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1. When a patron in a restaurant is presented with the bill, they like to pay a whole number of dollars to
cover the bill and a tip between 15% and 20% inclusive. (For example, if the bill is $11.20, they will
pay $13.00, leaving a tip that is more than $1.68 and less than $2.24.) Find the largest amount of a bill
for which this is not possible.

2. Let X be a set with n elements. Prove that the number of pairs (A,B) of subsets of X for which
A ⊂ B ⊆ X (A 6= B) is equal to 3n − 2n.

3. Solve for integers x, y the equation

y2 = 1 + x+ x2 + x3 + x4.

4. Determine all polynomials f(x) that satisfy g′(x) = 4xf(x) where g(x) = f(f(x)). Are there any
non-polynomial solutions?

5. For which positive integers x is the following inequality true?

√
x
√
x
<
√
x+ 1.

6. Let p(z) = z3 + yz+ x be a cubic polynomial with real coefficients 1, x, y. Sketch in the cartesian plane
the locus of points (x, y) for which p(z) has at least one root whose absolute value is 1.

7. Let a and b be positive reals and {xn} be a sequence for which

lim
n→∞

(
axn +

b

xn

)
= 2
√
ab.

Must the sequence {xn} converge? If so, what are the possible limits?

8. Let f be a real-valued function defined on the plane for which f(x, y) = (x2 − y2)e−(x
2+y2).

(a) Prove that f attains its maximum and minimum.

(b) Determine all the points (x, y) where f has a global or local extremum (maximum or minimum).

9. Determine all the primes p for which (2p−1 − 1)/p is a perfect square.

10. Suppose that a0 = 1, a1 = 2 and

an+1 = an +
an−1

1 + a2n−1
,

for n ≥ 1. Determine integers u and v for which v − u < 23 and u < a2023 < v.
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11. Prove that x+ y + z divides the polynomial

f(x, y, z) = 2(x7 + y7 + z7)− 7xyz(x4 + y4 + z4).

12. (a) Determine real numbers a, b, c for which

abc = a+ b+ c = 1.

Is it possible for a, b, c to be all positive?

(b) Let ε > 0. Prove that there are non-zero rational numbers a, b, c, d for which

abc = a+ b+ c = 1 + d,

where |d| < ε.

(c) Determine rational numbers a, b, c for which abc = a+ b+ c and |abc− 1| < 0.1

13. ABCD is a convex quadrilateral whose diagonals AC and BD intersect at P . Suppose that PA = PD,
PB = PC and O is the centre of the circumcircle of triangle APB. Prove that OP ⊥ CD.

14. Suppose that a1, a2, . . . , an are real numbers. Prove that

n∑
i=1

 n∑
j=1

aiaj
i+ j

 ≥ 0.

SOLUTIONS

1. When a patron in a restaurant is presented with the bill, they likes to pay a whole number of dollars
to cover the bill and a tip between 15% and 20% inclusive. (For example, if the bill is $11.20, they will
pay $13.00, leaving a tip that is more that $1.68 and less that $2.24.) Find the largest amount of a bill
for which this is not possible.

Solution 1. Let b be the amount of the bill. Then the process is possible if and only if there is an integer
c for which 1.15b ≤ c ≤ 1.2b. Thus, given a integer c, the range of bills b including a suitable tip payable by
c satisfies

c

1.2
≤ b ≤ c

1.15
.

Two adjacent intervals overlap when c/(1.2) ≤ (c−1)/(1.15) or 0.05c ≥ 1.2 (c ≥ 24). Thus, if these intervals
fail to overlap, then c ≤ 23, in which case there is a bill b for which the process is not possible.

When c = 23, the possible bills satisfy 19.17 ≤ b ≤ 20.00 and when c = 22, they satisfy 18.34 ≤ b ≤ 19.13.
Therefore the process is not possible for b = 19.14, 19.15, 19.16 and the answer is $19.16.

Solution 2. First, we show that this is possible whenever the bill is at least twenty dollars. Suppose that
the amount of the bill is b. Then he can do the task if there is an integer between (23/20)b and (6/5)b. This
will occur when (6/5)b ≥ (23/20)b+ 1, that is, when b ≥ 20 (because each closed unit real interval contains
an integer).

When the bill is 20 dollars, then the amount payable is between 23 and 24 dollars. When the bill b is
reduced, so proportionately is the payable range. The patron can pay 23 dollars as long is (6/5)b ≥ 23, or
b > 19.166. When b = 19.16, the total payable should be between (1.15)(19.16) > 22.03 and (1.2)(19.16) <
23. But there is no integer between these limits, and the patron cannot do as they wish.
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Solution 3, by Yuhan Guo. As in Solution 1, we see that the process is possible when b ≥ 20. Suppose
that the bill amounts to 19+c where 0 ≤ c < 1. Then the desired tip lies between (1.15)(19+c) = 21.85+1.15c
and (1.2)(19 + c) = 22.80 + 1.2c. The process is impossible if and only if both these quantities lie strictly
between 22 and 23, i.e. 1.15c > 0.15 and 1.2c < 0.2. This is so iff 0.13 < c < 0.17, so that the process is not
possible for bills equal to 19.14, 19.15 and 19.16, so that the required answer is 19.16.

