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No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. Determine all strictly increasing functions f from [0, 1] onto [0, 1] for which either (1) f(x) + g(x) ≤ 2x
for all x ∈ [0, 1], or (2) f(x) +g(x) ≥ 2x for all x ∈ [0, 1]. Here, g(x) is the composition inverse function
f−1 of f satisfying f(g(x)) = g(f(x)) = x for x ∈ [0, 1].

2. Determine all integers m for which the following statement is FALSE: there exists a nonnegative integer
r for which m ≡ 2r + 1 (mod 2r+1).

3. Determine all finite sequences (w0, w1, . . . , wn) of integers for which n is a positive integer and for each
k (0 ≤ k ≤ n), wk is the number of entries in the sequence equal to k.

4. Let f be a real continuously differentiable function on [0.1]. Prove that

(a) limn→∞ n
∫ 1

0
xnf(xn) dx =

∫ 1

0
f(x) dx;

(b) limn→∞ n
∫ 1

0
xnf(x) dx = f(1).

5. (a) Let A be a real 2× 2 matrix for which AAt = I, where t denotes the transpose and I is the identity
matrix. Let B be the matrix obtained from A by replacing exactly one of its rows by its negative. Show
that at least one of the matrices A− I and B − I must be singular.

(b) Does the same result hold if A is a real n× n matrix for n ≥ 3?

6. Let r be a positive integer. For 0 ≤ k ≤ 9r, let fr(k) be the number of integers between 0 and
10r−1 = 9 . . . 9 inclusive the sum of whose digits is equal to k. Determine the maximum value of f4(k).

7. (a) Determine all polynomials z3 + az2 + bz + c with complex coefficients a, b, c whose roots are a, b, c
(with the same multiplicity) when at least one of its coefficients is 0 or 1.

(b) Show that, if the roots of the polynomial z3+az2+bz+c with complex coefficients a, b, c, all distinct
from 0 and 1, are the same as the coefficients a, b, c (with the same multiplicity), then a is a root of an
irreducible cubic polynomial with integer coefficients, and b and c can be expressed as polynomials in a.

Definition: An irreducible polynomial is one that cannot be factored as a product of polynomials of
lower degree with rational coefficients.

8. What is the minimum number of subgroups (including the trivial subgroups, the singleton identity and
the whole group) that a non-commutative group can have?

9. Suppose that a and b are positive real numbers. What is the maximum value of b/a for which there
exist real numbers x and y for which 0 ≤ x ≤ b, 0 ≤ y ≤ a and

a2 + x2 = b2 + y2 = (a− y)2 + (b− x)2.
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10. Suppose that x0 = 0, x1 = 1, and

xn+1 = xn

√
x2n−1 + 1 + xn−1

√
x2n + 1

for n ≥ 2. Determine xn.

SOLUTIONS

1. Determine all strictly increasing functions f from [0, 1] onto [0, 1] for which either (1) f(x) + g(x) ≤ 2x
for all x ∈ [0, 1], or (2) f(x) +g(x) ≥ 2x for all x ∈ [0, 1]. Here, g(x) is the composition inverse function
f−1 of f satisfying f(g(x)) = g(f(x)) = x for x ∈ [0, 1].

Solution 1. Since f(x) and g(x) are one-one onto, both must be increasing and continuous. The function
h(x) = f(x) + g(x)− 2x has constant sign on [0, 1] and satisfies∫ 1

0

h(x)dx =

∫ 1

0

(f(x) + g(x))dx−
∫ 1

0

2xdx = 1− 1 = 0.

Hence h(x) = 0 and f(x) + g(x) = 2x for all x ∈ [0, 1].

If f(x) 6≡ x, wolog, we may suppose that for some x0 ∈ (0, 1), f(x0) = x0 + u with u > 0. Then
g(x0) = x0 − u and so f(x0 − u) = x0. For n ≥ 1, let xn = xn−1 − u. Suppose, as an induction hypothesis,
that n ≥ 1 and f(xn−1) = xn−1 + u < 1. Then g(xn−1) = xn−1 − u > 0 and

f(xn) = f(xn−1 − u) = xn−1 = xn + u < 1.

But this leads to a contradiction, since xn = x0 − nu < 0 for n sufficiently large.

