
THE UNIVERSITY OF TORONTO

UNDERGRADUATE MATHEMATICS COMPETITION

Sunday, March 18, 2001

Time: 3 hours

1. Let a, b, c > 0, a < bc and 1 + a3 = b3 + c3. Prove that 1 + a < b+ c.

2. Let O = (0, 0) and Q = (1, 0). Find the point P on the line with equation y = x+ 1 for which the angle
OPQ is a maximum.

3. (a) Consider the infinite integer lattice in the plane (i.e., the set of points with integer coordinates) as
a graph, with the edges being the lines of unit length connecting nearby points. What is the minimum
number of colours that can be used to colour all the vertices and edges of this graph, so that

(i) each pair of adjacent vertices gets two distinct colours;

(ii) each pair of edges that meet at a vertex gets two distinct colours; and

(iii) an edge is coloured differently than either of the two vertices at the ends?

(b) Extend this result to lattices in real n−dimensional space.

4. Let V be the vector space of all continuous real-valued functions defined on the open interval (−π/2, π/2),
with the sum of two functions and the product of a function and a real scalar defined in the usual way.

(a) Prove that the set {sinx, cosx, tanx, secx} is linearly independent.

(b) Let W be the linear space generated by the four trigonometric functions given in (a), and let T be the
linear transformation determined on W into V by T (sinx) = sin2 x, T (cosx) = cos2 x, T (tanx) = tan2 x
and T (secx) = sec2 x. Determine a basis for the kernel of T .

Notes. A subset {v1, v2, · · · , vk} of a vertor space is linearly independent iff c1v1 + c2v2 + · · ·+ ckvk = 0
for scalars ci implies that c1 = c2 = · · · = ck = 0. The kernel of a linear transformation is the subspace
that T maps to the zero vector. A basis for a vector space is a linearly independent set of vectors for
which every element of the space is some linear combination.

5. Let n be a positive integer and x a real number not equal to a nonnegative integer. Prove that

n

x
+
n(n− 1)

x(x− 1)
+
n(n− 1)(n− 2)

x(x− 1)(x− 2)
+ · · ·+ n(n− 1)(n− 2) · · · 1

x(x− 1)(x− 2) · · · (x− n+ 1)
=

n

x− n+ 1
.

[This was a problem given by Samuel Beatty on a regular problem assignment to first year honours
mathematics students in the 1930s.]

6. Prove that, for each positive integer n, the series
∞∑
k=1

kn

2k

converges to twice an odd integer not less than (n+ 1)!.

7. Suppose that x ≥ 1 and that x = bxc+ {x}, where bxc is the greatest integer not exceeding x and the
fractional part {x} satisfies 0 ≤ {x} < 1. Define

f(x) =

√
bxc+

√
{x}√

x
.

1



(a) Determine the supremum, i.e., the least upper bound, of the values of f(x) for 1 ≤ x.

(b) Let x0 ≥ 1 be given, and for n ≥ 1, define xn = f(xn−1). Prove that limn→∞ xn exists.

8. A regular heptagon (polygon with seven equal sides and seven equal angles) has diagonals of two different
lengths. Let a be the length of a side, b be the length of a shorter diagonal and c be the length of a
longer diagonal of a regular heptagon (so that a < b < c). Prove ONE of the following relationships:

a2

b2
+
b2

c2
+
c2

a2
= 6

or

b2

a2
+
c2

b2
+
a2

c2
= 5 .

Saturday, March 9, 2002

Time: 3 1
2 hours

1. Let A, B, C be three pairwise orthogonal faces of a tetrahedran meeting at one of its vertices and having
respective areas a, b, c. Let the face D opposite this vertex have area d. Prove that

d2 = a2 + b2 + c2 .

2. Angus likes to go to the movies. On Monday, standing in line, he noted that the fraction x of the line
was in front of him, while 1/n of the line was behind him. On Tuesday, the same fraction x of the line
was in front of him, while 1/(n + 1) of the line was behind him. On Wednesday, the same fraction x
of the line was in front of him, while 1/(n+ 2) of the line was behind him. Determine a value of n for
which this is possible.

3. In how many ways can the rational 2002/2001 be written as the product of two rationals of the form
(n+ 1)/n, where n is a positive integer?

4. Consider the parabola of equation y = x2. The normal is constructed at a variable point P and meets
the parabola again in Q. Determine the location of P for which the arc length along the parabola
between P and Q is minimized.

5. Let n be a positive integer. Suppose that f is a function defined and continuous on [0, 1] that is
differentiable on (0, 1) and satisfies f(0) = 0 and f(1) = 1. Prove that, there exist n [distinct] numbers
xi (1 ≤ i ≤ n) in (0, 1) for which

n∑
i=1

1

f ′(xi)
= n .

6. Let x, y > 0 be such that x3 + y3 ≤ x− y. Prove that x2 + y2 ≤ 1.

7. Prove that no vector space over R is a finite union of proper subspaces.

8. (a) Suppose that P is an n × n nonsingular matrix and that u and v are column vectors with n
components. The matrix vTP−1u is 1×1, and so can be identified with a scalar. Suppose that its value
is not equal to −1. Prove that the matrix P + uvT is nonsingular and that

(P + uvT )−1 = P−1 − 1

α
P−1uvTP−1

2



where vT denotes the transpose of v and α = 1 + vTP−1u.

(b) Explain the situation when α = 0.

9. A sequence whose entries are 0 and 1 has the property that, if each 0 is replaced by 01 and each 1 by
001, then the sequence remains unchanged. Thus, it starts out as 010010101001 · · ·. What is the 2002th
term of the sequence?

Sunday, March 16, 2003

Time: 3 1
2 hours

No aids or calculators permitted.

1. Evaluate
∞∑
n=1

tan−1
(

2

n2

)
.

[tan−1 denotes the (composition) inverse function for tan.]

2. Let a, b, c be positive real numbers for which a+ b+ c = abc. Prove that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3

2
.

3. Solve the differential equation
y′′ = yy′ .

4. Show that n divides the integer nearest to

(n+ 1)!

e
.

5. For x > 0, y > 0, let g(x, y) denote the minimum of the three quantities, x, y+ 1/x and 1/y. Determine
the maximum value of g(x, y) and where this maximum is assumed.

6. A set of n lightbulbs, each with an on-off switch, numbered 1, 2, · · · , n are arranged in a line. All are
initially off. Switch 1 can be operated at any time to turn its bulb on of off. Switch 2 can turn bulb 2
on or off if and only if bulb 1 is off; otherwise, it does not function. For k ≥ 3, switch k can turn bulb k
on or off if and only if bulb k−1 is off and bulbs 1, 2, · · · , k−2 are all on; otherwise it does not function.

(a) Prove that there is an algorithm that will turn all of the bulbs on.

(b) If xn is the length of the shortest algorithm that will turn on all n bulbs when they are initially off,
determine the largest prime divisor of 3xn + 1 when n is odd.

7. Suppose that the polynomial f(x) of degree n ≥ 1 has all real roots and that λ > 0. Prove that the set
{x ∈ R : |f(x)| ≤ λ|f ′(x)|} is a finite union of closed intervals whose total length is equal to 2nλ.

8. Three matrices A, B and A + B have rank 1. Prove that either all the rows of A and B are multiples
of one and the same vector, or that all of the columns of A and B are multiples of one and the same
vector.

9. Prove that the integral ∫ ∞
0

sin2 x

π2 − x2
dx
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exists and evaluate it.

10. Let G be a finite group of order n. Show that n is odd if and only if each element of G is a square.

Sunday, March 14, 2004

Time: 3 1
2 hours

1. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z|z| +

w

|w|

∣∣∣∣ ≤ 2|z + w| .

2. Prove that ∫ 1

0

xxdx = 1− 1

22
+

1

33
− 1

44
+

1

55
+ · · · .

3. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?

