
PREPARATION NOTES FOR THE PUTNAM COMPETITION

Note that the questions and solutions for the Putnam examinations are published in the American
Mathematical Monthly. Generally, you may find them close to the end of each volume, in the October or
November issue. Back issues of the Monthly can be found in the mathematics library (SS 622).

NUMBER THEORY

Putnam problems

1998-A-4. Let A1 = 0 and A2 = 1. For n > 2, the number An is defined by concatenating the
decimal expansions of An−1 and An−2 from left to right. For example, A3 = A2A1 = 10, A4 = A3A2 = 101,
A5 = A4A3 = 10110, and so forth. Determine all n such that 11 divides An.

1998-B-5. Let N be the positive integer with 1998 decimal digits, all of them 1; that is, N = 1111 · · · 11
(1998 digits). Find the thousandth digit after the decomal point of

√
N .

1998-B-6. Prove that, for any integers a, b, c, there exists a positive integer n such that
√
n3 + an2 + bn+ c

is not an integer.

1997-A-5. Let Nn denote the number of ordered n−tuples of positive integers (a1, a2, · · · , an) such
that 1/a1 + 1/a2 + · · ·+ 1/an = 1. Determine whether N10 is even or odd.

1997-B-3. For each positive integer n write the sum
∑n

m=1
1
m in the form pn

qn
where pn and qn are

relatively prime positive integers. Determine all n such that 5 does not divide qn.

1997-B-5. Prove that for n ≥ 2,

22···
2
}
n ≡ 22···

2
}
n− 1 (mod n) .

1996-A-5. If p is a prime number greater than 3, and k = b2p/3c, prove that the sum(
p

1

)
+

(
p

2

)
+ · · ·+

(
p

k

)

of binomial coefficients is divisible by p2.
(For example,

(
7
1

)
+

(
7
2

)
+

(
7
3

)
+

(
7
4

)
= 7 + 21 + 35 + 35 = 2 · 72 .)

1995-A-3. The number d1d2 · · · d9 has nine (not necessarily distinct) decimal digits. The number
e1e2 · · · e9 is such that each of the nine 9-digit numbers formed by replacing just one of the digits di in
d1d2 · · · d9 by the corresponding digit ei (1 ≤ i ≤ 9) is divisible by 7. The number f1f2 · · · f9 is related
to e1e2 · · · e9 in the same way; that is, each of the nine numbers formed by replacing one of the ei by
the corresponding fi is divisible by 7. Show that, for each i, di − fi is divisible by 7. [For example, if
d1d2 · · · d9 = 199501996, then e6 may be 2 or 9, since 199502996 and 199509996 are multiples of 7.]

1995-A-4. Suppose we have a necklace of n beads. Each bead is labelled with an integer and the sum
of all these labels is n− 1. Prove that we can cut the necklace to form a string whose consecutive labels x1,
x2, · · ·, xn satisfy

k∑
i=1

xi ≤ k − 1 for k = 1, 2, · · ·n .

1



1994-B-1. Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A perfect
square is the square of an integer; that is, a member of the set {0, 1, 4, 9, 16, · · · , }. a is within n of b if
b− n ≤ a ≤ b+ n.)

1994-B-6. For any integer a, set na = 101a− 100 · 2a. Show that for 0 ≤ a, b, c, d ≤ 99,

n2 + nb ≡ nc + nd (mod10100)

implies {a, b} = {c, d}.

1993-A-4. Let x1, x2, · · · , x19 be positive integers each of which is less than or equal to 93. Let
y1, y2, · · · , y93 be positive integers each of which is less than or equal to 19. Prove that there exists a
(nonempty) sum of some xi’s equal to a sum of some yj ’s.

1993-B-1. Find the smallest positive integer n such that for every integer m, with 0 < m < 1993, there
exists an integer k for which

m

1993
<
k

n
<
m+ 1
1994

.