2. Let X be a set with n elements. Prove that the number of pairs (A,B) of subsets of X for which
A ⊂ B ⊆ X (A 6= B) is equal to 3n − 2n.

Solution 1. For each element of X, there are three options: leave it out of both A and B, include it
in A but not in B, include it in both A and B. There are thus 3n ways if choosing A and B for which
A ⊆ B ⊆ X. However, this includes the 2n ways of selecting a subset of X which is equal to both A and B.
Therefore the required number is equal to 3n − 2n.

Solution 2. For 0 ≤ k ≤ n, the number of ways of selecting the set A with exactly k elements is
(
n
k

)
.

The number of ways of choosing a set B that properly contains A is the number of ways of selecting a subset
of X \ A with at least one elements, namely 2n−k − 1. Therefore the total number of ways of selecting the
pair (A,B) is

n∑
k=0

(
n

k

)
(2n−k − 1) =

n∑
k=0

(
n

k

)
(2n−k)−

n∑
k=0

(
n

k

)
= (2 + 1)n − (1 + 1)n = 3n − 2n.

Note. A variant of this selects the set B in
(
n
k

)
was and then choosing one of 2k − 1 proper subsets A.

Solution 3, by Justin Fus. Let X = {x1, x2, . . . , xn}. Let C be the set of n−tples S = (s1, s2, . . . , sn)
where, for each i, si is associated with xi and si is equal to one of 0, 1 or 2. The set C contains 3n elements,
of which 2n elements have no entries equal to 1. We define a function f defined on pairs (A,B) of subsets
ofX that satisfy the conditions of the problem: f(A,B) = S where ai = 0 when xi 6∈ B, ai = 1 when
xi ∈ B \ A and ai = 2 when xi ∈ A ⊂ B. The function f is one-one onto the subset of C of vectors having
no entry equal to 1. Thus, there are 3n − 2n pairs (A,B) that satisfy the conditions of the problem.

Solution 4. We prove the result by induction. When n = 1 and X = {x}, there is only 1 = 3 − 2
possibilities, namely A = ∅ and B = {x}. Suppose the result holds for n ≥ 1 and that X has n+ 1 elements.
Let z be a particular one of these.

In selecting the sets A and B, there are four possibilities:

(1) Neither A nor B contains z. There are 3n − 2n possibilities.

(2) Both A and B contain z. Since A\{z} ⊂ B \{z} if and only if A ⊂ B, there are 3n−2n possibilities.

(3) z ∈ B \A and B 6= A∪ {z}. Since A ⊂ B if and only if A ⊂ B \ {z}, there are 3n − 2n possibilities.

(4) z ∈ B \A and B = A ∪ {z}. There are 2n was of picking the set A = B \ {z}.

Thus, the total number of possibilities is 3(3n − 2n) + 2n = 3(3n)− 2(2n) = 3n+1 − 2n+1.

3. Solve for integers x, y the equation

y2 = 1 + x+ x2 + x3 + x4.

Solution 1. When x = 0, then y = ±1. More generally, we have that

(2x2 + x)2 = 4x4 + 4x3 + x2 < 4x4 + 4x3 + 4x2 + 4x+ 4 = (2y)2

≤ 4x4 + 4x3 + 9x2 + 4x+ 4 = (2x2 + x+ 2)2,
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with equality on the right if and only if x = 0.

It follows that, when x 6= 0, then 2x2 + x+ 1 = 2y, so that

0 = (4x4 + 4x3 + 5x2 + 2x+ 1)− (4x4 + 4x3 + 4x2 + 4x+ 4)

= x2 − 2x− 3 = (x− 3)(x+ 1).

This leads to the solutions (x, y) = (3,±11), (−1,±1) as well as the solutions (x, y) = (0,±1).

Soution 2, by Hshmat Sahak. Since (x, y) satisfies the equation if and only if (x,−y) does, we will assume
that y ≥ 0. There is no solution with x = 1 and we have the solutions (x, y) = (−1, 1), (0, 1). Suppose x
and y are positive integers with x ≥ 2 that satisfy the equation. Then, by the arithmetic-geometric means
inequality,

(x2 + 1)2 = x4 + 2x2 + 1 ≤ x4 + x3 + x+ 1 < y2.

Also,
(x2 + x+ 1)2 = y2 + x(x+ 1)2 > y2.

Therefore y = x2 + z where 2 ≤ z ≤ x. Since x4 + 2zx2 + z2 = y2 = x4 + x3 + x2 + x+ 1, z2 ≡ x+ 1 (mod
x2). Since 0 < z2 ≤ x2 and x+ 1 +kx2 is either negative or exceeds x2 when k 6= 0, we must have z2 = x+ 1
and 2zx2 = x3 + x2. Since x 6= 0, 2z = x+ 1 and

(x+ 1)2 = 4z2 = 4(x+ 1)

x = 3. This yields the solutions (x, y) = (3, 11).

Now suppose that x = −w ≤ −2, so that y2 = w4−w3+w2−w+1. Then y2 = w4−(w2+1)(w−1) < w4

and
(w2 − w − 1)2 = y2 − (w3 + 2w2 − 3w) = y2 − w(w + 3)(w − 1) < y2.

