
THE UNIVERSITY OF TORONTO
UNDERGRADUATE MATHEMATICS COMPETITION

In Memory of Robert Barrington Leigh

March 9, 2013

Time: 3 1
2 hours

No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. (a) Let a be an odd positive integer exceeding 3, and let n be a positive integer. Prove that

a2n

− 1

has at least n + 1 distinct prime divisors.

(b) When a = 3, determine all the positive integers n for which the assertion in (a) is false.

2. ABCD is a square; points U and V are situated on the respective sides BC and CD. Prove that the
perimeter of triangle CUV is equal to twice the sidelength of the square if and only if ∠UAV = 45◦.

3. Let f(x) be a convex increasing realvalued function defined on the closed interval [0, 1] for which f(0) = 0
and f(1) = 1. Suppose that 0 < a < 1 and that b = f(a).

(a) Prove that f is continuous on (0, 1).

(b) Prove that

0 ≤ a− b ≤ 2
∫ 1

0

(x− f(x))dx ≤ 1− 4b(1− a).

Notes. f(x) is increasing if and only if f(u) ≤ f(v) whenever u ≤ v, and is convex if and only if

f((1− t)u + tv) ≤ (1− t)f(u) + tf(v)

whenever 0 < t < 1.

4. Let S be the set of integers of the form x2 + xy + y2, where x and y are integers.

(a) Prove that any prime p in S is either equal to 3 or is congruent to 1 modulo 6.

(b) Prove that S includes all squares.

(c) Prove that S is closed under multiplication.

5. A point on an ellipse is joined to the ends of its major axis. Prove that the portion of a directrix
intercepted by the two joining lines subtends a right angle at the corresponding focus.

Notes. The directrix corresponding to a focus F of an ellipse is a line with the property that, for any
point P on the ellipse, the distance from P to F divided by the distance from P to the directrix is a
constant e, called the eccentricity, less than 1. The major axis is the chord of the ellipse that passes
through the two foci.

Please turn over. The are more questions overleaf.
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6. Let p(x) = x4 + ax3 + bx2 + cx + d be a polynomial with rational coefficients. Suppose that p(x) has
exactly one real zero r. Prove that r is rational.

7. Let (V, 〈·〉) be a two-dimensional inner product space over the complex field C and let z1 and z2 be unit
vectors in V . Prove that

sup{|〈z, z1〉〈z, z2〉| : ‖z‖ = 1} ≥ 1
2

with equality if and only if 〈z1, z2〉 = 0.

Note: The inner product 〈z, w〉 is linear in the left variable and satisfies 〈w, z〉 = 〈z, w〉. Also, ‖z‖2 =
〈z, z〉.

8. For any real square matrix A, the adjugate matrix, adj A, has as its elements that cofactors of the
transpose of A, so that

A · adj A = adj A ·A = (det A)I .

(a) Suppose that A is an invertible square matrix. Show that

(adj (At))−1 = (adj (A−1))t .

(b) Suppose that adj (At) is orthogonal (i.e., its inverse is its transpose). Prove that A is invertible.

(c) Let A be an invertible n× n square matrix and let det (tI −A) = tn + c1t
n−1 + · · ·+ cn−1t + cn be

the characteristic polynomial of the matrix A. Determine the characteristic polynomial of adj A.

Note. A real square matrix M is orthogonal if and only if the product of M and its transpose M t is the
identity matrix.

9. Let S be a set upon whose elements there is a binary operation (x, y) → xy which is associative (i.e.
x(yz) = (xy)z). Suppose that there exists an element e ∈ S for which e2 = e and that for each a ∈ S,
there is at least one element b for which ba = e and at most one element c for which ac = e. Prove that
S is a group with this binary operation.

Note. A group G is a set with an associative binary operation that contains an identity element u for
which, given any element x ∈ G, xu = ux = x and there exists y ∈ G for which yx = xy = u.