Solution 2. One such function is f(x) ≡ x. Suppose that f is a different function for which f(x)+g(x) ≤
2x for x ∈ [0, 1]. By interchanging the roles of f and g if necessary, we may suppose that there exists
x0 ∈ (0, 1) for which f(x0) < x0. For n ≥ 0, define xn+1 = f(xn), so that g(xn+1) = xn. Since f is
increasing, and 0 < x1 < x0, it follows by induction that 0 < xn+1 < xn for every positive integer n.

We have that xn+1 + xn−1 = f(xn) + g(xn) ≤ 2xn, so that xn−1 − xn ≤ xn − xn+1 for each positive
integer n. Hence

x0 > x0 − xn+1 = (x0 − x1) + (x1 − x2) + · · ·+ (xn − xn+1) ≥ n(x0 − x1)

for every positive integer n. But this is impossible, so the function f cannot exist.

Suppose that f(x) + g(x) ≥ 2x. Define F (x) = 1 − f(1 − x) and G(x) = 1 − g(1 − x). Then F and G
are strictly increasing functions from [0, 1] onto [0, 1],

F (G(x)) = 1− f(1−G(x)) = 1− f(g(1− x)) = 1− (1− x) = x = G(F (x)),

and
F (x) +G(x) = 2− [f(1− x) + g(1− x)] ≤ 2− 2(1− x) = 2x.

Hence, by the foregoing argument, F (x) ≡ x, and so f(x) ≡ x.

Solution 3, by Samuel Li. Suppose that f(x) + g(x) ≤ 2x for all x. Let

S = {(u, v) : ux ≤ f(x), g(x) ≤ vx ∀x ∈ [0, 1]}.

The set contains (0, 2) in particular. Let (u, v) ∈ S. Then

g(x) ≥ ux =⇒ f(x) ≤ 2x− g(x) ≤ (2− u)x
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with a similar relation for f(x). Hence (u, 2− u) ∈ S. Also

x = f(g(x)) ≤ vg(x) =⇒ g(x) ≥ 1

v

with a similar relation for g(x). Hence (1/v, v) ∈ S. Suppose, as an induction hypothesis, that(
n− 1

n
,
n+ 1

n

)
∈ S.

This is true for n = 1. Then (
n

n+ 1
, 2− n

n+ 1

)
=

(
n

n+ 1
,
n+ 2

n+ 1

)
∈ S.

Since this is true for all n, we must have that f(x) = g(x) = x for all x.

The case f(x) + g(x) ≥ 2x can be similarly handled.

2. Determine all integers m for which the following statement is FALSE: there exists a nonnegative integer
r for which m ≡ 2r + 1 (mod 2r+1).

Solution 1. Since 2r 6≡ 2r+1 for any nonnegative value of r, 1 is not congruent to 2r + 1 (mod 2r+1).
Thus the statement is false for m = 1.

Let m ≥ 2 and suppose that 2r is the highest power of 2 that divides m− 1. Since m− 1 is not divisible
by 2r+1, m− 1 ≡ 2r (mod 2r+1), so that m ≡ 2r + 1 (mod 2r+1) as desired.

Solution 2. As above, the statement is false for m = 1. However, the statement is true for every other
integer. Let k be any positive integer. If m is even, in particular m = 2k, then m ≡ 2 = 20 + 1 (mod 2),
so r = 0. If m = 2k + 1, then r = k. This establishes the result for 2 ≤ m ≤ 5, with r ≤ 1 for 2 ≤ m ≤ 4.
Suppose that k ≥ 2 and the result has been established for m < 2k, with the corresponding r in each case
not exceeding k − 1.

Let m = 2k + j where 2 ≤ j ≤ 2k−1. There exists a nonnegative intgeger r ≤ k−1 for which j ≡ 2r + 1
(mod 2r+1). Then

m = 2r+12k−r−1 + j ≡ 2r + 1 (mod 2r+1).

Therefore, by an induction argument, it follows that the only integer for which the statement is false is
m = 1.

Comments. Observe that, when m is even, then the corresponding value of r is 0.

There cannot be two distinct values of r for which the statement is true. Suppose, on the contrary, that
u ≥ v + 1 and

n ≡ 2u + 1 (mod 2u+1) n ≡ 2v + 1 (mod 2v+1).

Then 2u + 1 ≡ 2v + 1 (mod 2v+1) so that 1 ≡ 2v + 1 (mod 2v+1). However, this is false.

3. Determine all finite sequences (w0, w1, . . . , wn) of integers for which n is a positive integer and for each
k (0 ≤ k ≤ n), wk is the number of entries in the sequence equal to k.