Therefore y = w2 − v where 1 ≤ v ≤ w. Therefore

w4 − 2vw2 + v2 = w4 − w3 + w2 − w + 1,

whence v2 ≡ −w + 1 (mod w2). Since v2 is positive and w2 − w + 1 = (w − 1)2 + w < w, this congruence
has no solution for which 1 ≤ v ≤ w. Therefore there are no additional solutions.

Therefore the complete set of solutions is (x, y) = (0,±1), (−1,±1), (3,±11).

4. Determine all polynomials f(x) that satisfy g′(x) = 4xf(x) where g(x) = f(f(x)). Are there any
non-polynomial solutions?

Solution. One obvious solution is f(x) = 0, and no other constant function satisfies the equation. Let
n > 0 be the degree of f . Then the degree of g is n2 and so of g′ is n2− 1. Therefore n2− 1 = n+ 1, whence
0 = n2 − n− 2 = (n+ 1)(n− 2). Therefore the degree of f is 2. Note that the equation of the problem is

f ′(f(x))f ′(x) = 4xf(x). (1)

Suppose that f(x) = ax2 + bx+ c. Then g(x) = af(x)2 + bf(x) + c and

4xf(x) = g′(x) = 2f(x)f ′(x) + bf ′(x).

Hence f(x) divides bf ′(x), so that b = 0. Therefore 4x = 2af ′(x) = 4a2x. It follows that f(x) = ±x2 + c,
and it can be checked that each of these satisfies the equation.

A different solution to the equations is f(x) = 1/4x. (Note that f(f(x)) = x.)
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5. For which positive integers x is the following inequality true?

√
x
√
x
<
√
x+ 1.

Solution 1, by Louis Ryan Tan. Suppose that the inequality holds for x > 2. Then

√
x log x < log(x+ 1) < log x2 = 2 log x,

whence x < 4. The inequality clearly holds for x = 1. Now

√
2

√
2
< (21/2)3/2 = 81/4 < 91/4 =

√
3

and √
3

√
3
> (31/2)3/2) = 271/4 > 161/4 =

√
4.

Therefore the inequalily holds for x = 1, 2 and fails for x ≥ 3.

Solution 2. The inequality is equivalent to x
√
x < x + 1. When x ≥ 4, x(x − 1) > 1 so that x

√
x ≥

x2 > x+ 1, and the inequality is false. Since 3
√
3 > 31.5 = 3

√
3 > 4, the inequality is false for x = 3. Since

23 < 32, 2
√
2 < 23/2 < 3 and the inequality holds. It clearly holds when x = 1. Therefore the inequality

holds if and only if x = 1, 2.

Solution 3. We begin with some preliminary observations. Since 23 < 32 and 35 < 28, then 3/2 <
log2 3 < 8/5. Also 4/3 <

√
2 < 3/2 and 5/3 <

√
3 < 7/4. Therefore

√
2 log2(

√
2) = (1/2)

√
2 < 3/4 < (1/2) log2 3 = log2

√
3,

whence
√

2
√
2
<
√

3. Also

√
3 log2(

√
3) > (5/3)(1/2)(3/2) = 5/4 > 1 = log2(

√
4),

whence
√

3
√
3
> 2 =

√
4. We see that the inequality holds for x = 1 and x = 2 but not for x = 3.

Let x ≥ 4. Then
√
x log

√
x− log

√
x+ 1 =

1

2
log x

[√
x− log(x+ 1)

log x

]
=

1

2
log x

[√
x− log x+ log(1 + x−1)

log x

]
=

1

2
log x

[
(
√
x− 1)− log(1 + x−1)

log x

]
>

1

2
log x

[√
x− 1− 1

x log x

]
>

1

2
log x

[
2− 5

4

]
> 0.

The only positive integers x for which the inequality holds are 1 and 2.

Solution 4, by Lucas Jacobs. The inequality
√
x
√
x
<
√
x+ 1 is equivalent to

√
x log x < log x+

∫ x+1

x

1

t
dt
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or

(
√
x− 1) log x <

∫ x+1

x

1

t
dt.

When x ≥ 4, the left side exceeds 1 while the right side is less than 1/x ≤ 1/4. Therefore the inequality is
false when x ≥ 4. The cases x = 1, 2, 3 can be handled as before.

Solution 5, by Chaim Lowen. It can be checked that the inequality holds for x = 1, 2. Let x ≥ 3. Then√
x > 1 + (1/x); this can be verified for x = 3 and when x ≥ 4, the left side is not less than 2. Hence

x
√
x−1 = exp((

√
x− 1) log x > exp(

√
x− 1) > exp(1/x)

>

(
1 +

1

x

)
=
x+ 1

x
,

from which x
√
x > x+ 1. Therefore the given inequality is false when x ≥ 3.

Solution 6. Let t = x2 and f(t) = 2t log t− log(t2 + 1). Then

f ′(t) = 2

(
1− t

t2 + 1

)
+ 2 log t

is positive for t ≥ 1. Therefore f(t) is increasing. Now

f(
√

3) = 2
√

3 log 3− log 4 = 2 log 2(
√

3 log2 3− 1) > 2 log 2(
√

3− 1) > 0.

This proves that the inequality is false for x ≥ 3. However, it does hold for x = 1, 2.

Note. The given inequality is equivalent to

x <

[
log(x+ 1)

log x

]2
which clearly is false when x becomes suitably large. Alternatively, if we let x = u2, then the inequality
becomes u2u < u2 + 1, again false when u is large.

