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No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. Solve the equation

x3 + x2 + x = −1

3
.

2. Let n be a positive integer and S be a set 2n−1 integers, each equal to one of 0, 1, and 2. Each number
occurs less than n times. Prove that there is a subset T of n of them whose sum is equal to n.

3. Let a, b, c, d be the lengths of the sides of a quadrilateral. Suppose that the sum of any three sidelengths
is an integer multiple of the fourth side. Prove that two of the sidelengths are equal.

4. Let p(z) be a polynomial over the complex numbers with positive degree n. Prove that there are complex
numbers c0, c1, . . ., cn, not all zero, for which p(z) divides the polynomial

n∑
k=0

ckz
k2

.

5. Let n be an integer, and let a, b, c be nonnegative reals for which ab+ bc+ ca = 3. Prove that

an + bn + cn ≥ 3.

6. Suppose that AB is a chord of a circle with centre O. The radius OY perpendicular to AB meets AB
at Q. An arbitrary point P on the circumference of the circle distinct from A and B and on the same
side of AB as O is chosen. PY intersects AB at X and PQ intersects the circle again at R. Prove that
XY > QR.

7. Let n be a positive integer exceeding 1, and let G = (V,E) be the graph with a set V of n vertices whose
set S of

(
n
2

)
edges consists of one edge joining each pair of vertices. Suppose that f : V −→ {0, 1} is a

function defined on V that takes only the values 0 and 1.

Define g : E −→ {0, 1} as follows: when the edge e connects the vertices x and y, then we select that
value for g for which

g(e) ≡ f(x) + f(y) mod 2.

For which values of n is it possible to find a function f for which the corresponding function g assumes
each of the values 0 and 1 equally often?

8. Prove that ∫ x

0

t2021et sin t dt = p(x)ex sinx+ q(x)ex cosx+ C,
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for some polynomials p(x) and q(x) and constant C, and determine the value of C.

9. A middle school student presented the following procedure for trisecting an acute angle with straightedge
and compasses:

Suppose the arms of the angle to be trisected meet at O. From a point A on one arm of the angle, drop
a perpendicular to the other arm intersecting it at B. Construct an equilateral triangle ABC with O
and C on opposite sides of AB. Then the angle AOB is trisected by the line OC.

(a) Provide an argument that this procedure does not work. Your solution will be graded on how
elementary your argument is; in particular, it should involve mathematics accessible to a secondary
student.

(b) Is there any acute angle for which the procedure works?

10. Determine all bilateral sequences {xn : n ∈ Z} whose entries are nonzero integers, that satisfy the
recursion

xn+1 =
xn + xn−1 + 1

xn−2

for each integer n.

Solutions

1. Solve the equation

x3 + x2 + x = −1

3
.

Solution 1. Rewrite the equation as

2x3 + (x+ 1)3 = 3x3 + 3x2 + 3x+ 1 = 0.

Then
(x+ 1)3

x3
= −2.

Let θ = 21/3 and ω = 1
2 (−1 + i

√
3) = cos(2π/3) + i sin(2π/3). Then

x =
−1

1 + θ
,

−1

1 + θω
,

−1

1 + θω̄
.

Solution 2. Using the same notation as in Solution 1, we have that

0 = 2x3 + (x+ 1)3 = (θx+ (x+ 1))((θ2x2 − θx(1 + x) + (x+ 1)2)

= (θx+ (x+ 1))((θ2 − θ + 1)x2 + (2− θ)x+ 1),

whence x = −1/(1 + θ) or x = [(θ − 2)± iθ
√

3]/2(θ2 − θ + 1).

Notes: Some competitors used one of the standard methods for solving a cubic in terms of radicals. The
substitutions x = y− (1/3) leads to the equation y3 + (2/3)y+ (2/27) = 0 which can be solved by using the
formua y = z− [2/(9z)]. This yields a quadratic in z3 which can be solved and substituted back into y then
x.

There are a number of expressions for the roots. The real root is equal to

−1

1 + 21/3
= −(1− 21/3 + 22/3)/3,
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which is approximately equal to −0.442493. One of the nonreal roots is

−1/(1 + 21/3ω) =
−(1− 21/3ω + 22/3ω)

3
= (1 + 21/3)(−2 + 21/3 + 21/3

√
3i)/6

=
−22/3

22/3 − 1 +
√

3i
=

1

2−2/3 − 1− 2−2/3
√

3i
.

