
PUTNAM PROBLEMS

SEQUENCES, SERIES AND RECURRENCES

Notes

1. xn+1 = axn has the general solution xn = x1a
n−1.

2. xn+1 = xn + b has the general solution xn = x1 + (n− 1)b.
3. xn+1 = axn + b (with a 6= 1) can be rewritten xn+1 + k = a(xn + k) where (a− 1)k = b and so reduces

to the recurrence 1.
4. xn+1 = axn + bxn−1 has different general solution depending on the discriminant of the characteristic

polynomial t2 − at− b.
(a) If a2 − 4b 6= 0 and the distinct roots of the characteristic polynomial are r1 and r2, then the general
solution of the recurrence is

xn = c1r
n
1 + c2r

n
2

where the constants c1 and c2 are chosen so that

x1 = c1r1 + c2r2 and x2 = c1r
2
1 + c2r

2
2 .

(b) If a2 − 4b = 0 and r is the double root of the characteristic polynomial, then

xn = (c1n+ c0)rn

where c1 and c0 are chosen so that

x1 = (c1 + c0)r and x2 = (2c1 + c0)r2 .

5. xn+1 = (1− s)xn + sxn−1 + r can be rewritten xn+1−xn = −s(xn−xn−1) + r and solved by a previous
method for xn+1 − xn.

6. xn+1 = axn + bxn−1 + c where a+ b 6= 1 can be rewritten (xn+1 + k) = a(xn + k) + b(xn−1 + k) where
(a+ b− 1)k = c and solved for xn + k.

7. The general homogeneous linear recursion has the form

xn+k = ak−1xn+k−1 + · · ·+ a1xn+1 + a0 .

Its characteristic polynomials is

tk − ak−1tk−1 − · · · − a1t− a0 .

Let r be a root of this polynomial of multiplicity m; then the nth term of the recurrence is a linear
combination of terms of the type

(cm−1r
m−1 + · · ·+ c1r + c0)rn .

Putnam questions

2018-B-4. Given a real number a, we define a sequence by x0 = 1, x1 = x2 = a, and xn+1 =
2xnxn−1 − xn−2 for n ≥ 2. Prove that, if xn = 0 for some n, then the sequence is periodic.

2017-A-3. Let a and b be real numbers with a < b, and let f and g be continuous functions from [a, b]

to (0,∞) such that
∫ b

a
f(x) dx =

∫ b

a
g(x) dx but f 6= g. For every positive integer n, define

In =

∫ b

a

(f(x))n+1

(g(x))n
dx.
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Show that I1, I2, I3, . . . is an increasing sequence with limn→∞ In =∞.

2017-B-3. Suppose that f(x) =
∑∞

i=0 cix
i is a power series for which each coefficient ci is 0 or 1. Show

that, if f(2/3) = 3/2, then f(1/2) must be irrational.

2017-B-4. Evaluate the sum

∞∑
k=0

(
3 · ln(4k + 2)

4k + 2
− ln(4k + 3)

4k + 3)
− ln(4k + 4)

4k + 4
− ln(4k + 5)

4k + 5

)

= 3 · ln 2

2
− ln 3

3
− ln 4

4
− ln 5

5
+ 3 · ln 6

6
− ln 7

7
− ln 8

8

− ln 9

9
+ 3 · ln 10

10
− · · · .

(As usual, lnx denotes the natural logarithm of x.

2016-B-1. Let x0, x1, x2, . . . be the sequence such that x0 = 1 and for n ≥ 0,

xn+1 = ln(exn − xn)

(as usual, the function ln is the natural logarithm). Show that the infinite series

x0 + x1 + x2 + · · ·

converges and find its sum.

2016-B-6. Evaluate
∞∑
k=1

(−1)k−1

k

∞∑
n=0

1

k2n + 1
.

2015-A-2. Let a0 = 1, a1 = 2, and an = 4an−1 − an−2 for n ≥ 2. Find an odd prime factor of a2015.

2015-B-5. Let Pn be the number of permutations π of {1, 2, . . . , n} such that

|i− j| = 1 implies |π(i)− π(j)| ≤ 2

for all i, j in {1, 2, . . . , n}. Show that for n ≥ 2, the quantity

Pn+5 − Pn+4 − Pn+3 + Pn

does not depend on n, and find its value.