6. Let p(z) = z3 + yz+ x be a cubic polynomial with real coefficients 1, x, y. Sketch in the cartesian plane
the locus of points (x, y) for which p(z) has at least one root whose absolute value is 1.

Solution 1. 1 is a root of p(z) if and only y = −(1 + x), and −1 is a root if and only if y = x − 1.
Suppose that p(z) has a nonreal root eiθ. Then e−iθ is also a root, and the remaining root is a real number
−r. Therefore

p(z) = (z − eiθ)(z − e−iθ)(z + r) = z3 − (−r + eiθ + e−iθ)z2 + (−r(eiθ + e−iθ) + 1)z + r.

Hence x = r = eiθ + e−iθ = 2 cos θ and

y = 1− r(eiθ + e−iθ) = 1− 2r cos θ = 1− 4 cos2 θ = 1− x2.

Conversely, if |x| ≤ 2, we can find θ for which x = cos 2θ and determine y so that p(eiθ) = 0.

The set of points (x, y) consists of two straight lines of slopes 1 and −1 passing through (0,−1) and the
portion of the parabola with equation y = 1− x2 where −2 ≤ z ≤ 2.
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Solution 2. Suppose that p(z) has the root u+ iv where u and v are real numbers for which u2 +v2 = 1.
Then

0 = p(u+ iv) = (u3 − 3uv2 + uy + x) + iv(3u2 − v2 + y).

Either v = 0, |u| = 1 and y = ±x− 1, or

y = v2 − 3u2 = 1− 4u2

and

x = 3uv2 − u3 − uy = 3uv2 − u3 − u+ 4u3 = 3u(u2 + v2)− u = 2u.

Hence y = 1− x2, where |x| ≤ 2.

Solution 3. Suppose that z = eiθ is a root of p(z). Then e3iθ+yeiθ+x = 0, whence (e−3iθ)x+(e−2iθ)y =
−1. Separating out the real and imaginary parts, we obtain

(cos 3θ)x+ (cos 2θ)y = −1,

(sin 3θ)x+ (sin 2θ)y = 0;

a linear system whose determinant of coefficients is cos 3θ sin 2θ − sin 3θ cos 2θ = − sin θ. Thus, it has a
unique solution except when θ = 0, π.

Using the facts that cos 3θ = cos θ(4 cos2 θ − 1) and sin 3θ = sin θ(4 cos2 θ − 3), when θ 6= 0, π,

(x, y) = (2 cos θ, 1− 4 cos2 θ).

Therefore, part of the desired locus is the portion of the parabola with equation y = 1−x2 where −2 < x < 2.

It remains to deal with the possible roots ±1. These occur when x+ y+ 1 = 0 and x− y− 1 = 0. Thus
the locus is the union of these two lines and the portion of the parabola.

Comment. The two lines intersect at (0,−1) corresponding to the polynomial z3−z = z(z−1)(z+1). One
of the lines intersection the full parabola at (−1, 0), (1, 0), (−2,−3), (2,−3) corresponding to the respective
polynomials z3−1 = (z−1)(z2+z+1), x3+1 = (z+1)(z2−z+1), z3−3z−2 = (z+1)(z2−z−2) = (z+1)2(z−2)
and z3 − 3z + 2 = (z − 1)(z2 + z − 2) = (z − 1)2(z + 2).

7. Let a and b be positive reals and {xn} be a sequence for which

lim
n→∞

(
axn +

b

xn

)
= 2
√
ab.

Must the sequence {xn} converge? If so, what are the possible limits?

Solution 1. Observe that (
axn +

b

xn

)2

−
(
axn −

b

xn

)2

= 4ab,

whence, letting n→∞, we see that axn − (b/xn)→ 0. Since

2axn =

(
axn +

b

xn

)
+

(
axn −

b

xn

)
,

it follows that limn→∞ xn =
√
b/a. Therefore {xn} must converge and the only limit is

√
b/a.
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Solution 2. Wolog, we can assume that xn > 0 for all n, Since axn < axn + (b/xn) < 2
√
ab + 1 for

large values of n, the sequence {xn} is bounded. Let u = lim inf xn and v = lim supxn. Since {xn} have
subsequences with these limits, both u and v are solutions of at+ (b/t) =

√
ab or

0− at2 − 2
√
abt+ b = (

√
at−

√
b)2.

Since this equation has a single solution, u = v =
√
b/a and this is the limit of {xn}.

Solution 3. When n is sufficiently large, 0 < axn < axn + (b/xn) < 3
√
ab. Therefore∣∣∣∣axn +

b

xn
− 2
√
ab

∣∣∣∣ =
(
√
axn −

√
b)2

xn
≥ a(

√
axn −

√
b)2

3
√
ab

,

As n→∞, the left side goes to 0, and so then must the right side. Therefore limn→∞ xn =
√
b/a.

Solution 4. Suppose that yn = axn + (b/xn). Then ax2n − ynxn + b = 0, from which

xn =
yn ±

√
y2n − 4ab

2a
.

Let n→∞. Then, the quantity under the square root tends to 0 no matter which sign precedes it, so that
limn→∞ xn = 2

√
ab/2a =

√
b/a.