2. Let n be a positive integer and S be a set of 2n − 1 integers, each equal to one of 0, 1, and 2. Each
number occurs less than n times. Prove that there is a subset T of n of them whose sum is equal to n.

Solution 1. Since each number appears no more than n − 1 times, each must appear at least once.
Suppose that the number of 0’s, 1’s and 2’s in S are respectively a, b, c. If we can find a suitable subset T ,
for which the number of 0’s, 1’s and 2’s are respectively u, v, w, then

2n− 1 = a+ b+ c, 1 ≤ a, b, c ≤ n− 1,

n = u+ v + w = v + 2w,

so that u = w and 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c.

Suppose, first, that a and c are not less than bn/2c. Let n = 2r. Then we can take (u, v, w) = (r, 0, r).

Let n = 2r + 1. Then we can take (u, v, w) = (r, 1, r).

Suppose that d = min (a, c) < bn/2c. Then a+c ≤ d+(n−1), so that b ≥ (2n−1)− (n−1)−d = n−d.
In this case, we can take (u, v, w) = (d, n− 2d, d).

Solution 2. We can prove the result by induction. When n = 2, the set must be {0, 1, 2}, and we can
take T = {0, 2}. Suppose that the result holds for n = m, and that we are given a set S of 2m+ 1 numbers,
each equal to 0, 1 or 2, with none of them appearing no more than m times. If 1 appears m times, then we
can choose T to contain m− 1 ones and one each of 0 and 2, to obtain m+ 1 numbers whose sum is m+ 1.

If S contains m each of 0 and 2, then we can form T by including b(m + 1)/2c each of 0 and 2, and,
when m+ 1 is odd, one 1, to make up the set T .

Suppose S contains fewer than m of either 0 or 2; then S must contain at least two 1s. Form S′ be
removing from S a 1 and either a 0 or 2 to ensure that there are no more than m − 1 of either of these.
Determine a subset T ′ of S of m numbers whose sum is m (by the induction hypothesis) and let T = T ′∪{1}.

Comment. This is a special case of the Erdös-Ginzbug-Ziv Theorem that provides that, for any positive
integer n, any set of 2n− 1 integers contains a subset of n integers whose sum is a multiple of n.

3. Let a, b, c, d be the lengths of the sides of a quadrilateral. Suppose that the sum of any three sidelengths
is an integer multiple of the fourth side. Prove that two of the sidelengths are equal.

Solution. Suppose that the sidelengths are unequal. Let d be the largest sidelength. Then d < a+b+c <
3d, whence a + b + c = 2d. Let p be the perimeter of the quadrilateral; then p = 3d. Since the no two
sidelengths are equal, there are distinct positive integers u, v, w exceeding 2 for which ua = b + c + d,
vb = a+ c+ d, wc = a+ b+ d, so that p = (u+ 1)a = (v + 1)b = (w + 1)c. Therefore

p = a+ b+ c+ d ≤ p

3
+
p

4
+
p

5
+
p

6
=

(
57

60

)
p,

which is false. Hence two sidelengths must be equal.

4. Let p(z) be a polynomial over the complex numbers with positive degree n. Prove that there are complex
numbers c0, c1, . . ., cn, not all zero, for which p(z) divides the polynomial

n∑
k=0

ckz
k2

.

3



Solution. For each integer k ≤ n, we can apply the division algorithm to obtain

zk
2

= qk(z)p(z) + rk(z),

where rk(z) is a remainder polynomial of degree ≤ n − 1. The set Sk = {rk(z) : 0 ≤ k ≤ n} is a set of
n + 1 polynomials in the linear space Pn−1 of polynomials of degree not exceeding n − 1. Since Pn−1 has
dimension n, the set Sk is linearly dependent, so that there are constants ck (0 ≤ k ≤ n) not all zero for
which

∑n
k=0 ckrk(z) = 0. Therefore

n∑
k=0

ckz
k2

=

(
n∑

k=0

ckqk(z)

)
p(z),

and the desired result holds.

5. Let n be an integer, and let a, b, c be nonnegative reals for which ab+ bc+ ca = 3. Prove that

an + bn + cn ≥ 3.

Solution 1. We first note that if (p, q, r) and (u, v, w) are both either increasing or either decreasing,
then

3(pu+ qv + rw) ≥ (p+ q + r)(u+ v + w).

