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0. This investigation is designed to allow students to obtain a feel for how
numbers interact together and also to illustrate the various dimensions of algebraic
usage. The prerequisites are slight – just some familiarity with integer multiplica-
tion and squares and the rudiments of Grade 9 algebra. This is presented in the
spirit of providing a topic that may be helpful in promoting student understanding,
but in no way as a recipe for how it may be presented. The actual discussion can
proceed in a number of different ways, particularly if some students asks a question,
has a difficulty or makes an insightful comment. Depending on the class, it may be
a matter of open-ended investigation, or the teacher may have to explicitly state
a problem and then offer general guidance on how it might be pursued. There is
nothing sacred about the order of presentation; some teachers may find it preferable
to deal first with products of two consecutive integers.

1. A result that lends itself to investigation by secondary students is the propo-
sition that the product of four consecutive positive integers is never square. It can
be approached in a number of ways, and depending on the group, questions arise
about mathematical practice that can be explored.

The result can be approached by either stating the proposition as a statement
to be proved, or by asking students to write out a number of such products to see
what they observe. The first few instances are

1× 2× 3× 4 = 24;

2× 3× 4× 5 = 120;

3× 4× 5× 6 = 360;

4× 5× 6× 7 = 840;

5× 6× 7× 8 = 1680.

Where the students go from here depends on the ability of at least some of
them to recognize properties and patterns. Here the observation might be that the
products are each one less than the respective squares of 5, 11, 19, 29, 41. (They
might recognize only the first two and have to conjecture the others.) If we throw
in 0× 1× 2× 3 = 0, we get a product that is one less than the square of 1.

Recognizing that there is a pattern, we might try to see if there is a general
formula for the product

n× (n + 1)× (n + 2)× (n + 3).

How students arrive at a suitable formula will depend on their mathematical insight
and experience. A knowledgable student will recognize that the differences for the
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sequence 1, 5, 11, 19, 29, 41 form an arithmetic progression and interpolate a qua-
dratic function. The typical high school class will not have access to this (although
this situation might be a good place to introduce it).

One insightful observation is that 1 = 22−3, 5 = 32−4, 11 = 42−5, 19 = 52−6,
29 = 62 − 7, 41 = 72 − 8. This leads to the conjecture that

n× (n + 1)× (n + 2)× (n + 3) = [(n + 2)2 − (n + 3)]− 1 = [n2 + 3n + 1]2 − 1.

This is readily checked. Here we see two roles of algebra, the first as a notation to
describe a general pattern, and the second as a proof technique for a general result
with infinitely many instances.

At this point, students who have been given the proposition will jump to the
conclusion that, because the product is one less than a perfect square, it cannot
itself be a square. Otherwise, the teacher may have to ask whether it is possible
for the product itself to be a square.

This focusses now on the question as to whether two positive squares can dif-
fer by 1. A popular approach is for the students to observe from the sequence
{1, 4, 9, 16, . . . } that two consecutive squares cannot differ by 1. How can one make
this precise? Again algebra can be used: (n + 1)2 − n2 = 2n + 1 > 1. Fine; we
have the result for consecutive positive squares. But what about any two positive
squares? This may be splitting hairs, but it is worth having students attempt to
give a succinct explicit argument.

An alternative argument starts with the equation x2 − y2 = 1 to be solved for
integers x and y with x > y, and exploits the factorization of a difference of squares
along with the solution of a simple pair of simultaneous equation, both early topics
for a beginning algebra student. The equation can be rewritten

(x− y)(x + y) = 1,

the integer 1 as a product of two positive integers. The only possibility is x + y =
x − y = 1 which forces (x, y) = (1, 0). Thus, there is no solution with both x and
y positive.

