
THE QUADRATIC

Edward J. Barbeau
Department of Mathematics
University of Toronto
Toronto, ON M5S 3G3
fax: 416-978-4107
email: barbeau@math.utoronto.ca

§1. Exercises on Basic Properties

1.1. Let f(x) be a quadratic polynomial and suppose that we divide it by x− u and obtain a remainder r,
where u and r are constants: f(x) = (x− u)g(x) + r.

(a) Explain why the degree of g(x) is 1.

(b) Prove that r = f(u).

(c) Prove that u is a root of the equation f(x) = 0 if and only if there is a linear polynomial g(x) for
which f(x) = (x− u)g(x).

1.2. (a) How many different quadratic polynomials f(x) can you find for which f(0) = 5, f(1) = 3 and
f(2) = −7? Determine all of them.

(b) Determine all of the polynomials g(x) of degree not exceeding 2 for which g(−3) = 2, g(−1) = −1
and g(4) = 0.

1.3. (a) Suppose that f(x) and g(x) are two polynomials of degree not exceeding 2 for which f(u) = g(u),
f(v) = g(v) and f(w) = g(w) for three distinct numbers u, v and w. Prove that f(x) and g(x) must be
the same polynomial.

(b) Suppose that h(x) is a quadratic polynomial that vanishes at the two distinct numbers u and v, i.e.,
h(u) = h(v) = 0. Prove that h(x) must be a constant multiple of (x− u)(x− v).

(c) Let a, b, c be three distinct numbers. Determine a quadratic polynomial h(x) for which h(a) =
h(b) = 0 and h(c) = 1.

1.4. (a) Suppose that a, b and c are three distinct numbers and that f(x), g(x) and h(x) are quadratic
polynomials for which

h(a) = h(b) = g(a) = g(c) = f(b) = f(c) = 0

and
f(a) = g(b) = h(c) = 1 .

Let p(x) = uf(x) + vg(x) + wh(x) for some constants u, v and w. Determine the values of p(a), p(b)
and p(c).

(b) Suppose that p(x) is a polynomial of degree less than three for which p(a), p(b) and p(c) are specified.
Prove that, for every x,

p(x) = p(a)
(x− b)(x− c)
(a− b)(a− c)

+ p(b)
(x− a)(x− c)
(b− a)(b− c)

+ p(c)
(x− a)(x− b

(c− a)(c− b)
.

(c) Use the format of (b) to determine the polynomials f(x) and g(x) asked for in Exercise 1.2. Check
that you get the same answer as you did before.

(d) Use (b) to give a necessary and sufficient condition involving an arbitrary set {a, b, c} of numbers
that a polynomial p has degree strictly less than 2. [Hint: Look at the coefficient of x2 in (b).]
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1.5. (a) For each of the quadratic polynomials

x2, 1− x2,
1
2
x(x + 1), x2 + 3x + 3

construct a table listing in order nonnegative integral values of x, the corresponding values of the
polynomial and the difference between the values of the polynomials at consecutive integers. What do
you notice about the sequence of differences? If you take differences of consecutive differences, what
happens?

(b) Let p(x) = ax2 + bx + c be a general quadratic polynomial. Verify that, if q(x) = p(x + 1) − p(x)
and r(x) = q(x + 1)− q(x), then q(x) is a linear polynomial and r(x) is a constant polynomial.

(c) It is given that f(x) is a quadratic polynomial. Fill in the missing entries in the following table:

x f(x) g(x) = f(x + 1)− f(x) h(x) = g(x + 1)− g(x)
0 5

4
1 ? −1

?
2 ? ?

?
3 ? ?

?
4 ? ?

What do you think f(x) is?

1.6. Let p(x), q(x), r(x) be as given in Exercise 1.5.(b). Suppose that p(0), q(0) and r(0) are given.

(a) Prove that, for each positive integer n,

p(n) = p(0) + q(0) + q(1) + · · ·+ q(n− 1)

q(n) = q(0) + r(0) + r(1) + · · ·+ r(n− 1) = q(0) + (n− 1)r(0) .

(b) Determine a formula for p(n) in terms of p(0).

1.7. (a) Show that for every quadratic equation (x− p)(x− q) = 0, there exist constants a, b, c with c 6= 0
such that (x − a)(b − x) = c is equivalent to given equation and the faulty reasoning “either x − a or
b− x must equal c” yields the correct answer “x = p or x = q”.

(b) Determine constants a, b, c with c 6= 0 so that the equation (x− 19)(x− 97) = 0 can be “solved” in
such a manner.

(International Mathematical Talent Search, Round 25.)

1.8. (a) Write down some values of the polynomial x2 +x+1 for x = 0, 1, 2, 3, · · ·. Observe that the product
of two consecutive values in the list occur elsewhere in the list. Formulate and prove a general result.

(b) Answer (a) for the polynomial x2 + x = x(x + 1).