4. Let n be a positive integer exceeding 1. How many permutations {a1, a2, · · · , an} of {1, 2, · · · , n} are
there which maximize the value of the sum

|a2 − a1|+ |a3 − a2|+ · · ·+ |ai+1 − ai|+ · · ·+ |an − an−1|

over all permutations? What is the value of this maximum sum?

5. Let A be a n × n matrix with determinant equal to 1. Let B be the matrix obtained by adding 1 to
every entry of A. Prove that the determinant of B is equal to 1 + s, where s is the sum of the n2 entries
of A−1.

6. Determine (∫ 1

0

dt√
1− t4

)
÷
(∫ 1

0

dt√
1 + t4

)
.

7. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

8. Let V be a complex n−dimensional inner product space. Prove that

|u|2|v|2 − 1

4
|u− v|2|u+ v|2 ≤ |(u, v)|2 ≤ |u|2|v|2 .
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9. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.

Saturday, March 12, 2005

Time: 3 1
2 hours

1. Show that, if −π/2 < θ < π/2, then∫ θ

0

log(1 + tan θ tanx)dx = θ log sec θ .

2. Suppose that f is continuously differentiable on [0, 1] and that
∫ 1

0
f(x)dx = 0. Prove that

2

∫ 1

0

f(x)2dx ≤
∫ 1

0

|f ′(x)|dx ·
∫ 1

0

|f(x)|dx .

3. How many n× n invertible matrices A are there for which all the entries of both A and A−1 are either
0 or 1?

4. Let a be a nonzero real and u and v be real 3-vectors. Solve the equation

2ax + (v × x) + u = O

for the vector x.

5. Let f(x) be a polynomial with real coefficients, evenly many of which are nonzero, which is palindromic.
This means that the coefficients read the same in either direction, i.e. ak = an−k if f(x) =

∑n
k=0 akx

k,
or, alternatively f(x) = xnf(1/x), where n is the degree of the polynomial. Prove that f(x) has at least
one root of absolute value 1.

6. Let G be a subgroup of index 2 contained in Sn, the group of all permutations of n elements. Prove
that G = An, the alternating group of all even permutations.

7. Let f(x) be a nonconstant polynomial that takes only integer values when x is an integer, and let P be
the set of all primes that divide f(m) for at least one integer m. Prove that P is an infinite set.

8. Let AX = B represent a system of m linear equations in n unknowns, where A = (aij) is an m × n
matrix, X = (x1, · · · , xn)t is an n × 1 vector and B = (b1, · · · , bm)t is an m × 1 vector. Suppose that
there exists at least one solution for AX = B. Given 1 ≤ j ≤ n, prove that the value of the jth
component is the same for every solution X of AX = B if and only if the rank of A is decreased if the
jth column of A is removed.

9. Let S be the set of all real-valued functions that are defined, positive and twice continuously differentiable
on a neighbourhood of 0. Suppose that a and b are real parameters with ab 6= 0, b < 0. Define operators
from S to R as follows:

A(f) = f(0) + af ′(0) + bf ′′(0) ;

G(f) = expA(log f) .

(a) Prove that A(f) ≤ G(f) for f ∈ S;

(b) Prove that G(f + g) ≤ G(f) +G(g) for f, g ∈ S;

(c) Suppose that H is the set of functions in S for which G(f) ≤ f(0). Give examples of nonconstant
functions, one in H and one not in H. Prove that, if λ > 0 and f, g ∈ H, then λf , f + g and fg all
belong to H.
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10. Let n be a positive integer exceeding 1. Prove that, if a graph with 2n+ 1 vertices has at least 3n+ 1
edges, then the graph contains a circuit (i.e., a closed non-self-intersecting chain of edges whose terminal
point is its initial point) with an even number of edges. Prove that this statement does not hold if the
number of edges is only 3n.

Sunday, March 12, 2006

Time: 3 1
2 hours

1. (a) Suppose that a 6×6 square grid of unit squares (chessboard) is tiled by 1×2 rectangles (dominoes).
Prove that it can be decomposed into two rectangles, tiled by disjoint subsets of the dominoes.

(b) Is the same thing true for an 8× 8 array?

2. Let u be a unit vector in R3 and define the operator P by P (x) = u× x for x ∈ R3 (where × denotes
the cross product).

(a) Describe the operator I + P 2.

(b) Describe the action of the operator I + (sin θ)P + (1− cos θ)P 2.

3. Let p(x) be a polynomials of positive degree n with n distinct real roots a1 < a2 < · · · < an. Let b be a
real number for which 2b < a1 + a2. Prove that

2n−1|p(b)| ≥ |p′(a1)(b− a1)| .

4. Two parabolas have parallel axes and intersect in two points. Prove that their common chord bisects
the segments whose endpoints are the points of contact of their common tangent.

5. Suppose that you have a 3×3 grid of squares. A line is a set of three squares in the same row, the same
column or the same diagonal; thus, there are eight lines.

Two players A and B play a game. They take alternate turns, A putting a 0 in any unoccupied square
of the grid and B putting a 1. The first player is A, and the game cannot go on for more than nine
moves. (The play is similar to noughts-and-crosses, or tictactoe.) A move is legitimate if it does not
result in two lines of squares being filled in with different sums. The winner is the last player to make
a legitimate move.

(For example, if there are three 0s down the diagonal, then B can place a 1 in any vacant square provided
it completes no other line, for then the sum would differ from the diagonal sum. If there are two zeros
at the top of the main diagonal and two ones at the left of the bottom line, then the lower right square
cannot be filled by either player, as it would result in two lines with different sums.)

(a) What is the maximum number of legitimate moves possible in a game?

(b) What is the minimum number of legitimate moves possible in a game that would not leave a
legitimate move available for the next player?

(c) Which player has a winning strategy? Explain.

6. Suppose that k is a positive integer and that

f(t) = a1e
λ1t + a2e

λ2t + · · ·+ ake
λkt

where a1, · · · , ak, λ1, · · · , λk are real numbers with λ1 < λ2 < · · · < λk. Prove that f(t) = 0 has finitely
many real solutions. What is the maximum number of solutions possible, as a function of k?
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7. Let A be a real 3× 3 invertible matrix for which the sums of the rows, columns and two diagonals are
all equal. Prove that the rows, columns and diagonal sums of A−1 are all equal.

8. Let f(x) be a real function defined and twice differentiable on an open interval containing [−1, 1].
Suppose that 0 < α ≤ γ and that |f(x)| ≤ α and |f ′′(x)| ≤ γ for −1 ≤ x ≤ 1. Prove that

|f ′(x)| ≤ 2
√
αγ

for −1 ≤ x ≤ 1. (Part marks are possible for the weaker inequality |f ′(x)| ≤ α+ γ.)

9. A high school student asked to solve the surd equation

√
3x− 2−

√
2x− 3 = 1

gave the following answer: Squaring both sides leads to

3x− 2− 2x− 3 = 1

so x = 6. The answer is, in fact, correct.

Show that there are infinitely many real quadruples (a, b, c, d) for which this method leads to a correct
solution of the surd equation √

ax− b−
√
cx− d = 1 .

10. Let P be a planar polygon that is not convex. The vertices can be classified as either convex or concave
according as to whether the angle at the vertex is less than or greater than 180◦ respectively. There
must be at least two convex vertices. Select two consecutive convex vertices (i.e., two interior angles
less than 180◦ for which all interior angles in between exceed 180◦) and join them by a segment. Reflect
the edges between these two convex angles in the segment to form along with the other edges of P a
polygon P1. If P1 is not convex, repeat the process, reflecting some of the edges of P1 in a segment
joining two consecutive convex vertices, to form a polygon P2. Repeat the process. Prove that, after a
finite number of steps, we arrive at a polygon Pn that is convex.

Sunday, March 11, 2007

Time: 3 1
2 hours

1. A m × n rectangular array of distinct real numbers has the property that the numbers in each row
increase from left to right. The entries in each column, individually, are rearranged so that the numbers
in each column increase from top to bottom. Prove that in the final array, the numbers in each row will
increase from left to right.