1993-B-5. Show there do not exist four points in the Euclidean plane such that the pairwise distances
between the points are all odd integers.

1993-B-6. Let S be a set of three, not necessarily distinct, positive integers. Show that one can
transform S into a set containing 0 by a finite number of applications of the following rule: Select two of the
three integers, say x and y, where x ≤ y, and replace them with 2x and y − x.

1992-A-3. For a given positive integer m, find all triples (n, x, y) of positive integers, with n relatively
prime to m, which satisfy (x2 + y2)m = (xy)n.

1992-A-5. For each positive integer n, let

an =
{

0 if the number of 1’s in the binary representation of n is even,
1 if the number of 1’s in the binary representation of n is odd.

Show that there do not exist positive integers k and m such that

ak+j = ak+m+j = ak+2m+j , for 0 ≤ j ≤ m− 1 .

1989-A-1. How many primes among the positive integers, written as usual in base 10, are such that
their digits are alternating 1’s and 0’s, beginning and ending with 1?

1988-B-1. A composite (positive integer) is a product ab with a and b not necessarily distinct integers
in {2, 3, 4, · · ·}. Show that every composite is expressible as xy + xz + yz + 1, with x, y, and z positive
integers.

1988-B-6. Prove that there exist an infinite number of ordered pairs (a, b) of integers such that for
every positive integer t the number at+ b is a triangular number if and only if t is a triangular number. (The
triangular numbers are the tn = n(n+ 1)/2 with n in {0, 1, 2, · · ·}.

1987-A-2. The sequence of digits

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 · · ·

is obtained by writing the positive integers in order. If the 10n-th digit in this sequence occurs in the part of
the sequence in hich the m−digit numbers are placed, define f(n) to be m. For example f(2) = 2 because
the 100th digit enters the sequence in the placement of the two digit integer 55. Find, with proof, f(1987).
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Other problems

1. (a) Let m be a positive integer. Prove that the number of digits used in writing down the numbers from
1 up to 10m using ordinary decimal digits is equal to the number of zeros required in writing down the
numbers from 1 up to 10m+1.

(b) Suppose that the numbers from 1 to n are written down using ordinary base-10 digits. Let h(n) be
the number of zeros used. Thus, h(5) = 0, h(11) = 1, h(87) = 8 and h(306) = 57. Does there exists
an integer k such that h(n) > n for every integer n exceeding k? If not, provide a proof; if so, give a
specific value.

REAL NUMBERS

Putnam problems

1998-B-5. Let N be a positive integer with 1998 decimal digits, all of them 1; that is, N = 1111 · · · 11
(1998 digits). Find the thousandth digits after the decomal point of

√
N .

1997-B-1. Let {x} denote the distance between the real number x and the nearest integer. For each
positive integer n, evaluate

Sn =
6n−1∑
m=1

min
({

m

6n

}
,

{
m

3n

})
.

(Here, min (a, b) denotes the minimum of a and b.)

1995-A-1. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are
in S, then so is ab). Let T and U be disjoint subsets of S whose union is S. Given that the product of any
three (notnecessarily distinct) elements of T is in T and that the product of any three elements of U is in U ,
show that at least one of the two subsets T , U is closed under multiplication.

1995-B-6. For a positive real number α, define

S(α) = {bnαc : n = 1, 2, 3, · · ·}.

Prove that {1, 2, 3, · · ·} cannot be expressed as the disjoint union of three sets S(α), S(β), and S(γ). [As
usual bxc is the greatest integer ≤ x.]

1994-A-5. Let (rn)n≥0 be a sequence of positive real numbers such that limn→∞ rn = 0. Let S be the
set of numbers representable as a sum

ri1 + ri2 + · · ·+ rr1994 , with i1 < i2 < · · · < i1994 .

Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d) that does not intersect S.

1990-A-2. Is
√

2 the limit of a sequence of numbers of the form 3
√
n− 3

√
m, (n,m = 0, 1, 2, · · ·)? Justify

your answer.

