 4xy + 6y^2 - 4xy) = 3y^2,$ and, which we will need later,

$$2c + a - b = 3\left[\frac{(x-y)}{2}\right]^2.$$

Alternatively, solving the second system for a, b, c yields $4c = x^2 + 3y^2$, b = xyand $4a = 3y^2 - x^2 = 4y^2 - (x - y)^2$. In this case,

$$2c - (2b + a) = \frac{1}{4}(8c - 8b - 4a) = \frac{1}{4}(3x^2 - 6xy + 3y^2) = 3\left[\frac{x - y}{2}\right]^2$$

and

$$2c + b - a = \frac{1}{4}(8c + 4b - 4a) = \frac{1}{4}(3x^2 + 6xy + 3y^2) = 3\left[\frac{x + y}{2}\right]^2.$$

The consequence of this is that, for any triple representing a 120° triangle, we can order the shorter sides so that $2c - (2a + b) = 3y^2$, $2c + (2a + b) = x^2$ and $2c + a = 3[(x - y)/2]^2$ for some x and y. The quantities x and y will have the same parity as b. For example, when (a, b, c) = (8, 7, 13), then $2c - (2a + b) = 3 \times 1^2$ and $2c + a - b = 3 \times 3^2$, while when (a, b, c) = (5, 16, 19), $2c - (2a + b)3 \times 2^2$ and $2c + a - b = 3 \times 3^2$.

A systematic way of generating solution to $c^2 = a^2 + ab + b^2$ arises from the observation that the right side is equal to $(a + b)^2 - ab$ and so less that $(a + b)^2$. Write

$$a^{2} + ab + b^{2} = (a + b - k)^{2}$$

for some positive value of k.

The equation

$$a^{2} + ab + b^{2} = (a + b)^{2} - ab = (a + b - k)^{2}$$

can be simplified to

$$(a - 2k)(b - 2k) = 3k^2$$

There are three obvious factorizations of the right side that we can use on the left to get possible values of a and b:

$$(a - 2k, b - 2k) = (1, 3k^2),$$

 $(a - 2k, b - 2k) = (3, k^2),$
 $(a - 2k, b - 2k) = (k, 3k).$

These lead to the solutions

$$\begin{aligned} (a,b,c) &= (2k+1,3k^2+2k,3k^2+3k+1) = ((k+1)^2-k^2,(2k+1)^2-(k+1)^2,(k+1)^3-k^3), \\ (a,b,c) &= (3k,5k,7k), \end{aligned}$$

and

$$(a, b, c) = (2k + 3, k^2 + 2k, k^2 + 3k + 3).$$

Replacing k by k-1 in the last leads to

$$(a, b, c) = (2k + 1, k^2 - 1, k^2 + k + 1).$$

For some values of k, there will be other factorizations of $3k^2$ that will lead to other solutions.

Here are some numerical solutions:

$$(a, b, c) = (3, 5, 7), (5, 16, 19), (7, 8, 13), (7, 33, 37), (9, 56, 61), (11, 24, 31), (11, 85, 91), (16, 39, 49).$$

3. Geometry.

The following diagram illustrates how the 120° and 60° triangles are related. Inscribed in the circle is an equilateral triangle whose side length is c.

The triangles

Triangle DBC is equilateral, and the length of AB is C. The 120° triangle is ABC and the two corresponding 60° triangles are ABC_1 and ABC_2 . The segment AC_1 is parallel to CB, and BC_2 is parallel to CA. Observe that the lengths of both AC_1 and BC_2 is the sum of the lengths of AC and CB.

4. Cube roots of unity and a law of composition.

Let ω be a nonreal cube roots of unity, which satisfies the equations $\omega^2 + \omega + 1 = 0$ and $\omega^3 = 1$. Observe that

$$f(a,b) = a^2 + ab + b^2 = (a - b\omega)(a - b\omega^2)$$

We begin by observing that

$$(a_1 + b_1\omega)(a_2 + b_2\omega) = a_1a_2 + b_1b_2\omega^2 - (a_1b_2 + a_2b_1)\omega$$

= $a_1a_2 - b_1b_2(1 + \omega) - (a_1b_2 + a_2b_1)\omega$
= $(a_1a_2 - b_1b_2) - (a_1b_2 + a_2b_1 + b_1b_2)\omega$.

with a similar equation with ω replaced by $\omega^2.$ From these equations, we deduce that

$$f(a_1, b_1)f(a_2, b_2) = f(a_1a_2 - b_1b_2, a_1b_2 + a_2b_1 + b_1b_2),$$

a fact that can be verified directly.