2. Determine distinct positive integers a, b, c, d, e such that the five numbers a, b2, c3, d4, e5 constitute
an arithmetic progression. (The difference between adjacent pairs is the same.)

3. Prove that the set {1, 2, · · · , n} can be partitioned into k subsets with the same sum if and only if k
divides 1

2n(n+ 1) and n ≥ 2k − 1.

4. Suppose that f(x) is a continuous real-valued function defined on the interval [0, 1] that is twice differ-
entiable on (0, 1) and satisfies (i) f(0) = 0 and (ii) f ′′(x) > 0 for 0 < x < 1.

(a) Prove that there exists a number a for which 0 < a < 1 and f ′(a) < f(1);

(b) Prove that there exists a unique number b for which a < b < 1 and f ′(a) = f(b)/b.
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5. For x ≤ 1 and x 6= 0, let

f(x) =
−8[1− (1− x)1/2]3

x2
.

(a) Prove that limx→0 f(x) exists. Take this as the value of f(0).

(b) Determine the smallest closed interval that contains the set of all values assumed by f(x) on its
domain.

(c) Prove that f(f(f(x))) = f(x) for all x ≤ 1.

6. Let h(n) denote the number of finite sequences {a1, a2, · · · , ak} of positive integers exceeding 1 for which
k ≥ 1, a1 ≥ a2 ≥ · · · ≥ ak and n = a1a2 · · · ak. (For example, if n = 20, there are four such sequences
{20}, {10, 2}, {5, 4} and {5, 2, 2} and h(20) = 4.

Prove that
∞∑
n=1

h(n)

n2
= 1 .

7. Find the Jordan canonical form of the matrix uvt where u and v are column vectors in Cn. (The
superscript t denotes the transpose.)

8. Suppose that n points are given in the plane, not all collinear. Prove that there are at least n distinct
straight lines that can be drawn through pairs of the points.

9. Which integers can be written in the form

(x+ y + z)2

xyz

where x, y, z are positive integers?

10. Solve the following differential equation
2y′ = 3|y|1/3

subject to the intial conditions

y(−2) = −1 and y(3) = 1 .

Your solution should be everywhere differentiable.

Sunday, March 9, 2008

Time: 3 1
2 hours

1. Three angles of a heptagon (7-sided polygon) inscribed in a circle are equal to 120◦. Prove that at least
two of its sides are equal.

2. (a) Determine a real-valued function g defined on the real numbers that is decreasing and for which
g(g(x)) = 2x+ 2.

(b) Prove that there is no real-valued function f defined on the real numbers that is decreasing and for
which f(f(x)) = x+ 1.

3. Suppose that a is a real number and the sequence {an} is defined recursively by a0 = a and

an+1 = an(an − 1)

8



for n ≥ 0. Find the values of a for which the sequence {an} converges.

4. Suppose that u, v, w, z are complex numbers for which u + v + w + z = u2 + v2 + w2 + z2 = 0. Prove
that

(u4 + v4 + w4 + z4)2 = 4(u8 + v8 + w8 + z8) .

5. Suppose that a, b, c ∈ C with ab = 1. Evaluate the determinant of
c a a2 · · · an−1

b c a · · · an−2

b2 b c · · · an−3
...

...
...

...
bn−1 bn−2 · · · c



6. 2008 circular coins, possibly of different diameters, are placed on the surface of a flat table in such a
way that no coin is on top of another coin. What is the largest number of points at which two of the
coins could be touching?

7. Let G be a group of finite order and identity e. Suppose that φ is an automorphism of G onto itself
with the following properties: (1) φ(x) = x if and only if x = e; (2) φ(φ(x)) = x for each element x of
G. (The mapping φ has the property that it is one-one onto and that φ(xy) = φ(x)φ(y) for each pair
x, y of elements of G.)

(a) Give an example of a group and automorphism for which these conditions are satisfied.

(b) Prove that G is commutative (i.e., xy = yx for each pair x, y of elements in G).

8. Let b ≥ 2 be an integer base of numeration and let 1 ≤ r ≤ b − 1. Determine the sum of all r−digit
numbers of the form

ar−1ar−2 · · · a2a1a0 ≡ ar−1br−1 + ar−2b
r−2 + · · ·+ a1r + a0

whose digits increase strictly from left to right: 1 ≤ ar−1 < ar−2 < · · · < a1 < a0 ≤ b− 1.

9. For each positive integer n, let

S(n) =

n∑
k=1

2k

k2
.

Prove that S(n+ 1)/S(n) is not a rational function of n. [A rational function is one that can be written
as a ratio of two polynomials.]

10. A point is chosen at random (with the uniform distribution) on each side of a unit square. What is the
probability that the four points are the vertices of a quadrilateral with area exceeding 1

2?

Sunday, March 8, 2009

Time: 3 1
2 hours

1. Determine the supremum and the infimum of

(x− 1)x−1xx

(x− (1/2))2x−1

for x > 1.
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2. Let n and k be integers with n ≥ 0 and k ≥ 1. Let x0, x1, · · ·, xn be n+ 1 distinct points in Rk and let
y0, y1, · · ·, yn be n + 1 real numbers (not necessarily distinct). Prove that there exists a polynomial p
of degree at most n in the coordinates of x with respect to the standard basis for which p(xi) = yi for
0 ≤ i ≤ n.

3. For each positive integer n, let p(n) be the product of all positive integral divisors of n. Is it possible to
find two distinct positive integers m and n for which p(m) = p(n)?

4. Let {an} be a real sequence for which
∞∑
n=1

an
n

converges. Prove that

lim
n→∞

a1 + a2 + · · ·+ an
n

= 0 .

5. Find a 3× 3 matrix A with elements in Z2 for which A7 = I and A 6= I. (Here, I is the identity matrix
and Z2 is the field of two elements 0 and 1 where addition and multiplication are defined modulo 2.)

6. Determine all solutions in nonnegative integers (x, y, z, w) to the equation

2x3y − 5z7w = 1 .

7. Let n ≥ 2. Minimize a1 + a2 + · · · + an subject to the constraints 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and
a1a2 + a2a3 + · · ·+ an−1an + ana1 = 1. (When n = 2, the latter condition is a1a2 = 1; when n ≥ 3, the
sum on the left has exactly n terms.)

8. Let a, b, c be members of a real inner-product space (V, 〈, 〉) whose norm is given by ‖x‖2 = 〈x, x〉. (You
may assume that V is Rn if you wish. Prove that

‖a+ b‖+ ‖b+ c‖+ ‖c+ a‖ ≤ ‖a‖+ ‖b‖+ ‖c‖+ ‖a+ b+ c‖

for a, b, c,∈ V .

9. Let p be a prime congruent to 1 modulo 4. For each real number x, let {x} = x − bxc denote the
fractional part of x. Determine

∑{{
k2

p

}
: 1 ≤ k ≤ 1

2
(p− 1)

}
.

10. Suppose that a path on a m × n grid consisting of the lattice points {(x, y) : 1 ≤ x ≤ m, 1 ≤ y ≤ n}
(x and y both integers) consisting of mn − 1 unit segments begins at the point (1, 1), passes through
each point of the grid exactly once, does not intersect itself and finishes at the point (m,n). Show that
the path partitions the rectangle bounded by the lines x = 1, x = m, y = 1, y = n into two subsets of
equal area, the first consisting of regions opening to the left or up, and the second consisting of regions
opening to the right or down.

Sunday, March 7, 2010

Time: 3 1
2 hours

1. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.
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2. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑{

(i+ j + k)!

i!j!k!
: i, j, k ≥ 0, i+ j + 2k = n

}
.

3. Let a and b , the latter nonzero, be vectors in R3. Determine the value of λ for which the vector
equation

a− (x× b) = λb

is solvable, and then solve it.

4. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

5. Let m be a natural number, and let c, a1, a2, · · · , am be complex numbers for which |ai| = 1 for i =
1, 2, · · · ,m. Suppose also that

lim
n→∞

m∑
i=1

ani = c .