1990-A-4. Consider a paper punch that can be centered at any point of the plane, and that, when
operated, removes from the plane precisely those points whose distance from the center is irrational. How
many punches are needed to remove every point?

Other problems
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1. Let τ be the “golden ratio”, i.e., τ is the positive real for which τ2 = τ +1. Prove that, for each positive
integer n,

bτbτncc+ 1 = bτ2nc .

INEQUALITIES

Putnam problems

1998-B-1. Find the minimum value of

(x+ 1/x)6 − (x6 + 1/x6)− 2
(x+ 1/x)3 + (x3 + 1/x3)

for x > 0.

1998-B-2. Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a triangle with
one vertex at (a, b), one on the x−axis, and one on the line y = x. You may assume that a triangle of
minimum perimeter exists.

1996-B-2. Show that for every positive integer n,

(
2n− 1
e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <
(

2n+ 1
e

) 2n+1
2

.

1996-B-3. Given that {x1, x2, · · · , xn} = {1, 2, · · · , n}, find, with proof, the largest possible value, as a
function of n (with n ≥ 2), of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 .

1988-B-2. Prove or disprove: If x and y are real numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then
y(y − 1) ≤ x2.

Other problems

1. If x > 1, prove that

x > (1 +
1
x

)x−1 .

2. How many permutations {x1, x2, · · · , xn} of {1, 2, · · · , n} are there such that the cyclic sum

n∑
i=1

|xi − xi+1|

is (a) maximum? (b) minimum? (Note that xn+1 = x1.) [CM 2018]

3. Let a, b, c, d be distinct real numbers for which

a

b
+
b

c
+
c

d
+
d

a
= 4 and ac = bd .

Find the maximum value of
a

c
+
b

d
+
c

a
+
d

b
.
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[CM 2020]

4. Let n ≥ m ≥ 1 and x ≥ y ≥ 0. Suppose that xn+1 + yn+1 ≤ xm − ym. Prove that xn + yn ≤ 1. [CM
2044]

5. Show that for positive reals a. b. c,

3 max{a
b

+
b

c
+
c

a
,
b

a
+
c

b
+
a

c
} ≥ (a+ b+ c)

(1
a

+
1
b

+
1
c

)
.

[CM 2064]

6. Find all values of λ for which

2(x3 + y3 + z3) + 3(1 + 3λ)xyz ≥ (1 + λ)(x+ y + z)(yz + zx+ xy)

holds for all positive real x, y, z. [CM 2105]

7. Prove the inequality ( n∑
i=1

ai

)( n∑
i=1

bi

)
≥

[ n∑
i=1

(ai + bi)
][ n∑

i=1

aibi
ai + bi

]
for any positive real numbers a1, a2, · · · , an, b1, b2, · · · , bn. [CM 2113]

8. Let a, b > 1. Prove that
n∏

k=1

(ak + bk−1) ≤
n∏

k=1

(ak + bn−k) .

[CM 2145]

9. Suppose that a, b, c are real and that |ax2 + bx+ c| ≤ 1 for −1 ≤ x ≤ 1. Prove that |cx2 + bx+ a| ≤ 2
for −1 ≤ x ≤ 1. [CM 2153]

10. Let n be a positive integer and let t be a positive real. Suppose that xn = (1/n)(1+ t+ t2 + · · ·+ tn−1).
Show that, for each pair r, s of positive integers, there is a positive integer m for which xrxs ≤ xm. [CM
2159]

11. Let a1, a2, · · · , an, b1, b2, · · · bn > 0 and n be a positive integers. Prove that

n

√√√√ n∏
k=1

(ak + bk) ≥ n

√√√√ n∏
k=1

ak + n

√√√√ n∏
k=1

bk .

[CM 2176]

12. Prove that the inequality(
ab+ ac+ ad+ bc+ bd+ cd

6

) 1
2

≥
(
abc+ abd+ acd+ bcd

4

) 1
3

holds for any positive reals a, b, c, d.

