PUTNAM PROBLEMS

ALGEBRA

Putnam problems

2018-A-3. Determine the greatest possible value of $\sum_{i=0}^{10} \cos(3x_i)$ for real numbers x_1, x_2, \ldots, x_{10} satisfying $\sum_{i=1}^{10} (x_i) = 0$.

2018-B-2. Let n be a positive integer, and let

$$
f_n(z) = n + (n - 1)z + (n - 2)z^2 + \dots + z^{n-1}.
$$

Prove that f_n has no roots in the closed unit disc $\{z \in \mathbf{C} : |z| \leq 1\}.$

2017-A-2. Let $Q_0(x) = 1$, $Q_1(x) = x$ and

$$
Q_n(x) = \frac{(Q_{n-1}(x))^2 - 1}{Q_{n-2}(x)}
$$

for all $n \geq 2$. Show that, whenever n is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients.

2015-B-1. Let f be a three times differentiable function (defined on **R** and real-valued) such that f has at least five distinct real zeros. Prove that $f + 6f' + 12f'' + 8f'''$ has at least two distinct real zeros.

2014-A-5. Let

$$
P_n(x) = 1 + 2x + 3x^2 + \dots + nx^{n-1}.
$$

Prove that the polynomials $P_j(x)$ and $P_k(x)$ are relatively prime for all positive integers j and k with $j \neq k$.

2014-B-4. Show that for each positive integer n , all the roots of the polynomial

$$
\sum_{k=0}^{n} 2^{k(n-k)} x^k
$$

are real numbers.

2013-A-3. Suppose that the real numbers a_0, a_1, \ldots, a_n and x, with $0 < x < 1$, satisfy

$$
\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^n} = 0.
$$

Prove that there exists a real number y with $0 < y < 1$ such that

$$
a_0 + a_1y + \cdots + a_ny^n = 0.
$$

2010-B-4. Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which

$$
p(x)q(x+1) - p(x+1)q(x) = 1.
$$

2009-A-1. Let f be a real-valued function in the plane such that for every square $ABCD$ in the plane,

$$
f(A) + f(B) + f(C) + f(D) = 0.
$$

Does it follow that $f(P) = 0$ for every point P in the plane?

2008-A-1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that $f(x, y) + f(y, z) + f(z, x) = 0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbf{R} \to \mathbf{R}$ such that $f(x, y) = g(x) - g(y)$ for all real numbers x and y .

2008-A-5. Let $n \ge 3$ be an integer. Let $f(x)$ and $g(x)$ be polynomials with real coefficients such that the points $(f(1), g(1)), (f(2), g(2)), \ldots, (f(n), g(n))$ in \mathbb{R}^2 are the vertices of a regular n–gon in counterclockwise order. Prove that at least one of $f(x)$ and $g(x)$ has degree greater than or equal to $n-1$.

2007-A-1. Find all values of α for which the curves $y = \alpha x^2 + \alpha x + 1/24$ and $x = \alpha y^2 + \alpha y + 1/24$ are tangent to each other.

2007-A-2. A repunit is a positive integer whose digits in base 10 are all ones. Find all polynomials f with real coefficients such that if n is a repunit, then so is $f(n)$.

2007-B-1. Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n) + 1)$ if and only if $n = 1$.

2007-B-4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(X))^{2} + (Q(X))^{2} = X^{2n} + 1
$$

and deg $P >$ deg Q .

2007-B-5. Let k be a positive integer. Prove that there exist polynomials $P_0(n)$, $P_1(n)$, \cdots , $P_{k-1}(n)$ (which may depend on k) such that, for any integer n ,

$$
\left\lfloor \frac{n}{k} \right\rfloor = P_0(n) + P_1(n) \left\lfloor \frac{n}{k} \right\rfloor + \cdots + P_{k-1}(n) \left\lfloor \frac{n}{k} \right\rfloor^{k-1}.
$$

2006-B-1. Show that the curve $x^3 + 3xy + y^3 = 1$ contains only one set of three distinct points A, B, and C, which are the vertices of an equilateral triangle, and find its area.

2005-A-3. Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of $g'(z) = 0$ have absolute value 1.

2005-B-1. Find a nonzero polynomial $P(x, y)$ such that $P(|a|, |2a|) = 0$ for all real numbers a. (Note: $|\nu|$ is the greatest integer less than or equal to ν .)

2005-B-5. Let $P(x_1, \dots, x_n)$ denote a polynomial with real coefficients in the variables x_1, \dots, x_n , and suppose that

(a)
$$
\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0
$$
 (identically)

and that

(b) $x_1^2 + \cdots + x_n^2$ divides $P(x_1, \dots, x_n)$.

Show that $P = 0$ identically.

