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March 8, 2015

Time: 3 1
2 hours

No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. Suppose that u and v are two real-valued functions defined on the set of reals. Let f(x) = u(v(x)) and
g(x) = u(−v(x)) for each real x. If f(x) is continuous, must g(x) also be continuous?

2. Given 2n distinct points in space, the sum S of the lengths of all the segments joining pairs of them is
calculated. Then n of the points are removed along with all the segments having at least one endpoint
from among them. Prove that the sum of the lengths of all the remaining segments is less that 1

2S.

3. Let f : [0, 1] −→ R be continuously differentiable. Prove that∣∣∣∣f(0) + f(1)

2
−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ 1

4
sup{|f ′(x)| : 0 ≤ x ≤ 1}.

4. Determine all the values of the positive integer n ≥ 2 for which the following statement is true, and for
each, indicate when equality holds.

For any nonnegative real numbers x1, x2, · · ·, xn,

(x1 + x2 + · · ·+ xn)2 ≥ n(x1x2 + x2x3 + · · ·+ xn−1xn + xnx1),

where the right side has n summands.

5. Let f(x) be a real polynomial of degree 4 whose graph has two real inflection points. There are three
regions bounded by the graph and the line passing through these inflection points. Prove that two of
these regions have equal area and that the area of the third region is equal to the sum of the other two
areas.

6. Using the digits 1, 2, 3, 4, 5, 6, 7, 8, each exactly once, create two numbers and form their product.
For example, 472× 83156 = 39249632. What are the smallest and the largest values such a product can
have?

7. Determine ∫ 2

0

exdx

e1−x + ex−1
.

8. Let {an} and {bn} be two decreasing positive real sequences for which

∞∑
n=1

an =∞
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and
∞∑

n=1

bn =∞.

Let I be a subset of the natural numbers, and define the sequence {cn} by

cn =

{
an, if n ∈ I
bn, if n 6∈ I.

Is it possible for
∑∞

n=1 cn to converge?

9. What is the dimension of the vector subspace of Rn generated by the set of vectors

(σ(1), σ(2), σ(3), · · · , σ(n))

where σ runs through all n! of the permutations of the first n natural numbers.

10. (a) Let
g(x, y) = x2y + xy2 + xy + x+ y + 1.

We form a sequence {x0} as follows: x0 = 0. The next term x1 is the unique root −1 of the linear
equation g(t, 0) = 0. For each n ≥ 2, xn is the root other than xn−2 of the equation g(t, xn−1) = 0.

Let {fn} be the Fibonacci sequence determined by f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.
Prove that, for any nonnegative integer k,

x2k =
fk
fk+1

and x2k+1 = −fk+2

fk+1
.

(b) Let
h(x, y) = x2y + xy2 + βxy + γ(x+ y) + δ

be a polynomial with real coefficients β, γ, δ. We form a bilateral sequence {xn : n ∈ Z} as follows.
Let x0 6= 0 be given arbitrarily. We select x−1 and x1 to be the two roots of the quadratic equation
h(t, x0) = 0 in either order. From here, we can define inductively the terms of the sequence for positive
and negative values of the index so that xn−1 and xn+1 are the two roots of the equation h(t, xn) = 0.
We suppose that at each stage, neither of these roots os zero.

Prove that the sequence {xn} has period 5 (i.e. xn+5 = xn for each index n) if and only if γ3+δ2−βγδ =
0.

Solutions

1. Suppose that u and v are two real-valued functions defined on the set of reals. Let f(x) = u(v(x)) and
g(x) = u(−v(x)) for each real x. If f(x) is continuous, must g(x) also be continuous?

Solution 1. The answer is no. Let

v(x) =

{
0, when x ≤ 0
1, when x > 0.

Suppose that u is any function for which u(−1) = 1 and u(0) = u(1) = 0. Then f(x) = 0 for all real x while

g(x) =

{
0, when x ≤ 0
1, when x > 0.
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Solution 2. (Xuan Tu) An example for which g(x) fails to be continuous at −1 is (u(x), v(x)) =
((1 + x)−1, x2).