13. Let a > 0, 0 ≤ x1, x2, · · · , xn ≤ a and n be an integer exceeding 1. Suppose that

x1x2 · · ·xn = (a− x1)2(a− x2)2 · · · (a− xn)2 .
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Determine the maximum possible value of the product. [CM 1781]

14. Prove that, if n and m are positive integers for which n ≥ m2 ≥ 16, then 2n ≥ nm. [CM 2163]

15. Let x, y, z ≥ 0 with x + y + z = 1. For real numbers a, b, determine the maximum value of c = c(a, b)
for which a+ bxy ≥ c(yz + zx+ xy). [CM 2172]

16. Let 0 < x, y < 1. Prove that the minimum of x2 +xy+y2, x2 +x(y−1)+(y−1)2, (x−1)2 +(x−1)y+y2

and (x− 1)2 + (x− 1)(y − 1) + (y − 1)2 does not exceed 1/3.

17. Let a, b, c > 0, a < bc and 1 + a3 = b3 + c3. Prove that 1 + a < b+ c.

SEQUENCES, SERIES AND RECURRENCES

Notes

1. xn+1 = axn has the general solution xn = x1a
n−1.

2. xn+1 = xn + b has the general solution xn = x1 + (n− 1)b.
3. xn+1 = axn + b (with a 6= 1) can be rewritten xn+1 + k = a(xn + k) where (a− 1)k = b and so reduces

to the recurrence 1.
4. xn+1 = axn + bxn−1 has different general solution depending on the discriminant of the characteristic

polynomial t2 − at− b.
(a) If a2 − 4b 6= 0 and the distinct roots of the characteristic polynomial are r1 and r2, then the general
solution of the recurrence is

xn = c1r
n
1 + c2r

n
2

where the constants c1 and c2 are chosen so that

x1 = c1r1 + c2r2 and x2 = c1r
2
1 + c2r

2
2 .

(b) If a2 − 4b = 0 and r is the double root of the characteristic polynomial, then

xn = (c1n+ c0)rn

where c1 and c0 are chosen so that

x1 = (c1 + c0)r and x2 = (2c1 + c0)r2 .

5. xn+1 = (1− s)xn + sxn−1 + r can be rewritten xn+1−xn = −s(xn−xn−1)+ r and solved by a previous
method for xn+1 − xn.

6. xn+1 = axn + bxn−1 + c where a+ b 6= 1 can be rewritten (xn+1 + k) = a(xn + k) + b(xn−1 + k) where
(a+ b− 1)k = c and solved for xn + k.

7. The general homogeneous linear recursion has the form

xn+k = ak−1xn+k−1 + · · ·+ a1xn+1 + a0 .

Its characteristic polynomials is

tk − ak−1t
k−1 − · · · − a1t− a0 .

Let r be a root of this polynomial of multiplicity m; then the nth term of the recurrence is a linear
combination of terms of the type

(cm−1r
m−1 + · · ·+ c1r + c0)rn .
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Putnam questions

1998-A-4. Let A1 = 0 and A2 = 1. For n > 2, the number An is defined by concatenating the
decimal expansions of An−1 and An−2 from left to right. For example, A3 = A2A1 = 10, A4 = A3A2 = 101,
A5 = A4A3 = 10110, and so forth. Determine all n such that 11 divides An.

1998-B-4. Find necessaary and sufficient conditions on positive integers m and n so that

mn−1∑
i=0

(−1)bi/mc+bi/nc = 0 .

1997-A-6. For a positive integer n and any real number c, define xk recursively by x0 = 0, x1 = 1, and
for k ≥ 0,

xk+2 =
cxk+1 − (n− k)xk

k + 1
.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms of n and k, 1 ≤ k ≤ n.