(c) Any integer that is the product of two consecutive integers is called oblong. Part (b) can be used to
show that there are infinitely many triples (a, b, c) of oblong numbers for which c = ab. Investigate the
existence of triples of oblong numbers no two of which are consecutive but for which the product of two
of them is equal to the third.

1.9. Let p(x) be a monic quadratic polynomial. (This means that the leading coefficient is 1, so that it has
the form p(x) = x2 + bx + c.) Suppose also that its coefficients are integers.
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(a) Prove that there exists an integer k such that p(0)p(1) = p(k). How many possible such values of k
are there?

(b) More generally, prove that for each integer n, there is at least one integer m for which p(n)p(n+1) =
p(m).

(c) Are there any values of n for which the value of m determined in (b) is unique?

1.10. Does there exist a quadratic polynomial f(x) with integer coefficients and the unusual property that,
whenever x is a positive integer which consists only of 1’s, then f(x) is also a positive integer consisting
only of 1’s (where the representation is to base 10)?

§2. Exercises on Completing the Square and Transformations

2.1. Let f(x) be a real-valued function.

(a) Compare the graphs of the equations y = f(x) and y = f(2x).

(b) Compare the graphs of the equation y = f(x) and y = 4f(x).

(c) Corroborate your answers to parts (a) and (b) with the example f(x) = x2.

2.2. Let ax2 + bx + c be a quadratic polynomial with real coefficients.

(a) Verify that it equals

a

(
x +

b

2a

)2

− 1
4a

(b2 − 4ac)

.

(b) From (a), argue that, when a > 0, the quadratic assumes its minimum value when x = −b/2a, while
if a < 0, it assumes its maximum value when x = −b/2a.

(c) Use this to describe a transformation in the plane that takes the graph of the equation

y = ax2 + bx + c

to the graph of the equation y = x2.

2.3. Is it true that all parabolas are the same shape? Explain.

2.4. One geometric definition of a parabola is that it is the locus of points whose distance from a fixed point
(the focus) is equal to its distance from a fixed line (the directrix). It is asserted that the graph of the
equation y = ax2 + bx + c is a parabola. Is this consistent with the geometric definition? If so, what is
the focus? What is the directrix? Look first at some special cases, such as y = x2, y = x2 + c, y = ax2,
y = x2 − 3x + 2.

§3. Exercises on Solutions of Quadratics

3.1. Let m and n be the solutions of the quadratic equation x2 + bx + c = 0. Show that b and c are the
solutions of the quadratic equation x2 + (m + n−mn)x−mn(m + n) = 0.

3.2. Suppose that a 6= c and that x = (b − d)/(a − c) satisfies one of the equations x2 − ax + b = 0 and
x2 − cx + d = 0. Prove that this value of x satisfies the other.

3.3. Let p(x) and q(x) be two quadratic polynomials with integer coeffients. Suppose that there is an
irrational number c for which p(c) = q(c) = 0. Prove that one of the polynomials p(x) and q(x) is a
constant multiple of the other.
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3.4. Let p(x) = x2 + bx + c. Suppose that p(0) and p(1) are solutions of the quadratic equation p(x) = 0.
What are the possible values of the pair (b, c)?

3.5. (a) Show that, for every quadratic equation (x− p)(x− q) = 0, there exist constants a, b, c with c 6= 0
such that (x − b)(b − x) = c is equivalent to the original equation and the following reasoning “either
x− a or b− x must equal to c” yields the correct answers “x = p or x = q”.

(b) Determine constants a, b, c with c 6= 0 so that the equation (x− 19)(97− x) = 0 can be “solved” in
this manner.

[Round 25 of the International Mathematical Talent Search.]

3.6. Suppose x and y are integers. Solve the equation

x2y2 − 7x2y + 12x2 − 21xy − 4y2 + 63x + 70y − 174 = 0 .

[Problem 2332 from Crux Mathematicorum.]

3.7. Two nested concentric rectangles, are given, with corresponding sides parallel and each side of the inner
rectangle the same distance from the corresponding side of the outer.

(a) Prove that, if the area of the inner rectangle is exactly half that of the outer rectangle, then the
perimeter of the inner rectangle is equal to the sum of the lengths of the diagonals of the outer rectangle.

(b) Verify the result in (a) when the outer rectangle has dimensions 3 × 4, 8 × 15 and more generally
(m2 − n2)× 2mn where m and n are positive integers.

§4. Exercises on Inequalities

4.1. Let a and b be positive real numbers. Using the fact that the quadratic equation 0 = (x− a)(x− b) =
x2− (a+ b)x+ab has real roots and the discriminant condition, verify the Arithmetic-Geometric Means
Inequality

√
ab ≤ a + b

2
.

When does equality occur?