2004-A-4. Show that for any positive integer n there is an integer N such that the product $x_1x_2 \cdots x_n$ can be expressed identically in the form

$$
x_1 x_2 \cdots x_n = \sum_{i=1}^N c_i (a_{i1} x_1 + a_{i2} x_2 + \cdots + a_{in} x_n)^n
$$

where the c_i are rational numbers and each a_{ij} is one of the numbers, $-1, 0, 1$.

2004-B-1. Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r) = 0$. Show that the n numbers

$$
c_n r, c_n r^2 + c_{n-1} r, c_n r^3 + c_{n-1} r^2 + c_{n-2} r, \cdots, c_n r^n + c_{n-1} r^{n-1} + \cdots + c_1 r
$$

are integers.

2003-A-4. Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$
|ax^2 + bx + c| \le |Ax^2 + Bx + C|
$$

for all real numbers x . Show that

$$
|b^2 - 4ac| \le |B^2 - 4AC| \; .
$$

2003-B-1. Do there exist polynomials $a(x)$, $b(x)$, $c(y)$, $d(y)$ such that

$$
1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)
$$

holds identically?

2003-B-4. Let

$$
f(z) = az4 + bz3 + cz2 + dz + e = a(z - r1)(z - r2)(z - r3)(z - r4)
$$

where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number, and if $r_1 + r_2 \neq r_3 + r - 4$, then r_1r_2 is a rational number.

2002-A-1. Let k be a positive integer. The nth derivative of $1/(x^k-1)$ has the form $P_n(x)/(x^k-1)^{n+1}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$.

2002-B-6. Let p be a prime number. Prove that the determinant of the matrix

$$
\begin{pmatrix} x & y & z \\ x^p & y^p & z^p \\ x^{p^2} & y^{p^2} & z^{p^2} \end{pmatrix}
$$

is congruent modulo p to a product of polynomials in the form $ax + by + cz$, where a, b, c are integers. (We say two integer polynomials are congruent modulo p if corresponding coefficients are congruent modulo p .)

2001-A-3. For each integer m , consider the polynomial

$$
P_m(x) = x^4 - (2m + 4)x^2 + (m - 2)^2.
$$

For what values of m is $P_m(x)$ the product of two nonconstant polynomials with integer coefficients?

2001-B-2. Find all pairs of real numbers (x, y) satisfying the system of equations

$$
\frac{1}{x} + \frac{1}{2y} = (x^2 + 3y^2)(3x^2 + y^2)
$$

$$
\frac{1}{x} - \frac{1}{2y} = 2(y^4 - x^4)
$$

2000-A-6. Let $f(x)$ be a polynomial with integer coefficients. Define a sequence a_0, a_1, \cdots of integers such that $a_0 = 0$ and $a_{n+1} = f(a_n)$ for $n \ge 0$. Prove that if there exists a positive integer m for which $a_m = 0$, then either $a_1 = 0$ or $a_2 = 0$.

1999-A-1. Find polynomials $f(x)$, $g(x)$ and $h(x)$, if they exist, such that, for all x,

$$
|f(x)| - |g(x)| + |h(x)| = \begin{cases} -1 & \text{if } x < -1 \\ 3x + 2 & \text{if } -1 \le x \le 0 \\ -2x + 2 & \text{if } x > 0. \end{cases}
$$

1999-A-2. Let $p(x)$ be a polynomial that is non-negative for all x. Prove that, for some k, there are polynomials $f_1(x), \dots, f_k(x)$ such that

$$
p(x) = \sum_{j=1}^{k} (f_j(x))^2.
$$

1999-B-2. Let $P(x)$ be a polynomial of degree n such that $P(x) = Q(x)P''(x)$, where $Q(x)$ is a quadratic polynomial and $P''(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have *n* distinct roots. [The roots may be either real or complex.]

1997-B-4. Let $a_{m,n}$ denote the coefficient of x^n in the expansion of $(1 + x + x^2)^m$. Prove that for all $k \geq 0$,

$$
0 \leq \sum_{i=0}^{\lfloor 2k/3 \rfloor} (-1)^i a_{k-i,i} \leq 1 >
$$

1995-B-4. Evaluate

$$
\sqrt[8]{2207 - \frac{1}{2207 - \frac{1}{2207 - \dotsb}}} \quad .
$$

Express your answer in the form $(a + b\sqrt{c})/d$, where a, b, c, d are integers.

1993-B-2. For nonnegative integers n and k, define $Q(n,k)$ to be the coefficient of x^k in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that

$$
Q(n,k) = \sum_{j=0}^{n} {n \choose j} {n \choose k-2j},
$$

where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers a and b with $a \ge 0$, $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ for $0 \le b \le a$ and $\binom{a}{b} = 0$ otherwise.)