
THE UNIVERSITY OF TORONTO

UNDERGRADUATE MATHEMATICS COMPETITION

In Memory of Robert Barrington Leigh

Sunday, March 10, 2019

Time: 3 1
2 hours

No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. (a) Determine necessary and sufficient conditions on the sextuple (a, b, c, d, e, f) with a ≤ b ≤ c ≤ d ≤
e ≤ f in order that there exist four numbers for which a, b, c, d, e, f are the pairwise sums.

(b) Where the set of four numbers exist as in (a), determine when there is more than one possibility
and show that the sum of the squares of the numbers is the same for the different possibiities.

2. For n = 1, 2, . . ., let

xn =
n+ 1

2n+1

n∑
k=1

2k

k
.

Prove that limn→∞ xn exists and find it.

3. The positive integer n is said to be an SP (square-pair) number if the set {1, 2, . . . , 2n} can be partitioned
into n pairs such that the sum of the numbers in each pair is a perfect square.

(a) Prove that n is an SP number for which the sums of the members of the pairs are equal if and only
if n = 2m(m+ 1) for some positive integer m.

(b) Show that 10 is not a SP number.

(c) Prove that there are infinitely many SP numbers that are not of the form 2m(m+ 1).

4. Determine ∫ 1

0

(
4 arctanx+ π tan

πx

4

)
dx.

5. Let n ≥ 2 and let x1, x2, . . . , xn be positive real numbers. Determine the minimum value of

S =
x1

x2 + x3 + · · ·+ xn
+

x2
x1 + x3 + · · ·+ xn

+ · · ·+ xn
x1 + x2 + · · ·+ xn−1

(n terms on the right side) and the value of (x1, x2, . . . , xn) where this minimum is attained.

6. Let m, n be positive integers; let A be a m × n matrix, B be a n ×m matrix, and BA an invertible
n× n matrix.

(a) What are the eigenvalues of the matrix A(BA)−1B?

(b) Give an example of this situation when (m,n) = (3, 2).

7. Let p(z) = z3 + az2 + bz + c be a cubic polynomial with complex coefficients. Prove that

sup{|p(z)| : |z| ≤ 1} ≥ 1.
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8. Suppose a and b are elements of a group and r is a positive integer for which (ab)r = a. Prove that
ab = ba.

9. Suppose that {fn(x) : n = 1, 2, 3, . . .} is a sequence of differentiable functions defined on an open interval
I for which |f ′n(x)| ≤M for some contant M , all x ∈ I and all positive integers n. Suppose further that
limn→∞ fn(x) = g(x). Prove that g(x) is continuous on I.

10. Let S be the subset of the open interval (0, 1) consisting of those numbers that do not have a terminating
binary (base 2) expansion (i.e., are not rationals of the form r/2s for integers r and s). For x ∈ (0, 1),
let fn(x) be the number of 0’s among the first n digits after the decimal point in the binary expansion
of x, divided by n. Let A be the set of numbers x in S for which

f(x) = lim
n→∞

fn(x)

exists, and let B be the set of numbers in S for which the limit does not exist.

(a) Prove that both A and B are uncountable.

(b) Does there exist a number in A for which f(x) = x?

END
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Solutions.

1. (a) Determine necessary and sufficient conditions on the sextuple (a, b, c, d, e, f) with a ≤ b ≤ c ≤ d ≤
e ≤ f in order that there exist four numbers for which a, b, c, d, e, f are the pairwise sums.

(b) Where the set of four numbers exist as in (a), determine when there is more than one possibility
and show that the sum of the squares of the numbers is the same for the different possibiities.

(a) Solution. Suppose that four such numbers, p, q, r, s, exist with p ≤ q ≤ r ≤ s. Then a = p + q,
b = p+ r, {c, d} = {p+ s, q + r}, e = q + s and f = r + s. Then a+ f = b+ e = c+ d = p+ q + r + s.

We show that these conditions are sufficient. Consider the two systems of equations:

a = p+ q; b = p+ r; c = q + r;

and
c = q + r; e = q + s; f = r + s.