2. Given 2n distinct points in space, the sum S of the lengths of all the segments joining pairs of them is
calculated. Then n of the points are removed along with all the segments having at least one endpoint
from among them. Prove that the sum of the lengths of all the remaining segments is less than 1

2S.

Solution 1 (by B. Galvao-Sousa.) Let P1, P2, · · · , Pn be the points that remain after the pointsQ1, Q2, · · · , Qn

are removed. By repeated application of the triangle inequality, for each of the
(
n
2

)
pairs (i, j), we have that

|PiPj | ≤ |PiQj |+ |QjQi|+ |QiPj |,

so that
2|PiPj | ≤ |PiPj |+ |PiQj |+ |QjQi|+ |QiPj |.

Summing over all pairs (i, j) and adding the n lengths |PiQi| to the right side leads to

2
∑
|PiPj | ≤

∑
|PiPj |+

∑
(|PiQj |+ |PjQi|) +

∑
|QiQj | < S

as required.

Solution 2. Define Pi and Qi as before, For each triple i, j, k with i 6= j and 1 ≤ i, j, k ≤ n, write the
triangle inequality

|PiPj | ≤ |PiQk|+ |PjQk|.

There are n
(
n
2

)
inequalities in all; for each of the

(
n
2

)
choices of PiPj we have an inequality for each

of the n choices of Qk. Each |PiPj | appears in n of the inequalities. There are 2n
(
n
2

)
= n2(n − 1) terms

on the right side of the equalities and each of the n2 terms of the form |PiQk| appears n − 1 times. Let T
be the sum of all the lengths |PiPj |. Then the sum of the lengths of all the intervals involving at least one
Qk is S − T , and this includes all the intervals of the form PiQk. Adding all the inequalities yields that
nT ≤ (n− 1)(S − T ), from which we find that

(2n− 1)T ≤ (n− 1)S.

The desired result follows.

3. Let f : [0, 1] −→ R be continuously differentiable. Prove that∣∣∣∣f(0) + f(1)

2
−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ 1

4
sup{|f ′(x)| : 0 ≤ x ≤ 1}.

Solution 1. Integrating by parts, we find that∫ 1

0

(
x− 1

2

)
f ′(x)dx =

[(
x− 1

2

)
f(x)

]1
0

−
∫ 1

0

f(x)dx =
f(1) + f(0)

2
−
∫ 1

0

f(x)dx.

Since ∣∣∣∣∫ 1

0

(
x− 1

2

)
f ′(x)dx

∣∣∣∣ ≤ sup |f ′(x)|
∫ 1

0

∣∣∣∣x− 1

2

∣∣∣∣ dx =
1

4
sup |f ′(x)|,

the desired result follows.

Solution 2. Since

f(1)− f(0)

2
−
∫ 1

0

(f(x)− f(0))dx =
f(0) + f(1)

2
−
∫ 1

0

f(x)dx,
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we have that

f(1)

2
−
∫ 1

0

f(x)dx =
1

2

∫ 1

0

f ′(x)dx−
∫ 1

0

∫ x

0

f ′(y)dydx =
1

2

∫ 1

0

f ′(y)dy −
∫ 1

0

f ′(y)

∫ 1

y

dxdy

=
1

2

∫ 1

0

f ′(y)dy −
∫ 1

0

f ′(y)(1− y)dy

∫ 1

0

(
y − 1

2

)
f ′(y)dy

and we cab conclude as in Solution 1.

Comment. A weaker result can be obtained by noting that the integral mean value theorem provides a

value c ∈ [0, 1] for which f(c) =
∫ 1

0
f(x)dx. The left side is thus equal to

1

2
|(f(1)− f(c)) + (f(c)− f(0))| ≤ 1

2
(|f(1)− f(c)|+ |f(c)− f(0)|) =

1

2
(

∣∣∣∣∫ 1

c

f ′(x)dx

∣∣∣∣+ |
∫ c

0

f ′(x)dx|

≤
∫ 1

0

|f ′(x)|dx ≤ 1

2
sup |f ′(x)|.