Solution 5, by Louis Ryan Tan. Since xn and axn + (b/xn) have the same sign, there exists an index u
for which xn > 0 for n ≥ u. There exists an index v > u for which

axn < axn +
b

xn
< 3
√
ab,

or c > xn where c = 3
√
b/a.

Let ε > 0 and choose w > v such that, for n ≥ w,∣∣∣∣axn +
b

xn
− 2
√
ab

∣∣∣∣ < aε2

c
.

Then, for n ≥ w,
|
√
axn −

√
b|2

c
≤ |ax

2
n − 2

√
abxn + b|

xn

=

∣∣∣∣axn +
b

xn
− 2
√
ab

∣∣∣∣ < aε2

c
,

whence
|xn −

√
b/a| = (1/

√
a)|
√
axn −

√
b| < ε.

The result follows.

Note. In solution 3, we can see that if 2
√
ab is replaced by a larger number, that the sequence {xn}

could have two limit points. The graph of the function ax+ (b/x) is above and tangent to the line y = 2
√
ab

when x =
√
b/a. It can be seen from a graphical picture that the limit in the problem forces the convergence

of {xn}. However, if, say, 2
√
ab is replaced by 4

√
ab, then one can find a bounded nonconvergent sequence

{xn} that makes this limit possible. This is problem 4163 from Crux Mathematicorum 43:7.

8. Let f be a real-valued function defined on the plane for which f(x, y) = (x2 − y2)e−(x
2+y2).
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(a) Prove that f attains its maximum and minimum.

(b) Determine all the points (x, y) where f has a global or local extremum (maximum or minimum).

Solution 1. Fix t > 0 and let x2 + y2 = t. Then −t ≤ x2 − y2 ≤ x2 + y2 ≤ t so that

−tet ≤ f(x, y) ≤ tet

with equality on the left iff (x, y) = (0,±
√
t) and on the right iff (x, y) = (±

√
t, 0). The function te−t

achieves its maximum value of e−1 when t = 1. It follows that, when (x, y) 6= (0, 0), f(x, y) assumes its
maximum value when (x, y) = (±1, 0) and its minimum value when (x, y) = (0,±1).

Since f(0, 0) = (0, 0) and f assumes negative values along the y−axis and positive values along the
x−axis, f assumes neither a maximum nor a minimum value at the origin.

Solution 2. (a) Observe that f(1, 0) = e−1 and f(0, 1) = −e−1. It is readily checked that the function
te−t is decreasing when t > 1. Hence, for t ≥ 2, te−t ≤ 2e−2 < e−1. It follows that |f(x, y)| ≤ (x2 +

y2)e−(x
2+y2) < e−1 whenever x2 + y2 ≥ 2. Hence, if f achieves an extreme value, it must do so on the closed

disc {(x, y) : x2 + y2 ≤ 2}. Since this disc is compact, it in fact achieves both its maximum and minimum
values within the disc (and evidently not on the boundary).

It must achieve its extreme values in the interior of the disc where both partial derivatives vanish. We
have that

∂f

∂x
(x, y) = 2(x− x3 + xy2)e−(x

2+y2);

∂f

∂y
(x, y) = 2(−y − x2y + y3)e−(x

2+y2).

To find the critical points, we need to solve

x(1− x2 + y2) = y(1 + x2 − y2) = 0.

The solutions are (x, y) = (0, 0), (0, 1), (0,−1), (1, 0), (−1, 0).

Since f(x, 0) > 0 for x 6= 0 and f(0, y) < 0 for y 6= 0, (0, 0) is neither a local or global maximum or
minimum for f(x, y). Since f(1, 0) = f(−1, 0) = e−1 and f(0, 1) = f(0,−1) = −e−1 and the extreme values
can be assumed among only these four points, f(x, y) mus assume its maximum value and (±1, 0) and its
minimum at (0,±1).

9. Determine all the primes p for which (2p−1 − 1)/p is a perfect square.

Solution. When p = 2, 3, 5, 7, the quantity in question is respectively equal to 1/2, 1, 3 and 9, so the
primes 3 and 7 yield squares. Suppose that p > 7 is such that 2p−1 − 1 is p times a square.

Suppose that p = 4k + 1. Then 2p−1 − 1 = (22k − 1)(22k + 1). Since the factors are coprime, the factor
not divisible by p must be a square. But two positive squares cannot differ by 1, so this case is impossible.

The remaining case is that p = 4k + 3. In this case, 2p−1 − 1 = (22k+1 − 1)(22k+1 + 1), and one of the
factors must be square. If 22k+1 + 1 = u2, then 22k+1 = (u− 1)(u+ 1). Since each factor must be a power
of 2, the only possibility is k = 1 and u = 3. This gives the known case p = 7.

Otherwise, we must have 22k+1 − 1 = v2 and 22k+1 + 1 = pw2. But then v2 ≡ −1 (mod 8), which is
impossible. So we have found all the possibilities.

9



10. Suppose that a0 = 1, a1 = 2 and

an+1 = an +
an−1

1 + a2n−1
,

for n ≥ 1. Determine integers u and v for which v − u < 23 and u < a2023 < v.

Solution. Observe that
a2n−1 + 1

an−1
= an−1 +

1

an−1
.