Taking the difference of the two sides yields

2(pu+ qv + rw)− (pv + qu+ pw + ru+ qw + rv) = (p− q)(u− v) + (p− r)(u− w) + (q − r)(v − w) ≥ 0.

Applying this to (a, b, c) in suitable order, we have for each positive integer n,

3(an + bn + cn) ≥ (a+ b+ c)(an−1 + bn−1 + cn−1),

and
3(a−n − b−n − c−n) ≥ (a−1 + b−1 + c−1)(a−(n−1) + b−(n−1) + c−(n−1)).

To obtain the result, we first prove that a+ b+ c ≥ 3 and a−1 + b−1 + c−1 ≥ 3.

Since

(a+ b+ c)2 − 3(ab+ bc+ ca) =
1

2
((a− b)2 + (a− c)2 + (b− c)2) ≥ 0,

the result holds for n = 1. Since

a−1 + b−1 + c−1 =
3

abc

and

(abc)2 = a2b2c2 ≤
(
ab+ bc+ ca

3

)3

= 1,

by the arithmetic-geometric means inequality, the result holds for n = −1. We can now apply an induction
argument.

Solution 2. The inequality is trivial for n = 0. Let n be a positive integer. Then

an + bn + (n− 2) = an + bn + 1 + · · ·+ 1 ≥ n(anbn)1/n = nab,

with a similar inequality for the other pairs of variables. Adding the three inequalities yields

2(an + bn + cn) + 3(n− 2) ≥ n(ab+ bc+ ca) = 3n.
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Hence an + bn + cn ≥ 3.

Now let n = −m be negative. By the arithmetic-geometric means inequality,(
1

abc

)1/3

≤ 1

3

(
1

a
+

1

b
+

1

c

)
+

1

3

(
ab+ bc+ ca

abc

)
=

1

abc
,

whence 1/(abc) ≥ 1. Therefore

an + bn + cn =
1

am
+

1

bm
+

1

cm
≥ 3

(abc)m/3
≥ 3.

6. Suppose that AB is a chord of a circle with centre O. The radius OY perpendicular to AB meets AB
at Q. An arbitrary point P on the circumference of the circle distinct from A and B and on the same
side of AB as O is chosen. PY intersects AB at X and PQ intersects the circle again at R. Prove that
XY > QR.

Solution 1. Wolog, we will locate P and the same side of OY as B. Consider the reflection with axis OY
that interchanges X and Z, P and S, and A and B. Since PSRY is concyclic and SP and AB are parallel,
∠Y RP = ∠Y SP = ∠Y ZQ. Therefore Y RZQ is concyclic and (since ∠ZQY = 90◦) Y Z is a diameter of
the circle containing its vertices, XY = ZY > QR.

Solution 2. Let α = ∠Y RP = ∠Y RQ and β = ∠RY Q. Let Y Q produced meet the circle again at D.
Since DRY P is concyclic, α = ∠Y RP = ∠Y DP . Since ∠XQD = ∠XPD = 90◦, DQXP is concyclic, so
that ∠Y XQ = ∠QDP = α. Now sinα = QY/XY , and the Law of Sines applied to triangle RY Q yields

QY

sinα
=

QR

sinβ
,

so that XY = QR sinβ > QR.

Solution 3. Let RD intersect AB at S. By the Butterfly Theorem, SQ = QX. Since QY right bisects
SX, SY = XY . Since ∠Y RS = ∠Y QS = 90◦, Q,S,R, Y lies on a circle with diameter SY . Hence
QR < SY = XY .

Note: A proof of the Butterfly Theorem was provided by Yao Kuang. Let T be the midpoint of RD and
Z be the midpoint of PY , Triangles QRD and QY P are similar, as are triangles QRT and QZY . Hence
∠QTS = ∠QZX. Since

90◦ = ∠OQS = ∠OTS = ∠OZX = ∠OQX,

quadrilaterals OTSQ and OZXQ are concyclic. Therefore,

∠QOS = ∠QTS = ∠QZX = ∠QOX,

from which it follows that SQ = QX.

7. Let n be a positive integer exceeding 1, and let G = (V,E) be the graph with a set V of n vertices whose
set S of

(
n
2

)
edges consists of one edge joining each pair of vertices. Suppose that f : V −→ {0, 1} is a

function defined on V that takes only the values 0 and 1.