10. (a) Let f be a real-valued function defined on the real number field R for which |f(x)−f(y)| < |x−y| for
any pair (x, y) of distinct elements of R. Let f (n) denote the nth composite of f defined by f (1)(x) = f(x)
and f (n+1)(x) = f(f (n)(x)) for n ≥ 2. Prove that exactly one of the following situations must occur:

(i) limn→+∞ f (n)(x) = +∞ for each real x;

(ii) limn→+∞ f (n)(x) = −∞ for each real x;

(iii) there is a real number z such that

lim
n→+∞

f (n)(x) = z

for each real x.

(b) Give examples to show that each of the three cases in (a) can occur.
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Solutions

1. Let a be an odd positive integer exceeding 3, and let n be a positive integer. Prove that

a2n

− 1

has at least n + 1 distinct prime divisors.

(b) When a = 3, determine all the positive integers n for which the assertion in (a) is false.

Solution 1. (a) For n = 1, note that a2 − 1 = uv, where u = a − 1 and v = a + 1. Since u and v are
consecutive even integers, one of them is the product of 2 and an odd integer. Thus, a2 − 1 has at least two
prime divisors. We complete the proof by induction. Suppose it holds for the exponent n. Observe that

a2n

− 1 = (a2n−1
+ 1)(a2n−1

− 1).

The second factor on the right, by the induction hypothesis, has at least n distinct prime divisors. The first
factor, being congruent to 2 modulo 4, must have an odd divisor exceeding 1. Any odd prime that divides
the first factor cannot divide the second, and so there must be at least n + 1 prime factors in all.

(b) Observe that 32 − 1 = 23, 322 − 1 = 34 − 1 = 24 × 5,

323
− 1 = (34 − 1)(34 + 1) = (24 × 5)× (2× 41) = 25 × 5× 41

and
324

− 1 = (38 − 1)(38 + 1) = (25 × 5× 41)× (2× 17× 193) = 26 × 5× 17× 41× 193.

By induction, as in (a), it can be shown that 32n − 1 has n + 1 distinct prime factors when n ≥ 4. It has
exactly n primes factors when n = 1, 2, 3.

Solution 2. (J. Love) (a) Observe that, for each positive integer n,

a2n

− 1 = (a− 1)(a + 1)(a2 + 1) . . . (a2n−1
+ 1).

This quantity is divisible by 2. Since a is odd, a2 ≡ 1 mod 4, so that the last n− 1 terms of the product on
the right is equal to twice an odd integer, and therefore has at least one odd prime divisor. Since a > 3, at
least one of a− 1 and a + 1 is equal to twice an odd prime.

It remains to show that no two of the factors on the right side can be divisible by the same odd prime.
If p is an odd prime divisor of a− 1, then each of the remaining factors is congruent to 2 modulo p, If i < j
and p divides a2i

+ 1 and a2j

+ 1, then, since a2i

+ 1 divides a2j − 1, then so does p. But then p divides
2 = (a2j

+ 1) − (a2j − 1), which is false. Therefore, a2n − 1 is divisible by 2 and n odd primes, distinct
divisors of a2 − 1 and a2i

+ 1 for 1 ≤ i ≤ n− 1.

(b) As in (a), we can prove that 2 divides N ≡ 32n − 1 and that distinct odd primes divide each of
the n − 1 factors 32 + 1, 34 + 1, · · ·, 32n−1+1 of N . Thus, there are at least n distinct primes dividing N .
However, 323

+ 1 = 6562 = 2× 193 is divisible by 2 odd primes, so that, when n ≥ 4, N is divisible by n + 1
distinct primes. However, since 32 − 1 = 23, 34 − 1 = 24 × 5 and 38 − 1 = 6560 = 25 × 5× 41, the assertion
in (a) fails for a = 3 and n = 1, 2, 3.

2. ABCD is a square; points U and V are situated on the respective sides BC and CD. Prove that the
perimeter of triangle CUV is equal to twice the sidelength of the square if and only if ∠UAV = 45◦.