Prove that c = m and that ai = 1 for i = 1, 2, · · · ,m.

6. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x+ 1) = g(h(x)) ,

7. Suppose that f is a continuous real-valued function defined on the closed interval [0, 1] and that(∫ 1

0

xf(x)dx

)2

=

(∫ 1

0

f(x)dx

)(∫ 1

0

x2f(x)dx

)
.

Prove that there is a point c ∈ (0, 1) for which f(c) = 0.

8. Let A be an invertible symmetric n × n matrix with entries {ai,j} in Z2. Prove that there is an n × n
matrix with entries in Z2 such that A = M tM only if ai,i 6= 0 for some i.

[Z2 refers to the field of integers modulo 2 with two elements 0, 1 for which 1 + 1 = 0. M t refers to the
transpose of the matrix M .]

9. Let f be a real-valued functions defined on R with a continuous third derivative, let S0 = {x : f(x) = 0},
and, for k = 1, 2, 3, Sk = {x : f (k)(x) = 0}, where f (k) denotes the kth derivative of f . Suppose also
that R = S0 ∪ S1 ∪ S2 ∪ S3. Must f be a polynomial of degree not exceeding 2?

10. Prove that the set Q of rationals can be written as the union of countably many subsets of Q each of
which is dense in the set R of real numbers.

Sunday, March 6, 2011

Time: 3 1
2 hours

1. Let S be a nonvoid set of real numbers with the property that, for each real number x, there is a
unique real number f(x) belonging to S that is farthest from x, i.e., for each y in S distinct from f(x),
|x− f(x)| > |x− y|. Prove that S must be a singleton.

2. Let u and v be positive reals. Minimize the larger of the two values

2u+
1

v2
and 2v +

1

u2
.
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3. Suppose that S is a set of n nonzero real numbers such that exactly p of them are positive and exactly
q are negative. Determine all the pairs (n, p) such that exactly half of the threefold products abc of
distinct elements a, b, c of S are positive.

4. Let {bn : n ≥ 1} be a sequence of positive real numbers such that

3bn+2 ≥ bn+1 + 2bn

for every positive integer n. Prove that either the sequence converges or that it diverges to infinity.

5. Solve the system
x+ xy + xyz = 12

y + yz + yzx = 21

z + zx+ zxy = 30 .

6. Two competitors play badminton. They play two games, each winning one of them. They then play a
third game to determine the overall winner of the match. The winner of a game of badminton is the
first player to score at least 21 points with a lead of at least 2 points over the other player.

In this particular match, it is observed that the scores of each player listed in order of the games form
an arithmetic progression with a nonzero common difference. What are the scores of the two players in
the third game?

7. Suppose that there are 2011 students in a school and that each students has a certain number of friends
among his schoolmates. It is assumed that if A is a friend of B, then B is a friend of A, and also
that there may exist certain pairs that are not friends. Prove that there is a nonvoid subset S of these
students for which every student in the school has an even number of friends in S.

8. The set of transpositions of the symmetric group S5 on {1, 2, 3, 4, 5} is

{(12), (13), (14), (15), (23), (24), (25), (34), (35), (45)}

where (ab) denotes the permutation that interchanges a and b and leaves every other element fixed.
Determine a product of all transpositions, each occuring exactly once, that is equal to the identity
permutation ε, which leaves every element fixed.

9. Suppose that A and B are two square matrices of the same order for which the indicated inverses exist.
Prove that

(A+AB−1A)−1 + (A+B)−1 = A−1 .

10. Suppose that p is an odd prime. Determine the number of subsets S contained in {1, 2, · · · , 2p− 1, 2p}
for which (a) S has exactly p elements, and (b) the sum of the elements of S is a multiple of p.

Saturday, March 10, 2012

Time: 3 1
2 hours

1. An equilateral triangle of side length 1 can be covered by five equilateral triangles of side length u.
Prove that it can be covered by four equilateral triangles of side length u. (A triangle is a closed convex
set that contains its three sides along with its interior.)

2. Suppose that f is a function defined on the set Z of integers that takes integer values and satisfies the
condition that f(b) − f(a) is a multiple of b − a for every pair a, b, of integers. Suppose also that p is
a polynomial with integer coefficients such that p(n) = f(n) for infinitely many integers n. Prove that
p(x) = f(x) for every positive integer x.

12



3. Given the real numbers a, b, c not all zero, determine the real solutions x, y, z, u, v, w for the system of
equations:

x2 + v2 + w2 = a2

u2 + y2 + w2 = b2

u2 + v2 + z2 = c2

u(y + z) + vw = bc

v(x+ z) + wu = ca

w(x+ y) + uv = ab.

4. (a) Let n and k be positive integers. Prove that the least common multiple of {n, n+1, n+2, · · · , n+k}
is equal to

rn

(
n+ k

k

)
for some positive integer r.

(b) For each positive integer k, prove that there exist infinitely many positive integers n, for which the
number r defined in part (a) is equal to 1.

5. Let C be a circle and Q a point in the plane. Determine the locus of the centres of those circles that are
tangent to C and whose circumference passes through Q.

6. Find all continuous real-valued functions defined on R that satisfy f(0) = 0 and

f(x)− f(y) = (x− y)g(x+ y)

for some real valued function g(x).

7. Consider the following problem:

Suppose that f(x) is a continuous real-valued function defined on the interval [0, 2] for which∫ 2

0

f(x)dx =

∫ 2

0

(f(x))2dx .

Prove that there exists a number c ∈ [0, 2] for which either f(c) = 0 or f(c) = 1.

(a) Criticize the following solution:

Solution. Clearly
∫ 2

0
f(x)dx ≥ 0. By the extreme value theorem, there exist numbers u and v in [0, 2]

for which f(u) ≤ f(x) ≤ f(v) for 0 ≤ x ≤ 2. Hence

f(u)

∫ 2

0

f(x)dx ≤
∫ 2

0

f(x)2dx ≤ f(v)

∫ 2

0

f(x)dx .

Since
∫ 2

0
f(x)2dx = 1 ·

∫ 2

0
f(x)dx, by the intermediate value theorem, there exists a number c ∈ [0, 2] for

which f(c) = 1. �

(b) Show that there is a nontrivial function f that satisfies the conditions of the problem but that never
assumes the value 1.

(c) Provide a complete solution of the problem.

8. Determine the area of the set of points (x, y) in the plane that satisfy the two inequalities:

x2 + y2 ≤ 2

x4 + x3y3 ≤ xy + y4.

13



9. In a round-robin tournament of n ≥ 2 teams, each pair of teams plays exactly one game that results in
a win for one team and a loss for the other (there are no ties).

(a) Prove that the teams can be labelled t1, t2, · · ·, tn, so that, for each i with 1 ≤ i ≤ n − 1, team ti
beats ti+1.

(b) Suppose that a team t has the property that, for each other team u, one can find a chain u1, u2,
· · ·, um of (possibly zero) distinct teams for which t beats u1, ui beats ui+1 for 1 ≤ i ≤ m− 1 and um
beats u. Prove that all of the n teams can be ordered as in (a) so that t = t1 and each ti beats ti+1 for
1 ≤ i ≤ n− 1.

(c) Let T denote the set of teams who can be labelled as t1 in an ordering of teams as in (a). Prove
that, in any ordering of teams as in (a), all the teams in T occur before all the teams that are not in T .

10. Let A be a square matrix whose entries are complex numbers. Prove that A∗ = A if and only if
AA∗ = A2.

Notes. For any m× n matrix M with entries mij , the hermitian transpose M∗ is the n×m matrix M∗

obtained by taking the complex conjugates of entries of M and transposing; thus, the (i, j)th element
of M∗ is mji. In particular, for the complex column vector x with ith entry xi, x

∗ is a row vector whose
ith entry is x̄i. The inner product 〈x, y〉 of two column vectors is

∑
x̄iyi = x∗y, and we have that

〈x,Ay〉 = 〈A∗x, y〉. A matrix for which A∗ = A is said to be hermitian.