We note that a1 = a0 + 1
a0

. Suppose that for k ≥ 1, it has been established that

ak = ak−1 +
1

ak−1
=

1 + a2k−1
ak−1

.

Then

ak+1 = ak +
ak−1

1 + a2k−1
= ak +

1

ak
.

Thus, by induction, for n ≥ 1,

an+1 = an +
1

an
.

Squaring, we find that

a2n+1 = 2 + a2n +
1

a2n
= 4 + a2n−1 +

1

a2n−1
+

1

an2

= · · · = 2n+ a20 +

n∑
k=0

1

ak2
.

Hence a2n+1 > 2n+ a20 = 2n+ 1, and for each index k, a2k ≥ 2k − 1, and so 1
a2
k

≤ 1
2k−1 .

Therefore

a2n+1 ≤ 2n+ 1 + 1 + 1 +

n∑
k=2

1

2k − 1

= 2n+ 3 +

[
1

3
+

1

5
+ · · · 1

2n− 1

]
≤ 2n+ 3 +

∫ 2n−1

1

1

t
dt = 2n+ 3 + loge(2n− 1)

< 2n+ 3 + log2(2n− 1).

Setting n = 2022 we find that

4044 < a22023 < 4047 + log2 4045 < 4047 + 12 = 4059.

Clearly, 60 < a2023 < 70. [More precisely, 63.5925 < a2023 < 63.7103.]

11. Prove that x+ y + z divides the polynomial

f(x, y, z) = 2(x7 + y7 + z7)− 7xyz(x4 + y4 + z4).

Solution 1. By the Factor Theorem, f(x, y, z) is divisible by x+ y+ z if and only if f(x, y, z) = 0 when
x+ y + z = 0. Suppose that x, y, z are the roots of the polynomial t3 − at2 + bt− c.
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For n ≥ 0, let sn = xn + yn + zn and suppose s1 = a = 0. Note that tn = atn−1 − btn−2 + ctn−3 when
n ≥ 3 and t = x, y, z. Then

s0 = 3

s1 = 0

s2 = s21 − 2b = −2b

s3 = 3c

s4 = −bs2 = 2b2

s5 = −bs3 + cs2 = −3bc− 2bc = −5bc

s6 = −bs4 + cs3 = −2b3 + 3c2

s7 = −bs5 + cs4 = 5b2c+ 2b2c = 7b2c

Hence
f(x, y, z) = 14b2c2 − 7c(2b2) = 0

as desired.

Solution 2, by George Mu-Zhao. We establish the result by showing that f(x, y, z) ≡ 0 (modulo x+y+z).
In what follows, ≡ will refer to congrences with this modulus. Begin by noting that

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx) ≡ 0

and
x2 ≡ [−(y + z)]2 = y2 + z2 + 2yz.

Thus x3 +y3 +z3 ≡ 3xyz, y2 +z2 ≡ x2−2yz and y+z ≡ −x, with similar congrences for other permutations
of the variables.

We have that

3xyz(x4 + y4 + z4) ≡ (x3 + y3 + z3)(x4 + y4 + z4)

= x7 + y7 + z7 + x3y3(x+ y) + y3z3(y + z) + z3x3(z + x)

≡ x7 + y7 + z7 − xyz(x2y2 + y2z2 + z2x2),

whence
x7 + y7 + zz ≡ xyz[3(x4 + y4 + z4) + (x2y2 + y2z2 + z2x2)].

Therefore

f(x, y, z) ≡ xyz(2x2y2 + 2y2z2 + 2z2x2 − x4 − y4 − z4)

= xyz[x2(y2 + z2) + y2(z2 + x2) + z2(x2 + y2)− (x4 + y4 + z4)]

≡ xyz(x4 − 2x2yz + y4 − 2xy2z + z4 − 2xyz2 − x4 − y4 − z4) = −2xyz[xyz(x+ y + z)] ≡ 0,

as desired.

Note. By the Factor Theorem, it can be shown that x+ y+ z is a factor by going through the laborious
process of checking that f(x, y,−(x + y)) = 0. This problem appears in Crux Mathematicorum, #2012 in
January, 1996.

12. (a) Determine real numbers a, b, c for which

abc = a+ b+ c = 1.

Is it possible for a, b, c to be all positive?
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(b) Let ε > 0. Prove that there are non-zero rational numbers a, b, c, d for which

abc = a+ b+ c = 1 + d,

where |d| < ε.

(c) Determine rational numbers a, b, c for which abc = a+ b+ c and |abc− 1| < 0.1

Solution. (a) Pick an arbitrary a 6= 0. Then b+ c = 1− a and bc = 1/a, so that b and c are the roots of
the quadratic equation x2 + (a − 1)x + 1/a = 0. The discriminant (a − 1)2 − 4/a is nonnegative whenever
a < 0, or a > 0 and a(a− 1)2 ≥ 4. Any of these values of a generates a solution. We note that in all cases
exactly one of a, b, c is positive.

When a = −1, we get the equation x2 − 2x− 1 = 0 and the solution (a, b, c) = (−1, 1 +
√

2, 1−
√

2).

(b) Suppose that b = c. Then we examine the equation ab2 = a + 2b, or ab2 − 2b − a = 0. Therefore
b = (1 ±

√
1 + a2)/a. Consider the rational pythagorean triple (u2 − 1, 2u, u2 + 1) where u is rational. Set

a = (u2 − 1)/2u, so that

b =
2u± (1 + u2)

u2 − 1
.