Solution. From the definition wk ≥ 0 for each k. Since w0 +w1 + · · ·+wk ≤ n+1, the number of entries
in the sequence, wk ≤ n+ 1. It is clear that w0 6= 0 and wk 6= n+ 1 for each k.

Evaluating the sum of the entries in two ways, we find that

w0 + w1 + w2 + · · ·+ wn = 0 · 1 + 1 · w1 + 2 · w2 + · · ·+ k · wk + · · ·+ n · wn,
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whence
w0 = w2 + 2w3 + · · ·+ (k − 1)wk · · ·+ (n− 1)wn.

If w0 = 1, then w2 = 1 and wk = 0 for 3 ≤ k ≤ n. We must have w1 = 2, n = 3, yielding the sequence
(1, 2, 1, 0).

If w0 = 2, then either w2 = 2, wk = 0 for 3 ≤ k ≤ n or w3 = 1 and wk = 0 for k = 2 and 4 ≤ k ≤ n.
In the first case, w1 = 0 and we obtain the sequence (2, 0, 2, 0) or w1 = 1 and we obtain the sequence
(2, 1, 2, 0, 0). We cannot have w1 ≥ 2. In the second case, some entry must be repeated three times and
there must be at least one three. Since the only possible nonzero entries are w0, w1, w3, this case is impossible.

Let w0 = r ≥ 3. Then wr ≥ 1 and (r − 1)wr ≤ r, so that wr ≤ 3/2 < 2. Therefore, wr = 1. Hence

1 = w0 − (r − 1)wr = w2 + 2w3 + · · ·+ (r − 2)wr−1 + rwr+1 + · · ·+ (n− 1)wn,

so that w2 = 1 and wk = 0 for 3 ≤ k ≤ n and k 6= r. Thus, w0 = r, w2 = wr = 1 and w1 = 2. We find that

n = (w0 + w1 + · · ·+ wn)− 1 = r + 3

and the finite sequence must be
(r, 2, 1, 0, . . . , 0, 1, 0, 0, 0)

where there are r − 3 zeros followed by 1 in the rth position and three additional zeros.

4. Let f be a real continuously differentiable function on [0.1]. Prove that

(a) limn→∞ n
∫ 1

0
xnf(xn) dx =

∫ 1

0
f(x) dx;

(b) limn→∞ n
∫ 1

0
xnf(x) dx = f(1).

(a) Solution. Let M = sup{|f(x)| : 0 ≤ x ≤ 1}. Making the substitution u = xn, we have that

n

∫ 1

0

xnf(xn) dx =

∫ 1

0

u1/nf(u) du.

Therefore ∫ 1

0

f(x) dx− n
∫ 1

0

xnf(xn) dx =

∫ 1

0

f(u)(1− u1/n) dx

≤
∫ 1

0

|f(u)|(1− u1/n) du ≤M
∫ 1

0

(1− u1/n) du =
M

n+ 1
.

Letting n tend to infinity yields the result.

(b) Solution 1. Let K = sup{|f ′(x)| : 0 ≤ x ≤ 1}. Then

|f(1)− f(x)| =
∣∣∣∣∫ 1

x

f ′(t)dt

∣∣∣∣ ≤ K(1− x),

for each x ∈ [0, 1]. Therefore∣∣∣∣f(1)− (n+ 1)

∫ 1

0

xnf(x) dx

∣∣∣∣ = (n+ 1)

∣∣∣∣∫ 1

0

xn(f(1)− f(x)) dx

∣∣∣∣
≤ (n+ 1)

∫ 1

0

xn|f(1)− f(x)| dx

≤ (n+ 1)K

∫ 1

0

xn(1− x) dx =
K

n+ 2
.
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Since ∣∣∣∣(n+ 1)

∫ 1

0

xnf(x)dx− n
∫ 1

0

xnf(x)dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

xnf(x)dx

∣∣∣∣ ≤M ∫ 1

0

xndx =
M

n+ 1
,

the desired result follows.

(b) Solution 2.

(n+ 1)

∫ 1

0

xnf(x) dx =
[
xn+1f(x)

]1
0
−
∫ 1

0

xn+1f ′(x) dx.

The first term on the right is equal to f(1) and the second is dominated in absolute value by K
∫ 1

0
xn+1 dx =

K(n+ 2)−1 with K as above. The result follows.

