
PUTNAM PROBLEMS

GROUP THEORY, FIELDS AND AXIOMATICS

The following concepts should be reviewed: group, order of groups and elements, cyclic group, conjugate
elements, commute, homomorphism, isomorphism, subgroup, factor group, right and left cosets.

Lagrange’s Theorem: The order of a finite group is exactly divisible by the order of any subgroup and
by the order of any element of the group.

A group of prime order is necessarily commutative and has no proper subgroups.
A subset S of a group G is a set of generators for G iff every element of G can be written as a product

of elements in S and their inverses. A relation is an equation satisfied by one or more elements of the group.
Many Putnam problems are based on the possibility that some relations along with the axioms will imply
other relations.

2018-A-4. Let m and n be positive integers with gcd (m,n) = 1, and let

ak =

⌊
mk

n

⌋
−
⌊
m(k − 1)

n

⌋
for k = 1, 2, . . . , n. Suppose that g and h are elements in a group G and that

gha1gha2 · · · ghan = e,

where e is the identity element. Show that gh = hg. (As usual, bxc denotes the greatest integer less than or
equal to x.)

2016-A-5. Suppose that G is a finite group generated by the two elements g and h, where the order of
g is odd. Show that every element of G can be written in the form

gm1hn1gm2hn2 · · · gmrhnr

with 1 ≤ r ≤ |G| and m1, n1,m2, n2, . . . ,mr, nr ∈ {−1, 1}. (Here |G| is the number of elements of G.)

2012-A-2. Let ∗ be a commutative and associative binary operation on a set S. Assume that for every
x and y in S, there exists z in S such that x ∗ z = y. (This z may depend on x and y.) Show that if a, b, c
are in S and a ∗ c = b ∗ c, then a = b.

2012-A-5. Let Fp denote the field of integers modulo a prime p, and let n be a positive integer. Let
v be a field vector in Fn

p and let M be an n × n matrix with entries in Fp, and define G : Fn
p → Fn

p by

G(x) = v + Mx. Let G(k) denote the k−fold composition of G with itself, that is G ∗ (1)(x) = G(x) and
G(k+1)(x) = G(G(k)(x)). Determine all pairs p, n for which there exist v and M such that the pn vectors
G(k)(0), k = 1, 2, · · · , pn are distinct.

2012-B-6. Let p be an odd prime such that p ≡ 2 (mod 3). Define a permutation π of the residue
classes modulo p by π(x) ≡ x3 (mod p). Show that π is an even permutation if and only if p ≡ 3 (mod 4).

2011-A-6. Let G be an abelian group with n elements, and let

{g1 = e, g2, · · · , gk} ⊆ G

be a (not necessarily minimal) set of distinct generators of G. A special die, which randomly selects one of
the elements g1, g2, · · · , gk with equal probability, is rolled m times and the selected elements are multiplied
to produce an element g ∈ G.
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Prove that there exists a real number b ∈ (0, 1) such that

lim
m→∞

1

b2m

∑
x∈G

(
Prob(g = x)− 1

n

)2

is positive and finite.

2010-A-5. Let G be a group with operation ∗. Suppose that

(i) G is a subset of R3 (but ∗ need not be related to addition of vectors);

(ii) for each a,b ∈ G, either a× b = a ∗ b or a× b = 0 (or both), where × is the usual cross product
in R3.

Prove that a× b = 0 for all a,b ∈ G¿

2009-A-5. Is there a finite abelian group G such that the product of all the orders of its elements is
22009?

2008-A-6. Prove that there exists a constant c > 0 such that in every nontrivial finite group G there
exists a sequence of length at most c ln |G| with the property that each element of G equals the product of
some subsequence. (The elements of G in the sequence are not required to be distinct. A subsequence of a
sequence is obtained by selecting some of the terms , nont necessarily consecutive, without reordering them;
for example, 4, 4, 2 is a subsequence of 2, 4, 6, 4, 2 but 2, 2, 4 is not.)

2007-A-5. Suppose that a finite group has exactly n elements of order p, where p is a prime. Prove
that either n = 0 or p divides n+ 1.