Taking the minus sign, we can take

(a, b) =

(
u2 − 1

2u
,−u− 1

u+ 1

)
.

The common value of a+ 2b and ab2 is equal to

f(u) =
(u− 1)3

2u(u+ 1)
.

Since f(4) = 27
40 < 1 and f(5) = 16

15 > 1, there is a number r ∈ (4, 5) for which f(r) = 1.

Given ε > 0, ∃δ > 0 for which |u− r| < δ implies that |f(u)− 1| = |f(u)− f(r)| < ε. There is a rational
u that satisfies this condition, and this generates a triple (a, b, c) = (a, b, b) that satisfies the problem.

(c) In particular, when

(a, b, c) =

(
12

5
,
−2

3
,
−2

3

)
,

then

|abc− 1| = |a+ b+ c− 1| =
∣∣∣∣16

15
− 1

∣∣∣∣ =
1

15
< 0.1.

Comment. There are other possibilities in (c). If we take

(a, b) =

(
u2 − 1

2u
,
u+ 1

u− 1

)
,

then f(u) = ab2 = a+ 2b = (u+ 1)3/(2u(u− 1)). If we take

(a, b) =

(
2u

u2 − 1
, u

)
,

then f(u) = 2u3/(u2−1). When u = −2/3, then f(u) = 16/15 and (a, b, c) = (12/5,−2/3,−2/3). If we take

(a, b) =

(
2u

u2 − 1
,
−1

u

)
,
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then f(u) = 2/(u(u2 − 1)).

Other solution for abc = a + b + c = 1 were given, to wit (a, b, c) = (4,−(3/2) +
√

2,−(3/2) −
√

2)
from Berjer Ding, (a, b, c) = (3,−1 +

√
3/2,−1 −

√
3/2) from Benjamin Edian, and (a, b, c) = (−2, 12 (3 +√

11), 12 (3 −
√

11) from Haylyn Fung. The one given in the solution was also obtained from Zhiyuan Li.
When a, b, c > 0 and abc = 1, the arithmetic-geometric means inequality shows that a + b + c ≥ 3. On the
other hand, if a+ b+ c = 1, then

1 = (a+ b+ c)3 = a3 + b3 + c3 +
∑
(6)

a2b+ 6abc

≥ 3abc+ 6(3(a6b6c6)1/6 + 6abc = 27abc.

whence abc ≤ 27 with equality if and only if a = b = c = 1/3.

If a, b, c > 0 and abc = a+ b+ c = 1, then, since log t ≤ t− 1 for t > 0, we find that

1 = (a− log a) + (b− log b) + (c− log c) ≥ 1 + 1 + 1 = 3,

a contradiction.

13. ABCD is a convex quadrilateral whose diagonals AC and BD intersect at P . Suppose that PA = PD,
PB = PC and O is the centre of the circumcircle of triangle APB. Prove that OP ⊥ CD.

Solution 1, by Louis Ryan Tan. Because ∠APD = ∠BPC, the isosceles triangles APD and BPC have
equal base angles, and AD and BC have a common right bisector through P . The reflection through this
right bisector fixes P and switches A and D as well as B and C. Therefore ∠PCD = ∠ABP .

Let PO be produced to meet the circumcircle of ABP at R. Then ∠RAP = 90◦. We have that

∠ARQ = ∠ARP = ∠ABP = ∠PCD = ∠ACQ.

Therefore ARCQ is a concyclic quadrilateral with equal angles subtended at A and Q by the side RC. Hence

∠OQC = ∠RQC = ∠RAC = ∠RAP = 90◦,

as desired.

Solution 2. Let OP produced meet CD at Q. First, suppose that O lies outside triangle PAB. Since
triangles PDC and PAB are congruent (SAS), ∠PDC = ∠PAB. Being opposite, ∠DPQ = ∠OPB. Using
the fact that triangle OAP , OPB and OAB are isosceles, we find that

∠PDQ+ ∠DPQ = ∠PAB + ∠OPB = ∠OAP − ∠OAB + ∠OBP

= ∠OPA− ∠OBA+ ∠OBP = ∠OPA+ ∠PBA.

Since
180◦ = ∠PAB + ∠APB + ∠PBA = ∠PAB + ∠OPB + ∠OPA+ ∠PBA

= 2(∠PAB + ∠OPB),

it follows that ∠PDQ+ ∠DPQ = 90◦, and so ∠OQD = ∠PQD = 90◦, as desired.

If O lies within triangle PAB, as before ∠PDQ = ∠PAB and ∠DPQ = ∠OPB.

∠PDQ+ ∠DPQ = ∠PAB + ∠OPB = ∠OAP + ∠OAB + ∠OBP

= ∠OPA+ ∠PBA.
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The remainder of the argument is as before.

Solution 3, by George Mu-Zhao. Suppose O is internal to triangle APB; an adapted argument is
possible when O is external. Wolog, let BC < AD. Triangles PBA and PCD are isosceles, and the common
right bisector m of BC and AD passes through P . Let OP produced meet CD at N . The reflection in m
interchanges triangles PBA and PCD and carries OPN to a line through P that meets AB at M . We have
that ∠BPM = ∠CPN = ∠APO.