1994-A-1. Suppose that a sequence a1, a2, a3, · · · satisfies 0 < an ≤ a2n + a2n+1 for all n ≥ 1. Prove
that the series

∑∞
n=1 an diverges.

1994-A-5. Let (rn)n≥0 be a sequence of positive real numbers such that limn→∞ rn = 0. Let S be the
set of numbers representable as a sum

ri1 + ri2 + · · ·+ ri1994

with i1 < i2 < · · · < i1994. Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d)
that does not intersect S.

1993-A-2. Let (xn)n≥0 be a sequence of nonzero real numbers such that

x2
n − xn−1xn+1 = 1

for n = 1, 2, 3, · · ·. Prove that there exists a real number a such that xn+1 = axn − xn−1 for all n ≥ 1.

1993-A-6. The infinite sequence of 2′s and 3′s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, · · ·

has the property that, if one forms a second sequence that records the number of 3′s between successive 2′s,
the result is identical to the given sequence. Show that there exists a real number r such that, for any n,
the nth term of the sequence is 2 if and only if n = 1 + brmc for some nonnegative integer m. (Note: bxc
denotes the largest integer less than or equal to x.

1992-A-1. Prove that f(n) = 1 − n is the only integer-valued function defined on the integers that
satisfies the following conditions

(i) f(f(n)) = n, for all integers n;
(ii) f(f(n+ 2) + 2) = n for all integers n;
(iii) f(0) = 1.

1992-A-5. For each positive integer n, let

an =
{

0, if the number of 1’s in the binary representation of n is even,
1, if the number of 1’s in the binary representation of n is odd.

Show that there do not exist integers k and m such that

ak+j = ak+m+j = ak+2m+j
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for 0 ≤ j ≤ m− 1.

1991-B-1. For each integer n ≥ 0, let S(n) = n −m2, where m is the greatest integer with m2 ≤ n.
Define a sequence (ak)∞k=0 by a0 = A and ak+1 = ak + S(ak) for k ≥ 0. For what positive integers A is this
sequence eventually constant?

1990-A-1. Let
T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,
Tn = (n+ 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3 .

The first few terms are
2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392.

Find, with proof, a formula for Tn of the form Tn = An+Bn, where (An) and (Bn) are well-known sequences.

1988-B-4. Prove that if
∑∞

n=1 an is a convergent series of positive real numbers, then so is

∞∑
n=1

(an)n/(n+1) .

1985-A-4. Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which integers between 00 and
99 inclusive occur as the last two digits in the decimal expansion of infinitely many ai?

1979-A-3. Let x1, x2, x3, · · · be a sequence of nonzero real numbers satisfying

xn =
xn−2xn−1

2xn−2 − xn−2
for n = 3, 4, 5, · · · .

Establish necessary and sufficient conditions on x1 and x2 for xn to be an integer for infinitely many values
of n.

1975-B-6. Show that, if sn = 1 + 1
2 + 1

3 + · · ·+ 1
n , then

(a) n(n+ 1)1/n < n+ sn for n > 1, and
(b) (n− 1)n−1/(n−1) < n− sn for n > 2.

Other problems

1. Let n be an even positive integer and let x1, x2, · · · , xn be n positive reals. Define

f(x1, · · · , xn) =
(
x2 + x3

2
,
x2 + x3

2
,
x4 + x5

2
,
x4 + x5

2
, · · · , xn + x1

2
,
xn + x1

2

)
.

Determine
lim

k→∞
fk(x1, · · · , xn)

where fk denotes the kth iterate of f , i.e., fk = f ◦ fk−1 for k ≥ 2.

2. Let 0 < x0 < 1 and, for n ≥ 0, xn+1 = xn(1 − xn). Prove that
∑
xn diverges while

∑
x2

n converges.
Discuss the behaviour of nxn as n→∞.

3. (a) Consider a finite family of arithmetic progressions of integers, each extending infinitely in both
directions. Each two of the progressions have a term in common. Prove that all progressions have a
term in common.
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(b) Can the assumption that all terms be integers be dropped?