Returning to the fourfold product, we can draw out information by a strategic
rearrangement of terms. This is a common enough process in school algebra that
students should be tuned into this possibility. We can write the general product as

n(n + 1)(n + 2)(n + 3) = [n(n + 3)][(n + 1)(n + 2)] = [n2 + 3n][n2 + 3n + 2]

= [(n2 + 3n + 1)− 1][(n2 + 3n + 1) + 1]

= [n2 + 3n + 1]2 − 1.

One possible motivation for this bit of legerdemain might be looking at small nu-
merical cases and noting that 1 × 2 × 3 × 4 = 4 × 6, 2 × 3 × 4 × 5 = 10 × 12, and
generalizing.

3. Staying with the fourfold products, we see that there is an interesting con-
nection with Pascal’s triangle. For each integer greater than or equal to 4, there
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exists a second integer m for which(
m

2

)
= 3

(
n

4

)
.

This could be discovered empirically by examining the entries of Pascal’s triangle,
or else it could be stated and the students asked to prove it by solving an equation
for m. In fact, it turns out that

m =

(
n− 1

2

)
.

Now we have that

n(n− 1)(n− 2)(n− 3) + 1 = 24

(
n

4

)
+ 1 = 8

(
m

2

)
= 4m(m− 1) + 1 = (2m− 1)2 = [(n− 1)(n− 2)− 1]2

= (n2 − 3n + 1)2.

If we replace n by n + 3 in this equation, then we find that

(n + 3)(n + 2)(n + 1)n + 1 = (n2 + 3n + 1)2,

as before.

3. Having disposed of this situation, students could be asked to investigate a
number of questions: (a) can the product of two consecutive positive integers ever
be a perfect square? (b) can the product of three consecutive positive integers
ever be a perfect square? (c) is there a value of k such that some product of k
consecutive positive integers is a perfect square? if so, what is the smallest such k?

Here are the points that might be drawn out for (a). Two consecutive positive
integers are coprime (i.e. have greatest common divisor 1), so that if their product
is square, then each of them must be square. One way of getting at this is to
consider the prime factor decomposition and note that squares are characterized
by the fact that all their prime divisors do so to an even exponent.

Alternatively, we can note that n(n + 1) lies between two consecutive squares,
and so cannot be square. This is straightforward, since

n2 < n(n + 1) = n2 + n < (n + 1)2.

Another approach takes us into territory we have already visited. Any number
x is a square if and only if 4x is also a square. Since

4n(n + 1) = (2n + 1)2 − 1,

and two positive squares cannot differ by 1, then 4n(n + 1) and with it n(n + 1)
cannot be square.

Because n(n+1)(n+2) is a polynomial of odd degree in n, there is no obvious way
to approach the possibility of its being square using elementary algebra. However,
we can observe that any odd prime can divide at most one of the three factors, and
so must do so to an even degree. Furthermore, when n is odd, the prime 2 can
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divide only the middle factor, so that the three factors are pairwise coprime. Thus,
if the triple product is square in this case, each of its three factors must also be
square, an impossibility.

However, if n is even, then 2 divides both n and n+ 2 and divides exactly one of
these to the first power. The bottom line here is that both n + 1 and n(n + 2) are
squares. Using the fact that n(n + 2) = (n + 1)2 − 1, we again find that the triple
product cannot be a positive square.

As for (c), this is a deeper problem to be explored by students, to see what
properties a square which is the product of k consecutive positive integers must
have.

4. In this section, I will some numerical results that might be useful in the
investigation. To begin with, the question as to whether any positive square can
be represented by a product of two or more consecutive integers has been settled
in the negative by Paul Erdös in the paper:

Paul Erdös, Notes on products of consecutive integers. Jour. London Math, Soc.
14 (1939), 194-198

For each positive integer k with k ≥ 2, let gk(n) be the product of k consecutive
integers, the smallest of which is n and let fk(n)2 be the smallest square that
exceeds gk(n).