Saturday, March 9, 2013

Time: 3 1
2 hours

1. (a) Let a be an odd positive integer exceeding 3, and let n be a positive integer. Prove that

a2
n

− 1

has at least n+ 1 distinct prime divisors.

(b) When a = 3, determine all the positive integers n for which the assertion in (a) is false.

2. ABCD is a square; points U and V are situated on the respective sides BC and CD. Prove that the
perimeter of triangle CUV is equal to twice the sidelength of the square if and only if ∠UAV = 45◦.

3. Let f(x) be a convex increasing realvalued function defined on the closed interval [0, 1] for which f(0) = 0
and f(1) = 1. Suppose that 0 < a < 1 and that b = f(a).

(a) Prove that f is continuous on (0, 1).

(b) Prove that

0 ≤ a− b ≤ 2

∫ 1

0

(x− f(x))dx ≤ 1− 4b(1− a).

Notes. f(x) is increasing if and only if f(u) ≤ f(v) whenever u ≤ v, and is convex if and only if

f((1− t)u+ tv) ≤ (1− t)f(u) + tf(v)

whenever 0 < t < 1.

4. Let S be the set of integers of the form x2 + xy + y2, where x and y are integers.

(a) Prove that any prime p in S is either equal to 3 or is congruent to 1 modulo 6.

(b) Prove that S includes all squares.

(c) Prove that S is closed under multiplication.
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5. A point on an ellipse is joined to the ends of its major axis. Prove that the portion of a directrix
intercepted by the two joining lines subtends a right angle at the corresponding focus.

Notes. The directrix corresponding to a focus F of an ellipse is a line with the property that, for any
point P on the ellipse, the distance from P to F divided by the distance from P to the directrix is a
constant e, called the eccentricity, less than 1. The major axis is the chord of the ellipse that passes
through the two foci.

6. Let p(x) = x4 + ax3 + bx2 + cx + d be a polynomial with rational coefficients. Suppose that p(x) has
exactly one real zero r. Prove that r is rational.

7. Let (V, 〈·〉) be a two-dimensional inner product space over the complex field C and let z1 and z2 be unit
vectors in V . Prove that

sup{|〈z, z1〉〈z, z2〉| : ‖z‖ = 1} ≥ 1

2

with equality if and only if 〈z1, z2〉 = 0.

Note: The inner product 〈z, w〉 is linear in the left variable and satisfies 〈w, z〉 = 〈z, w〉. Also, ‖z‖2 =
〈z, z〉.

8. For any real square matrix A, the adjugate matrix, adj A, has as its elements that cofactors of the
transpose of A, so that

A · adj A = adj A ·A = (det A)I .

(a) Suppose that A is an invertible square matrix. Show that

(adj (At))−1 = (adj (A−1))t .

(b) Suppose that adj (At) is orthogonal (i.e., its inverse is its transpose). Prove that A is invertible.

(c) Let A be an invertible n× n square matrix and let det (tI −A) = tn + c1t
n−1 + · · ·+ cn−1t+ cn be

the characteristic polynomial of the matrix A. Determine the characteristic polynomial of adj A.

Note. A real square matrix M is orthogonal if and only if the product of M and its transpose M t is the
identity matrix.

9. Let S be a set upon whose elements there is a binary operation (x, y) → xy which is associative (i.e.
x(yz) = (xy)z). Suppose that there exists an element e ∈ S for which e2 = e and that for each a ∈ S,
there is at least one element b for which ba = e and at most one element c for which ac = e. Prove that
S is a group with this binary operation.

Note. A group G is a set with an associative binary operation that contains an identity element u for
which, given any element x ∈ G, xu = ux = x and there exists y ∈ G for which yx = xy = u.

10. (a) Let f be a real-valued function defined on the real number field R for which |f(x)−f(y)| < |x−y| for
any pair (x, y) of distinct elements of R. Let f (n) denote the nth composite of f defined by f (1)(x) = f(x)
and f (n+1)(x) = f(f (n)(x)) for n ≥ 2. Prove that exactly one of the following situations must occur:

(i) limn→+∞ f (n)(x) = +∞ for each real x;

(ii) limn→+∞ f (n)(x) = −∞ for each real x;

(iii) there is a real number z such that

lim
n→+∞

f (n)(x) = z

for each real x.

(b) Give examples to show that each of the three cases in (a) can occur.

15



UNDERGRADUATE MATHEMATICS COMPETITION

Sunday, March 9, 2014

Time: 3 1
2 hours

1. The permanent, per A, of a n× n matric A = (ai,j), is equal to the sum of all possible products of the
form a1,σ(1)a2,σ(2) · · · an,σ(n), where σ runs over all the permutations on the set {1, 2, · · · , n}. (This is
similar to the definition of determinant, but there is no sign factor.) Show that, for any n × n matrix
A = (ai,j) with positive real terms,

per A ≥ n!

 ∏
1≤i,j≤n

ai,j

 1
n

.

2. For a positive integer N written in base 10 numeration, N ′ denotes the integer with the digits of N
written in reverse order. There are pairs of integers (A,B) for which A,A′, B,B′ are all distinct and
A×B = B′ ×A′. For example,

3516× 8274 = 4728× 6153.

(a) Determine a pair (A,B) as described above for which both A and B have two digits, and all four
digits involved are distinct.

(b) Are there any pairs (A,B) as described above for which A has two and B has three digits?

3. Let n be a positive integer. A finite sequence {a1, a2, · · · , an} of positive integers ai is said to be tight if
and only if 1 ≤ a1 < a2 < · · · < an, all

(
n
2

)
differences aj − ai with i < j are distinct, and an is as small

as possible.

(a) Determine a tight sequence for n = 5.

(b) Prove that there is a polynomial p(n) of degree not exceeding 3 such that an ≤ p(n) for every tight
sequence {ai} with n entries.

4. Let f(x) be a continuous realvalued function on [0, 1] for which∫ 1

0

f(x)dx = 0 and

∫ 1

0

xf(x)dx = 1.

(a) Give an example of such a function.

(b) Prove that there is a nontrivial open interval I contained in (0, 1) for which |f(x)| > 4 for x ∈ I.

5. Let n be a positive integer. Prove that

n∑
k=1

1

k
(
n
k

) =

n∑
k=1

1

k2n−k
=

1

2n−1

n∑
k=1

2k−1

k
=

1

2n−1

∑{(n
k

)
k

: k odd , 1 ≤ k ≤ n
}

).

6. Let f(x) = x6 − x4 + 2x3 − x2 + 1.

(a) Prove that f(x) has no positive real roots.

(b) Determine a nonzero polynomial g(x) of minimum degree for which all the coefficients of f(x)g(x) are
nonnegative rational numbers.

(c) Determine a polynomial h(x) of minimum degree for which all the coefficients of f(x)h(x) are positive
rational numbers.
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7. Suppose that x0, x1, · · · , xn are real numbers. For 0 ≤ i ≤ n, define

yi = max (x0, x1, · · · , xi).

Prove that

y2n ≤ 4x2n − 4

n−1∑
i=0

yi(xi+1 − xi).

When does equality occur?

8. The hyperbola with equation x2 − y2 = 1 has two branches, as does the hyperbola with equation
y2 − x2 = 1. Choose one point from each of the four branches of the locus of (x2 − y2)2 = 1 such that
area of the quadrilateral with these four vertices is minimized.

9. Let {an} and {bn} be positive real sequences such that

lim
n→∞

an
n

= u > 0

and

lim
n→∞

(
bn
an

)n
= v > 0.

Prove that

lim
n→∞

(
bn
an

)
= 1

and
lim
n→∞

(bn − an) = u log v.