4.2. (a) Suppose that a, b, c, u, v, w are real numbers. Using the fact that the quadratic polynomial

(ax + u)2 + (bx + v)2 + (cx + w)2 = (a2 + b2 + c2)x2 + 2(au + bv + cw)x + (u2 + v2 + w2)

is always nonnegative, argue that it has either coincident real roots or nonreal roots. Use the discriminant
condition for this to obtain the Cauchy-Schwarz Inequality

au + bv + cw ≤ (a2 + b2 + c2)
1
2 (u2 + v2 + w2)

1
2 .

When does equality hold?

(b) Generalize (a) to obtain an inequality for a1, a2, · · · , an and b1, b2, · · · , bn.

§5. Exercises on Sum and Product of Roots

5.1. The roots of the quadratic equation x2 + bx + c = 0 are m and n. Verify that b and c satisfy the
quadratic equation x2 + (m + n−mn)x−mn(m + n) = 0.

5.2. (a) Determine any solution in positive integers to the diophantine equation

x2 + y2 + z2 + w2 = xyzw .
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(b) It is possible to show that the diophantine equation in (a) has infinitely many solutions in positive
integers by the following argument. Suppose that we have found a solution (x, y, z, w) = (a, b, c, d).
Consider the quadratic equation

x2 − bcdx + (b2 + c2 + d2) = 0 .

One root of this equation is the integer a. Argue that there is a second root a′ which is also an integer.
Show that (x, y, z, w) = (a′, b, c, d) is another solution of the equation in (a). Use this strategy, starting
with the solution you found in (a), to obtain a sequence of different solutions to the equation.

§6. Exercises on Polynomials of Higher Degree

6.1. Consider the equation x4−2x3−x2−2x+1 = 0. Since the coefficients (1,−1,−2,−1, 1) are symmetric
about the middle one, it turns out that there is a special method for solving such an equation which
reduces to the solution of quadratic equations.

(a) Prove that, if the equation has a nonzero solution x = u, then x = 1/u also satisfies the equation.

(b) Verify that x = 0 does not satisfy the equation. Deduce that the equation is equivalent to(
x2 +

1
x2

)
− 2

(
x +

1
x

)
− 1 = 0 .

(c) Set t = x + 1
x and verify that x2 + 1

x2 = t2 − 2. Verify that the equation, with this substitution,
becomes t2 − 2t− 3 = 0. Solve for t. [t = −1, 3.]

(d) Solve the equations x + 1
x = −1 and x + 1

x = 3, and argue that the solutions to these two equations
satisfy the original equation.

(e) Use the result in (c) to obtain a factorization of x4− 2x3−x2− 2x+1 as a product of two quadratic
polynomials.

6.2. (a) Write down several examples of products of four consecutive integers, such as 3× 4× 5× 6 = 360.

(b) Observe that in each case the result is not a square. Why do you think this is?

Extending the observation in (b), it appears on the basis of numerical evidence that the product of four
consecutive integers is 1 less than a perfect square. This suggests that we might introduce variables to
check the truth of this in general. What is the general form for the product of consecutive integers?

(d) Consider f(x) = x(x+1)(x+2)(x+3). Rewriting the terms (think why one might want to do this)
thus, f(x) = [x(x + 3)][(x + 1)(x + 2)], verify that (x + 1)(x + 2) = x(x + 3) + 2 and so

f(x) = [x(x + 3)]2 + 2[x(x + 3)]

and use this to show that f(x) + 1 is the square of a quadratic polynomial. What is this quadratic
polynomial?

(e) Some might prefer to represent the product of four consecutive integers are g(x) = (x − 1)x(x +
1)(x + 2). Is this equally valid? Why might one choose this form? Prove that g(x) + 1 is equal to the
square of a quadratic polynomial.

(f) By considering the equation
1 = a2 − b2 = (a− b)(a + b) ,

give a rigorous argument that two positive squares cannot differ by 1. Deduce that the functions f(x)
and g(x) can never be a positive square when x is an integer.
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6.3. In his paper, Recherches sur les racines imaginaires des équations, published in Mem. de l’academie des
sciences de Berlin (5) (1749), 1751, 222-288 = Opera omnia (1) 6, 78-141, Leonard Euler (1707-1783)
presents what turns out to be a subtly incorrect proof of a version of the Fundamental Theorem of
Algebra, that each polynomial with real coefficients can be written as a product of linear and quadratic
polynomials with real coefficients. However, his argument works in the case of a quartic polynomial
h(x) = Ax4 + Bx3 + Cx2 + Dx + E with A 6= 0.

(a) Prove that h(x) can be a factored as a product of quadratic polynomials if and only if h(kx) and
h(x − k) can be so factored for any nonzero constant k. [Hint: If h(x) = f(x)g(x) is an identity if x,
what happens if you replace x by kx and x− k?]

(b) Let k = −B/4A. Verify that the coefficient of x3 in h(x + k) is 0.