Solution 1. (Y. Babich; J. Song) Produce CD to W so that DW = BU . Then triangles ABU and
ADW are congruent (SAS) so that BU = DW .
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First, assume that ∠UAV = 45◦. Then

∠V AW = ∠V AD + ∠DAW = ∠V AD + ∠BAU

= 90◦ − ∠UAV = 45◦.

Since also AU = AW and AV is common, triangles UAW and WAV are congruent (SAS) and UV = V W =
DV + BU .

Therefore
CU + CV + UW = (CU + BU) + (CV + DV ) = BC + CD

as desired.

On the other hand, assume that CU + CV + UV = BC + CD. Then

UV = (BC − CU) + (CD − CV ) = BU + V D = V W,

so that triangles AUV and AWV are congruent (SSS) and ∠UAV = ∠WAV = ∠V AD + ∠UAB. Since
∠UAB + ∠UAV + ∠V AD = 90◦, it follows that ∠UAV = 45◦.

Solution 2. Let the side length of the square be 1, |BU | = u, |DV | = v, |UV | = w. Then |CU | = 1− u
and |CV | = 1− v.

Suppose that ∠UAV = 45◦. Since 45◦ = ∠BAU + ∠DAV ,

1 = tan 45◦ =
u + v

1− uv
,

whereupon 1− uv = u + v and 1 + u2v2 = u2 + 4uv + v2. By the Law of Cosines,

w2 = (1 + u2) + (1 + v2)−
√

2(1 + u2)(1 + v2)

= u2 + v2 + 2−
√

2(1 + u2v2 + u2 + v2) = u2 + v2 + (2−
√

4(u2 + 2uv + v2)

= u2 + v2 + 2(1− (u + v)) = u2 + v2 + 2uv = (u + v)2.

. Hence w = u + v and the perimeter of CUV is equal to (1− u) + (1− v) + (u + v) = 2.

On the other hand, suppose that |UV | = u + v. Then, by Pythagoras’ Theorem,

u2 + 2uv + v2 = (1− 2u + u2) + (1− 2v + v2)

so that u + v = 1− uv. Therefore

tan(∠UAB + ∠V AD) =
u + v

1− uv
= 1,

so that ∠UAB + ∠V AD = 45◦ and ∠UAV = 45◦.

Solution 3. (Z. Liu) Let A ∼ (0, 0), B ∼ (1, 0), C ∼ (1, 1), D ∼ (0, 1), U ∼ (1, u), and V ∼ (v, 1), where
0 < u, v < 1. Since

cos ∠UAV · |AU | · |AV | = −→
AU · −→AV ,

∠UAV = 45◦ ⇔
√

2(u + v) =
√

1 + u2
√

1 + v2

⇔ (u + v)2 = u2 + 2uv + v2 = 1− 2uv + u2v2 = (1− uv)2

⇔ u + v = 1− uv ⇔ (1− u)2 + (1− v)2 = (u + v)2

⇔ |UV | = |BU |+ |V D|
⇔ |CU |+ |CV |+ |UV | = |BU |+ |CU |+ |CV |+ |V D| = |BC|+ |CD|.
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The result follows.

Solution 4. (J. Zung) Let U be fixed on BC. Then as V moves from C to D, the lengths of CV and
UV strictly increase, so that the perimeter of triangle CUV strictly increases from 2CU < BC + CD to
CU+UD+CD > BC+CD. Therefore, there is a unique position of V such that CU+CV +UV = BC+CD.

Also, as V moves from C to D, the angle UAV strictly increases from an angle less than 45◦ to an angle
greater than 45◦. Therefore, there is a unique position of V such that ∠UAV = 45◦. We need to show that
the position of V is the same in both situations.

Select V so that UV is tangent to the circle with centre A that passes through B and D. Let T be the
point of tangency. Then

CU + CV + V U = CU + CV + V T + TU = CU + CV + V D + UB = CD + CB.