Define g : E −→ {0, 1} as follows: when the edge e connects the vertices x and y, then we select that
value for g for which

g(e) ≡ f(x) + f(y) mod 2.

For which values of n is it possible to find a function f for which the corresponding function g assumes
each of the values 0 and 1 equally often?
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Solution. Suppose that the subset A of V on which f assumes the value 0 has k elements and the subset
B of V on which f assumes the value 1 has n− k elements. Then g(e) = 0 if and only if the endpoints of e
belong to the same one of these two subsets and g(e) = 1 if and only if the end points belong to different
subsets. The number of edges of which g asumes the value 1 is k(n − k). Therefore g assumes each of its
values equally often if and only if k(n − k) is half the total number n(n − 1)/2 of edges. This gives the
condition n(n− 1) = 4k(n− k) which simplifies to

n = (n− 2k)2 = [n− 2(n− 2k)]2.

It is necessary that n be a perfect square.

[Alternatively, the number of edges on which g assumes the value 0 is
(
k
2

)
+
(
n−k
2

)
= 1

2 [n2−(2k+1)n+2k2],
and the condition is

n2 − (2k + 1)n+ 2k2 = 2kn− 2k2

which leads to the same result.]

On the other hand, let n = u2 and 2k = n − u = u(u − 1)) < n. Let A be any set of v = 1
2u(u − 1)

vertices and B be its complement in v with w = n − v = 1
2u(u + 1) vertices. Let f(x) = 0 for x ∈ A and

f(x) = 1 for x ∈ B. Then 2vw = u2(u2 − 1) = 2
(
n
2

)
and the corresponding function assumes each of its

values infinitely often.

[Alternatively,(
v

2

)
+

(
w

2

)
=

1

2
[(v2 + w2) + (v + w)] =

1

4
[2(v + w)2 − 2(v + w)− 4vw]

1

4
[2u4 − 2u2 − u2(u2 − 1)] =

u2(u2 − 1)

4
= vw,

as desired.]

Note: This problem was contributed by Samer Seraj.

8. There exist polynomials p and q and a real number C for which∫ x

0

f2021et sin t dt = p(x)ex sinx+ q(x)ex cosx+ C.

Determine C.

Solution 1. Suppose that

In =

∫ x

0

tnet sin t dt, and Jn =

∫ x

0

tnet cos t dt.

Integrating by parts, we find that

I0 =

∫ x

0

et sin t dt =
ex(sinx− cosx)

2
+

1

2

and

J0 =

∫ x

0

et cos t dt =
ex(sinx+ cosx)

2
− 1

2
,

and, for n ≥ 1,

In =
xnex(sinx− cosx)

2
− n

2
In−1 +

n

2
Jn−1,
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Jn =
xnex(sinx+ cosx)

2
− n

2
In−1 −

n

2
Jn−1.

Using an induction argument and noting that the integrals vanish when x = 0, we can determine the
representations

In = pn(x)ex sinx+ qn(x)ex cosx+ Cn

and

Jn = rn(x)ex sinx+ sn(x)ex cosx+Dn,

for some polynomials pn(x), qn(x), rn(x), sn(x) and constants Cn and Dn where C0 = −D0 = 1/2, and for
n ≥ 1,

Cn = −n
2
Cn−1 +

n

2
Dn−1,

and

Dn = −n
2
Cn−1 −

n

2
Dn−1.

Adding these equations, we find that Dn = −Cn − nCn−1, whence

Cn+1 = −n+ 1

2
Cn +

n+ 1

2
Dn

= −(n+ 1)Cn −
(n+ 1)n

2
Cn−1.

Therefore

Cn+1 = −(n+ 1)Cn −
(n+ 1)n

2
Cn−1

= −(n+ 1)

[
−nCn−1 −

n(n− 1)

2
Cn−2

]
− (n+ 1)n

2
Cn−1

=
(n+ 1)n

2
Cn−1 +

(n+ 1)n(n− 1)

2
Cn−2

=
(n+ 1)n

2

[
−(n− 1)Cn−2 −

(n− 1)(n− 2)

2
Cn−3

]
+

(n+ 1)n(n− 1)

2
Cn−2

= − (n+ 1)n(n− 1)(n− 2)

4
Cn−3.

Therefore

C4k+1 =
(−1)k(4k + 1)(4k)(4k − 1) · · · (4)(3)(2)

22k
C1 =

(
(−1)k(4k + 1)!