Let ∠APO = ∠BPM = α, ∠OAB = ∠OBA = β, and ∠OPM = γ. Since OA = OB = OP ,

180◦ = ∠APB + ∠ABP + ∠BAP

= (2α+ γ) + (β + α+ γ) + (β + α) = 2(2α+ β + γ),

and

180◦ = ∠PMA+ (α+ β) + (α+ γ) = ∠PMA+ (2α+ β + γ),

whence ∠PND = ∠PMA = 90◦ and the result follows.

Solution 4, by Murhammadrizo Madjidov. Since triangles PBC and PCD are congruent (SAS),
∠ABP = ∠DCP . Drop a perpendicular from O to meet AP at R, and produce OP to meet CD at
Q. Then ∠ROP = 1

2∠AOP = ∠ABP = ∠PCQ. Also the opposite angles OPR and CPQ are equal. Hence
triangles ROP and QCP are similar. Therefore ∠PQC = ∠PRO = 90◦, as desired.

Solution 5, by Jing Wang. Assign coordinates, placing P at the origin, B at (2a, 2b) and C at (2a,−2b).
Then A is at (−2ma, 2mb) and D is at (−2ma,−2mb) for some positive real m. Let O be placed at (u, v).
Since O lies on the right bisectors of both PB and PA, we require that

v − b
u− a

=
−a
b

and
v −mb
u+ma

=
a

b
.

Hence

au+ bv = a2 + b2 and au− bv = −ma2 −mb2,

whence

2au = (1−m)(a2 + b2) and 2bv = (1 +m)(a2 + b2).

The slope of OQ is equal to
v

u
=

1−m
2a

/
1 +m

2b
=
b(1 +m)

a(1−m)
.

Since this is the negative reciprocal of the slope of CD, the desired result follows.

Solution 6, by Zhiyuan Li. Assign coordinates, putting A at (0, 0) and D at (4a, 0), where a > 0. Since
P lies on the right bisector of AD, P is at (2a, 2b) for some b > 0. Then C is at (2(1 + t)a, 2(1 + t)b) for
some t > 0, and, since BP = CP , B is at (2(1− t)a, 2(1 + t)b).

Suppose O is at (u, v). The point O is at the intersection of the right bisectors of BP and CP through
their respective midpoints ((2− t)a, (2 + t)b) and (a, b). Since the respective slopes of AP and BP are b/a
and −b/a,

v − b
u− a

=
−a
b

and
v − (2 + t)b

u− (2− t)a
=
a

b
.

Hence au+ bv = a2 + b2 and au− bv = (2− t)a2 − (2 + t)b2. so that

2au = (3− t)a2 − (1 + t)b2 and 2bv = −(1− t)a2 + (3 + t)b2.
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The slope of OP is equal to

2b− v
2a− u

=

(
2a

2b

)[
4b2 + (1− t)a2 − (3 + t)b2

4a2 − (3− t)a2 + (1 + t)b2

]
=
(a
b

)[ (1− t)a2 + (1− t)b2

(1 + t)a2 + (1 + t)b2

]
=
a(1− t)
b(1 + t)

.

Since the slope of CD is (1+t)b
(1−t)a , the result follows.

Solution 7. Suppose that the circumcircle of triangle APB is the unit circle in the complex plane
centered at 0. Let the points P , A, B be represented respectively by the points 1, eiα, e−iβ in the complex
plane, where 1 ≤ α, β ≤ π. Then

|PA| = |1− eiα| =
√

(1− eiα)(1− e−iα) = 2 sin(α/2)

and
|PB| = |1− e−iβ | = 2 sin(β/2).

Let Q be a point on OP produced. Note that

∠QPC = ∠APO =
π − α

2

and

∠QPD = ∠BPO =
π − β

2
.

Therefore C and D are represented respectively by the points

1 + |1− eiα| exp(−i(π − α)/2) = [1 + 2 sin(β/2) sin(α/2)]− 2i sin(β/2) cos(α/2)

and
1 + |1− e−iβ | exp(i(π − β)/2) = [1 + 2 sin(α/2) sin(β/2)] + 2i sin(α/2) cos(β/2).

Since these complex numbers have the same real part, it follows that CD ⊥ OP .

14. Suppose that a1, a2, . . . , an are real numbers. Prove that

n∑
i=1

 n∑
j=1

aiaj
i+ j

 ≥ 0.

Solution. Let p(x) =
∑n
i=1 aix

i. Then

0 ≤ p(x)2 =

n∑
i=1

n∑
j=1

aiajx
i+j .

Suppose that x ≥ 0. Then, dividing this inequality by x, we find that
∑n
i=1

∑n
j=1 aiajx

i+j−1 ≥ 0. Therefore

0 ≤
∫ 1

0

n∑
i=1

n∑
j=1

aiajx
i+j−1 dx

=

n∑
i=1

n∑
j=1

aiajx
i+j

i+ j

∣∣∣∣1
0

=

n∑
i=1

n∑
j=1

aiaj
i+ j

,

Note. The sum is equal to the matrix product atMa when M is a positive-definite matrix with mij =
(i+ j)−1. This is similar to the Hilbert matrix. However, not every matric with positive entries is positive
definite; the 2× 2 matrix (1, 2; 2, 3) is a counterexample.
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