The first system is satisfied by

(p, q, r) =

(
1

2
(a+ b− c), 1

2
(a− b+ c),

1

2
(−a+ b+ c)

)
and the second by

(q, r, s) =

(
1

2
(c+ e− f),

1

2
(c− e+ f),

1

2
(−c+ e+ f)

)
.

Since a + f = b + e, the two expressions for each of q and r are equal. Therefore, the sextuple consists of
the pairwise sums of (

1

2
(a+ b− c), 1

2
(a− b+ c),

1

2
(−a+ b+ c),

1

2
(−c+ e+ f)

)
.

We can obtain a second solution by replacing c by d so that d = q + r.

(b) Solution 1. There are two possible quartets when c 6= d. Keeping the notation of (a) for the two
solutions and letting u = a+ f = b+ e = c+ d, we find that

3u = a+ b+ c+ d+ e+ f = 3(p+ q + r + s),

whence u = p+ q + r + s. Therefore

a2 + b2 + c2 + d2 + e2 + f2 = 3(p2 + q2 + r2 + s2) + 2(pq + pr + ps+ qr + qs+ rs)

= 3(p2 + q2 + r2 + s2) + p(q + r + s) + q(p+ r + s) + r(p+ q + s) + s(p+ q + r)

= 3(p2 + q2 + r2 + s2) + p(u− p) + q(u− q) + r(u− r) + s(u− s)
= 2(p2 + q2 + r2 + s2) + (p+ q + r + s)u = 2(p2 + q2 + r2 + s2) + u2,

so that

p2 + q2 + r2 + s2 =
1

2
(a2 + b2 + c2 + d2 + e2 + f2 − u2).

Solution 2. When p, q, r, s are the four numbers, a = p+ q, b = p+ r, e = q + s, f = r + s. There are
two possibilities for c and d given by (c, d) = (p+ s, q + r) and (c, d) = (q + r, p+ s).

For the first possibility,

2(p2 + q2 + r2 + s2) = (p− q)2 + (p+ q)2 + (r − s)2 + (r + s)2

= (b− d)2 + a2 + (b− c)2 + f2,
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and, for the second,
2(p2 + q2 + r2 + s2) = (b− c)2 + a2 + (b− d)2 + f2.

For both, x2 + y2 + z2 + w2 has the same value.

For example, the sextuple (8, 12, 16, 18, 22, 26) consists of the pairwise sums of (2, 6, 10, 16) and (1, 7, 11, 15).
Both sets of four have square sum equal to 396 = 1

2 (1948− 1156).

2. For n = 1, 2, . . ., let

xn =
n+ 1

2n+1

n∑
k=1

2k

k
.

Prove that limn→∞ xn exists and find it.

Solution. The sequence is {1, 3/2, 5/3, 5/3, 24/15, 91/60, . . .}. It can be checked that, for each n,

xn+1 =
n+ 2

2(n+ 1)
(xn + 1),

whereupon

xn+1 − xn =
(n+ 2)− nxn

2(n+ 1)
.

Observe that x4 > 3/2. Suppose, as an induction hypothesis, that xn > (n+ 2)/n. Then

xn+1 >
n+ 2

2(n+ 1)

[
2n+ 2

n

]
=
n+ 2

n
>
n+ 3

n+ 1
.

Therefore, for n ≥ 4, nxn > n + 2 and so xn+1 < xn. Thus, {xn} is an eventually decreasing nonnegative
sequence and so has a limit. Let this limit be c.

Since
xn+1

xn + 1
=

n+ 2

2(n+ 1)
,

c/(c+ 1) = 1/2, whence c = 1.

[Iranian University Student Mathematics Competition, March, 1980]

3. The positive integer n is said to be an SP (square-pair) number if the set {1, 2, . . . , 2n} can be partitioned
into n pairs such that the sum of the numbers in each pair is a perfect square.

(a) Prove that n is an SP number for which the sums of the members of the pairs are equal if and only
if n = 2m(m+ 1) for some positive integer m.

(b) Show that 10 is not a SP number.

(c) Prove that there are infinitely many SP numbers that are not of the form 2m(m+ 1).

