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No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. Let a be a positive real number that is not an integer and let

n =

⌊
1

a− bac

⌋
.

Prove that b(n+ 1)ac− 1 is divisible by n+ 1. [Note: bxc denotes the largest integer that is not greater
than x, so that bxc ≤ x < bxc+ 1.]

2. Determine all polynomial solutions f(x) to the identity

f(x + y − xy) = f(x)f(y).

3. Let n =
∏

pa be the prime factor decomposition of the positive integer n and define s(n) =
∑

ap, the
sum of all the primes involved in the decomposition counting repetitions. For each positive integer m
exceeding 1, let h(m) be the number of positive integers n for which s(n) = m.

(a) Prove that limn→∞ s(n) =∞.

(b) Prove that s(n) assumes every value exceeding 4 at least twice and that limn→∞ h(n) =∞.

4. Let p(x) be a monic polynomial of degree 3 with three distinct real roots. How many real roots does
the polynomial (p′(x))2 − 2p(x)p′′(x) have?

5. (a) Determine the largest positive integer n for which the following statement is NOT true:

There exists a finite set {a1, a2, . . . , ak} (k ≥ 1) of positive integers for which n < a1 < a2 < · · · < ak ≤
2n and n× a1 × a2 × · · · × ak is a perfect square.

(b) Determine infinitely many integers n for which n < a1 < a2 < . . . < ak and n× a1 × a2 × · · · × ak is
square implies that ak ≥ 2n.

(c) Let n = m2. Is it possible to determine an integer m for which integers a1, a2, · · · , ak can be chosen
in the open interval (m2, (m + 1)2) for which the product a1 × a2 × · · · × ak is square?

Please turn over for more questions.
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6. Suppose that f is a strictly increasing convex real-valued continuous function on [0, 1] for which f(0) = 0
and f(1) = 1 and g(x) is a function that satisfies g(f(x)) = x for each x ∈ [0, 1]. Prove that∫ 1

0

f(x)g(x)dx ≤ 1

3
.

When does equality occur?

[Note: A function is convex if for any t ∈ [0, 1]

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y)

whenever x, y, (1− t)x + ty belong to the domain of f .]

7. Let m,n be integers for which 0 ≤ m < n and let p(x) be a polynomial of degree n over a field F. What
is the dimension over F of the vector space generated by the set of functions

{1, x, x2, · · · , xn−m−1, p(x), p(x + 1), · · · , p(x + m)}?

8. Let S be a set of the positive integers that is closed under addition (i.e., x, y ∈ S ⇒ x+y ∈ S) for which
the set T of positive integers not contained in S is finite with m ≥ 1 elements. Prove that the sum of
the numbers in T is not greater than m2 and determine all the sets S for which this sum is equal to m2.

9. (a) Prove that every polyhedron has at least two faces with the same number of edges.

(b) Suppose that k ≥ 3 and that all the faces in a polyhedron have at least k edges. Prove that there
are k pairs of faces with the same number of edges (the pairs need not be disjoint).

10. Let X be a subset of the group G such that⋂
{x−1X : x ∈ X}

contains an element a of finite order other than the identity. Prove that X is the union of cosets with
respect to some nontrivial subgroup of G. [Note: for any set S and element g of G, gS = {gs : s ∈ S}.]
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Solutions

1. Let a be a positive real number that is not an integer and let

n =

⌊
1

a− bac

⌋
.

Prove that b(n+ 1)ac− 1 is divisible by n+ 1. [Note: bxc denotes the largest integer that is not greater
than x, so that bxc ≤ x < bxc+ 1.]

Solution. Since

n ≤ 1

a− bac
< n + 1,

n(a− bac) ≤ 1 < (n + 1)(a− bac).

Therefore
1 + (n + 1)bac < (n + 1)a ≤ 1 + nbac+ a < 2 + (n + 1)bac,

so that b(n + 1)ac = 1 + (n + 1)bac.

2. Determine all polynomial solutions f(x) to the identity

f(x + y − xy) = f(x)f(y).

Solution 1. [M. Chow] It is straightforward to check that the only constant polynomials satisfying the
equation are 0 and 1. Suppose that f is a nonconstant polynomial with a root r. Setting y = r, we find
that f(r + (1 − r)x) = 0 for each x. If 1 − r 6= 0, then every number is a root of f , which is not possible.
Hence r = 1 and f(x) = c(1 − x)n for some nonzero constant c and positive integer n. Plugging this into
the equation, we see that c = c2 so that c = 1. Indeed, f(x) = (1− x)n does satisfy the equation.