Also, ∠V AT = 1
2∠DAT and ∠UAT = 1

2∠BAT , so that ∠UAV = 45◦. Thus the point V is the unique
point for both of the foregoing situations, and the desired result follows.

Solution 5. (partial: S. Rumsey) Suppose ∠AUV = 45◦. Let the image of B reflected in AU be E and
the image of D reflected in AV be F . Then

∠EAU + ∠FAV = ∠BAU + ∠DAV = 45◦ = ∠UAC,

so that E annd F must fall on the same line through A. Since AE = AB = AD = AF , then E = F .

Also,
∠AEU = ∠ABU = 90◦ = ∠ADV = ∠AEV,

so that U,E, V are collinear and E lies on UV . Therefore

CU + CV + UV = CU + CV + UE + EV = CU + CV + BU + DV = BC + CD,

as desired.

3. Let f(x) be a convex increasing realvalued function defined on the closed interval [0, 1] for which f(0) = 0
and f(1) = 1. Suppose that 0 < a < 1 and that b = f(a).

(a) Prove that f is continuous on (0, 1).

(b) Prove that

0 ≤ a− b ≤ 2
∫ 1

0

(x− f(x))dx ≤ 1− 4b(1− a).

Notes. f(x) is increasing if and only if f(u) ≤ f(v) whenever u ≤ v, and is convex if and only if

f((1− t)u + tv) ≤ (1− t)f(u) + tf(v)

whenever 0 < t < 1.

Solution 1. (a) Let x < y ≤ 1. Then y = (1 − t)x + t where t = (y − x)/(1 − x) and f(y) ≤
(1− t)f(x) + tf(1). Therefore

0 ≤ f(y)− f(x) ≤ t[f(1)− f(x)] =
[
y − x

1− x

]
[1− f(x)].

If follows that limy↓x f(y) = f(x) so that f is right continuous at x. A similar argument shows that f is left
continuous when 0 < x ≤ 1. Therefore f is continuous on [0, 1].
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(b) Let 0 < x < 1. Then f(x) ≤ (1− x)f(0) + xf(1) = x, so that the graph of y = f(x) over [0, 1] lies
below the graph of y = x. Thus a ≥ b.

Let O = (0, 0), I = (1, 1), P = (a, b) and Q = (a, a). The area between the graphs of y = f(x) and y = x
is not less than the combined areas of the triangles OPQ and IPQ, namely 1

2 (a−b)a+ 1
2 (a−b)(1−a) = 1

2 (a−b).
Therefore ∫ 1

0

(x− f(x))dx ≥ 1
2
(a− b).

The rightmost inequality is equivalent to
∫ 1

0
f(x)dx ≥ 2b(1 − a). We first show that there is a line of

equation y = m(x− a) + b passing through (a, b) that passes under the graph of y = f(x).

Suppose that 0 ≤ u < x < v ≤ 1. Then

(v − x)f(x) + (x− u)f(x) = (v − u)f(x) ≤ (v − x)f(u) + (x− u)f(v).

This is equivalent to
f(x)− f(u)

x− u
≤ f(v)− f(x)

v − x
.

Let m be any number between the supremum of the left side over u and the infimum of the right side over v.

The line y = m(x− a) + b contains the points (a− b/m, 0) and (1,m(1− a) + b). By the convexity of f ,
it cannot contain any point of the graph of y = f(x)so lies underneath the graph. The area under the line
is equal to

1
2

[(
1− a +

b

m

)
(m(1− a) + b)

]
=

2
m

[
m(1− a) + b

2

]2

≥ 2b(1− a).

This gives the desired result.