[This problem was contributed by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.]

4. Determine all the values of the positive integer n ≥ 2 for which the following statement is true, and for
each, indicate when equality holds.

For any nonnegtive real numbers x1, x2, · · ·, xn,

(x1 + x2 + · · ·+ xn)2 ≥ n(x1x2 + x2x3 + · · ·+ xn−1xn + xnx1),

where the right side has n summands.

Solution. Let x1 = x2 = 1 and x3 = x4 = · · · = xn = 0. Then the left side of the inequality is equal to 4
and the right side to n. Therefore a necessary condition for the inequality to hold for all sets of xi is n ≤ 4.

For n = 2, we find that

(x1 + x2)2 − 2(x1x2 + x2x1) = (x1 − x2)2 ≥ 0,

so the inequality holds with equality if and only if x1 = x2.

For n = 3, we find that

2[(x1 + x2 + x3)2 − 3(x1x2 + x2x3 + x3x1)] = (x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2 ≥ 0,

so the inequality holds with equality if and only if x1 = x2 = x3.

For n = 4, we find that

(x1 + x2 + x3 + x4)2 − 4(x1x2 + x2x3 + x3x4 + x4x1)

= x21 + x22 + x23 + x24 + 2x1x3 + 2x2x4 − 2x1x2 − 2x2x3 − 2x3x4 − 2x4x1

= (x1 − x2)2 + (x3 − x4)2 + 2(x1 − x2)(x3 − x4) = (x1 − x2 + x3 − x4)2 ≥ 0,

so the inequality holds with equality if and only if x1 + x3 = x2 + x4.

Comment. Another case that might be tried is xi = i− 1 for 1 ≤ i ≤ n. Then x1 + · · ·+xn = 1
2n(n− 1)

and x1x2+· · ·+xn−1xn+xnx1 = 1
3n(n−1)(n−2). The left side minus the right is equal to 1

12n
2(n−1)(5−n),
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which establishes that n ≤ 5. In fact, equality occurs in the n = 5 case whenever the xi form an arithmetic
progression.

5. Let f(x) be a real polynomial of degree 4 whose graph has two real inflection points. There are three
regions bounded by the graph and the line passing through these inflection points. Prove that two of
these regions have equal area and that the area of the third region is equal to the sum of the other two
areas.

Solution. By scaling and translating, we may asume that the two inflection points are located at x = −1
and x = 1 and that f(x) is monic. Since f ′′(x) is a multiple of (x+ 1)(x− 1) = x2 − 1, we have that

f(x) = (x4 − 6x2 + 5) + (bx+ c)

where 2b = f(1)− f(−1) and 2c = f(1) + f(−1). The line passing through the inflection points (−1.f(−1)
and (1, f(1)) is y = g(x) with g(x) = bx+ c. Since f(x)− g(x) = (x2− 5)(x2− 1), the curves with equations
y = f(x) and y = g(x) intersect when x = ±

√
5,±1. The three areas in question are given by

∣∣∣∣∫ −1
−
√
5

(x4 − 6x2 + 5)dx

∣∣∣∣ =

∣∣∣∣∣
∫ √5

1

(x4 − 6x2 + 5)dx

∣∣∣∣∣ =

∣∣∣∣[x5/5− 2x3 + 5x
]√5

1

∣∣∣∣ =
16

5

and ∫ 1

−1
(x4 − 6x2 + 5)dx =

[
x5/5− 2x3 + 5x

]−1
= 32/5.

The result follows.

[This is Problem E817 from the American Mathematics Monthly February, 1949.]

6. Using the digits 1, 2, 3, 4, 5, 6, 7, 8, each exactly once, create two numbers and form their product.
For example, 472× 83156 = 39249632. What are the smallest and the largest values such a product can
have?