(a) Solution 1. Suppose that n is an SP number and that the sum for each pair is the square s2.

ns2 = 1 + 2 + · · ·+ 2n = n(2n+ 1)

from which 2n+1 = s2. Thus s2 is odd, and has the form (2m+1)2 = 4m2 +4m+1. Hence n = 2m(m+1).

On the other hand, if n = 2m(m+ 1), then the partition

((2m+ 1)2 − 1, 1), ((2m+ 1)2 − 2, 2), . . . (2m2 + 2m+ 1, 2m2 + 2m)

is a partition of the desired type.
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Solution 2. Suppose that n is a SP number and we have the pairs (1, a) and (b, 2n), which could be the
same. If 1 + a = b+ 2n, then a− b = 2n− 1. Since b ≤ 2n and b ≥ 1, then a− b ≤ 2n− 1 with equality if
and only if a = 2n and b = 1. Therefore 1 + 2n is an odd square (2m + 1)2 = 4m(m + 1) + 1, from which
we find that n = 2m(m+ 1). The rest is as in the first solution.

(b) Solution. Suppose, if possible, there is a partition of {1, 2, . . . , 20} that fulfils the condition for 10
to be an SP number. The partition must include the pair (18, 7). The only possible pairs that include 4 are
(4, 5) and (4, 12). If the set of pairs include (18, 7) and (4, 5), then (9, 7) and (20, 5) are ruled out, and so
that leaves (9, 16) and (20, 16). Since both of these pairs cannot be included, we are at an impasse.

On the other hand, if (18, 7) and (4, 12) are included, then (9, 7) and (13, 12) are excluded, and we must
include (9, 16) and (13, 3). But then (20, 16) is excluded and we must include (20, 5). Since (11, 5) is now
excluded, we must include (11, 14). But then (2, 7) and (2, 14) are excluded, and we cannot have a pair
including 2.

(c) Solution 1. [I. Bar-Natan; S. Chow] Let m ≥ 2 and n = 2m(m+ 1)− 4. Then n > 9 and the set of
pairs

(1, 8), (2, 7), (3, 6), (4, 5), (9, 4m(m+ 1)− 8), . . . , (9 + r, 4m(m+ 1)− (8 + r)), . . . , (2m(m+ 1), 2m(m+ 1) + 1)

gives the desired partition, where 0 ≤ r ≤ 2m(m+ 1)− 9.

Solution 2. [P. Chaitin] Let n = 2m(3m + 1) so that 2n = 4m(3m + 1) = 12m2 + 4m = (4m +
1)2 − (2m + 1)2. Then n is a SP number with pairs (k, (2m + 1)2 − k) with 1 ≤ k ≤ 2m(m + 1) and
((2m+ 1)2 + k, (4m+ 1)2 − (2m+ 1)2 − k) for 0 ≤ k ≤ 4m2 − 1.

Solution 3. We can start with a partition for some SP number, and augment it to a partition for a larger
SP number. Here is the crucial step that can be iterated. Suppose n is a SP number and we have a suitable
partition of {1, 2, . . . , 2n}. Pick an odd square (2r+ 1)2 that exceeds 4n+ 1. Then we get a partition for the
SP number 2r2 + 2r− n that consists of the n pairs partitioning {1, 2, . . . , 2n} along with the 2r2 + 2r− 2n
pairs

(4r2 + 4r − 2n, 2n+ 1), (4r2 + 4r − 2n− 1, 2n+ 2), . . . , (2r2 + 2r + 1, 2r2 + 2r).

(c) Solution 4. Begin with the square m2 and, where possible, select a square r2 that satisfies the two
conditions (1) m2 ≤ 2(r2 − 1) and (2) 3r2 ≤ 2m2. Then we have the following partition for n = m2 − r2.

(r2 − 1, 1), (r2 − 2, 2), . . . , (m2 − r2 + 1, 2r2 −m2 − 1),

(2(m2 − r2), 2r2 −m2), (2(m2 − r2)− 1, 2r2 −m2 + 1), . . . , (r2,m2 − r2).

The conditions on m and r ensure that for each of the two chunks of pairs, the first entries decrease and the
second entries increase.