Solution 2 to part of (b). First, we have that b = f(a) ≤ (1 − a)f(0) + af(1) = a, so that a − b ≥ 0.
Making use of the respective substitutions x = ta and x = (1− t)a + t = a + t(1− a) we find that∫ a

0

(x− f(x))dx = a

∫ 1

0

(ta− f(ta))dt ≥ a

∫ 1

0

(ta− tf(a))dt

= a

∫ 1

0

t(a− b)dt =
a(a− b)

2
,

and that ∫ 1

a

(x− f(x))dx = (1− a)
∫ 1

0

[(1− t)a + t− f((1− t)a + t)]dt

≥ (1− a)
∫ 1

0

[(1− t)a + t− ((1− t)f(a) + tf(1))]dt

= (1− a)
∫ 1

0

(1− t)(a− b) =
(1− a)(a− b)

2
.

Adding these two inequalities together yields∫ 1

0

(x− f(x))dx ≥ a− b

2
.

4. Let S be the set of integers of the form x2 + xy + y2, where x and y are integers.

(a) Prove that any prime p in S is either equal to 3 or is congruent to 1 modulo 6.

(b) Prove that S includes all squares.
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(c) Prove that S is closed under multiplication.

Solution. (a) Let f(x, y) = x2 + xy + y2. Then 3 = f(1, 1) is representable. It is straightforward to
establish that 2 is not representable. (If x2 + xy + y2 = 2, then (2x + y)2 + 3y2 = 8.) Let p be a prime
exceeding 3 for which p = f(u, v) for some integers u and v. Then, modulo 3,

0 6≡ p ≡ 4p = 4(u2 + uv + v2) = (2u + v)2 + 3v2 ≡ (2u + v)2 ≡ 1.

Since p is odd, the result follows. (Alternatively, modulo 3, we have that 0 6≡ p = (u−v)2+3uv ≡ (u−v)2 ≡ 1.)

(b) Observe that a2 = f(a, 0) = f(a,−a) for each integer a.

(c) Observe that x2 + xy + y2 = (x − yω)(x − yω2), where ω is an imaginary cube root of unity, i.e.,
1+ω +ω2 = 0 (this can be deduced from the factorization of x3− y3 into linear factors over C). Then, since
ω2 = −1− ω and ω3 = 1.

(x2 + xy + y2)(u2 + uv + v2) = [(x− yω)(x− yω2)][(u− vω)(u− vω2)]

= [(x− yω)(u− vω)][(x− yω2)(u− vω2)]

= [(xu− (xv + yu)ω + yvω2][(xu− (xv + yu)ω2 + yvω]

= [(xu− yv)− (xv + yu + yv)ω][(xu− yv)− (xv + yu + yv)ω2].

It is readily checked that
f(x, y)f(u, v) = f(xu− yv, xv + yu + yv).

5. A point on an ellipse is joined to the ends of its major axis. Prove that the portion of a directrix
intercepted by the two joining lines subtends a right angle at the corresponding focus.

Notes. The directrix corresponding to a focus F of an ellipse is a line with the property that, for any
point P on the ellipse, the distance from P to F divided by the distance from P to the directrix is a constant
e, called the eccentricity, less than 1. The major axis is the chord of the ellipse that passes through the two
foci.

Solution 1. Suppose that the focus is at the origin of the Cartesian plane, the directrix is the line x = 1
and the eccentricity of the ellipse is e. Then the equation of the ellipse is

√
x2 + y2 = e(1− x), or

y2 = −(1− e2)x2 − 2e2x + e2 .

The major axis is the x−axis and the ellipse intersects this axis at the points (e/(1+e), 0) and (−e/(1−e), 0).
Let (u, v) be an arbitrary point on the ellipse. Then the lines determined by the point (u, v) and these
endpoints respectively intersect the directrix at(

1,
v

(1 + e)u− e

)
and

(
1,

v

(1− e)u + e

)
.

The product of the slopes of the segments joining these to the origin is

v2

(1− e2)u2 + [e(1 + e)− e(1− e)]u− e2
=
−(1− e2)u2 − 2e2u + e2

(1− e2)u2 + 2e2u− e2
= −1.

Solution 2. (J. Song; T. Xiao) Let the equation of the ellipse by x2/a2 + y2/b2 = 1 and the point
P ∼ (u, v). The right directrix of the ellipse has equation x = a2/c and the right focus F is at (c, 0), where
a2 = b2 + c2.