22k

)(
−1

2

)
=

(−1)k+1(4k + 1)!

22k+1
.

Setting k = 505 yields C = C2021 = (2021!)/21011.

Solution 2. As in Solution 1, we obtain that C0 = −D0 = −C1 = 1/2, D1 = 0, and, for n ≥ 1,

Cn = −n
2
Cn−1 +

n

2
Dn−1, Dn = −n

2
Cn−1 −

n

2
Dn−1.

(
Cn

Dn

)
=
n

2
A

(
Cn−1
Dn−1

)
,

where

A =

(
−1 1
−1 −1

)
.

7



Observe that

A2 =

(
0 −2
2 0

)
and A4 = −4I,

where I is the identity matrix. Therefore(
C2021

D2021

)
= A2020

(
C1

D1

)
= −2021!

4505
I

( −1
2
0

)
,

whence C2021 = 2021!/21011.

Solution 3. Observe that
∫ x

0
tnet sin t dt = =

∫ x

0
tnewt dt where w = 1+ i. Let

∫ x

0
tnewt dt = f(x)ewx +cn

where cn is a complex constant and f(x) is a complex polynomial. Then

xnewx = f ′(x)ewx + wf(x)ewx

whence f ′(x) + wf(x) = xn. The degree of f(x) is n. Comparing the coefficients of the two sides, we find
that

f(x) =
1

w
xn − n

w2
xn−1 + · · ·+ (−1)i

n(n− 1) · · · (n− i+ 1)

wi+1
+ · · ·+ (−1)nn!

wn+1
.

From the integral equation, we must have

cn = −f(0) =
(−1)n+1n!

wn+1
.

Note that 1/w = (1− i)/2, whence 1/w6 = i/8 and 1/w8 = 1/16. We now restrict to n = 2021 = 8×252+5.
Then

C2021 = =
(

1

w

)2022

(2021!) = =
(

1

w

)6

×
(

1

w

)8×252

× (2021!) = =i2021!

21011
=

2021!

21011
,

and we obtain the same answer as before.

Note: This problem was contributed by Alfonso Gracia-Saz.

9. A middle school student presented the following procedure for trisecting an acute angle with straightedge
and compasses:

Suppose the arms of the angle to be trisected meet at O. From a point A on one arm of the angle, drop
a perpendicular to the other arm intersecting it at B. Construct an equilateral triangle ABC with O
and C on opposite sides of AB. Then the angle AOB is trisected by the line OC.

(a) Provide an argument that this procedure does not work. Your solution will be graded on how
elementary your argument is; in particular, it should involve mathematics accessible to a secondary
student.

(b) Is there any acute angle for which the procedure works?

Solution 1. (a) We show that the proposed procedure fails when ∠AOB = 60◦. Suppose that AB =
√

3.
It is straightfoward to verify that AO = 2, OB = 1, ∠OAC = 90◦, ∠OBC = 150◦ and OC =

√
7 (either

from the right triangle OAC or by applying the Law of Cosines to triangle OBC).

Suppose if possible that ∠COB = 20◦ and ∠AOC = 40◦. Then cos 40◦ = 2/
√

7, so that

sin 10◦ = cos 80◦ = 2 cos2 40◦ − 1 =
1

7
.

From the Law of Sines applied to triangle OBC, we have that

2 sin 10◦ cos 10◦ = sin 20◦ =
√

3 sin 10◦,
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whence cos 10◦ =
√

3/2. Therefore

sin2 10◦ + cos2 10◦ =
1

49
+

3

4
6= 1,

which gives a contradiction. Therefore the angle AOB is not trisected, and this example disproves the
generality of the method.

(b) The procedure works when ∠AOB = 45◦. Let D be the foot of the perpendicular from C to OB
produced. Then OB = AB = BC, so that triangle OBC is isosceles. Since 30◦ = ∠COD = ∠COB +
∠OCB = 2∠COB, then

15◦ = ∠COB =
1

3
∠AOB.

Solution 2. (a) Use the same notation and measurements as in Solution 1. By the Law of Sines
applied to triangle OBC, cos 10◦ =

√
3/2. Hewever, this contradicts cosx being one-one for acute angles and

cos 30◦ =
√

3/2.

(b) Let ∠AOB = 45◦. We may suppose that OB = AB = BC = 2, so that BD =
√

3 and CD = 1.
Then

tanOCB =
1

2 +
√

3
= 2−

√
3.