2014-A-1. Prove that every nonzero coefficient of the Taylor series of

(1− x+ x2)ex

about x = 0 is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

2014-A-3. Let a0 = 5/2 and ak = a2k−1 − 2 for k ≥ 1. Compute

∞∏
k=0

(
1− 1

ak

)
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in closed form.

2013-B-1. For positive integers n, let the number c(n) be determined by the rules c(1) = 1, c(2n) =
c(n), and c(2n+ 1) = (−1)nc(n). Find the value of

2013∑
n=1

c(n)c(n+ 2).

2010-B-1. Is there an infinite sequence of real numbers a1, a2, a3, . . . such that am1 +am2 +am3 + · · · = m
for every positive integer m?

2009-B-6. Prove that for every positive integer n, there is a sequence a0, a1, . . . , a2009 with a0 = 0 and
a2009 = n such that each term after a0 is either an earlier term plus 2k for some nonegative integer k or of
the form b mod c for some earlier positive terms b and c. (Here b mod c denotes the remainder when b is
divided by c, so 0 ≤ (bmodc) < c.)

2007-B-3. Let x0 = 1 and for n ≥ 0, let xn+1 = 3xn + bxn
√

5c. In particular, x1 = 5, x2 = 26,
x3 = 136, x4 = 712. Find a closed-form expression for x2007. (bac means the largest integer ≤ a,)

2006-A-3. Let 1, 2, 3, · · · , 2005, 2006, 2007, 2009, 2012, 2016, · · · be a sequence defined by xk = k for
k = 1, 2, · · · , 2006 and xk+1 = xk +xk−2005 for k ≥ 2006. Show that the sequence has 2005 consecutive terms
each divisible by 2006.

2006-B-6. Let k be an integer greater than 1. Suppose ak > 0, and define

an+1 = an +
1

k
√
an

for n ≥ 0. Evaluate

lim
n→∞

ak+1
n

nk
.

2004-A-3. Define a sequence {un}∞n=0 by u0 = u1 = u2 = 1, and thereafter by the condition that

det

(
un un+1

un+2 un+3

)
= n!

for all n ≥ 0. Show that un is an integer for all n. (By convention, 0! = 1.)

2002-A-5. Define a sequence by a0 = 1, together with the rules a2n+1 = an and a2n+2 = an + an+1 for
each integer n ≥ 0. Prove that every positive rational number appears in the set{

an−1
an

: n ≥ 1

}
=

{
1

1
,

1

2
,

2

1
,

1

3
,

3

2
, · · ·

}
.

2001-B-3. For any positive integer n let 〈n〉 denote the closest integer to
√
n. Evaluate

∞∑
n=1

2〈n〉 + 2−〈n〉

2n
.

2001-B-6. Assume that {an}n≥1 is an increasing sequence of positive real numbers such that lim an/n =
0. Must there exist infinitely many positive integers n such that

an−1 + an+i < 2an
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for i = 1, 2, · · · , n− 1?

2000-A-1. Let A be a positive real number. What are the possible values of
∑∞

j=0 x
2
j , given that

x0, x1, x2, · · · are positive numbers for which
∑∞

j=0 xj = A?

2000-A-6. Let f(x) be a polynomial with integer coefficients. Define a sequence a0, a1, · · · of integers
such that a0 = 0 and an+1 = f(an) for all n ≥ 0. Prove that if there exists a positive integer m for which
am = 0, then either a1 = 0 or a2 = 0.

1999-A-3. Consider the power series expansion

1

1− 2x− x2
=

∞∑
n=0

anx
n .

Prove that, for each integer n ≥ 0, there is an integer m such that

a2n + a2n+1 = am .

1999-A-4. Sum the series
∞∑

m=1

∞∑
n=1

m2n

3m(n3m +m3n)
.

1999-A-6. The sequence {an}n≥1 is defined by a1 = 1, a2 = 2, a3 = 24, and for n ≥ 4,

an =
6a2n−1an−3 − 8an−1a

2
n−2

an−2an−3
.

Show that, for all n, an is an integer multiple of n.

1999-B-3. Let A = {(x, y) : 0 ≤ x, y ≤ 1}. For (x, y) ∈ A, let

S(x, y) =
∑

1
2≤

m
n ≤2

xmyn ,

where the sum ranges over all pairs (m,n) of positive integers satisfying the indicated inequalities. Evaluate

lim{(1− xy2)(1− x2y)S(x, y) : (x, y) −→ (1, 1), (x, y) ∈ A} .