5. (a) Let A be a real 2× 2 matrix for which AAt = I, where t denotes the transpose and I is the identity
matrix. Let B be the matrix obtained from A by replacing exactly one of its rows by its negative. Show
that at least one of the matrices A− I and B − I must be singular.

(b) Does the same result hold is A is a real n× n matrix when n ≥ 3?

(a) Solution 1. The rows and columns of A are unit vectors and the two rows are orthogonal, as are
the two columns. We may assume that the first row of A is (cos θ, sin θ); then the second row is either
(− sin θ, cos θ) or (sin θ,− cos θ). Let A be

A =

(
cos θ sin θ
− sin θ cos θ

)
,

and B be

B =

(
cos θ sin θ
sin θ − cos θ

)
,

Observe that AAt = BBt = I; A is a rotation and B is a reflection with axis along (sin θ, 1 − cos θ). The
second row of each is the negative of the second row of the other.

Wolog, we may suppose that we change the sign of the second row to obtain of A to obtain B, and we
can interchange the roles of A and B. Thus, we just have to examine A− I and B − I. We have

A− I =

(
cos θ − 1 sin θ
− sin θ cos θ − 1

)
and

B − I =

(
cos θ − 1 sin θ

sin θ − cos θ − 1

)
.

Since the determinant of B − I is equal to 1− cos2 θ − sin2 θ = 0, the result follows.

Solution 2, by E. Hessami Pilehrood. Let

A =

(
a b
c d

)
and B =

(
a b
−c −d

)
.

Then a2 + b2 = c2 + d2 = 1 and ac+ bd = 0. Since the transpose of A has the same determinant as A and
the two matrices are inverses, the determinant ad− bc of A is equal to ±1.

Suppose that ad− bc = 1. Then

(a− d)2 + (b+ c)2 = (a2 − 2ad+ d2) + (b2 + 2bc+ c2)

= (a2 + b2) + (c2 + d2)− 2(ad− bc) = 0.

5



Hence a = d and b = −c. The determinant of B − I is equal to

−(a− 1)(d+ 1) + bc = −(ad− bc) + (d− a) + 1 = 0.

Similarly, when ad − bc = −1, (a + d)2 + (b − c)2 = 0, so that a = −d, b = c. and the determinant of
A− I vanishes.

(b) Solution. The result holds for n ≥ 3. We note that (1) AAt = BBt = I; (2) the eigenvalues of both
A and B occur in complex conjugate pairs, and each pair has positive product; (3) If λ is a real eigenvalue
with eigenvector x, then

λ2xtx = (Ax)t(Ax) = xtAtAx = xtx,

with a similar computation for B, and so λ = ±1; (4) if λ = 1, then x is an eigenvector of A − I with
eigenvalue 0 and A − I is singular; (5) the sign of the determinant of either A or B is positive if −1 is an
eigenvalue with even multiplicity and odd otherwise. In counting eigenvalues, we include multiplicity.

Suppose that n is odd. Each matrix has oddly many real eigenvalues. If det A > 0, then −1 occurs
evenly often and so 1 is an eigenvalue. Since A − I annihilates its eigenvector, then A − I is singular.
Otherwise, det B > 0 and B − I is singular.

Suppose that n is even. Each matrix has evenly many real eigenvalues. If det A < 0, then −1 occurs
an odd number of times and so 1 is an eigenvalue and A− I is singular. Otherwise, det B < 0 and B − I is
singular.

6. Let r be a positive integer. For 0 ≤ k ≤ 9r, let fr(k) be the number of integers between 0 and
10r−1 = 9 . . . 9 inclusive the sum of whose digits is equal to k. Determine the maximum value of f4(k).

Solution. It is easily checked that f1(k) = 1 for 0 ≤ k ≤ 9 and

f2(k) =

{
k + 1 if 0 ≤ k ≤ 9;
19− k if 10 ≤ k ≤ 18.

Let 0 ≤ n ≤ 10r − 1. The sum of the digits of n is k if and only if the sum of the digits of (10r − 1)− n
is 9r − k. It follows that fr(k) = fr(9r − k).

For r = 2, 3, if we write each number as an r− digit number with first digit possibly 0 and categorize
the numbers according to the first digit, we obtain

fr+1(k) = fr(k) + fr(k − 1) + fr(k − 2) + · · ·+ fr(k − 9),

where we take fr(x) = 0 when x < 0. Then, when 0 ≤ k ≤ 9,

f3(k) = (k + 1) + k + · · ·+ 1 =
(k + 1)(k + 2)

2
.