Product of three consecutive integers

g3(n) = n(n + 1)(n + 2) = n3 + 3n2 + 2n. When n = m2 − 1, g3(n) = m6 −m2,
and

(m3 − 1)2 < m6 −m2 < m6,

so f3(m3 − 1) = m3 and f3(m2 − 1)2 − g3(m) = m2. Thus when n = m2 − 1, n
differs from the next greater square by a square. This covers n = 3, 8, 15, 24, . . . .

More generally, we have

n g3(n) fk(n) fk(n)2 − gn(k) Later differences
m2 − 1 m6 −m2 m3 m2 2m3 + m2 + 1, 4m3 + m2 + 4

4m2 − 2 64m6 − 48m4 + 8m2 8m3 − 3m m2

m2 − 3 m6 − 6m4 + 11m2 − 6 m3 − 3m 2m2 − 6
m2 + 1 m2 + 6m4 + 11m2 + 6 m3 + 3m 2m2 + 6

4m2 64m2 + 48m4 + 8m2 8m3 + 3m m2

This covers the cases n = 2, 3, 4, 5, 6, 8, 10, 13, 14, 15, 16, 17, 22, 24, 26, 33, 34, 35, 36, 37, 46, 48, 50, 61, 62, 63, 64, 65, . . . .
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n g3(n) fk(n) fk(n)2 − gn(k) Later differences
1 6 3 3 13, 22, 33
2 24 5 1 = 12 12, 25 = 52

3 60 8 4 = 22 21, 40
4 120 11 1 = 12 24, 49 = 72, 76
5 210 15 15 46, 79
6 336 19 25 = 52 64 = 82, 105
7 504 23 25 = 52

8 720 27 9 = 32 64 = 82, 121 = 112

9 990 32 34
10 1320 37 49 = 72

11 1716 42 48
12 2184 47 25 = 52

13 2730 53 79
14 3360 58 4 = 22 121 = 112, 240, 361 = 192

15 4080 64 16 = 42

16 4896 70 4 = 22

17 5814 77
18 6480 83 49 = 72

19 7980 90
20 9240 97 169 = 132

21 10626 104 190
22 12144 111 177
23 13800 118 361 = 192

24 15600 125 25 = 52

25 17550 133 139
26 19656 141 225 = 152

27 21924 149 576 = 242

28 24360 157 289 = 172

29 26970 165 745
30 29760 173 169 = 132

31 32736 181 25 = 52

32 35904 190 196 = 142 577, 960
33 39270 199 331
34 42840 207 9 = 32 – , 841 = 292

35 46620 216 36 = 62

36 50616 225 9 = 32

37 54834 235 391
38 59280 244 256 = 162

39 63960 253 49 = 72

40 68880 263 289 = 172

41 74046 273 483
42 79464 282 60 625 = 252
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Product of four consecutive integers

We have

g4(n) = (n2 + 3n + 1)2 − 1

= (n2 + 3n + 2)2 − 2(n2 + 3n + 2) = (n2 + 3n + 2)2 − 2(n + 1)(n + 2)

= (n2 + 3n + 3)2 − (4n2 + 12n + 9) = (n2 + 3n + 3)2 − (2n + 3)2

Product of five consecutive integers

n g5(n) f5(n) (f5(n))2 − g5(n) Subsequent differences
1 120 11 12 24, 72, 76, 105
2 720 27 32 82, 112, 180, 241
3 2520 51 92 184, 172, 396
4 6720 82 22 132, 336, 505
5 15120 123 32 162, 505, 756, 1009
6 30240 174 62 385, 736, 332, 382

7 55440 236 162 272, 1204, 412, 2160
8 95040 309 212 1060, 412, 2304, 2929
9 154440 393 32 796, 1585, 2376

10 240240 491 292 1824, 532, 3796
11 360360 601 292 2044, 572, 4456, 5665
12 524160 724 42 1465, 2916, 4369
13 724560 862 222 472, 3936, 5665
14 1028160 1014 62 2065, 642, 6129
15 1395360 1182 422 4129, 6496, 8865
16 1860480 1364 42 2745, 742, 18209
17 2441880 1563 332 4216, 7345, 10476
18 3160080 1778 1204 692, 8320, 1092