(c) From (a) and (b), argue that, without loss of generality, it is enough to prove that any polynomial
of the form

h(x) = x4 + ax2 + bx + c

can be factored as a product of real quadratics.

Henceforth, we will suppose that h(x) has this form.

(d) Suppose that b = 0 so that h(x) = x4 + ax2 + c. Let a2 ≥ 4c. Use the theory of the quadratic to
prove that h(x) can be written as a product of the form (x2 − r)(x2 − s) for real values of r and s.

(e) Suppose that b = 0 and that a2 < 4c. Verify that c > 0 and that

x4 + ax2 + c = (x2 +
√

c)2 − (2
√

c− a)x2

so that h(x) can be factored as a difference of squares.

(f) We now turn to the case
h(x) = x4 + ax2 + bx + c ,

where b 6= 0. The polynomial h(x) can be factored as a product of quadratics if and only if real numbers
u, v, w can be found for which

x4 + ax2 + bx + c = (x2 + ux + v)(x2 − ux + w) .

By expanding the right side and comparing coefficients on the two sides of the equation, obtain the set
of conditions

a = v + w − u2

b = u(w − v)
c = vw ,

which, in turn, are equivalent to
w + v = a + u2

w − v =
b

u
4vw = 4c .

Thus, if we can find a suitable real value of u, then the real values of v and w can be obtained from the
first two of these equations and we can write out the desired factorization. Verify that

2w = u2 + a +
b

u

2v = u2 + a− b

u

and thus show that u must satisfy

u6 + 2au4 + (a2 − 4c)u2 − b2 = 0 .
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(g) In (f), it suffices to show that the sextic equation is satisfied by some real value of u. One way to do
this is through a result called the Intermediate Value Theorem for continuous functions, which applies
in particular to polynomials. Let

f(x) = x6 + 2ax4 + (a2 − 4c)x2 − b2 = x6(1 + 2ax−2 + (a2 − 4c)x−4 − b2x−6) .

Verify that f(0) < 0 and that f(x) is positive for some very large values of x. The graph of f(x) is
a continuous curve which lies below the x−axis when x = 0 but lies above the axis when x is large.
Deduce that it must cross the axis somewhere, and so there must be a real number u such that f(u) = 0.

(h) Here is an erroneous argument to show that f(0) < 0. (It was this approach that got Euler into
trouble with polynomials of higher degree.) Can you spot the difficulty? As above, try

x4 + ax2 + bx + c = (x2 + ux + v)(x2 − ux + w) .

Each of the quadratics can be factored as a product of linear polynomials, so that

x4 + ax2 + bx + c = (x− α)(x− β)(x− γ)(x− δ) .

By comparing coefficients, verify that α + β + γ + δ = 0, and that u is the sum of two of the roots.
There are six ways of pairing the roots and the correspond to six possible values of u:

α + β , α + γ , α + δ ,

β + γ , β + δ , γ + δ .

Observe that, for any possible value of u, its negative is also a possible value of u, so that the sextic
equation f(x) = 0 satisfied by u has the form

f(u) ≡ (u2 − λ2)(u2 − µ2)(u2 − ν2) = 0 .

The left side has an odd number ( 1
2

(
4
2

)
= 3) of terms, and so its constant coefficient, f(0), being the

product of three squares, must be negative.

§7. Rational functions.

7.1. Let f(x) = (x2 + 2x + 2)/(x + 1) be defined for all real values of x not equal to −1.
(a) By considering the solvability of the quadratic equation x2 + 2x + 2 = k(x + 1), prove that f(x)
cannot assume any value strictly between −2 and 2 but that it can assume all other real values.

(b) By considering the signs of the expressions f(x)− 2 and f(x) + 2, corroborate the result of (a).

(c) Use a calculator to obtain the graph of y = f(x). Does this validate (a) and (b)?

(d) Verify that f(x) = x + 1 + 1
x+1 . Use this representation to obtain a rough sketch of the graph of

y = f(x). Does this agree with (c)? Describe the asymptotes of the graph.

7.2. Use the techniques of Exercise 7.1 to analyze the range of values and the graphs of the following rational
functions:

(a)
x2 + x + 4

x + 1

(b)
x2 + 4x− 4

x + 2
.
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7.3. Let a, b, c be parameters and let

f(x) =
x2 + bx + c

x + a
.

We are concerned with conditions on a, b, c under which each real number can be written in the form
f(x) for some real x, i.e., for each real k, f(x) = k is solvable. Three approaches will be followed in this
and the next two problems.

(a) Verify that f(x) = k is equivalent to

x2 + (b− k)x + (c− ak) = 0 .

(b) Verify that the discriminant of the quadratic equation in (a) is

k2 − 2(b− 2a)k + (b2 − 4c) = [k − (b− 2a)]2 − 4(a2 − ab + c) .

(c) Using (b), prove that f(x) = k is solvable for each real value of k if and only if a2 − ab + c < 0.