2001-A-1. Consider a set S and a binary operation ∗ on S (that is, for each a, b in S, a ∗ b is in S).
Assume that (a ∗ b) ∗ a = b for all a, b in S. Prove that a ∗ (b ∗ a) = b for all a, b in S.

1997-A-4. Let G be a group with identity e and φ : G→ G a function such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists an element a in G such that ψ(x) = aφ(x) is a
homomorphism (that is, ψ(xy) = ψ(x)ψ(y) for all x and y in G).

1996-A-4. Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that:

1. (a, b, c) ∈ S if and only if (b, c, a) ∈ S,

2. (a, b, c) ∈ S if and only if (c, b, a) 6∈ S,

3. (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.
Prove that there exists a one-to-one function g : A → R such that g(a) < g(b) < g(c) implies (a, b, c) ∈ S.
[Note: R is the set of real numbers.]

1995-A-1. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are
in S, then so is ab). Let T and U be disjoint subsets of S whose union is S. Given that the product of any
three (notnecessarily distinct) elements of T is in T and that the product of any three elements of U is in U ,
show that at least one of the two subsets T , U is closed under multiplication.

1989-B-2. Let S be a non-empty set with an associative operation that is left and right cancellative
(xy = xz implies y = z, and yx = zx implies y = z). Assume that for every a in S the set {an : n = 1, 2, 3, · · ·}
is finite. Must S be a group?
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1987-B-6. Let F be the field of p2 elements where p is an odd prime. Suppose S is a set of (p2 − 1)/2
distinct nonzero elements of F with the property that for each α 6= 0 in F , exactly one of α and −α is in S.
Let N be the number of elements in the intersection S ∩ {2α : α ∈ S}. Prove that N is even.

1979-B-3. Let F be a finite field having an odd number m of elements. Let p(x) be an irreducible
(i.e., nonfactorable) polynomial over F of the form

x2 + bx+ c b, c ∈ F .

For how many elements k in F is p(x) + k irreducible over F?

1978-A-4. A “bypass” operation on a set S is a mapping from S × S to S with the property

B(B(w, x), B(y, z)) = B(w, z)

for all w, x, y, z in S.

(a) Prove that B(a, b) = c implies B(c, c) = c when B is a bypass.

(b) Prove that B(a, b) = c implies B(a, x) = B(c, x) for all x in S when B is a bypass.

(c) Construct a table for a bypass operation B on a finite set S with the following three properties: (i)
B(x, x) = x for all x in S. (ii) There exists d and e in S with B(d, e) = d 6= e. (iii) There exists f and
g in S with B(f, g) 6= f .

1977-B-6. Let H be a subgroup with h elements in a group G.Suppose that G has an element a such
that, for all x in H, (xa)3 = 1, the identity. In G, let P be the subset of all products x1ax2a · · ·xna, with n
a positive integer and the xi in H.
(a) Show that P is a finite set.
(b) Show that, in fact, P has no more than 3h2 elements.

1976-B-2. Suppose that G is a group generated by elements A and B, that is, every element of G can
be written as a finite “word” An1Bn2An3 · · ·Bnk , where n1, n2, · · ·nk are any integers, and A0 = B0 = 1, as
usual. Also, suppose that

A4 = B7 = ABA−1B = 1 , A2 6= 1 , and B 6= 1 .

(a) How many elements of G are of the form C2 with C in G?
(b) Write each such square as a word in A and B.

1975-B-1. In the additive group of ordered pairs of integers (m,n) (with addition defined component-
wise), consider the subgroup H generated by the three elements

(3, 8) (4,−1) (5, 4) .

Then H has another set of generators of the form

(1, b) (0, a)

for some integers a, b with a > 0. Find a.

1972-B-3. Let A and B be two elements in a group such that ABA = BA2B, A3 = 1 and B2n−1 = 1
for some positive integer n. Prove B = 1.

1969-B-2. Show that a finite group can not be the union of two of its proper subgroups. Does the
statement remain true if “two” is replaced by “three”?

1968-B-2. A is a subset of a finite group G, and A contains more than one half of the elements of G.
Prove that each element of G is the product of two elements of A.
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