19 4037880 2010 2220 792, 34444, 38481
20 5100480 2259 512 7120, 11641, 16164
21 6375600 2525 52 5076, 10129, 15184
22 7893600 2810 502 8121, 13744, 19369
23 9687600 3113 3169 9396, 1252, 21956
24 11793600 3435 752 12496, 19369, 1622

25 14250600 3775 52 7576, 1232, 22684
26 17100720 4136 762 14049, 22324, 30601
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Product of six consecutive integers

We have

g6(n) = (n3 + 8n2 + 15n)(n3 + 7n + 14n + 8)

= [ 12 (2n3 + 15n2 + 29n + 8)]2 − [ 12 (n2 − n− 8)]2

= (n3 + 8n2 + 17n + 10)(n3 + 7n + 12n)

= [ 12 (2n3 + 15n2 + 29n + 10)]2 − [ 12 (n2 + 5n + 10)]2

= (n3 + 8n3 + 19n + 12)(n3 + 7n2 + 10n)

= [ 12 (2n3 + 15n2 + 29n + 12)]2 − [ 12 (n2 + 9n + 12)]2

We note that the polynomials f6(n), f6(n) + 1, f6(n) + 2 yielding squares ex-
ceeding g6(n) and the corresponding square roots of the minuends have non-integer
coefficients. However, since they affect the coefficients of n2 and n which have the
same parity, the polynomials always take integer values.

Products of seven consecutive integers

n g7(n) f7(n) (f7(n))2 − g7(n) Subsequent differences
1 5041 71 12 143, 288, 435, 584
2 40320 201 92 222, 889, 362, 1705
3 181440 426 62 889, 1744
4 604800 778 222 2041
5 1663200 1290 302 592, 6064
6 3991680 1998 182 4321
7 8648640 2941 292 822

8 17297280 4159 12 8320, 1292

9 32432400 5695 252 12016
10 57657600 7594 1062 26425
11 98017920 9901 1092

12 160392960 12665 9265 1862

13 253955520 15936 242

14 390700800 19767 1832

15 586051200 24209 24481 2702, 121321
16 859541760 29318 582

17 1235591280 35151 392

18 1744364160 41766 1862

19 2422728000 49222 2782

20 3315312000 57579 1712

21 4475671200 66901 72601 206404, 340209
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Product of eight consecutive integers

We have

g8(n) = (n4 + 14n3 + 63n2 + 98n + 28)2 − 16(2n + 7)2

= (n4 + 14n3 + 63n2 + 98n + 30)2 − 4(2n2 + 7n + 15)2

= (n4 + 14n3 + 63n2 + 98n + 36)2 − 16(n2 + 7n + 9)2

The smallest square bigger than g8(n) is not equal to (n2+14n3+63n2+98n+28)2

until n ≥ 4.

g8(1) = 40320 = 2012 − 92 = 2022 − 222 = 2032 − 889 = 2042 − 362.

g8(2) = 362880 = 6032 − 272 = 6042 − 442 + 6052 − 3145 = 6062 − 662.

g8(3) = 1814400 = 13472 − 32 = 13482 − 522 = 13492 − 5401 = 13502 − 902.

g8(4)− 6652800 = 25802 − 602 = 25822 − 1182.

Product of nine consecutive integers

n g9(n) f9(n) (f9(n))2 − g7(n) Subsequent differences
1 362880 603 272 442, 3145, 662, 5569
2 3628800 1905 152 4036, 7879, 1082, 15481
3 19958400 4468 682 13561, 1502, 31441, 40384
4 79833600 8935 252 1362, 36369, 54244
5 259459200 16108 922

6 726485760 26954 32356 86265
7 1816214400 42618 2822

8 4151347200 64431 812

9 8821612800 93924 3242

10 1.76432256× 1010 132828 2282 ?