Solution. Observe that, when a > b > 0, c > 0, then (10b + c)a − (10a + c)b = c(a − b) > 0. From
this, we see that if the two numbers have unequal numbers of digits or the same number of digits, removing
the last digit from the smaller and appending it to the larger, will result in a smaller product of the pair.
Therefore, the smallest product will occur when one number has a single digit and the other seven digits.
For both factors, the digits will appear in increasing order. It is straightforward to see that the smallest
product is 1× 2345678 = 2345678.

Similarly, if the two factors have unequal numbers of digits, removing the last digit from the larger
factor and appending it to the smaller will result in a larger product for the pair. Therefore, the largest
product will occur when both factors have four digits and the digits appear in decreasing order. Observe the
(a+ c)(b+ d)− (a+ d)(b+ c) = (a− b)(d− c). If a > b, this will be positive if and only if c < d. One number
begins with 8 and the other with either 7 or 6. But since 87ab× 6mcd < 8mab× 67cd < 8mab× 76cd, one
number begins with 8 and the other with 7. Applying the result further, we deduce that each digit after
the first in the number beginning with 8 is less than the correspnding number after the first in the number
beginning with 7. Therefore, we deduce that the largest product is 8531× 7642 = 65193902.

7. Determine ∫ 2

0

exdx

e1−x + ex−1
.
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Solution 1. ∫ 2

0

exdx

e1−x + ex−1
= e

∫ 1

−1

eudu

e−u + eu
= e

∫ 1

−1

e2udu

e2u + 1

=
e

2

[
log(e2u + 1)

]1
−1 =

e

2

[
log

(
e2 + 1

e−2 + 1

)]
=
e

2
log e2 = e.

Solution 2. Setting u = ex, we find that the integral is equal to∫ e2

1

du

(e/u) + (u/e)
= e

∫ e2

1

udu

e2 + u2
=
e

2

[
log(e2 + u2)

]e2
1

=
e

2
log

(
e2 + e4

e2 + 1

)
=
e

2
log e2 = e.

Solution 3. We first establish a general result: Suppose that f is continuous on the interval [a, b]. Then∫ b

a

f(x− a)dx

f(x− a) + f(b− x)
=

1

2
(b− a).

Making the substitution x = a+ b− u, we see that the given integral is equal to∫ b

a

f(b− u)du

f(u− a) + f(b− u)

. Adding the two integrals together yields
∫ b

a
dx = b− a, from which the result is found.

Apply this result to f(x) = ex, a = 0 and b = 2, to obtain∫ 2

0

exdx

e1−x + ex−1
= e

∫ 2

0

exdx

e2−x + ex
= e.

8. Let {an} and {bn} be two decreasing positive real sequences for which

∞∑
n=1

an =∞

and
∞∑

n=1

bn =∞.

Let I be a subset of the natural numbers, and define the sequence {cn} by

cn =

{
an, if n ∈ I
bn, if n 6∈ I.

Is it possible for
∑∞

n=1 cn to converge?

Solution. The answer is yes. Let s−1 = 0, and for n ≥ 0, let

sn =

n∑
k=0

22
k

.
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For n ≥ 0, let In be the set of positive integers for which sn−1 < k ≤ sn. Define

ak = 2−2
2n−n and bk = 2−2

2n

when k ∈ I2n;

ak = 2−2
2n+1

and bk = 2−2
2n+1−n when k ∈ I2n+1.

It can be verified that both {an} and {bn} are decreasing.

Let

I =

∞⋃
n=0

I2n.

Then, for each nonnegative n, ∑
k∈I2n+1

ak =
∑

k∈I2n

bk = 1.

Therefore ∑
n∈I

an = 2;

∑
n 6∈I

an =∞;

∑
n∈I

bn =∞;

and ∑
n 6∈I

bn = 2.

[This problem was contributed by Franklin Vera Pacheco.]

9. What is the dimension of the vector subspace of Rn generated by the set of vectors

(σ(1), σ(2), σ(3), · · · , σ(n))

where σ runs through all n! of the permutations of the first n natural numbers.