It remains to ensure that for sufficiently large m, we can find r such that

1

2
(m2 + 1) ≤ r2 ≤ 2

3
m2.

But this follows from the fact that the difference between the square roots of the extremes of the inequality
is greater than 1 for sufficiently large m and so contains an integer.

(c) Solution 5. Inspired by the partition

(14, 2), (13, 3), (12, 4), (11, 5), (10, 6), (9, 7), (8, 1)

for n = 7, we let n be of the form 2m2 − 1 and consider the partition consisting of the 2m2 − 2 pairs
(4m2 − k, k) for 2 ≤ k ≤ 2m2 − 1, and (2m2, 1) This will be an acceptable partition provided 2m2 + 1 = r2

for some integer r. But this is a Pell’s equation and so has infinitely many solutions.
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4. Determine ∫ 1

0

(
4 arctanx+ π tan

πx

4

)
dx.

Solution 1. Let f(x) = (4/π) arctanx and g(x) = tan πx
4 . Then f(0) = g(0) = 0, f(1) = g(1) = 1 and f

and g are inverses: f(g(x)) = g(f(x)) = x for x ∈ [0, 1]. It can be seen from a sketch that∫ 1

0

(f(x) + g(x) dx = 1.

Alternatively, making the substitution t = g(x) whereupon dt = g′(x)dx = (1/f ′(t))dx, we have∫ 1

0

g(x)dx =

∫ 1

0

tf ′(t)dt = [tf(t)]
1
0 −

∫ 1

0

f(t) dt = 1−
∫ 1

0

f(x) dx,

which yields the same result.

The value of the integral in the problem is therefore π.

Solution 2. [R. Chow] Using the respective substitutions x = tan θ and x = (4/π)θ, we find that∫ 1

0

4 arctanx dx+

∫ 1

0

π tan
πx

4
dx = 4

[∫ π/4

0

θ sec2 θ dθ +

∫ π/4

0

tan θ dθ

]

= 4

[∫ π/4

0

(θ sec2 θ + tan θ) dθ

]
= 4 |θ tan θ|π/40 = π.

Solution 3. Integration by parts yields∫
arctanxdx = x arctanx− 1

2
log(1 + x2),

so that ∫ 1

0

4 arctanxdx = π − 2 log 2.

Also ∫ 1

0

π tan
πx

4
dx =

∣∣∣−4 log cos
πx

4

∣∣∣1
0

= −4 log 2−1/2 = 2 log 2.

Hence the desired answer is π.

5. Let n ≥ 2 and let x1, x2, . . . , xn be positive real numbers. Determine the minimum value of

S =
x1

x2 + x3 + · · ·+ xn
+

x2
x1 + x3 + · · ·+ xn

+ · · ·+ xn
x1 + x2 + · · ·+ xn−1

(n terms on the right side) and the value of (x1, x2, . . . , xn) where this minimum is attained.

Solution 1. Let s = x1 + x2 + · · ·+ xn and, for each i, let ui = x1 + · · ·+ x̂i + · · ·+ xn be the sum with
the term xi left out. Note that

∑n
i=1 ui = (n− 1)s.

S =

n∑
i=1

s− ui
ui

=

[
s

n∑
i=1

1

ui

]
− n

=
1

n− 1

(
n∑
i=1

ui

)(
n∑
i=1

1

ui

)
− n

≥ n2

n− 1
− n =

n

n− 1
,

6



by the Cauchy-Schwarz inequality, with equality if and only if all the ui are equal, if and only if all the xi
are equal.

Solution 2. [S. Li] Wolog, let x1 + x2 + · · ·+ xn = 1, so that

S =

n∑
i=1

xi
1− xi

=

(
n∑
i=1

1

1− xi

)
− n.

By the harmonic-geometric mens inequality applied to the n−tple {(1− xi)}, we find that

n∑n
i=1(1− xi)−1

≤ 1

n

n∑
i=1

(1− xi) =
n− 1

n
,

with equality if and only if all xi are equal.

Hence

S ≥ n2

n− 1
− n =

n

n− 1

with equality if and only if all the xi sre equal.