For two solutions (a_1, b_1, c_1) and (a_2, b_2, c_2) of the equation

$$a^2 + ab + b^2 = c^2$$

, we define the operation * by

$$(a_1, b_1, c_1) * (a_2, b_2, c_2) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1 + b_1b_2, c_1c_2)$$

which yields a third solution on the right side. When $a_1a_2 > b_1b_2$ (which can be arranged by reordering the values of a_i and b_i if necessary), we can obtain from two triangles with a 120° angle and integer sides, a third such triangle. (In the case that $a_1a_2 < b_1b_2$, we can obtain a value of g(a, b) in positive integers and thus a 60° triangle.)

However, this operation also provides us with a tool to generate freely infinitely many such triangles from values of f(r, s), for arbitrary integers r and s, even if it is nonsquare. For, from the converse of the cosine law, any triangle with sides $(a, b, \sqrt{a^2 + ab + b^2})$ with a > b has a 120° angle, as does the triangle with sides

$$(r, s, \sqrt{r^2 + rs + s^2}) * (r, s, \sqrt{r^2 + rs + s^2}) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2) = (r^2 - s^2, 2rs + s^2, r^2 + rs + s^2)$$

Taking r = 2 and s = 1, for example, yields the triangle with sides (3, 5, 7).

Does every 120° triangle arise in this way? If (a, b, c) are the sides of the triangle, then we have to solve the system

$$r^2 - s^2 = a;$$
 $2rs + s^2 = b$

for positive integers r and s. Since $r = \sqrt{a + s^2}$, we have that $2s\sqrt{a + s^2} = b - s^2$. Squaring and rearranging terms leads to

$$3s^4 + (4a + 2b)s^2 - b^2 = 0.$$

Thus s^2 is the positive root of

$$3t^2 + 2(2r+s)t - b^2 = 0$$

The discriminant of this quadratic is

$$4[(2a+b)^2+3b^2] = 16(a^2+ab+b^2) = 16c^2$$

and its positive root is

$$\frac{1}{3}[2c - (2a + b)].$$

Thus, the system is solvable for integers r and s when

$$s^2 = \frac{1}{3}[2c - (2a + b)]$$

and

$$r^{2} = a + s^{2} = \frac{1}{3}[2c + a - b]$$

are both squares. We have seen that we can order the sides a and b so that $2c - (2a + b) = 3y^2$. In this case

$$4(a, b, c) = (x^{2} - 2xy - 3y^{2}, 4xy, 4x^{2} + 12y^{2}),$$

so that and $\frac{1}{3}(2c + a - b)$ is square. Thus, we can get all the 120° triangles by this "squaring" operation.

We can use this "squaring" approach to get parameterized families. If (a, b) = (t, 1), we get the family of triangles

$$(t^2 - 1, 2t + 1, t^2 + t + 1)$$

whose first few members are (3, 5, 7), (8, 7, 13), (15, 9, 21), (24, 11, 31). If (a, b) = (t + 1, t), we get the family

$$(2t+1, t(3t+2), 3t(t+1)+1)$$

whose first few members are (3, 5, 7), (5, 16, 19), (7, 33, 37), (11, 85, 91).

Correspondingly, there are parameterized families of 60° triangles with integer sides:

$$(2t+1, (t+1)^2 - 1, t^2 + t + 1), (t^2 - 1, (t+1)^2 - 1, t^2 + t + 1), (2t+1, (t+1)(3t+1), 3t(t+1) + 1), (t(3t+2), (t+1)(3t+1), 3t(t+1) + 1).$$

The function f(a, b) has another interesting property that allow us to obtain parameterized families of triangle. Since

$$f(t-1,1)f(t,1) = (t^2 - t + 1)(t^2 + t + 1) = t^4 + t^2 + 1 = f(t^2,1),$$

we have the 120° triangle

$$\begin{array}{l} (t-1,1,\sqrt{t^2-t+1})*(t,1,\sqrt{t^2+t+1})*(t^2,1,\sqrt{t^4+t^2+1})\\ =(t^2-t-1,2t,\sqrt{t^4+t^2+1})*(t^2,1,\sqrt{t^4+t^2+1})\\ =(t^4-t^3-t^2-2t,2t^3+t^2+t-1,t^4+t^2+1)=((t(t-2)(t^2+t+1),(2t-1)(t^2+t+1),(t^2-t+1)(t^2+t+1)))\\ \\ \text{These are similar to }(t(t-2),2t-1,t^2-t+1), \text{ which we essentially}\\ \text{have found in another way.} \end{array}$$

5. 120° triangles with consecutive integer sides.