Solution 2. The zero polynomial is a solution. Henceforth, let f(x) be a nonzero polynomial solution.
Setting y = 1 yields that f(1) = f(x)f(1) for each x. If f(1) 6= 0, then f(x) ≡ 1 is a solution of the equation.
This is the only nonzero constant polynomial satisfying the equation. Otherwise, we must have f(1) = 0,
whereupon f(x) = (1− x)g(x) for some polynomial g(x). Plugging this into the equation yields that

(1− x− y + xy)g(x + y − xy) = (1− x)(1− y)g(x)g(y)

so that
g(x + y − xy) = g(x)g(y).

This is the same as the original equation, so either g(x) ≡ 1 or g(x) has a factor (1 − x) and so f(x) is
divisible by (1− x)2. We can continue on in this vein. Since (1− x) can appear as a factor of f(x) with at
most finite multiplicity, we conclude that f(x) = (1− x)n for some nonnegative integer n.

Solution 3. Let g(x) = f(1− x). Then g(x) satisfies the equation g(xy) = g(x)g(y) for all x, y. This is
satisfied by the constant polynomials 0 and 1. Suppose that g(x) =

∑n
k=0 akx

k for some n ≥ 1 with an 6= 0.
Then

n∑
k=0

(aky
k)xk =

n∑
k=0

(akg(y))xk

for each x, y. For fixed y, this is a polynomial equation satisfied for all x, so that corresponding coefficients
equate: yk = g(y) or ak = 0 for k = 0, . . . , n. Since an 6= 0, g(y) = yn identically, and a0 = a1 = · · · =
an−1 = 0. Therefore g(x) = xn and f(x) = (1− x)n. It is easily checked that these are actually solutions.

Solution 4. By substituting y = 0 and y = 1, we obtain that f(x) = f(x)f(0) and f(1) = f(x)f(1) for
all x. This leads to the possibilities f(x) ≡ 0, f(x) ≡ 1, or f(x) is a nonconstant polynomial with f(0) = 1
and f(1) = 0.
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Letting y = −x yields f(x2) = f(x)f(−x). Suppose that r is a root of f(x). Then f(r2
k

) = 0 for all
positive integers k. Since 0 is not a root and a polynomial has only finitely many roots, r = 1 or r = −1,
and so

f(x) = (1− x)b(1 + x)c,

for nonnegative integers b and c. Since f(x2) = f(x)f(−x), it follows that

(1− x)b(1 + x)c = (1− x2)b+c.

Therefore c = 0 and f(x) = (1− x)b. It can be checked that this satisfies the equation.

3. Let n =
∏

pa be the prime factor decomposition of the positive integer n and define s(n) =
∑

ap, the
sum of all the primes involved in the decomposition counting repetitions. For each positive integer m
exceeding 1, let h(m) be the number of positive integers n for which s(n) = m.

(a) Prove that limn→∞ s(n) =∞.

(b) Prove that s(n) assumes every value exceeding 4 at least twice and that limn→∞ h(n) =∞.

Solution 1. (a) Since log x < x for all x > 0, we have that

log n =
∑

a log p <
∑

ap = s(n)

from which we deduce that limn→∞ s(n) =∞.

(b) Every positive integer m ≥ 4 can be written in the form m = 2x+3y where x and y are nonnegative
integers. When m is even, we can let (x, y) = ((m/2)−3k, 2k) where 0 ≤ k ≤ bm/6c, so that there are at least
m/6 possibilities. When m is odd, we can let (x, y) = ( 1

2 (m− 3)− 3k, 1 + 2k) where 0 ≤ k ≤ b(m− 3)/6c,
so that there are at least (m − 3)/6 possibilities. For each such representation, s(2x · 3y) = m, so that
h(m) ≥ (m− 3)/6 and limm→∞ h(m) =∞.

This also establishes that h(m) ≥ 2 for even m ≥ 12 and odd m ≥ 15. For lower values of m, we have
s(5) = s(6) = 5, s(8) = s(9) = 6, s(7) = s(12) = 7, s(15) = s(18) = 8, s(24) = s(27) = 9, s(32) = s(36) = 10,
s(11) = s(45) = 11 and s(13) = s(108) = 13.