(d) Prove that, if f(x) = k is solvable for each real value of k, then x2 + bx+ c = 0 must have real roots.
Is the converse of this result true?

7.4. Let f(x) be the function of Exercise 7.3.

(a) Verify that

f(x) =
x2 + bx + c

x + a
= x + (b− a) +

c + a2 − ab

x + a

= (x + a) +
c + a2 − ab

x + a
+ (b− 2a) .

(b) Suppose that c + a2 − ab > 0 and that x > −a. Verify that

f(x) ≥ 2
√

c + a2 − ab + (b− 2a)

with equality if and only if x + a =
√

c + a2 − ab.

(c) Suppose that c + a2 − ab > 0 and that x < −a. Verify that

f(x) ≤ −2
√

c + a2 − ab + (b− 2a)

with equality if and only if x + a = −
√

c + a2 − ab.

(d) Deduce from (f) and (g) that f(x) = k is not solvable when c + a2 − ab > 0 and

b− 2a− 2
√

c + a2 − ab < k < b− 2a + 2
√

c + a2 − ab .

(e) Suppose that c + a2 − ab < 0. Argue that, as x increases from −a, then f(x) passes through all real
values. Similarly argue that as x decreases from −a, then f(x) passes through all real values. Observe
that this result, along with (h), corroborates the result of Exercise 7.3.(c).

7.5. Let f(x) be the function of Exercise 7.3.

(a) Suppose the roots r, s of x2 + bx + c = 0 are both real with r ≤ s. Observe that x2 + bx + c < 0 if
and only if r < x < s.

(b) Suppose that r and s lie on the same side of −a. Without loss of generality, let −a < r ≤ s. Argue
that, when x > −a, f(x) must assume a minimum value, say m2 when x = x2, while if x < −a, then
f(x) must assume a maximum value, say m1 when x = x1, where m1 < 0. We will argue that m1 < m2
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so that f(x) cannot assume any value between m1 and m2. Consider f(x) − m2; this is a quadratic
polynomial that vanishes when x = x2 and is nonnegative when x when x > −a. Deduce that

f(x)−m2 =
(x− x2)2

x + a

so that f(x) assumes the value m2 only when x = x2, and so never when x < −a. Conclude that f(x)
cannot assume any value between m1 and m2.

(c) Suppose that r and s lie on opposite sides of −a, so that r < −a < s. Prove that f(x) > 0 for
r < x < −a and that f(x) < 0 for −a < x < s. Indeed, show that f(x) passes through all real values
as x increases from or decreases from −a.

(d) Deduce from (k) and (l) that f(x) = k us solvable for all real k if and only if r < −a < s. Using the
fact that r = 1

2 (−b−
√

b2 − 4c) and s = 1
2 (−b+

√
b2 − 4c), show that this is equivalent to a2−ab+c < 0.

(e) Suppose that the equation x2+bx+c = 0 has nonreal roots. Observe that this has two consequences:
4c > b2, and f(x) never assumes the value 0. Deduce that

a2 − ba + c > (a− b

2
)2 ≥ 0 .

(f) Using the results of parts (a) to (e), prove that f(x) = k is solvable for each real value of k if and
only if a2 − ba + c < 0.

§8. Second order recursions.

8.1. Suppose that x = u and x = v satisfy the quadratic equation x2 = px + q. Define

w0 = 2, w1 = u + v, w2 = u2 + v2, w3 = u3 + v3, · · · , wn = un + vn, · · · .

(a) Prove that, when n ≥ 2, then wn = pwn−1 + qwn−2.

(b) Check (a) when u and v are the solutions of the equations (i) x2 = 3x− 2 and (ii) x2 = 3x + 2.

(c) Suppose that xn = 7un−5vn, where u and v are as defined above. Is it true that xn = pxn−1+qxn−2

for n ≥ 2?

8.2. Let xn be a sequence satisfying a second order recursion. This means that two consecutive terms, say
x0 and x1 can be chosen arbitrarily, and that there are fixed multipliers p and q such that for all values
of n, xn = pxn−1 + qxn−2.

(a) Write out the first few terms of the following sequences satisfying a second order recursion in each
of the following cases:

(i) x0 = 0, x1 = 1, p = q = 1 (Fibonacci sequence);
(ii) x0 = 0, x1 = 1, p = 2, q = −1;
(iii) x0 = 1, x1 = 1, p = 2, q = 1;
(iv) x0 = 3, x1 = −2, p = 1, q = −2;
(v) x0 = 3, x1 = 2, p = 1, q = −1.

(b) Verify that a geometric progression {a, ar, ar2, ar3, · · ·} satisfies the recursion xn = pxn−1 + qxn−2

if and only if r is a solution of the quadratic equation x2 = px + q.