Solution 1. (J. Love) The dimension cannot exceed n. Taking the difference of two permutations with
identical outcomes except in the ith and nth positions where σ takes the values 1 and 2, we find that the
vector space contains the vectors

(0, 0, · · · , 0, 1, 0, · · · , 0,−1) = (3, 4, · · · , i+ 1, 2, i+ 2, · · · , n, 1)− (3, 4, · · · , i+ 1, 1, i+ 2, · · · , n, 2).

This set S of n−1 vectors is linearly independent and generates the (n−1)−dimensional subpace {(x1, x2, · · · , xn) :
x1 +x2 + · · ·+xn = 0}. However, the sum of the entries of any element in the generating set is 1

2n(n+ 1), so
that any generators along with S is a basis of n elements for the whole space. Thus the required dimension
is n.

Solution 2. (C. Wang) As in the first solution, we can show that the span of the generating set contains
all vectors of the form (1, 0, · · · ,−1, · · · , 0) and therefore the vector

1

2
n(n+ 1)(1, 0, 0, · · · , 0, 0) = (1, 2, 3, · · · , n− 1, n) + (2,−2, 0, · · · , 0, 0) + (3, 0,−3, · · · , 0, 0)

= (n− 1, 0, 0, · · · ,−(n− 1), 0) + (n, 0, 0, · · · , 0,−n).

Similarly, it can be shown that this span contains all of the basis vectors (0, 0, · · · , 1, · · · , 0). Hence the
required dimension is n.
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Solution 3. The dimension cannot exceed n, and is in fact equal to n. We prove that {(1, 2, 3, 4, · · · , n−
1, n), (2, 3, 4, 5, · · · , n, 1), (3, 4, 5, 6, · · · , 1, 2), · · · , (n, 1, 2, 3, · · · , n−2, n−1)} is linearly independent by showing
that the determinant of the matrix whose rows are these vectors is nonzero.

Using the fact that the absolute value of the determinant remains unchanged if one row is subtracted
from another or if rows are interchanged, we have that∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · n− 2 n− 1 n
2 3 4 5 · · · n− 1 n 1
3 4 5 6 · · · n 1 2

· · · · · · · · ·
n 1 2 3 · · · n− 3 n− 2 n− 1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · n− 2 n− 1 n
1 1 1 1 · · · 1 1 −(n− 1)
1 1 1 1 · · · 1 −(n− 1) 1
1 1 1 1 · · · −(n− 1) 11

· · · · · · · · ·
1 −(n− 1) 1 1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · n− 2 n− 1 n
1 1 1 1 · · · 1 1 −(n− 1)
0 0 0 0 · · · 0 −n n
0 0 0 0 · · · −n 0 n

· · · · · · · · ·
0 −n 0 0 · · · 0 0 n

∣∣∣∣∣∣∣∣∣∣∣

= ±nn−2

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1 −(n− 1)
0 1 2 3 · · · n− 3 n− 2 2n− 1
0 1 0 0 · · · 0 0 −1
0 0 1 0 · · · 0 0 −1

· · · · · · · · ·
0 0 0 0 · · · 0 1 −1

∣∣∣∣∣∣∣∣∣∣∣

= ±nn−2

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1 −(n− 1)
0 1 0 0 · · · 0 0 −1
0 0 1 0 · · · 0 0 −1
0 0 0 1 · · · 0 0 −1

· · · · · · · · ·
0 0 0 0 · · · 0 0 (2n− 1)− (n− 2)(n− 1)/2

∣∣∣∣∣∣∣∣∣∣∣
= ±nn−2(n2 − 7n+ 4)/2.

10. (a) Let
g(x, y) = x2y + xy2 + xy + x+ y + 1.

We form a sequence {x0} as follows: x0 = 0. The next term x1 is the unique root −1 of the linear
equation g(t, 0) = 0. For each n ≥ 2, xn is the root other than xn−2 of the equation g(t, xn−1) = 0.

Let {fn} be the Fibonacci sequence determined by f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.
Prove that, for any nonnegative integer k,

x2k =
fk
fk+1

and x2k+1 = −fk+2

fk+1
.