Solution 2. (a) We prove that, if 2u ≤ n < 2u+1, then u ≤ s(n), from which the desired result will follow.
This can be proved by induction. We first observe that, if p is a prime exceeding 2v, then s(p) = p > 2v ≥ 2v.
The assertion holds for u = 1; suppose it holds up to u− 1. Suppose that n = 2k. Then 2u−1 < k, so that
s(n) = 2 + s(k) ≥ 2 + (u− 1) > u. Now let n be odd. If n is prime, then s(n) = n > 2u > u. Otherwise, let
p be an odd prime divisor of n so that n = pq with q > 1. Suppose that 2t < p < 2t+1. Then 2u−t−1 < q.
By the induction hypothesis,

s(n) = s(p) + s(q) ≥ 2t + (u− t− 1) = u + (t− 1) ≥ u.

(b) We observe that if n = 2r and n = 2r−332 for r ≥ 3, then s(n) = 2r and that if n = 2r−13 and
n = 2r−25 for r ≥ 2, then s(n) = 2r + 1. Therefore every integer exceeding 4 is assumed by the function
s(n) at least twice

h(m) is the number of ways that m can be expressed as the sum of primes allowing repetitions. We
show that h(m+ 2) ≥ h(m) + 1 for m ≥ 8. We can get a sum for h(m+ 2) by appending a 2 to each sum for
h(m). In addition, each number m exceeding 7 can be written in the form 3a + 5b. This yields the desired
result.

Solution 3. (b) For each integer m ≥ 4, let f(m) be the number of primes that do not exceed m − 2.
Since there are infinitely many primes, limm→∞ f(m) =∞.

For a given integer m ≥ 4, let p be a prime not exceeding m − 2 and let q be aprime dividing m − p.
Then

s
(
p× q(m−p)/q

)
= p + q

(
m− p

q

)
= m.
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When m = p + q, the sum of two primes, the number p × q(m−p)/q = pq gets counted twice; otherwise
p× q(m−p)/q gets counted once. Thus there are at least b 12f(m)c numbers at which s takes the value m.

Observe that s(5) = s(6) = 5, s(8) = s(9) = 6, s(7) = s(12) = 7, s(15) = s(16) = 8 and f(m) ≥ 4 for
m ≥ 9. Hence h(m) ≥ 2 for m ≥ 5. Since h(m) ≥ b 12f(m)c, it follows that limm→∞ h(m) =∞.

4. Let p(x) be a monic polynomial of degree 3 with three distinct real roots. How many real roots does
the polynomial (p′(x))2 − 2p(x)p′′(x) have?

Solution. Let f(x) = (p′(x))2 − 2p(x)p′′(x). Then f ′(x) = −12p(x). Therefore, f(x) has three extreme
values at the three roots of p(x), and the value of f at all of these extremes is positive. Since f(x) has
degree 4 with leading coefficient equal to 9 − 12 = −3, the values of f(x) are negative when |x| is large.
Therefore f(x) has two real roots, one less than smallest root of p(x), one larger than the greatest root of
p(x). Between the smallest and largest roots of p(x), the values of f(x) are positive.

[This problem appeared on the Swedish Mathematical Olympiad in 1988.]

5. (a) Determine the largest positive integer n for which the following statement is NOT true:

There exists a finite set {a1, a2, . . . , ak} (k ≥ 1) of positive integers for which n < a1 < a2 < · · · < ak ≤
2n and n× a1 × a2 × · · · × ak is a perfect square.

(b) Determine infinitely many integers for which, if n < a1 < a2 < · · · < ak and n× a1 × a2 · · · < ak is
a perfect square requires that ak ≥ 2n.

(c) Let n = m2. Is it possible to determine an integer m for which numbers a1, a2, · · · , ak can be chosen
in the open interval (m2, (m + 1)2) for which the product a1 × a2 × · · · × ak is square?

(a) Solution 1. Define xk = 2k2 and note that xk < xk+1 < 2xk for k ≥ 3. Let n ≥ 18, and select k so
that xk ≤ n < xk+1. Then, since n < xk+1 < 2xk ≤ 2n, it follows that the product of n, xk+1 and 2n is a
square and the statement holds. If 10 ≤ n ≤ 17, then the statement holds since n× 18× 2n is a square. If
n = 5, 6, 7, then n× 8× 2n is square and the statement holds. Since 8× 10× 12× 15 and 9× 16 are square,
the statement holds for 8 and 9. However, it can be checked that it does not hold for n = 1, 2, 3, 4, so 4 is
the largest number for which the statement fails.

Solution 2. Define the sequence x1 = 18 = 2× 32, x2 = 32 = 25, x3 = 50 = 2× 52, and xm = 4× xm−3
for m ≥ 4. Then each xm is the product of an odd power of 2 and a square. Furthermore, note that
x1 < x2 < 2x1, x2 < x3 < 2x2, x3 < x4 < 2x4, so that xm < xm+1 < 2xm for each m ≥ 1. Suppose that
10 ≤ n ≤ 17. Then n × 18 × 2n is square. Let n ≥ 18, and suppose that m is the largest integer for which
am ≤ n. Then n < am+1 < 2am ≤ 2n, and n× am+1× 2n is a square. Thus, the statement is true whenever
n ≥ 10.