From the formula tan 30◦ = (2 tan 15◦)/(1− tan2 15◦), it can be shown that tan 15◦ = 2−
√

3. Alternatively,
using the formula tan 3θ = (3 tan θ − tan3 θ)/(1− 3 tan2 θ), it can be checked that tan 3∠BOC = 1.]

Solution 3. (a) Let α = ∠AOC, β = ∠BOC, so that ∠OAB = 90◦ − (α + β), ∠OCA = 30◦ + β and
∠OCB = 30◦ − β. Let the length of AB, BC and CA be 1, and the length of OB be x. By the Law of
Cosines applied to triangle OBC, the length of OC is equal to

√
1 + x+ x2. From the Law of Sines applied

to triangle AOC,
sinα

sin(30◦ + β)
=

sinα

sin(150◦ − (α+ β))
=

1√
1 + x+ x2

.

Similarly, from triangle OBC,
sinβ

sin(30◦ − β)
=

1

x
.

Hence
sinα

sinβ
=

x√
1 + x+ x2

· sin(30◦ + β)

sin(30◦ − β)
.

Now let x tend to ∞. Then α and β both tend to 0 Then sinα/ sinβ tends to 1. This is also the limit
of the ratio α/β. Therefore, for a sufficiently small angle to be trisected, the ratio α/β cannot be 2 and the
construction is invalid.

Comment. We can get a fuller story on when the procedure is valid. Let t = tan∠AOB and s =
tan∠COD, where D is as defined above. Suppose that OB = 2, so that AB = BC = 2t, BD = t

√
3, and

CD = t. Then s = t/(2 + t
√

3). We have that

tan 3∠COB =
3s− s3

1− 3s2
=

3t(2 + t
√

3)2 − t3

(2 + t
√

3)3 − 3t2(2 + t
√

3)

=
3t(4 + 4t

√
3 + 3t2)− t3

(8 + 12t
√

3 + 18t2 + 3t3
√

3)− (6t2 + 3t3
√

3)

=
8t3 + 12t2

√
3 + 12t

12t2 + 12t
√

3 + 8
= t

[
8t2 + 12t

√
3 + 12

12t2 + 12t
√

3 + 8

]

It is readily checked that tan 3∠COB = t = tan∠AOB if and only if t = 1 and ∠AOB = 45◦.
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10. Determine all bilateral sequences {xn : n ∈ Z} whose entries are nonzero integers, that satisfy the
recursion

xn+1 =
xn + xn−1 + 1

xn−2

for each integer n.

Solution. Suppose that a, b, c are three successive terms. The following terms then turn out to repeat
with a period of length 8: (

a, b, c,
b+ c+ 1

a
.

a+ b+ c+ 1 + ac

ab
,

(a+ b+ 1)(b+ c+ 1)

abc
,

a+ b+ c+ 1 + ac

bc
,

a+ b+ 1

c

)
.

Thus we need only arrange that eight successive terms are integers. In fact, some sequences may have periods
of length 1, 2 or 4. Note that we can read this sequence in the opposite direction and it will still satisfy the
rule of formation.

Let us investigate when all the entries are integers; this requires that only the numbers in each period
are integers. To begin with, we suppose that all the entries are positive and that a is a maximum entry.
Then 0 < b+ c+ 1 ≤ 2a+ 1. It follows from this that the fourth term of the period, (b+ c+ 1)/a, being an
integer, does not exceed 2. Hence, either b+ c = 2a− 1 or b+ c = a− 1.

In the first instance, the only possibilities are (b, c) = (a, a− 1) or (b, c) = (a − 1, a). The fifth term is
respectively 1 + (2/a) or 1 + (4/(a − 1)) so that a is one of 2, 3, 5. Checking these out leads to sequences
with one of these periods: (5, 4, 5, 2, 2, 1, 2, 2) and (3, 2, 3, 2, 3, 2, 3, 2)

Otherwise b+ c = a− 1, and the period is

(a, b, a− b− 1, 1,
a+ 1

b
− 1,

a+ b+ 1

b(a− b− 1)
=

1

b

(
1 +

2(b+ 1)

a− (b+ 1)

)
, . . .).

Since the sixth term is an integer, we must have ab− b2 − b ≤ a+ b+ 1, or

a ≤ (b+ 1)2

b− 1
= b+ 3 +

4

b− 1
.