10. Does there exist a continuous realvalued function defined on R for which f(f(x)) = −x for all x ∈ R?

UNDERGRADUATE MATHEMATICS COMPETITION

March 8, 2015

Time: 3 1
2 hours

1. Suppose that u and v are two real-valued functions defined on the set of reals. Let f(x) = u(v(x)) and
g(x) = u(−v(x)) for each real x. If f(x) is continuous, must g(x) also be continuous?

2. Given 2n distinct points in space, the sum S of the lengths of all the segments joining pairs of them is
calculated. Then n of the points are removed along with all the segments having at least one endpoint
from among them. Prove that the sum of the lengths of all the remaining segments is less that 1

2S.

3. Let f : [0, 1] −→ R be continuously differentiable. Prove that∣∣∣∣f(0) + f(1)

2
−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ 1

4
sup{|f ′(x)| : 0 ≤ x ≤ 1}.

4. Determine all the values of the positive integer n ≥ 2 for which the following statement is true, and for
each, indicate when equality holds.

For any nonnegative real numbers x1, x2, · · ·, xn,

(x1 + x2 + · · ·+ xn)2 ≥ n(x1x2 + x2x3 + · · ·+ xn−1xn + xnx1),

17



where the right side has n summands.

5. Let f(x) be a real polynomial of degree 4 whose graph has two real inflection points. There are three
regions bounded by the graph and the line passing through these inflection points. Prove that two of
these regions have equal area and that the area of the third region is equal to the sum of the other two
areas.

6. Using the digits 1, 2, 3, 4, 5, 6, 7, 8, each exactly once, create two numbers and form their product.
For example, 472× 83156 = 39249632. What are the smallest and the largest values such a product can
have?

7. Determine ∫ 2

0

exdx

e1−x + ex−1
.

8. Let {an} and {bn} be two decreasing positive real sequences for which

∞∑
n=1

an =∞

and
∞∑
n=1

bn =∞.

Let I be a subset of the natural numbers, and define the sequence {cn} by

cn =

{
an, if n ∈ I
bn, if n 6∈ I.

Is it possible for
∑∞
n=1 cn to converge?

9. What is the dimension of the vector subspace of Rn generated by the set of vectors

(σ(1), σ(2), σ(3), · · · , σ(n))

where σ runs through all n! of the permutations of the first n natural numbers.

10. (a) Let
g(x, y) = x2y + xy2 + xy + x+ y + 1.

We form a sequence {x0} as follows: x0 = 0. The next term x1 is the unique root −1 of the linear
equation g(t, 0) = 0. For each n ≥ 2, xn is the root other than xn−2 of the equation g(t, xn−1) = 0.

Let {fn} be the Fibonacci sequence determined by f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.
Prove that, for any nonnegative integer k,

x2k =
fk
fk+1

and x2k+1 = −fk+2

fk+1
.

(b) Let
h(x, y) = x2y + xy2 + βxy + γ(x+ y) + δ

be a polynomial with real coefficients β, γ, δ. We form a bilateral sequence {xn : n ∈ Z} as follows.
Let x0 6= 0 be given arbitrarily. We select x−1 and x1 to be the two roots of the quadratic equation
h(t, x0) = 0 in either order. From here, we can define inductively the terms of the sequence for positive
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and negative values of the index so that xn−1 and xn+1 are the two roots of the equation h(t, xn) = 0.
We suppose that at each stage, neither of these roots is zero.

Prove that the sequence {xn} has period 5 (i.e. xn+5 = xn for each index n) if and only if γ3+δ2−βγδ =
0.

UNDERGRADUATE MATHEMATICS COMPETITION

Saturday, March 5, 2016

Time: 3 1
2 hours

1. Let a be a positive real number that is not an integer and let

n =

⌊
1

a− bac

⌋
.

Prove that b(n+ 1)ac− 1 is divisible by n+ 1. [Note: bxc denotes the largest integer that is not greater
than x, so that bxc ≤ x < bxc+ 1.]

2. Determine all polynomial solutions f(x) to the identity

f(x+ y − xy) = f(x)f(y).

3. Let n =
∏
pa be the prime factor decomposition of the positive integer n and define s(n) =

∑
ap, the

sum of all the primes involved in the decomposition counting repetitions. For each positive integer m
exceeding 1, let h(m) be the number of positive integers n for which s(n) = m.

(a) Prove that limn→∞ s(n) =∞.

(b) Prove that s(n) assumes every value exceeding 4 at least twice and that limn→∞ h(n) =∞.

4. Let p(x) be a monic polynomial of degree 3 with three distinct real roots. How many real roots does
the polynomial (p′(x))2 − 2p(x)p′′(x) have?

5. (a) Determine the largest positive integer n for which the following statement is NOT true:

There exists a finite set {a1, a2, . . . , ak} (k ≥ 1) of positive integers for which n < a1 < a2 < · · · < ak ≤
2n and n× a1 × a2 × · · · × ak is a perfect square.

(b) Determine infinitely many integers n for which n < a1 < a2 < . . . < ak and n× a1 × a2 × · · · × ak is
square implies that ak ≥ 2n.

(c) Let n = m2. Is it possible to determine an integer m for which integers a1, a2, · · · , ak can be chosen
in the open interval (m2, (m+ 1)2) for which the product a1 × a2 × · · · × ak is square?

6. Suppose that f is a strictly increasing convex real-valued continuous function on [0, 1] for which f(0) = 0
and f(1) = 1 and g(x) is a function that satisfies g(f(x)) = x for each x ∈ [0, 1]. Prove that∫ 1

0

f(x)g(x)dx ≤ 1

3
.

When does equality occur?

[Note: A function is convex if for any t ∈ [0, 1]

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)
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whenever x, y, (1− t)x+ ty belong to the domain of f .]

7. Let m,n be integers for which 0 ≤ m < n and let p(x) be a polynomial of degree n over a field F. What
is the dimension over F of the vector space generated by the set of functions

{1, x, x2, · · · , xn−m−1, p(x), p(x+ 1), · · · , p(x+m)}?

8. Let S be a set of the positive integers that is closed under addition (i.e., x, y ∈ S ⇒ x+y ∈ S) for which
the set T of positive integers not contained in S is finite with m ≥ 1 elements. Prove that the sum of
the numbers in T is not greater than m2 and determine all the sets S for which this sum is equal to m2.

9. (a) Prove that every polyhedron has at least two faces with the same number of edges.

(b) Suppose that k ≥ 3 and that all the faces in a polyhedron have at least k edges. Prove that there
are k pairs of faces with the same number of edges (the pairs need not be disjoint).

10. Let X be a subset of the group G such that⋂
{x−1X : x ∈ X}

contains an element a of finite order other than the identity. Prove that X is the union of cosets with
respect to some subgroup of G. [Note: for any set S and element g of G, gS = {gs : s ∈ S}.]

UNDERGRADUATE MATHEMATICS COMPETITION

March 12, 2017

Time: 3 1
2 hours

1. Determine the value of the infinite product

∞∏
n=2

(
1− 2

1 + n3

)
.

2. Let S be a set of n points in the plane, no two pairs the same distance apart. Each point is joined by a
straight line segment to the point that is nearest to it; no other segments are drawn. Prove:

(a) No two segments have a point in common except possibly a point in S;

(b) No point can be joined to more than five other points;

(c) The set of segments contains no cycle. In other words, there is no set {A1, A2, . . . , Ak} of points in
S, with k ≥ 3, such that Ak is joined to A1 and Ai is joined to Ai+1 for 1 ≤ i ≤ k − 1.

3. (a) Given six irrational real numbers, prove that there are always two subsets of three (not necessarily
disjoint) such that the sum of any two numbers in each of the subsets is irrational.

(b) Give an example of a set of six irrational numbers for which there are exactly two subsets of three
numbers with all pair sums irrational.

4. 54 and 96 are two nonsquare positive integers whose product is a square; the squares 64 and 81 lie
between them. Prove or disprove: if m and n are two distinct nonsquare positive integers such that mn
is a square, then there exists a square integer between them.