(c) Suppose that the equation x2 = px + q has two distinct solutions x = r and x = s. Let x0 and x1

be any two numbers. Solve the system of equations

y + z = x0

ry + sz = x1
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for y and z. Prove that, if {xn} satisfies the second order recursion xn = pxn−1 + qxn−2, then xn =
yrn + zsn for each value of n.

(d) Use (c) to obtain the general term of the sequences in (a). Are there any situations in which the
method does not work? Why?

8.3. In this exercise, we examine the situation of a second order recursion as described in Exercise 14 in
which the associated quadratic equation x2 = px + q has a double solution.

(a) Prove that x2 = px + q has a double solution if and only if q = −p2/4.

In the notation introduced above, we thus are interested in investigating sequences satisfying a recursion
of the type

xn = pxn−1 −
p2

4
xn−2 . (∗)

We cannot proceed as in Exercise 14 to get the general solution of the recursion as we have only a single
solution of the related quadratic to manipulate. Suppose that r is this root.

(b) Verify that r = p/2.

(c) Define yn by xn = rnyn. By substituting into (*), show that 2(yn−yn−1) = yn−1−yn−2 and deduce
that yn − yn−1 = yn−1 − yn−2 for each value of n. What does this tell us about the nature of the
sequence {yn}?

(d) Verify that xn = (αn + β)rn satisfies (*).

(e) Imitate the strategy of Exercise 14 to show that every solution to the recursion (*) is in the form
given by (c).

(f) Solve the recursion xn = 6xn−1 − 9xn−2 (n ≥ 2) where x0 = −2 and x1 = −3.

8.4. DeMoivre’s Formula (a) Verify that the sequence defined by xn = cos nθ satisfies the recursion

xn+2 = (2 cos θ)xn+1 − xn

for n ≥ 0 with initial conditions x0 = 1 and x1 = cos θ.

(b) Verify that the sequence defined by xn = sinnθ satisfies the recursion

xn+2 = (2 cos θ)xn+1 − xn

for n ≥ 0 with initial conditions x0 = 0 and x1 = sin θ.

(c) Verify that the solutions of the quadratic equation t2 − (2 cos θ)t + 1 = 0 are cos θ + i sin θ and
cos θ − i sin θ.

(d) Solve the recursions in (a) and (b) to obtain

cos nθ =
1
2
(cos θ + i sin θ)n +

1
2
(cos θ − i sin θ)n

and
sinnθ =

1
2i

(cos θ + i sin θ)n − 1
2i

(cos θ − i sin θ)n .

Deduce from this, De Moivre’s Rule:

(cos θ + i sin θ)n = cos nθ + i sinnθ .

This idea is from the note

10



V.J. Matsko, De Moivre’s Rule, Recurion Relations, and Number Theory Mathematics and Informatics
Quarterly 8 (1998), 12-14.

§9. Geometry and Trigonometry

9.1. (a) Sketch the parabola with equation y2 = 4x. Consider the family of parallel chords with equation
y = mx + b, where m is a fixed parameter and k is allowed to vary. Argue that the midpoint of the
chord of equation y = mx + b is given by (X, Y ) where X = 1

2 (x1 + x2) and Y = mX = b, with x1 and
x2 the two solutions of the quadratic equation

(mx + b)2 = 4x or m2x2 + (2bm− 4)x + b2 = 0 .

(b) Without solving the quadratic equation in (a), use the relationship between the coefficients and
roots to obtain an expression for X. Show that Y does not depend on b. What does this tell you about
the locus of (X, Y )?

(c) Redo parts (a) and (b) by setting up an equation in y rather than x and computing Y = 1
2 (y1 + y2)

directly.

9.2. A diameter of a conic section is the locus of the midpoints of a family of parallel chors.

(a) Sketch the ellipse with equation (x2/9) + (y2/4) = 1 along with some chords in the family y = x + k
where k is a parameter. (This could be done with a calculator or with some geometric computer software.
In the latter case, try to trace the midpoints of the chords.)

(b) Follow the strategy used in Exercise 16 to show that the locus of the midpoints of the chords is a
straight line.

(c) Generalize to the general conic section of equation

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 .

Corroborate your findings by taking particular choices of coefficients and chord slopes and graphing
them with a computer or calculator.

9.3. Suppose that, in a triangle ABC, one angle B and two sidelengths a = |BC| and b = |AC| are
known. What is the length of the remaining side? One way to obtain this is to use the Law of Cosines
b2 = a2 + c2 − 2ac cos B to obtain c = |AB|. Let us rewrite this third sidelength as a variable x and
arrange the equation to

x2 − (2a cos B)x + (a2 − b2) = 0 . (∗)

This is a quadratic equation, and so will have two solutions, which could be real or nonreal, positive or
negative, or coincident. In this exercise, we will see how this relates to the geometry of the situation.

(a) Verify that the discriminant D of the quadratic in (*) is 4(b2 − a2 sin2 B). Explain why D is
nonnegative if and only if a, b and B correspond to data for a feasible triangle. What happens if D = 0?
Explain how the geometry supports the fact that (*) has a single solution is this case.