When b = 2, a must be odd and a− 3 must divide 6. Hence a = 5 or a = 9 and we obtain the periods:
(5, 2, 2, 1, 2, 2, 5, 4) and (9, 2, 6, 1, 4, 1, 6, 2).

When b = 3, a− 2 must be a multiple of 3 and a− 4 must divide 8. Hence a = 5, 8 and we obtain the
periods: (5, 3, 1, 1, 1, 3, 5, 9) and (8, 3, 4, 1, 2, 1, 4, 3).

When b = 4, a must be either 7 or 15, but both these fail on the sixth term.

When b = 5, then a = 9 and we obtain (9, 5, 3, 1, 1, 1, 3, 5).

If b ≥ 6, then 4/(b− 1) < 1 and so a ≤ b+ 3. Hence a− 3 ≤ b ≤ a. Since b+ c = a− 1 and c ≥ 1, we
must have b = a− 2 or b = a− 1. We are led to the periodic sequences:

(a, a− 2, 1, 1,
3

a− 2
, . . .) and (a, a− 3, 2, 1,

4

a− 3
).

Since a− 2 ≥ 6, a ≥ 8 and the fifth term in not an integer. Thus, this case is not possible.
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Consider periods that have at least one negative number. If the sequence has three negative terms in
a row, the next term must be positive. Thus, the period must have at least one positive entry. Therefore,
wolog, we assume that a ≥ 1 > −1 ≥ b.

First suppose that c > 0; we can also suppose that c ≤ a, since reversing the sequence gives a valid
sequence. Let b+ c+ 1 > 0. Since b+ c+ 1 is divisible by a, then

a ≤ b+ c+ 1 = c+ (b+ 1) ≤ c ≤ a,

from which a = c and b = −1. This leads to the period

(a,−1, a, 1,−(a+ 2),−1,−(a+ 2), 1)

for a 6= 0,−2.

The other possibility is that
a ≥ c ≥ 1 > −1 ≥ b+ c+ 1 > b.

Since a divides b+ c+ 1, then b+ c+ 1 = −ka where k is a positive integer. Therefore b = −ka− c− 1 and
we are led to the period

(a,−ka− c− 1, c,−k,− c+ 1− k
c+ 1 + ka

. . . .).

The denominator of the fraction in the fifth entry is positive and exceeds the numerator. so if the fifth entry
is an integer, k − c − 1 must be positive and at least as large as c + 1 + ka. But this would imply that
k − c− 1 ≥ c+ 1 + ka or 0 ≥ 2(c+ 1) + k(a− 1), an impossibility.

If a > 0 > −1 ≥ b, c, then b+ c+ 1 < 0, and the fourth term is negative. But then the fifth term in the
period must be positive. Noting that we cannot have two negative terms immediately preceded and followd
by positive terms, we have these possibilities for the signs of the terms in the period:

(+,−,−,−,+,+,−,+)

(+,−,−,−,+,−,+, ?)

(+,−,−,−,+,−,−,−)

Since the first and second of these involve the subsequence +,−,+, which can be placed at the front, these
cases have been considered. Only the third possibility remains to be considered.

Suppose that the period is (p,−q,−r,−s, t,−u,−v,−w) with all of p, q, r, s, t, u, v, w positive. Then
p− q+ 1 = rw and −q− r+ 1 = −ps, whence p+ r = rw+ ps or p(s− 1) + r(w− 1) = 0. Hence w = s = 1.
Also p − w + 1 = qv and −v − w + 1 = −pu, whence p(u − 1) + v(q − 1) = 0. Hence u = q = 1. It follows
that p = r = v and we are led to

(p,−1,−p,−1, p,−1,−p,−1).

In summary, we have the following possible periods all of whose entries are integers:

(9, 5, 3, 1, 1, 1, 3, 5)

(9, 2, 6, 1, 4, 1, 6, 2)

(8, 3, 4, 1, 2, 1, 4, 3)

(5, 4, 5, 2, 2, 1, 2, 2)

(3, 2, 3, 2, 3, 2, 3, 2)

(a,−1, a, 1,−(a+ 2),−1,−(a+ 2), 1) (a 6= 0,−2)

(p,−1,−p,−1, p,−1,−p,−1) (p 6= 0).

Note that all of the sequences obtained with these periods are symmetrical, i.e., they are the same when
they are read backwards.
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