4. A class of sequences is defined by
S1 = {1, 1}

S2 = {1, 2, 1}

S3 = {1, 3, 2, 3, 1}

S4 = {1, 4, 3, 5, 2, 5, 3, 4, 1}

and for integers n ≥ 3, if
Sn = {a1, a2, · · · , am−1, am} ,

then
Sn+1 = {a1, a1 + a2, a2, a2 + a3, · · · , am−1, am−1 + am, am} .

How many terms in Sn are equal to n?

5. Prove of disprove, where i2 = −1, that

1
4i

∑
{ik tan(

kπ

4n
) : 1 ≤ k ≤ 4n, gcd(n, k) = 1}

is an integer. [CM 2129]

CALCULUS, ANALYSIS

Putnam problems

1998-A-3. Let f be a real function on the real line with continuous third derivative. Prove that there
exists a point a such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0 .

1997-A-3. Evaluate∫ ∞

0

(
x− x3

2
+

x5

2 · · · 4
− x7

2 · 4 · 6
+ · · ·

)(
1 +

x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx .

1996-A-6. Let c ≥ 0 be a constant. Give a complete description, with proof, of the set of all continuous
functions f : R → R such that f(x) = f(x2 + c) for all x ∈ R. [Note: R is the set of real numbers.]

1995-A-2. For what pairs (a, b) of positive real numbers does the improper integral∫ ∞

b

(√√
x+ a−

√
x−

√√
x−

√
x− b

)
dx

converge?

1994-A-2. Let A be the area of the region in the first quadrant bounded by the line y = 1
2x, the

x−axis, and the ellipse 1
9x

2 + y2 = 1. Find the positive number m such that A is equal to the area of the
region in the first quadrant bounded by the line y = mx, the y−axis, and the ellipse 1

9x
2 + y2 = 1.

1994-B-3. Find the set of all real numbers k with the following property:

For any positive, differentiable function f that satisfies f ′(x) > f(x) for all x, there is some number N
such that f(x) > ekx for all x > N .
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1994-B-5. For any real number α, define the function fα by fα(x) = bαxc. Let n be a positive integer.
Show that there exists an α such that for 1 ≤ k ≤ n,

fk
α(n2) = n2 − k = fαk(n2) .

(bxc denotes the greatest integer ≤ x, and fk
α = fα ◦ · · · ◦ fα is the k−fold composition of fα.)

1993-A-1. The horizontal line y = c intersects the curve y = 2x − 3x3 in the first quadrant as in the
figure. Find c so that the areas of the two shaded regions are equal.

1993-A-5. Show that∫ −10

−100

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 1

11

1
100

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 11

10

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx

is a rational number.

1993-B-4. The function K(x, y) is positive and continuous for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and the functions
f(x) and g(x) are positive and continuous for 0 ≤ x ≤ 1. Suppose that for all x, 0 ≤ x ≤ 1,∫ 1

0

f(y)K(x, y)dy = g(x) and
∫ 1

0

g(y)K(x, y)dy = f(x) .

Show that f(x) = g(x) for 0 ≤ x ≤ 1.

1992-A-2. Define C(α) to be the coefficient of x1992 in the power series expansion about x = 0 of
(1 + x)α. Evaluate ∫ 1

0

C(−y − 1)
(

1
y + 1

+
1

y + 2
+

1
y + 3

+ · · ·+ 1
y + 1992

)
dy .

1992-A-4. Let f be an infinitely differentiable real-valued function defined on the real numbers. If

f(
1
n

) =
n2

n2 + 1
, n = 1, 2, 3, · · · ,

compute the values of the derivatives f (k)(0), k = 1, 2, 3, · · ·.