(b) Suppose that a, B and B are data for a feasible triangle. By considering the sum of the roots,
explain why (*) has at least one positive solution.

(c) Determine conditions of a and b that (*) has (i) exactly one, (ii) exactly two, positive solutions.
Relate this to the geometric possibilities for the triangle. In the case where there is a negative solution,
explain how it might be interpreted.

9.4. Let a, b, c be real numbers. We consider solutions of the quadratic equation az2 + bz + c = 0 where
z = x + yi is a complex number.
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(a) Show that the complex equation az2 + bz + c = 0 is equivalent to the system of real equations:

a(x2 − y2) + bx + c = 0 (1)
axy + by = 0 (2)

(b) Considering (2) in the form y(ax + b) = 0, describe its locus.

(c) Show that (1) can be written in the form(
x +

b

2a

)2

− y2 =
(

1
2a

)2

(b2 − 4ac) .

Describe the locus of this equation in the three cases: (i) b2 = 4ac; (ii) b2 > 4ac; (iii) b2 < 4ac.

(d) The solutions of the system (1) and (2) are represented in the plane by points (x, y) that lie on the
intersection of the loci of (1) and (2). When b2 = 4ac, show that there is a single such point and that it
lies on the real axis. When b2 > 4ac, show that there are two points on the real axis, each a reflection
of the other in the line Re z = −b/2a. When b2 < 4ac, show that there are two points not on the real
axis that are mirror images of each other with respect to the real axis. Explain how this is consistent
with what you already now about real and imaginary roots of a quadratic.

§10. Approximation.

10.1. Let c be a positive real number. A standard way to approximate the square root of c is to begin with a
positive guess u and then proceed to a new guess v = 1

2 (u + c/u). This is repeated over and over until
the desired degree of approximation is reached.

(a) Verify that if c = 2 and the first guess is 1, then this process yields the sequence of approximants:
1, 3

2 = 1.5, 17
12 = 1.416667, 577

408 = 1.414216 (where the decimals forms are not exact).

(b) Use the process to approximate
√

3.

(c) Show that u <
√

c if and only if c/u >
√

c and that u >
√

c if and only if c/u <
√

c. Noting that v is
the average of u and c/u, explain why it is reasonable to expect that v might be a better approximation
that u.

(d) Verify that

v −
√

c =
1
2u

(u−
√

c)2 .

Deduce that every approximation beyond the first exceeds
√

c, and prove that from this point on the
sequences decreases. Why does the sequence tend towards

√
c?

10.2. We look at the geometry of the situation of Exercise 10.1. As before, we have that c > 0.

(a) Let x > 0. Use the Arithmetic-Geometric Means Inequality (Exercise 4.1) to prove that 1
2 (x+c/x) ≥√

c. with equality if and only if x =
√

c.

(b) Verify that
1
2

(
x1 +

c

x1

)
− 1

2

(
x2 +

c

x2

)
=

1
2
(x1 − x2)

(
1− c

x1x2

)
.

Use this to argue that 1
2 (x+c/x) is a decreasing function of x for 0 < x <

√
c and an increasing function

of x for
√

c < x.

(c) With the same axes, sketch the graphs of both of the curves y = x and y = 1
2 (x + c/x) for x > 0.

Where do these curves intersect? What are the asymptotes of the second curve?

(d) Using the graphs in (c), we can illustrate the behaviour of the approximating sequence for
√

c
described in Exercise 10.1. Let u1 > 0 be the first approximant. Locate on your sketch a possible
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position of (u1, 0). Let u2 = 1
2 (u1 + c/u1). Locate (u1, u2), (u2, u2) and (u2, 0). These three points will

be on the respective curves y = 1
2 (x + c/x), y = x and y = 0. We continue on in this way. Suppose that

un has been found. Let

un+1 =
1
2

(
un +

c

un

)
.

Locate (un, 0), (un, un+1), (un+1, un+1) and (un+1, 0). Describe from your diagram what eventually
happens to the terms of the sequence {un}.

10.3. The recursion of Exercise 10.1 can be defined when c is negative, even through c does not have a real
square root in this case. What will happen? To focus the discussion, consider the case c = −1.

(a) Sketch the curve

y =
1
2

(
x− 1

x

)
for real nonzero x, and attempt an anlysis as in Exercise 10.2.(d), using various starting points. In this
case, you may find it helpful to use a calculator or computer to generate the terms of the sequence of
“approximants”, or even to use the computer to draw the whole situation for you.

(b) To get a handle on the situation, we note that any real number can be written in the form x = cot θ
for some number θ lying strictly between 0 and π. Consider the transformation

T : x −→ 1
2

(
x− 1

x

)
.