Solution 3. [J. Guo] Recall the Rearrangement Inequality: if 0 ≤ u1 ≤ u2 ≤ · · · ≤ xn and 0 ≤ v1 ≤ v2 ≤
· · ·+ ≤ vn, then

n∑
i=1

uσ(i)vi ≤
n∑
i=1

uivi,

whenever σ is apermutation on {1, 2, . . . , n}. Equality occurs if and only if σ is the identity permutation (or
in the case some of the ui are equal, a modification of the identity that switches the equal ui).

Wolog, suppose that 0 < x1 ≤ x2 ≤ · · · ≤ xn and, for 1 ≤ k ≤ n, let

dk = x1 + x2 + · · ·+ x̂k + · · ·+ xn =

(
n∑
i=1

xi

)
− xk.

Since 1/d1 ≤ 1/d2 ≤ · · · ≤ 1/dn,
n∑
i=1

xσ(i)

di
≤
∑
i=1

n
xi
di

= s

for each permutation σ. For 1 ≤ j ≤ n− 1, let σj be the cyclic permutation defined by

σ(i) =

{
i+ j, if 1 ≤ i ≤ n− j;
(i+ j)− n, if n− j < i ≤ n.

Then
n−1∑
j=1

n∑
i=1

xσj(i)

di
≤ (n− 1)s.

But the left side is equal to

n∑
i=1

1

di
(xi+1 + xi+2 + · · ·+ +xn + x1 + · · ·+ xi−1) =

n∑
i=1

di
di

= n.

The result follows and n/(n− 1) is an upper bound for S.
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This upper bound is achieved when all the xi are equal. If the xi are not all equal, then some cyclic
permutation σ will give a nonincreasing sequence xσ(i) and we will obtain a strict inequality in one of the
sums added together for the final result. Thus equality holds if and only if all xi are equal.

Solution 4. Fix t = x1 + x2 + · · ·+ xn and let S be defined on the compact set K defined by xi ≥ 0 for
1 ≤ i ≤ n and x1 + x2 + · · ·+ xn = t. Then, on K, S must assume its minimum value.

We show that, if not all the xi are equal, then S must assume a lower value somewhere else on K.
Wolog, suppose that u = x1 6= x2 = v. Let 2w = x1 + x2. Observe that, by the inequality of the harmonic,
arithmetic and geometric means inequality,

1

2
(u2 + v2) > w2 > uv.

Let p = x3 + · · ·+xn and q =
∑n
r=3 xr(t−xr)−1. Observe that w+w+p = u+v+p = x1 +x2 + · · ·+xn = t.

Then

S(u, v, x3, . . . , xn) =

[
u

p+ v
+

v

p+ u

]
+ q

=

[
u2 + v2 + p(u+ v)

uv + p(u+ v) + p2

]
+ q

>

[
2w2 + 2pw

w2 + 2pw + p2

]
+ q =

2w

p+ w
+ q = s(w,w, x3, . . . , xn).

Thus, S can attains its minimum value n(n− 1)−1 only when all the xi are equal.

Solution 5. Wolog, suppose x1+x2+· · ·+xn = 1. Then S =
∑n
i=1

xi

1−xi
. Since the function f(t) = t/(1−t)

has positive first and second derivatives on (0, 1) it is increasing and convex. Hence

S/n = (1/n)(f(x1) + f(x2) + · · ·+ f(xn)) ≥ f(1/n) = 1/(n− 1),

so that S ≥ n/(n− 1) with equality if and only if all the xi are equal.

6. Let m, n be positive integers; let A be a m × n matrix, B be a n ×m matrix, and BA an invertible
n× n matrix.

(a) What are the eigenvalues of the matrix A(BA)−1B?

(b) Give an example of this situation when (m,n) = (3, 2).

(a) Solution 1. [based on Y. Zhong & J. Guo] Since BA is invertible, its rank is equal to n. Therefore
the rank of A is at least n. But the rank of A does not exceed the minimum of m and n, so it follows that
m ≥ n.

Observe that

(A(BA)−1B)(A(BA)−1B) = A(BA)−1(BA)(BA)−1B = A(BA)−1B,

so that the minimum polynomial of A(BA)−1)B is t2 − t = t(t− 1). Therefore the only possible eigenvalues
are 0 and 1.