The equation of the line through (−a, 0) and P is (u + a)y = v(x + a) and this meets the directrix at
the point

G ∼
(

a2

c
,
av(a + c)
c(u + a)

)
.
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The equation of the line through (a, 0) and P is (u−a)y = v(x−a) and this meets the directric at the point

H ∼
(

a2

c
,
av(a− c)
c(u− a)

)
.

Let K be the point (a2/c, 0) where the directrix and major axis intersect. Because P lies on the ellipse, we
have that a2v2 = b2(a2 − u2).

There are two possible ways to proceed. Taking the dot product of the vectors −−→FG and −−→FH, we obtain
that (

a2

c
− c,

av(a + c)
c(u + a

)
·
(

a2

c
− c,

av(a− c)
c(u− a

)
=

1
c2

[
(a2 − c2)2 − a2v2(a2 − c2)

a2 − u2

]
=

a2 − c2

c2
[a2 − c2 − b2] = 0,

so that ∠GFH = 90◦.

Alternatively, we can use the Law of Cosines to obtain that

2|GF ||HF | cos ∠GFH = |FG|2 + |GK|2 − |GH2

= 2|FK|2 + |GK|2 + |HK|2 − (|GK|+ |HK|)2

= 2[|FK|2 − |GK||HK|]

= 2
[(

a2

c
− c

)2

− a2v2(a2 − c2)
c2(a2 − u2)

)]
=

2
c2

[(a2 − c2)2 − b2(a2 − c2)] =
2(a2 − c2)

c2
[a2 − c2 − b2] = 0,

from which the result follows. (Note that |u− a| = a− u since u < a.)

6. Let p(x) = x4 + ax3 + bx2 + cx + d be a polynomial with rational coefficients. Suppose that p(x) has
exactly one real root r. Prove that r is rational.

Solution. Since nonreal roots occur in pairs, p(x) must have an even number of real roots counting
multiplicity. Therefore r must be a double or quadruple root. If r is a quadruple root, then p(x) = (x− r)4

and r = −a/4 is rational. Suppose, otherwise, that p(x) = (x−r)2q(x) where q(x) is an irreducible quadratic.
The derivative p′(x) is equal to (x− r)f(x) where f(x) = 2q(x) + (x− r)q′(x). Since q(r) does not vanish,
f(r) 6= q(r) so that f(x) and q(x) must be distinct and coprime. The monic greatest common divisor of
p(x) and p′(x) must therefore x − r. Since (by the Euclidean algorithm) this is a polynomial with rational
coefficients, therefore r is rational.

7. Let (V, 〈·〉) be a two-dimensional inner product space over the complex field C and let z1 and z2 be unit
vectors in V . Prove that

sup{|〈z, z1〉〈z, z2〉| : ‖z‖ = 1} ≥ 1
2

with equality if and only if 〈z1, z2〉 = 0.

Note: The inner product 〈z, w〉 is linear in the left variable and satisfies 〈w, z〉 = 〈z, w〉. Also, ‖z‖2 = 〈z, z〉.

Solution. Let 〈z1, z2〉 = a+ bi for real a and b. Since |〈z, z1〉〈z, z2〉| = |〈z, z2〉〈z,−z2〉|, there is no loss of
generality in assuming that a = Re〈z1, z2〉 ≥ 0. Suppose that w = (z1 + z2)/(‖z1 + z2‖. Then ‖w‖ = 1 and
the supremum in the problem is not less than ‖〈w, z1〉〈w, z2〉‖. Note that |〈w, z1〉| = |1+ 〈z2, z1〉|/(‖z1 +z2‖)
and that |〈w, z2〉| = |1 + 〈z1, z2〉|/(‖z1 + z2‖). Also ‖z1 + z2‖ = 〈z1 + z2, z1 + z2〉 = 〈z1, z1〉 + 〈z2, z2〉 +
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〈z1, z2〉+ 〈z2, z1〉 = 2 + 2Re〈z1, z2〉 = 2 + 2a.

|〈w, z1〉〈w, z2〉| =
|1 + 〈z1, z2〉|2

2 + 2a

=
(1 + a)2 + b2

2(1 + a)

=
1
2

(
1 + a +

b2

1 + a

)
≥ 1

2
,

with equality if and only if a = b = 0, i.e. 〈z1, z2〉 = 0. Thus, if the supremum of 1
2 , then 〈z1, z2〉 = 0.