If x = cot θ, show that the image of x under this transformation is cot 2θ. Thus, in terms of θ the
mapping is conjugate (essentially the same in its mathematical structure) to U : θ → 2θ (modulo π)
(this simply means that if you add, subtract two angles or multiply by a constant, you add an integral
multiple of π to put the result of the operation in the interval (0, π) using a kind of “clock arithmetic”).

(c) Does the transformation T have any fixed points? (These are points x for which T (x) = x. You can
answer this question directly, but also by looking at the mapping U and reinterpreting what you find in
terms of T .)

(d) Let U2(θ) = U(U(θ) and for n ≥ 3, let Un(θ) = U(Un−1(θ)). Determine a simple expression for
Un(θ).

(e) Does the transformation T have any points of period 2? (This asks whether there are any numbers
u for which T (u) = v for some number v and T (v) = u, so that two applications of the mapping T take
the point back to itself.) Answer this question directly by looking at the equation

T (T (x)) = x .

Now answer it by working through the operator U . For what values of θ does U(U(θ) = 4θ differ from
θ by a multiple of π. Are your results consistent?

(f) A point p is a point of period k for T if and only if T k(p) = p, where T 1(x) = T (x) and T k(x) =
T (T k−1(x)) for k ≥ 2. Either directly or working through the operator U , determine if T has points of
period k for k is a positive integer exceeding 1. Use a calculator to work out the approximate values of
such points and check the result by applying the operator T .

§11. The logistic dynamical system.

We suppose that k is a positive parameter and define the function pk(x) = kx(1− x) for 0 ≤ x ≤ 1. We
can use pk to define a dynamical system as follows:
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Begin with any point x0 in the closed interval [0, 1] ≡ x : 0 ≤ x ≤ 1. For each nonnegative integer n,
define xn+1 = pk(xn).

11.1. One can use graphical methods in helping us visualize how the sequence defined for the dynamical
system behaves. Suppose that we have a sketch of the curves with equations

y = pk(x)

and
y = x .

For each nonnegative integer n, plot the points (xn, 0) and (xn, pk(xn)) = (xn, xn+1). By drawing lines
parallel to the axes and making use of the line y = x, indicate geometrically how the point (xn+1, 0)
can be found. Thus, we can indicate on the x−axis the progress of the sequence {xn}.

11.2. Consider the case 0 < k < 1. Sketch the curves as indicated in (a) and use your diagram to argue that
limn→∞ xn = 0. Verify this analytically, by first verifying that 0 < xn+1 < kxN whenever 0 < x0 < 1.

11.3. Suppose that k > 1. Determine a number u for which 0 < u < 1 and pk(u) = u.

11.4. Consider the case 1 < k < 2. Sketch the curves as in (a), being careful to indicate on which side of the
line x = 1

2 the curves intersect. Analyze the types of behaviour of the sequence for values of x0 in the
closed interval [0, 1].

11.5. Consider the case 2 < k < 3. Sketch the curves as in (a) and analyze the behaviour or sequences {xn}.
Verify that

xn+1 − u = k(xn − u)(1− u− xn)

and use this to check that, when xn > 1− u, xn+1 − u and xn − u have opposite signs and |xn+1 − u| <
|xn − u|. Analyze the behaviour of the sequence {xn} for various cases of x0 in [0, 1].

11.6. Let k > 1 and let u be as defined in part (c). Determine p′k(u) in terms of k, where p′k denotes the
derivative of pk. Prove that |p′k(u)| < 1 if and only if 1 < k < 2. What effect do you think that the
value of the derivative of pk at u has on the behaviour of sequences {xn} that start off with a value x0

close to u?

11.7. We study the possibility of sequences {xn} of period 2, i.e., there are two distinct values v and w for
which xn = v when n is even and xn = w when n is odd, so that the sequence proceeds {u, v, u, v, · · ·}.
To do this, we define the second iterate of pk:

qk(x) = pk(pk(x)) = kpk(x)(1− pk(x)) .

Determine the polynomial qk and specify its degree. Prove that if pk(v) = w and pk(w) = v, then
qk(v) = v and qk(w) = w.

11.8. To solve the equation x = qk(x), we can write it in the form

x− qk(x) = 0 .

Explain why x− pk(x) is a factor of the left side, and use this fact to write the left side as a product of
quadratics. Thus determine v and w.

11.9. For the cases 1 < k < 2, 2 < k < 3, k = 3 and k < 3, show on a graph the location of v and w.

11.10. Investigate the behaviour of the sequence {xn} when k > 3. You may find a pocket calculator of some
use in this enterprise.

§12. Miscellaneous
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12.1. Let ABCD be a cyclic quadrilateral with side AD of length d, with d the diameter of the corcumcircle
of ABCD. Suppose that AB and BC both have length a while CD has length b. We are given that a,
b and d are three positive integers.

(a) Prove that d cannot be a prime number, nor twice an odd prime number.

(b) What is the minimum integral value of d that admits the given configuration?
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