We first note that if P = (pij) is a m×n matrix and Q = (qij) is a n×m matrix, then PQ is an m×m
and QP is an n× n matrix and their traces are equal. Note that both traces are equal to

m∑
i=1

n∑
j=1

pijqji =

n∑
j=1

m∑
i=1

qjipij .
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Applying this we see that the traces of A[(BA)−1B] and [(BA)−1B]A = (BA)−1BA = In are equal. Since
the trace of In is equal to n as well as the sum of its eigenvalues, The trace of A(BA)−1B is equal to the
trace of (BA)−1BA = In, namely n.

Hence 1 is an eigenvalue with multiplicity n and 0 an eigenvalue with multiplicity m− n.

Solution 2. We first note that when m < n, BA must always be singular, so that the situation is not
possible. We can write A = (c1, c2, . . . , cn) where each ci is a column m−vector, and B = (r1, r2, . . . , rn)t

where each ri is a row m−vector. The set {ri} is linearly dependent, so there exist constants αi not all zeros
such that

∑
ααiri = 0.

Since the ith row of BA is (ric1, ric2, . . . , ricn) and there is a vanishing nontrivial linear combination
with coefficients αi of the rows which vanishes. Therefore BA must be singular. Henceforth, we assume that
m ≥ n.

Let m = n. Then A and B are square matrices of the same order, and A(BA)−1B = AA−1B−1B = I;
thus the only eigenvalue is 1.

Let m > n. Suppose that u is a nonzero m−vector for which

A(BA)−1Bu = λu.

Then, multiplying on the left by B, we obtain

Bu = λBu.

Then, either λ = 1 or Bu = O. In the latter case, A(BA)−1Bu = O so that the eigenvalue corresponding to
u is 0.

Since BA is invertible, A is not the zero matrix, and so there is a n−vector v for which Av 6= O. In this
case

A(BA)−1B(Av) = A(BA)−1(BA)v = Av,

so that Av has eigenvalue 1. Since m < n, the columns of B are linearly dependent, and so the columns
of [A(BA)−1]B are linearly dependent with the same coefficients. Hence detA(BA)−1B = 0 and 0 is an
eigenvalue.

(b)

A =

 1 0
0 1
1 1


B =

(
1 0 1
0 1 0

)

BA =

(
2 1
0 1

)

(BA)−1 =
1

2

(
1 −1
0 2

)

A(BA)−1B =
1

2

 1 −1 1
0 2 0
1 1 1


The vector (−1, 0, 1)t is an eigenvector with eigenvalue 0, while (1, 0, 1)t and (0, 1, 1)t are eigenvectors with
eigenvalue 1.
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7. Let p(z) = z3 + az2 + bz + c be a cubic polynomial with complex coefficients. Prove that

sup{|p(z)| : |z| ≤ 1} ≥ 1.

Solution 1. Let ω = 1
2 (1 + i

√
3) be an imaginary cube root of unity, and let

f(z) =
1

3
[p(z) + p(ωz) + p(ω2z)].

Noting that 1 + ω + ω2 = 0, we find that f(z) = z3 + c.

Let v be a cube root of c/|c|, so that |v| = 1. Then

f(v) =
c

|c|
+ c = c

(
1

|c|
+ 1

)
and

|f(v)| = |c|
(

1

|c|
+ 1

)
= 1 + |c| ≥ 1.

Since
3 ≤ 3|f(v)| = |p(v) + p(ωv) + p(ω2v)| ≤ |p(v)|+ |p(ωv)|+ |p(ω2v)|.

Thus, at least one of p(v), p(ωv) and p(ω2v) has absolute value not less than 1 and the result follows.

Note. We actually have a stronger inequality.

Solution 2. [S. Li] By Rouché’s Theorem, if f and g are two complex functions for which |g(z)| < |f(z)|
for |z| = 1, then f(z) and f(z) − g(z) have the same number of zeros inside the closed unit disc. Suppose,
if possible, that sup{|p(z)| : |z| ≤ 1} < 1. Then, applying Rouché’s Theorem to f(z) = z3 and g(z) = p(z),
the functions z3 and az2 + bz+ c would have the same number of roots (counting multiplicity) in the closed
unit disc. But this is impossible, since the latter function is a quadratic. Hence the result holds.