For integers less than 10, we check the sets with the smallest maximum number that will yield square
products: 2× 3× 6 = 62, 3× 6× 8 = 122, 4× 9 = 62, 5× 8× 10 = 202, 6× 8× 12 = 242, 7× 8× 14 = 282,
8× 10× 12× 15 = 1202 and 9× 16 = 122. (Wolog, we can assume that none of the factors is square unless
n itself is square. With 2 and 8, we require a factor that is divisible by at most an odd power of 2; with 3,
we require a factor that is divisible by at most an odd power of 3.) When 1 ≤ n ≤ 4, we need a factor that
exceeds 2n, and the statement fails for only these two values.

Solution. (b) If p is prime, we need a factor also divisible by p, and so at least equal to 2p.

(c) The interval (52, 62) contains the integers 27, 28, 30, 32, 35 whose product is (24×33×5×7)2 = (7!)2;
the interval (72, 82) contains the integers 50, 56, 63 whose product is (22 × 3 × 5 × 7)2; the interval (82, 92)
contains the integers 66, 70, 75, 77, 80 whose product is (23 × 3× 52 × 7× 11)2 and the integers 65, 72, 78, 80
whose product is (24 × 3× 5× 13)2.

6. Suppose that f is a strictly increasing convex real-valued continuous function on [0, 1] for which f(0) = 0
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and f(1) = 1 and g(x) is a function that satisfies g(f(x)) = x for each x ∈ [0, 1]. Prove that∫ 1

0

f(x)g(x)dx ≤ 1

3
.

When does equality occur?

Solution. Equality occurs when f(x) = g(x) = x, so we suppose henceforth that f(x) is not identically
equal to x. Since f(x) is continuous, its image is precisely the interval [0, 1]. Since f(g(f(x)) = f(x) for
each x ∈ [0, 1], f(g(x)) = x on the interval, so that f and g are composition inverses. The function g is
continuous, increasing and concave. There exists w ∈ (0, 1) such that f(w) 6= w. Since w = (1−w) ·0+w ·1,
f(w) < w. Suppose 0 < u < w < v < 1. Then wf(u) ≤ (w − u)f(0) + uf(w) < wu and so f(u) < u. Since

v =

(
1− v

1− w

)
w +

(
v − w

1− w

)
,

we have that

f(v) ≤
(

1− v

1− w

)
f(w) +

(
v − w

1− w

)
f(1) <

(
1− v

1− w

)
w +

(
v − w

1− w

)
1 = v.

Thus f(x) < x on (0, 1). Similarly, because of the concavity of g(x), g(x) > x on (0, 1). Suppose that 0 < u <
v ≤ 1. Then for some positive t less than 1, u = tv = (1− t)0+ tv, so that f(u) ≤ (1− t)f(0)+ tf(v) = tf(v).
Dividing by u = tv, we find that

f(u)

u
<

f(v)

v
.

Let u = x and v = g(x), we find that (
f(x)

x
· g(x)

f(g(x))

)
< 1

whence f(x)g(x) < x2 for x ∈ (0, 1). It follows that∫ 1

0

f(x)g(x)dx <

∫ 1

0

x2dx =
1

3
.

Equality occurs if and only if f(x) = x.

Comment. The result can be verified in the case that f(x) = xn and g(x) = x1/n.

7. Let m,n be integers for which 0 ≤ m < n and let p(x) be a polynomial of degree n over a field F. What
is the dimension over F of the vector space generated by the set of functions

{1, x, x2, · · · , xn−m−1, p(x), p(x + 1), · · · , p(x + m)}?

Solution. For a set S of vectors, let 〈S〉 denote the linear space generated by S. In the case m = 0, we
note that the dimension of

〈1, x, x2, · · · , xn−1, p(x)〉 = 〈1, x, x2, · · · , xn−1, xn〉

equals n + 1, as does the dimension of

〈1, x, x2, · · · , xn−2, p(x), p(x + 1)〉 = 〈1, x, x2, · · · , xn−2, p(x)− p(x + 1), p(x)〉,

since the degrees of the last two polynomials in the latter generating set are n− 1 and n.
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For any polynomial q(x) = ckx
k + ck−1x

k−1 + · · ·+ c1x + c0 of degree k, define

∆q(x) = q(x + 1)− q(x)

and

∆jq(x) = ∆(∆j−1q(x))

for j ≥ 2. Since ∆q(x) = kckx
k−1 + · · ·, the degree of ∆q(x) is equal to k− 1. More generally, the degree of

∆jq(x) is k − j for 1 ≤ j ≤ k.