On the other hand, suppose that 〈z1, z2〉 = 9. Then {z1, z2} is an orthonormal basis, and we can write
z = uz1 + vz2 where |u|2 + |v|2 = 1 for ‖z‖ = 1. Then

|〈z, z1〉〈z, z2〉| = |u||v| ≤ 1
2
(|u|2 + |v|2) =

1
2

with equality if and only if |u| = |v| = 2−1/2. Therefore, the supremum is 1
2 in this case.

Comment. If V is a real, rather than complex, vetor space, then a trigonometric solution is possible.
Wolog, we can assume that a basis has been selected so that z1 = (1, 0) and z2 = (cos θ, sin θ). Suppose that
z = (cos φ, sinφ), then

〈z, z1〉〈z, z2〉 = cos φ(cos θ cos φ + sin θ sinφ) = cos φ(cos(θ − φ))

=
1
2
[cos θ + cos(θ − 2φ)].

If cos θ = 0 and sin θ = ±1, then the value of this expression is | 12 cos(θ− 2φ)| ≤ 1
2 , so that the supremum is

equal to 1/2, attainable when 2φ = θ.

On the other hand, when cos θ > 0 and 2φ = θ, the expression is greater than 1/2 and the supremum
exceeds 1/2. Similarly, when cos θ < 0, and 2φ = θ + π, the expression is less than −1/2 and again the
supremum exceeds 1/2.

8. For any real square matrix A, the adjugate matrix, adj A, has as its elements the cofactors of the
transpose of A, so that

A · adj A = adj A ·A = (det A)I .

(a) Suppose that A is an invertible square matrix. Show that

(adj (At))−1 = (adj (A−1))t .

(b) Suppose that adj (At) is orthogonal (i.e., its inverse is its transpose). Prove that A is invertible.

(c) Let A be an invertible n× n square matrix and let det (tI −A) = tn + c1t
n−1 + · · ·+ cn−1t + cn be

the characteristic polynomial of the matrix A. Determine the characteristic polynomial of adj A.

Solution. (a) Since Atadj (At) = (det A)I and A−1(adj (A−1)) = (det A)−1 · I, it follows that

(adj (At))−1 =
1

det A
At = (adj (A−1))t.

(b) Since adj (At) · (adj (At))t = I, then

At = Atadj (At)(adj At)t = (det A)(adj At)t.
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Since A 6= O, det A 6= 0.

(c)

det (tI − adj A) =
1

det A
· det (tA−A adj A) =

1
det A

· det (tA− (det A)I)

=
(−t)n

det A
· det

(
det A

t
I −A

)
=

(−t)n

(−1)ncn

( n∑
k=0

(
(−1)ncn

t

)n−k

ck

)

=
n∑

k=0

(−1)n(n−k)ckcn−k−1
n tk,

with c0 = 1.

9. Let S be a set upon whose elements there is a binary operation (x, y) → xy which is associative (i.e.
x(yz) = (xy)z). Suppose that there exists an element e ∈ S for which e2 = e and that for each a ∈ S,
there is at least one element b for which ba = e and at most one element c for which ac = e. Prove that
S is a group with this binary operation.

Note. A group G is a set with an associative binary operation that contains an indentity element u for
which, given any element x ∈ G, xu = ux = x and there exists y ∈ G for which yx = xy = u.