5. Let f(x) be a real continuous periodic function defined on the real numbers such that, for each positive
integer n,

|f(1)|
1

+
|f(2)|

2
+ · · ·+ |f(n)|

n
≤ 1.
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Prove that there exists a real number r such that f(r) = f(r + 1) = 0.

6. For n ≥ 2, let M be a n × n matrix with n distinct eigenvalues (exactly) one of which is 0. Suppose
that u is a nonzero row n−vector and v is a nonzero column n−vector for which both uM and Mv are
zero N−vectors. Prove that uv 6= O (i.e., u is not orthogonal to v).

7. Let p(z) be a polynomial of degree n, all of whose roots have absolute value 1. Prove that |p′(1)| ≥
n
2 |p(1)|.

8. Suppose that the real function y = f(x) defined on [0,∞) satisfies the differential equation

y′ =
1

x2 + y2

with the intial condition f(0) > 0. Prove that limx→∞ f(x) exists and that this limit exceeds 1.

9. Let f(x) be a real-valued continuous function defined on the closed interval [0, 1] for which

1 =

∫ 1

0

f(x)dx =

∫ 1

0

xf(x)dx.

Prove that ∫ 1

0

(f(x))2dx ≥ 4.

10. Prove that

0 <

∫ 3π/8

π/8

cos 2xdx

1 + tanx
<

π

8
√

2
.

UNDERGRADUATE MATHEMATICS COMPETITION

Sunday, March 10, 2019

Time: 3 1
2 hours

No aids or calculators permitted.

1. (a) Determine necessary and sufficient conditions on the sextuple (a, b, c, d, e, f) with a ≤ b ≤ c ≤ d ≤
e ≤ f in order that there exist four numbers for which a, b, c, d, e, f are the pairwise sums.

(b) Where the set of four numbers exist as in (a), determine when there is more than one possibility
and show that the sum of the squares of the numbers is the same for the different possibiities.

2. For n = 1, 2, . . ., let

xn =
n+ 1

2n+1

n∑
k=1

2k

k
.

Prove that limn→∞ xn exists and find it.

3. The positive integer n is said to be an SP (square-pair) number if the set {1, 2, . . . , 2n} can be partitioned
into n pairs such that the sum of the numbers in each pair is a perfect square.

(a) Prove that n is an SP number for which the sums of the members of the pairs are equal if and only
if n = 2m(m+ 1) for some positive integer m.

(b) Show that 10 is not a SP number.

(c) Prove that there are infinitely many SP numbers that are not of the form 2m(m+ 1).
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4. Determine ∫ 1

0

(
4 arctanx+ π tan

πx

4

)
dx.

5. Let n ≥ 2 and let x1, x2, . . . , xn be positive real numbers. Determine the minimum value of

S =
x1

x2 + x3 + · · ·+ xn
+

x2
x1 + x3 + · · ·+ xn

+ · · ·+ xn
x1 + x2 + · · ·+ xn−1

(n terms on the right side) and the value of (x1, x2, . . . , xn) where this minimum is attained.

6. Let m, n be positive integers; let A be a m × n matrix, B be a n ×m matrix, and BA an invertible
n× n matrix.

(a) What are the eigenvalues of the matrix A(BA)−1B?

(b) Give an example of this situation when (m,n) = (3, 2).

7. Let p(z) = z3 + az2 + bz + c be a cubic polynomial with complex coefficients. Prove that

sup{|p(z)| : |z| ≤ 1} ≥ 1.

8. Suppose a and b are elements of a group and r is a positive integer for which (ab)r = a. Prove that
ab = ba.

9. Suppose that {fn(x) : n = 1, 2, 3, . . .} is a sequence of differentiable functions defined on an open interval
I for which |f ′n(x)| ≤M for some contant M , all x ∈ I and all positive integers n. Suppose further that
limn→∞ fn(x) = g(x). Prove that g(x) is continuous on I.

10. Let S be the subset of the open interval (0, 1) consisting of those numbers that do not have a terminating
binary (base 2) expansion (i.e., are not rationals of the form r/2s for integers r and s). For x ∈ (0, 1),
let fn(x) be the number of 0’s among the first n digits after the decimal point in the binary expansion
of x, divided by n. Let A be the set of numbers x in S for which

f(x) = lim
n→∞

fn(x)

exists, and let B be the set of numbers in S for which the limit does not exist.

(a) Prove that both A and B are uncountable.

(b) Does there exist a number in A for which f(x) = x?

UNDERGRADUATE MATHEMATICS COMPETITION

Sunday, March 8, 2020

Time: 3 1
2 hours

No aids or calculators permitted.

1. Determine all strictly increasing functions f(x) from [0, 1] onto [0, 1] for which either (1) f(x)+g(x) ≤ 2x
for all x ∈ [0, 1], or (2) f(x) +g(x) ≥ 2x for all x ∈ [0, 1]. Here, g(x) is the composition inverse function
f−1 of f satisfying f(g(x)) = g(f(x)) = x for x ∈ [0, 1].

2. Determine all integers m for which the following statement is FALSE: there exists a nonnegative integer
r for which m ≡ 2r + 1 (mod 2r+1).

3. Determine all finite sequences (w0, w1, . . . , wn) of integers for which n is a positive integer and for each
k (0 ≤ k ≤ n), wk is the number of entries in the sequence equal to k.
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4. Let f be a real continuously differentiable function on [0.1]. Prove that

(a) limn→∞ n
∫ 1

0
xnf(xn) dx =

∫ 1

0
f(x) dx;

(b) limn→∞ n
∫ 1

0
xnf(x) dx = f(1).

5. (a) Let A be a real 2× 2 matrix for which AAt = I, where t denotes the transpose and I is the identity
matrix. Let B be the matrix obtained from A by replacing exactly one of its rows by its negative. Show
that at least one of the matrices A− I and B − I must be singular.

(b) Does the same result hold if A is a real n× n matrix for n ≥ 3?

6. Let r be a positive integer. For 0 ≤ k ≤ 9r, let fr(k) be the number of integers between 0 and
10r−1 = 9 . . . 9 inclusive the sum of whose digits is equal to k. Determine the maximum value of f4(k).

7. (a) Determine all polynomials z3 + az2 + bz + c with complex coefficients a, b, c whose roots are a, b, c
(with the same multiplicity) when at least one of its coefficients is 0 or 1.

(b) Show that, if the roots of the polynomial z3+az2+bz+c with complex coefficients a, b, c, all distinct
from 0 and 1, are the same as the coefficients a, b, c (with the same multiplicity), then a is a root of an
irreducible cubic polynomial with integer coefficients, and b and c can be expressed as polynomials in a.

Note: An irreducible polynomial is one that cannot be factored as a product of polynomials of lower
degree with rational coefficients.

8. What is the minimum number of subgroups (including the trivial subgroups, the singleton identity and
the whole group) that a non-commutative group can have?

9. Suppose that a and b are positive real numbers. What is the maximum value of b/a for which there
exist real numbers x and y for which 0 ≤ x ≤ b, 0 ≤ y ≤ a and

a2 + x2 = b2 + y2 = (a− y)2 + (b− x)2.

10. Suppose that x0 = 0, x1 = 1, and

xn+1 = xn

√
x2n−1 + 1 + xn−1

√
x2n + 1

for n ≥ 2. Determine xn.

THE UNIVERSITY OF TORONTO

UNDERGRADUATE MATHEMATICS COMPETITION

March 6-7, 2021

Time: 3 1
2 hours

No aids or calculators permitted.

1. Solve the equation

x3 + x2 + x = −1

3
.

2. Let n be a positive integer and S be a set 2n−1 integers, each equal to one of 0, 1, and 2. Each number
occurs less than n times. Prove that there is a subset T of n of them whose sum is equal to n.