Then f(9) = f(18) = 55, f(10) = f(17) = 63, f(11) = f(16) = 69, f(12) = f(15) = 73 and f(13) = f(14) =
75.

Since f2(k) is increasing for 0 ≤ k ≤ 13, so also is f3(k). Applying the foregoing formula for r = 4,
we find that f4(13) = 480, f4(14) = 540, f4(15) = 592, f4(16) = 633, f4(17) = 660 and f(18) = 670. Since
f4(k) = f(36− k) for k ≥ 18, we see that f4(k) assumes its maximum value of 670 when k = 18.

7. (a) Determine all polynomials z3 + az2 + bz + c with complex coefficients a, b, c whose roots are a, b, c
(with the same multiplicity) when at least one of its coefficients is 0 or 1.

(b) Show that, if the roots of the polynomial z3+az2+bz+c with complex coefficients a, b, c, all distinct
from 0 and 1, are the same as the coefficients a, b, c (with the same multiplicity), then a is a root of an
irreducible cubic polynomial with integer coefficients, and b and c can be expressed as polynomials in a.
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Note: An irreducible polynomial is one that cannot be factored as a product of polynomials of lower
degree with rational coefficients.

Solution. (a) If one of the coefficients/roots in 0, then c, the product of the roots, is 0. In this case,
z2 + az + b is a quadratic polynomial whose roots are a and b. Therefore a + b = −a and ab = b, so that,
either (a, b) = (0, 0) or (a, b) = (1,−2). We obtain the polynomials z3 and

z3 + z2 − 2z = z(z − 1)(z + 2).

Suppose that p(z) = z3 + az2 + bz + c with c 6= 0, roots a, b, c and that p(1) = 0. Then

−a = a+ b+ c = p(1)− 1 = −1,

so that a = 1. Since −c = abc = bc, then b = −1. Thus

0 = p(b) = p(−1) = −1 + a− b+ c = 1 + c.

Therefore
p(z) = z3 + z3 − z − 1 = (z2 − 1)(z + 1) = (z − 1)(z + 1)2.

(b) Suppose the roots of z3 + az2 + bz + c are a, b, c and that p(0)p(1) 6= 0. Then

a+ b+ c = −a, ab+ bc+ ca = b, abc = −c.

Since c 6= 0, ab = −1 and b = −1/a. Since b+ c = −2a and a(b+ c) + bc = b, it follows that c = (1/a)− 2a
and

−2a2 +

(
−1

a

)(
1

a
− 2a

)
= −1

a
,

whence
0 = 2a4 − 2a2 − a+ 1 = (a− 1)(2a3 + 2a2 − 1).

The cubic factor cannot vanish for any integer or half-integer a, and so must be irreducible. It follows that

(a, b, c) = (a,−2a2 − 2a, 2a2).

Conversely, if a satisfies 2a3+2a2 = 1, then it can be checked that the polyonomial with these coefficients
a, b, c has roots a, b, c.

8. What is the minimum number of subgroups (including the trivial subgroups, the singleton identity and
the whole group) that a non-commutative group can have?

Solution. The answer is six. The symmetric group S3 has exactly six subgroups consisting of one
subgroup of order 1, three cyclic subgroups of order 2, one cyclic subgroup of order 3 and the whole group
of order 6. Another example is the quaternion subgroup of 8 elements, {1, i, j, k,−1,−i,−j,−k} where
i2 = j2 = k2 = −1, ij = k, jk = i and ki = j. This has one subgroup of order 1, one subgroup of order 2,
three cyclic subgroups of order 4 and the whole group.

Let G be a non-commutative group with two elements a and b for which ab 6= ba. Given any element x,
the integer powers of x constitute a cyclic group 〈x〉 of g. Since no pair of the elements a, b, ab commute, no
one of them can belong to the cyclic group generated by the others. Thus, we have five distinct subgroups
〈e〉, 〈a〉, 〈b〉, 〈ab〉 and G. If the order of a, b or ab is either composite or infinite, then its cyclic subgroup
must have a proper subgroup distinct from each of the cyclic subgroups so far.