Solution 1. We show that e is the identity element of S and that each element of S has a two-sided
inverse. Let t be an arbitrary element of S. There is an element s ∈ S for which st = e. Hence e = e2 = s(tst).
Since also st = e, we must have that t = tst = te. Therefore e is a right identity in S.

Suppose that r ∈ S is such that rs = e. Then et = rst = re = r (since e is a right identity). Therefore
ets = rs = e. Since ee = e as well, e = ts and so et = tst = t.

Solution 2. (J. Love) Let a ∈ S. There exists b such that ba = e. Therefore, b(ae) = (ba)e = e2 = e,
so that a = ae (∀a ∈ S). We have that e = ba = (be)a = b(ea) whereupon a = ea. Hence e is a two-sided
identity.

Suppose that ba = e. Select d ∈ S so that db = e. Then d = de = d(ba) = (db)a = ea = a, so that a is
a two-sded inverse of b.

This is problem #4504 from the American Mathematical Monthly 54 (1961), 54.

10. Let f be a real-valued function defined on the real number field R for which |f(x)−f(y)| < |x−y| for any
pair (x, y) of distinct elements of R. Let f (n) denote the nth composite of f defined by f (1)(x) = f(x)
and f (n+1)(x) = f(f (n)(x) for n ≥ 2. Prove that exactly one of the following situations must occur:

(i) limn→+∞ f (n) = +∞ for each real x;

(ii) limn→+∞ f (n) = −∞ for each real x;

(iii) there is a real number z such that

lim
n→+∞

f (n)(x) = z

for each real x.

(b) Give examples to show that each of the three cases in (a) can occur.

Solution. (a) Note that the condition on f implies that f is uniformly continuous. Suppose that there
exists a real number z for which f(z) = z. Let x 6= z. Then |f(x)−f(z)| = |f(x)−z| < |x−z|. If f (n)(x) < z
for each positive integer n, then {f (n)(x)} is an increasing sequence that converges to a real number w ≤ z.
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Since w = lim f (n+1)(x) = lim f(f (n)(x)) = f(w) and since |f(w)− f(z)| = |z −w|, we must have z = w. In
a similar way, it can be shown that lim f (n)(x) = z when f (n)(x) ≥ z for each n.

The remaining possibility is that {f (n)(x)} can be partitioned into two subsequences, one increasing
to a limit u ≤ z and the other decreasing to a limit v ≥ z. Suppose, if possible, that u 6= z. Since
|f(u) − f(z)| < |u − z|, for each integer n, we must have either f (n)(x) ≤ u or f (n)(x) ≥ z. Suppose, if
possible, that z < f(u) < v. Because f is continuous, there exits ε > 0 for which |t − u| ≤ ε implies that
z < f(t) < v. But for some integer m, u − ε < f (m)(x) ≤ u so that z < f (m+1)(x) < v, an impossibility.
Since f(u) cannot equal u, then f(u) ≥ v so that

|v − z| = v − z ≤ f(u)− f(z) < |u− z| = z − u.

If v 6= z, then it can be similarly shown that |u − z| < |v − z|. Since |u − z| < |v − z| and |u − z| > |v − z|
are incompatible, one of u = z and v = z must hold. But when one of these holds, then so must the other
and the result follows.

Suppose that there is no z for which f(z) = z. Then the function g(x) = f(x) − x is continuous and
vanishes nowhere on R. If g(x) > 0 for all x, then for each x, f (n)(x) is an increasing sequence. It cannot
have a finite limit, since this limit would be a fixpoint of f . Therefore the sequence must diverge to infinity.
The case that g(x) < 0 for all x can be similarly handled.

(b) (i) Let f(x) = (1+x2)1/2. Then f(x) > x and so f (n)(x) is a strictly increasing function of n. Since
f ′(x) = x(1 + x2)−1/2, we find that, given x, y, there exists a number z for which

|f(x)− f(y)| = |f ′(z)||x− y| < |x− y|.

(ii) Let f(x) = −(1 + x2)1/2.

(iii) Let f(x) = 1
2x.
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