Suppose that b = a+1. After multiplying by 4, the equation $f(a, b) = c^2$ becomes

$$3(2a+1)^2 + 1 = (2c)^2.$$

Let x = 2c and y = 2a + 1. Then we are looking for solutions of the pellian equation $x^2 - 3y^2 = 1$. The fundamental solution of this equation is (x, y) = (2, 1) and the general solution in positive integers is given by $(x, y) = (x_n, y_n)$ $(n \ge 0)$, where

$$x_n + y_n \sqrt{3} = (2 + \sqrt{3})^n.$$

Thus, we have the sequence of solutions

 $(x, y) = (1, 0), (2, 1), (7, 4), (26, 15), (97, 56), (362, 209), (1351, 780), (5042, 2911), \dots$ The sequence $\{x_n\}$ and $\{y_n\}$ satisfy the recursions

$$x_{n+1} = 4x_n - x_{n-1}, \qquad y_{n+1} = 4y_n - y_{n-1},$$

$$x_{n+1} = 2x_n + 3y_n, \qquad y_{n+1} = x_n + 2y_n,$$

for all positive integers n. Since x = 2c, we are interested in only those solutions with positive values of x. The first two 120° triangles obtained in this way are (7, 8, 13) and (104, 105, 181), with the corresponding 60° triangles (7, 15, 13), (8, 15, 13), (104, 209, 181), (105, 209, 181).

6. Solutions of $u^2 + 3v^2 = w^2$.

In section 1, we have seen that the triangles with integer sides are related to solutions of $u^2 + 3v^2 = w^2$, where w is even. (If we have a solution with odd w, we can get one with even w by multiplying each variable by 2. Note that, if w is even, then u and v must have the same parity.

By starting with a solution of this Diophantine equation, finding the related 120° triangle and then considering its analogous 60° triangle, we are led to define the following operation which takes solution to other solutions:

$$U(u, v, w) = \left(\frac{u+3v}{2}, \frac{|u-v|}{2}, w\right),$$
$$V(u, v, w) = \left(\frac{|3v-u|}{2}, \frac{u+v}{2}, w\right).$$

This takes integer solutions with w even to other integer solutions.

When $u \ge v$, then $U^2(u, v, w) = (u, v, w)$, and when $v \ge u$, then $V^2(u, v, w) = (u, v, w)$.

We can also define a second operation on the triples of solutions to $u^2 + 3v^2 = w^2$. We can rewrite the equation as a Pell's equation $w^2 - 3v^2 = u^2$ with fixed u, and note that if the equation is satisfied by (u, v, w), it is also satisfied by (u, 2v + w, 2w + 3v). This allows us to construct infinitely many triangles.

For example: W(11, 5, 14) = (11, 24, 43). To construct a triangle, we consider instead (22, 48, 86) to yield the 60° triangles (13, 48, 43) and (35, 48, 43) and the 120° triangle (13, 35, 43).

7. table of triangles.

Side opposite angle	120° triangles	60° triangles
7	(3, 5, 7)	(3, 8, 7), (5, 8, 7)
13	(7, 8, 13)	(7, 15, 13), (8, 15, 13)
19	(5, 16, 19)	(5, 21, 19), (16, 21, 19)
31	(11, 24, 31)	(11, 35, 31), (24, 35, 31)
37	(7, 33, 37)	(7, 40, 37), (33, 40, 37)
43	(13, 35, 43)	(13, 48, 43), (35, 48, 43)
49	(16, 39, 49)	(16, 55, 49), (39, 55, 49)
181	(104, 105, 181)	(104, 209, 181), (105, 209, 181)

Solutions of $u^2 + 3v^2 = w^2$	Solutions of $u^2 + 3v^2 = w^2$
(1, 1, 2)	
(11, 5, 14), (13, 3, 14)	(1, 4, 7)
(1, 15, 26), (23, 7, 26)	(11, 4, 13)
(37, 5, 38)	(13, 8, 19)
	(11, 24, 43)
	(47, 8, 49)
(73, 7, 74)	

8. Questions.

1. Do we get all the triangles from the solutions of $u^2 + 3v^2 = w^2$.

2. Is the side opposite the angle of a primitive triangle always 1 more than a multiple of 6? What are the possible values of the longest sides?

8

3. Can we "generate" all the triangles from a single one in some way?