The remaining case is where the orders of a, b and ab are all prime. Let A, B, C be the respective
subgroups generated by these elements. Since any element outside their union would generate an additional
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subgroup, G = A ∪ B ∪ C. Also {e} = A ∩ B ∩ C. Let u, v, w be elements (not the identity) in A,B,C
respectively. Since uv cannot lie in A nor B, it must belong to C and so uvw ∈ C. Similarly, uvw ∈ A.
Hence uvw = e. If u′ and v′ are any distinct elements of A and B respectively, then u′v′ = w−1 = uv,
whence u−1u′ = vv′−1 = e ∈ A ∩ B. Thus u = u′ and v = v′, so that A and B are subgroups of order 2;
likewise C has order 2. This gives us the 4−group, which is commutative. So this case cannot occur and the
result follows.

Comment. If a2 6= e, then a2b cannot commute with ab; otherwise (a2b)(ab) = (ab)(a2b) ⇒ ab = ba.
Thus a2b would generate a subgroup distinct from that generated by ab. Also a2b cannot belong to the
subgroups generated by either a nor b. Once again, we are reduced to considering the case where every
element not in the centre has order 2.

9. Suppose that a and b are positive real numbers. What is the maximum value of b/a for which there
exist real numbers x and y for which 0 ≤ x ≤ b, 0 ≤ y ≤ a and

a2 + x2 = b2 + y2 = (a− y)2 + (b− x)2.

Solution 1. Let ABCD be a rectangle with |AB| = |CD| = a and |AD| = |BC| = b. Determine points
E and F on the respective sides BC and CD for which |BE| = x and |DF | = y. Then the given conditions
signify that the triangle AEF is equilateral. The question is quivalent to the maximum ratio of the sides
AD and AB for which an equilateral triangle can be inscribed in the rectangle with one vertex at A.

Suppose that AB is fixed and let θ = ∠BAE. For the inscription to be possible, 0 ≤ θ ≤ 30◦. The side
length s of the triangle AEF is equal to a sec θ and |AD| = s cos(30◦ − θ) = a sec θ cos(30◦ − θ). Since sec θ
and cos(30◦ − θ) are both increasing, we see that |AD| ≤ a sec 30◦ = 2a/

√
3. Therefore the maximum value

of øb/a is 2
√

3/3.

Solution 2, by Richard Chow. The conditions imply that the points O ∼ (0, 0), A ∼ (a, x) and B ∼ (y, b)
constitute an equilateral triangle in the first quadrant of the Cartesian plane with A and B located on the
circumference of a circle of radius r centred at the origin. Let A start on the x−axis and rotate the triangle
counterclockwise until B arrives on the y−axis. Then a decreases and b increases, so that b/a increases.
The maximum value of b/a occurs when A ∼ (r

√
3/2, r/2) and B ∼ (0, r). Thus the desired maximum is

2/
√

3 = 2
√

3/3.

10. Suppose that x0 = 0, x1 = 1, and

xn+1 = xn

√
x2n−1 + 1 + xn−1

√
x2n + 1

for n ≥ 2. Determine xn.

Solution 1. Let xn = sinhun and vn = eun for n ≥ 0. Then (u0, v0) = (0, 1) and v1, being the positive
root of the equation 1

2 (t− t−1) = 1, is equal to 1 +
√

2. We have, for each n ≥ 2, that

sinhun+1 = xn+1 = sinhun coshun−1 + sinhun−1 coshun = sinh(un + un−1),

whence un+1 = un + un−1 amd vn+1 = vnvn−1.

Thus v2 = v1v0 = v1, v3 = v2v1 = v21 , v4 = v3v2 = v31 , and, by induction,

vn = vfn1 = (1 +
√

2)fn ,

for n ≥ 0, where fn is the Fibonacci sequence givn by f0 = 0, f1 = 1 and fn+1 = fn + fn−1. Note that

v−1n = (−1)fn(1−
√

2)fn ,
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so that v−1n = (1−
√

2)fn when n ≡ 0 (mod 3) and v−1n = −(1−
√

2)fn otherwise.

Therefore

xn =
1

2
(vn − vn−1)

for each nonnegative integer n.

{xn} = {0, 1, 1, 2
√

2, 7, 41, 204
√

2, 47321, . . .}.

Solution 2. Let sinh c = 1. Then x0 = sinh 0 = sinh cf0 and x1 = sinh cf1. Suppose as an induction
hypothesis for n ≥ 1, 0 ≤ k ≤ n, xk = sinh cfk. Then

xn+1 = sinh cfn cosh cfn−1 + sinh cfn−1 cosh cfn = sinh c(fn + fn−1) = sinh cfn+1.

Hence, xn = sinh cfn for each nonnegative integer n.
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