Solution 3. [I. Bar-Natan] Let q(z) = p(z)/z4. Then∮
|z|=1

q(z) dz =

∮
|z|=1

1

z
dz +

∮
|z|=1

a

z2
dz +

∮
|z|=1

b

z3
dz +

∮
|z|=1

c

z3
dz

= 2πi+ 0 + 0 + 0 = 2πi.

Therefore

2π ≤
∮
|z|=1

|q(z)| dz =

∮
|z|=1

|p(z)| dz ≤ 2π sup
|z|=1

|p(z)|,

from which the result follows.

Note. This result can be extended to monic polynomials of arbitrary degree n. All three arguments
work, where in the first, you work with the value of the polynomial at the nth roots of unity.

8. Suppose a and b are elements of a group and r is a positive integer for which (ab)r = a. Prove that
ab = ba.

Solution 1. [S. Li]

ba = b(ab)r = (a−1a)b(ab)r = a−1(ab)r(ab) = a−1a(ab) = ab.

Solution 2. [B. Fattin]

(ab)2r−1(ab) = (ab)2r = (ab)r(ab)r = (ab)ra

= (ab)r−1a(ba) = (ab)r−1(ab)r(ba) = (ab)2r−1(ba),
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Multiplying on the left by the inverse of (ab)2r−1, we find that ab = ba.

Solution 3. Suppose (ab)r = a. Then ab(ab)r−1 = a implies that b(ab)r−1 = e = (ba)r−1b. Hence
(ab)r−1 = b−1 = (ba)r−1. Therefore (ba)r−2b = a−1b−1 and (ba)r−2b = b−1a−1.

Therefore a−1b−1 = b−1a−1 and so

ab = ab(a−1b−1)ba = ab(b−1a−1)ba = ba.

9. Suppose that {fn(x) : n = 1, 2, 3, . . .} is a sequence of differentiable functions defined on an open interval
I for which |f ′n(x)| ≤ M for some constant M , all x ∈ I and all positive integers n. Suppose further
that limn→∞ fn(x) = g(x). Prove that g(x) is continuous on I.

Solution. Let u and v be any two elements of I with u < v. Let ε > 0. Choose N such that, for n ≥ N ,
|fn(u)− g(u)| < ε and |fn(v)− g(v)| < ε for n ≥ N . Then, for n ≥ N and a suitable w ∈ (u, v), we have that

|g(v)− g(u)| ≤ |g(v)− fn(v)|+ |fn(v)− fn(u)|+ |fn(u)− g(u)|
≤ 2ε+ |fn(v)− fn(u)| = 2ε+ |f ′n(w)|(v − u)

≤ 2ε+M(v − u).

Since this holds for all positive ε, |g(v)− g(u)| ≤M |v − u| for all u and v in I, and the result follows.

10. Let S be the subset of the open interval (0, 1) consisting of those numbers that do not have a terminating
binary (base 2) expansion (i.e., are not rationals of the form r/2s for integers r and s). For x ∈ (0, 1),
let fn(x) be the number of 0’s among the first n digits after the decimal point in the binary expansion
of x, divided by n. Let A be the set of numbers x in S for which

f(x) = lim
n→∞

fn(x)

exists, and let B be the set of numbers in S for which the limit does not exist.

(a) Prove that both A and B are uncountable.

(b) Does there exist a number in A for which f(x) = x?

Solution. (a) For each nonrational number x ∈ (0, 1) with binary expansion 0.a1a2..., define g(x) =
0.b1b2 . . . where b2n−1b2n = 01 when an = 0 and b2n−1b2n = 10 when an = 1. The domain of g is
uncountable, g is one-one so its image is uncountable, and f2n(g(x)) = 1/2. It follows that f(g(x)) = 1/2.
Therefore A is uncountable.