3. Let a, b, c, d be the lengths of the sides of a quadrilateral. Suppose that the sum of any three sidelengths
is an integer multiple of the fourth side. Prove that two of the sidelengths are equal.
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4. Let p(z) be a polynomial over the complex numbers with positive degree n. Prove that there are complex
numbers c0, c1, . . ., cn, not all zero, for which p(z) divides the polynomial

n∑
k=0

ckz
k2 .

5. Let n be an integer, and let a, b, c be nonnegative reals for which ab+ bc+ ca = 3. Prove that

an + bn + cn ≥ 3.

6. Suppose that AB is a chord of a circle with centre O. The radius OY perpendicular to AB meets AB
at Q. An arbitrary point P on the circumference of the circle distinct from A and B and on the same
side of AB as O is chosen. PY intersects AB at X and PQ intersects the circle again at R. Prove that
XY > QR.

7. Let n be a positive integer exceeding 1, and let G = (V,E) be the graph with a set V of n vertices whose
set S of

(
n
2

)
edges consists of one edge joining each pair of vertices. Suppose that f : V −→ {0, 1} is a

function defined on V that takes only the values 0 and 1.

Define g : E −→ {0, 1} as follows: when the edge e connects the vertices x and y, then we select that
value for g for which

g(e) ≡ f(x) + f(y) mod 2.

For which values of n is it possible to find a function f for which the corresponding function g assumes
each of the values 0 and 1 equally often?

8. Prove that ∫ x

0

t2021et sin t dt = p(x)ex sinx+ q(x)ex cosx+ C,

for some polynomials p(x) and q(x) and constant C, and determine the value of C.

9. A middle school student presented the following procedure for trisecting an acute angle with straightedge
and compasses:

Suppose the arms of the angle to be trisected meet at O. From a point A on one arm of the angle, drop
a perpendicular to the other arm intersecting it at B. Construct an equilateral triangle ABC with O
and C on opposite sides of AB. Then the angle AOB is trisected by the line OC.

(a) Provide an argument that this procedure does not work. Your solution will be graded on how
elementary your argument is; in particular, it should involve mathematics accessible to a secondary
student.

(b) Is there any acute angle for which the procedure works?

10. Determine all bilateral sequences {xn : n ∈ Z} whose entries are nonzero integers, that satisfy the
recursion

xn+1 =
xn + xn−1 + 1

xn−2

for each integer n.
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THE UNIVERSITY OF TORONTO

UNDERGRADUATE MATHEMATICS COMPETITION

March 12-13, 2022

Time: 3 3
4 hours

No aids or calculators permitted.

1. In how many ways can a 5× 5 square be tiled with 3× 1 and 4× 1 rectangles in such a way that each
point in the square is covered and there is no overlap?

2. Let f(x) and g(x) be two increasing real-valued functions defined on [0,∞) for which (1) f(0) = g(0) = 0
and (2) f(x) + g(x) = x for x ≥ 0.

(a) Give an example of such a pair (f, g) of distinct functions.

(b) Prove that f(x) and g(x) are continuous on [0,∞).

3. (a) S is a set of positive integers, the largest of which is n. The least common multiple of any pair of
numbers in S is greater than n. Prove that the sum of the reciprocals of the numbers in S is less than
2.

(b) Give two examples of sets S as described in (a) for which the sum of the reciprocals exceeds 1.

(c) If, in (a), the words “least common multiple” is replaced by “product”, does the conclusion still
hold?

4. Let
h(x, y, z) = x2 + y2 + z2 + 3(xy + yz + zx) + 5(x+ y + z) + 1.

Prove that the diophantine equation h(x, y, z) = 0 has infinitely many solutions for which x, y, z are all
integers.

5. Suppose that f(x) is a continuous real-valued function defined on [0, 1] for which

1 =

∫ 1

0

f(x) dx =

∫ 1

0

xf(x) dx.

(a) Prove that ∫ 1

0

f(x)2 dx ≥ 4.

(b) Give an example of such a function for which equality occurs in (a).

6. Find all solutions of the differential equation

x2y′′ + 4xy′ + (x2 + 2)y = 1

that are continuous at x = 0.

7. The sequence {xn} is defined by the recursion

xn+1 = 2xn − n2

for n ≥ 0. For which values of the initial term x0 are all the terms of the sequence positive?

8. What are the possible subsets U of the plane for which (1) U contains finitely many points, and (2)
for each point x in the plane, there is exactly one point y ∈ U of maximum distance, such that
d(x, y) > d(x, u) for u ∈ U , u 6= y. (d(x, y) is the Euclidean distance between x and y.)
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9. Determine the set of all real numbers r for which

ar

u
+
br

v
+
cr

w
≥ (a+ b+ c)r

u+ v + w
,

whenever a, b, c, u, v, w are all positive. When does equality hold?

10. For a regular polygon A0A1A2 . . . An−1, let a1 denote the length of a side and ak the length of the
diagonal A0Ak for 2 ≤ k ≤ n− 1.

(a) For the regular heptagon A0A1 . . . A6, prove that

1

a1
=

1

a2
+

1

a3
.

(b) For the regular 15−gon A0A1 . . . A14, prove that

1

a1
=

1

a2
+

1

a4
+

1

a7
.

(c) State and prove a generalization for parts (a) and (b).

THE UNIVERSITY OF TORONTO

UNDERGRADUATE MATHEMATICS COMPETITION

March 11, 2023

Time: 4 hours

1. When a patron in a restaurant is presented with the bill, they like to pay a whole number of dollars to
cover the bill and a tip between 15% and 20% inclusive. (For example, if the bill is $11.20, he will pay
$13.00, leaving a tip that is more than $1.68 and less than $2.24.) Find the largest amount of a bill for
which this is not possible.

2. Let X be a set with n elements. Prove that the number of pairs (A,B) of subsets of X for which
A ⊂ B ⊆ X (A 6= B) is equal to 3n − 2n.

3. Solve for integers x, y the equation

y2 = 1 + x+ x2 + x3 + x4.

4. Determine all polynomials f(x) that satisfy g′(x) = 4xf(x) where g(x) = f(f(x)). Are there any
non-polynomial solutions?

5. For which positive integers x is the following inequality true?

√
x
√
x
<
√
x+ 1.

6. Let p(z) = z3 + yz + x be a cubic polynomial with real coefficients 1, 0, x, y. Sketch in the cartesian
plane the locus of points (x, y) for which p(z) has at least one root whose absolute value is 1.
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7. Let a and b be positive reals and {xn} be a sequence for which

lim
n→∞

(
axn +

b

xn

)
= 2
√
ab.

Must the sequence {xn} converge? If so, what are the possible limits?

8. Let f be a real-valued function defined on the plane for which f(x, y) = (x2 − y2)e−(x
2+y2).

(a) Prove that f attains its maximum and minimum.

(b) Determine all the points (x, y) where f has a global or local extremum (maximum or minimum).

9. Determine all the primes p for which (2p−1 − 1)/p is a perfect square.

10. Suppose that a0 = 1, a1 = 2 and

an+1 = an +
an−1

1 + a2n−1
,

for n ≥ 1. Determine integers u and v for which v − u < 23 and u < a2023 < v.

11. Prove that x+ y + z divides the polynomial

f(x, y, z) = 2(x7 + y7 + z7)− 7xyz(x4 + y4 + z4).

12. (a) Determine real numbers a, b, c for which

abc = a+ b+ c = 1.

Is it possible for a, b, c to be all positive?

(b) Let ε > 0. Prove that there are non-zero rational numbers a, b, c, d for which

abc = a+ b+ c = 1 + d,

where |d| < ε.

(c) Determine rational numbers a, b, c for which abc = a+ b+ c and |abc− 1| < 0.1

13. ABCD is a convex quadrilateral whose diagonals AC and BD intersect at P . Suppose that PA = PD,
PB = PC and O is the centre of the circumcircle of triangle APB. Prove that OP ⊥ CD.

14. Suppose that a1, a2, . . . , an are real numbers. Prove that

n∑
i=1

 n∑
j=1

aiaj
i+ j

 ≥ 0.
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