(b) Let
h(x, y) = x2y + xy2 + βxy + γ(x+ y) + δ

be a polynomial with real coefficients β, γ, δ. We form a bilateral sequence {xn : n ∈ Z} as follows.
Let x0 6= 0 be given arbitrarily. We select x−1 and x1 to be the two roots of the quadratic equation
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h(t, x0) = 0 in either order. From here, we can define inductively the terms of the sequence for positive
and negative values of the index so that xn−1 and xn+1 are the two roots of the equation h(t, xn) = 0.
We suppose that at each stage, neither of these roots is zero.

Prove that the sequence {xn} has period 5 (i.e. xn+5 = xn for each index n) if and only if γ3+δ2−βγδ =
0.

(a) Solution. Observe that
g(x, y) = (xy + 1)(x+ y + 1).

For each value of y 6= 0, the equation g(x, y) = 0 has two solutions: y = −1/x and y = −(x + 1). Observe
that g(x, y) is symmetrical in x and y, so that, for each consecutive pair xn, xn+1 of terms in the sequence
g(xn, xn+1) = g(xn+1, xn) = 0. Consider the equation 0 = g(t, x1) = g(t,−1) = (−t + 1)t. One of its
solutions is x0 = 0 and the other is x2 = 1.

,
For the equation 0 = g(t, x2), we have that g(x1, x2) = g(x2, x1) = 0 and x1x2 + 1 = 0. Therefore

x2 + x3 + 1 = 0, so that x3 = −(x2 + 1). Continuing on in this way, we find that, for each positive integer
k, x2k−1x2k = −1 and x2k + x2k+1 = −1, whereupon

x2k+1 = −1 +
1

x2k−1
=

1− x2k−1
x2k−1

.

When k = 1, we find that x2k−1 = x1 = −1 = −f2/f1. Suppose, for k ≥ 1, we have that x2k−1 = −fk+1/fk.
Then

x2k+1 = −1− fk
fk+1

= −fk+1 + fk
fk+1

= −fk+2

fk+1
.

By induction, we obtain the desired expression for x2k+1. Also x2k = −1/x2k−1 = −fk/fk+1.

(b) Solution 1. Observe that from the sum of the roots of h(t, xn) = 0, we have that

xn−1 + xn+1 = −
[
x2n + βxn + γ

xn

]
,

or
xn−1 + xn + xn+1 = −β − γ

xn

for each n. The sequence will have period 5 if and only if the sum of any five consecutive terms is constant.

Since, for each integer n,

xn+2 + xn+1 + xn = −β − γ

xn+1

and
xn + xn−1 + xn−2 = −β − γ

xn−1
,

we have that

xn+2 + xn+1 + xn + xn−1 + xn−2 = −2β − γ
(
xn+1 + xn−1
xn+1xn−1

)
− xn

= −2β + γ

(
x2n + βxn + γ

γxn + δ

)
− xn

=
−(βγ + δ)xn + (γ2 − 2βδ)

γxn + δ

= −
(
β +

δ

γ

)
+

(
γ3 + δ2 − βγδ
γ2xn + γδ

)
.
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This sum is independent of n if and only if the term involving xn vanishes identically, i.e., if and only
if the required condition holds.

Solution 2. From the formula for the product of the roots, we obtain that

xn−1xn+1 =
γxn + δ

xn

so that
xn−1xnxn+1 = γxn + δ

for each index n. Therefor

xn+2xn+1x
2
nxn−1xn−2 = (γxn+1 + δ)(γxn−1 + δ)

= γ2
(
γxn + δ

xn

)
− γδ

(
xn + β +

γ

xn

)
+ δ2

= (γ3 + δ2 − βγδ)− γδxn

whence

xn+2xn+1xnxn−1xn−2 = −γδ +

(
γ3 + δ2 − βγδ

xn

)
.

The result again follows.

Comment. If x0 = 0, then h(t, x0) is linear and there is a single root −δ/γ. We can extend the sequence
in only one direction, and it begins with the terms 0,−δ/γ, (γ3 + δ2 − βγδ)/(γδ), · · ·.
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