We begin with a basic number b in (0, 1) for which the limit does not exist amd then create uncoutably
many modifications. Let

b = 0.0110000111111110000000000000000111111111111111111111111111111110 . . . ,

where the digits come in consecutive tranches Tr (r ≥ 1), where Tr has 2r−1 digits. When r is odd, these
digits are all zero. When r is even, these digits are all one. Let pr be the ratio of zeros to the number of
digits in the first r tranches, so that p1 = 1, p2 = 1/3, p3 = 5/7, p4 = 5/15 = 1/3, p5 = 21/31. In general,
for each positive integer s,

p2s−1 =
1 + 4 + · · ·+ 4s−1

22s−1 − 1
>

22s−2

22s−1 − 1
>

1

2
,

and

p2s =
1 + 4 + · · ·+ 4s−1

1 + 2 + 22 + · · ·+ 22s−1
=

1 + 4 + · · ·+ 4s−1

(1 + 2)(1 + 22 + · · ·+ 22(s−1))
=

1

3
.
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Thus,

lim sup
s→∞

p2s−1 ≥ 1

2

and

lim
s→∞

p2s =
1

3
.

Let x be any nonrational number in (0, 1) so that it has a nonterminating binary expansion. We modify
b to obtain a number bx by inserting at the right end of the rth tranche of b the rth digit of b. In bx the
ratio of the number of zeros to the number of digits in the first r tranches (where r = 2s− 1 or r = 2s) lies
in the interval [

1 + 4 + · · ·+ 4s−1

2r − 1 + r
,

1 + 4 + · · ·+ 4s−1 + r

2r − 1 + r

]
.

This interval has length less than r/(2r−1 − 1) and contains pr.

When t = 2r − 1 + r,

pr −
r

2r − 1
< ft(bx) < pr +

r

2r − 1
,

so that lim supn→∞ fn(bx) ≥ 1/2 and lim infn→∞ fn(bx) ≤ 1/3.

(b) There is such a number. Let u1 = 0 = 0.0, v1 = 0, u2 = 0.01, v2 = 1/2. We define by induction
sequences {un} and {vn} such that each un has a terminating binary expansion with n digits after the
decimal point (the last of which can be 0), un+1 has un as a prefix and vn is the number of 0’s in the
expansion (after the decimal point) of un divided by n.

Let k ≥ 2. If vk > uk, then append 1 to the expansion of uk to get uk+1 > uk; if vk ≤ uk, append 0 to
the expansion of uk to get uk+1 = uk. Let vk+1 be the number of 0’s in the expansion of uk+1 divided by
k + 1. Observe that when vk > uk, then vk+1 < vk, while when vk < uk, then vk+1 > vk.

Since either adding 0’s or adding 1’s indefinitely sends vn towards 0 and 1 respectively, and vn − un
cannot be eventually either all positive or all negative, we must switch between appending 0 and appending
1 indefinitely. Let x = limun. We have to show that x = limn→∞ vn = limn→∞ fn(x).

Let ε > 0 be given and choose N such that 1/N < ε and vN ≤ uN = uN+1 < vN+1. Then

x− ε < x− 1

2N
< uN+1 < vN+1 < uN +

1

2N
< x+ ε.

Suppose that n ≥ N and it has been shown that x−ε < vn < x+ε. If vn+1 > vn, then vn+1 = (a+1)/(n+1)
and vn = a/n for some positive integer a < n, so that vm+1 − vm = (m− a)/m(m+ 1) ≥ 1/(m+ 1). Hence

x− ε < vn < vn+1 < vn +
1

n+ 1
≤ un +

1

n+ 1
< x+

1

n
< x+ ε.

On the other hand, if vn+1 < vn, then

x+ ε > vn > vn+1 > vn −
1

n+ 1
> un −

1

n+ 1
> x− 1

2n
− 1

m+ 1
> x− 1

n
> x− ε.

Thus, for all n ≥ N , |x− vn| < ε.

[Note that (un, vn) = (0.0, 0), (0.01 = 1/4, 1/2), (0.011 = 5/8, 1/3), (0.0110 = 5/8, 1/2), (0.01100 =
5/8, 3/5), (0.011000 = 5/8, 2/3), (0.0110001 = 81/128, 4/70, (0.01100011 = 163/256, 1/2), · · ·.]
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