1998-A-4. Let A1 = 0 and A2 = 1. For n > 2, the number An is defined by concatenating the
decimal expansions of An−1 and An−2 from left to right. For example, A3 = A2A1 = 10, A4 = A3A2 = 101,
A5 = A4A3 = 10110, and so forth. Determine all n such that 11 divides An.

1998-B-4. Find necessaary and sufficient conditions on positive integers m and n so that

mn−1∑
i=0

(−1)bi/mc+bi/nc = 0 .

1997-A-6. For a positive integer n and any real number c, define xk recursively by x0 = 0, x1 = 1, and
for k ≥ 0,

xk+2 =
cxk+1 − (n− k)xk

k + 1
.
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Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms of n and k, 1 ≤ k ≤ n.

1994-A-1. Suppose that a sequence a1, a2, a3, · · · satisfies 0 < an ≤ a2n + a2n+1 for all n ≥ 1. Prove
that the series

∑∞
n=1 an diverges.

1994-A-5. Let (rn)n≥0 be a sequence of positive real numbers such that limn→∞ rn = 0. Let S be the
set of numbers representable as a sum

ri1 + ri2 + · · ·+ ri1994

with i1 < i2 < · · · < i1994. Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d)
that does not intersect S.

1993-A-2. Let (xn)n≥0 be a sequence of nonzero real numbers such that

x2n − xn−1xn+1 = 1

for n = 1, 2, 3, · · ·. Prove that there exists a real number a such that xn+1 = axn − xn−1 for all n ≥ 1.

1993-A-6. The infinite sequence of 2′s and 3′s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, · · ·

has the property that, if one forms a second sequence that records the number of 3′s between successive 2′s,
the result is identical to the given sequence. Show that there exists a real number r such that, for any n,
the nth term of the sequence is 2 if and only if n = 1 + brmc for some nonnegative integer m. (Note: bxc
denotes the largest integer less than or equal to x.

1992-A-1. Prove that f(n) = 1 − n is the only integer-valued function defined on the integers that
satisfies the following conditions

(i) f(f(n)) = n, for all integers n;
(ii) f(f(n+ 2) + 2) = n for all integers n;
(iii) f(0) = 1.

1992-A-5. For each positive integer n, let

an =

{
0, if the number of 1’s in the binary representation of n is even,
1, if the number of 1’s in the binary representation of n is odd.

Show that there do not exist integers k and m such that

ak+j = ak+m+j = ak+2m+j

for 0 ≤ j ≤ m− 1.

1991-B-1. For each integer n ≥ 0, let S(n) = n −m2, where m is the greatest integer with m2 ≤ n.
Define a sequence (ak)∞k=0 by a0 = A and ak+1 = ak + S(ak) for k ≥ 0. For what positive integers A is this
sequence eventually constant?

1990-A-1. Let
T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,
Tn = (n+ 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3 .

The first few terms are
2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392.

Find, with proof, a formula for Tn of the form Tn = An+Bn, where (An) and (Bn) are well-known sequences.
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1988-B-4. Prove that if
∑∞

n=1 an is a convergent series of positive real numbers, then so is

∞∑
n=1

(an)n/(n+1) .

1985-A-4. Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which integers between 00 and
99 inclusive occur as the last two digits in the decimal expansion of infinitely many ai?

1981-B-1. Find

lim
n→∞

[
1

n5

n∑
h=1

n∑
k=1

(5h4 − 18h2k2 + 5k4)

]
.

1979-A-3. Let x1, x2, x3, · · · be a sequence of nonzero real numbers satisfying

xn =
xn−2xn−1

2xn−2 − xn−2
for n = 3, 4, 5, · · · .

Establish necessary and sufficient conditions on x1 and x2 for xn to be an integer for infinitely many values
of n.

1976-B-5. Evaluate
n∑

k=0

(−1)k
(
n

k

)
(x− k)n.

1975-B-6. Show that, if sn = 1 + 1
2 + 1

3 + · · ·+ 1
n , then

(a) n(n+ 1)1/n < n+ sn for n > 1, and
(b) (n− 1)n−1/(n−1) < n− sn for n > 2.

1962-I-5. Evaluate in closed form
n∑

k=1

(
n

k

)
k2.

1962-II-1. Let x(n) = x(x− 1) · · · (x− n+ 1) for n a positive integer and let x(0) = 1. Prove that

(x+ y)(n) =

n∑
k=0

(
n

k

)
x(k)y(n−k).
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