Observe that

〈1, x, x2, · · · , p(x),p(x + 1), p(x + 2), · · · , p(x + m)〉
= 〈1, x, x2, · · · , xn−m−1, p(x),∆p(x),∆p(x + 1), · · · ,∆p(x + m− 1)〉
= 〈1, x, x2, · · · , xn−m−1, p(x),∆p(x),∆2p(x), · · · ,∆2p(x + m− 2)〉
= 〈1, x, x2, · · · , xn−m−1, p(x),∆p(x),∆2p(x), · · · ,∆mp(x)〉
= 〈1, x, x2, · · · , xn−m−1,∆mp(x), · · · ,∆p(x), p(x)〉
= 〈1, x, x2, · · · , xn−m−1, xn−m, · · · , xn−1, xn〉.

Hence the space of the problem has dimension n + 1.

8. Let S be a set of the positive integers that is closed under addition (i.e., x, y ∈ S ⇒ x+y ∈ S) for which
the set T of positive integers not contained in S is finite with m ≥ 1 elements. Prove that the sum of
the numbers in T is not greater than m2 and determine all the sets S for which this sum is equal to m2.

Solution. We prove the result by induction on m. Since S does not contain all the positive integers, it
cannot contain 1. Hence 1 ∈ T and the result holds for m = 1. We first show that the largest element in T
cannot exceed 2m − 1. Let n ≥ 2m and consider the pairs (1, n − 1), (2, n − 2), (3, n − 3), . . . , (m,n −m).
There are m pairs, and if n ∈ T , each pair would have to contain at least one element of T . But this along
with n would give at least m + 1 elements of T , and we have a contradiction.

Suppose that u is the largest element of T and that the result holds for m− 1. Then the set S ∪ {u} is
closed under addition, and by the induction hypothesis

∑
{x : x ∈ T\{u}} ≤ (m− 1)2. Therefore∑

{x : x ∈ T} ≤ (m− 1)2 + (2m− 1) = m2.

Equality requires that u = 2m − 1. Backtracking for the previous values of m, we find that all the odd
numbers up to 2m− 1 must belong to t for equality. The equality holds only for the sets

S = {2, 4, 6, . . . , 2m− 2, 2m, 2m + 1, 2m + 2, 2m + 3, . . .}.

9. (a) Prove that every polyhedron has at least two faces with the same number of edges.

(b) Suppose that k ≥ 3 and that all the faces in a polyhedron have at least k edges. Prove that there
are k pairs of faces with the same number of edges (the pairs need not be disjoint).

Solution. (a) Let the number of faces of the polyhedron be F. Suppose that the result is false. For the
indices i = 1, 2, . . . , F − 1, arrange the faces in order so that the number of edges Ei+1 in the (i + 1)th face
exceeds the number of edges Ei in the ith face: Ei−1 − Ei ≥ 1 for i = 1, 2, . . . , F − 1. Then, noting that
E1 ≥ 3, we have that

EF − 3 ≥ EF − E1 =

F−1∑
i=1

(Ei+1 − Ei) ≥ F − 1
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so that EF ≥ F + 2. This says that the number of faces adjacent to the face with the most edges is more
than the number of faces of the polyhedron, which is clearly false.

(b) Follow the argument of (a) to obtain

EF − k ≥ (E2 − E1) + (E3 − E2) + · · ·+ (EF − EF−1).

The sum on the right has F − 1 terms, but does not exceed EF − k ≤ (F − 1)− k. Therefore there must be
at least k values of i for which Ei+1 − Ei vanishes.

10. Let X be a subset of the group G such that

∩{x−1X : x ∈ X}

contains an element a of finite order other than the identity. Prove that X is the union of cosets with
respect to some nontrivial subgroup of G.

Solution. Since xa ∈ X for each x ∈ X, Xa ⊆ X. Hence, if an = e, the identity element,

X ⊇ Xa ⊇ Xa2 ⊇ . . . ⊇ Xan = X,

so that Xa = X.

Let H be the cyclic subgroup generated by a. Then for each element h = ai of H, Xh = X. Thus
xH ⊆ X for each x ∈ X. On the other hand, each element of X is of the form yh for some y ∈ H, and so
belongs to yH. Therefore

X = ∪{xH : x ∈ X}.
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