1992-B-3. For any pair (x, y) of real numbers, a sequence (an(x, y))n≥0 is defined as follows:

a0(x, y) = x

an+1(x, y) =
(an(x, y))2 + y2

2
, for all n ≥ 0 .
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Find the area of the region
{(x, y)|(an(x, y))n≥0 converges}

.

1992-B-4. Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant factor in
common with x3 − x. Let

d1992

dx1992

(
p(x

x3 − x

)
=
f(x)
g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of f(x).

Other problems

1. Let f(x) be a continuously differentiable real function defined on the closed interval [0, 1] for which∫ 1

0

f(x)dx = 0 .

Prove that

2
∫ 1

0

f(x)2dx ≤
∫ 1

0

|f ′(x)|dx ·
∫ 1

0

|f(x)|dx .

2. Let 0 < x, y < 1. Prove that the minimum of x2 +xy+y2, x2 +x(y−1)+(y−1)2, (x−1)2 +(x−1)y+y2

and (x− 1)2 + (x− 1)(y − 1) + (y − 1)2 does not exceed 1/3.

3. Integrate ∫
tan2(x− a) tan2(x− b)dx .

4. Integrate ∫ π
2

0

x cosx sinx
cos4 x+ sin4 x

dx .

5. Let O = (0, 0) and Q = (1, 0). Find the point P on the line with equation y = x+1 for which the angle
OPQ is a maximum.

DIFFERENTIAL EQUATIONS

First Order Equations

1. Linear y′ + p(x)y = q(x)
Muliply through by the integrating factor exp(

∫
p(x)dx) to obtain

(y exp(
∫
p(x)dx))′ = q(x) exp(

∫
p(x)dx) .

2. Separation of variables y′ = f(x)g(y)
Put in the form dy/g(y) = f(x)dx and integrate both sides.

3. Homogeneous y′ = f(x, y) where f(tx, ty) = f(x, y).
Let y = ux, y′ = u′x+ u to get u′x+ u = f(1, u).

11



4. Fractional linear
y′ =

ax+ by

cx+ dy
.

Do as in case 3, or introduce an auxiliary variable t and convert to a system

dy

dt
= ax+ by

dx

dt
= cx+ dy

and try x = c1e
λt, y = c2e

λt. If this yields two distinct values for λ, the ratio c1 : c2 can be found.If
there is only one value of λ, try x = (c1 + c2t)eλt, y = (c3 + c4t)eλt.

5. Modified fractional linear
y′ =

ax+ by + c

hx+ ky + r
.

(i) If ak − bh 6= 0, choose p, q so that ap+ bq + c = 0, hp+ kq + r = 0 and make a change of variables:
X = x− p, Y = y − q.
(ii) If ak − bh = 0, set u = ax+ by + c to obtain a separation of variables equation in y and u.

6. General linear exact equation
P (x, y)dx+Q(x, y)dy = 0

where
∆ ≡ ∂P

∂y
− ∂Q

∂x
= 0 .

The equation has a solution of the form f(x, y) = c, where ∂f/∂x = P and ∂f/∂y = Q. We have

f(x, y) =
∫ x

x0

P (u, x)du+
∫ y

y0

Q(x0, v)dv

or

f(x, y) =
∫ y

y0

Q(x, v)dv +
∫ x

x0

P (u, y0)du

where (x0, y0) is any point.

7. General linear inexact equation
P (x, y)dx+Q(x, y)dy = 0

where
∆ ≡ ∂P

∂y
− ∂Q

∂x
6= 0 .

We need to find an “integrating factor” h(x, y) to satisfy

h(
∂P

∂y
− ∂Q

∂x
) + P

∂h

∂y
−Q

∂h

∂x
= 0 .

There is no general method for equations of this type, but one can try assuming that h is a function of
x alone, y alone, xy, x/y or y/x. If h can be found, multiply the equation through by h and proceed as
in Case 6.

8. Riccati equation y′ = f0(x) + f1(x)y + f2(x)y2 where f2(x) 6= 0.
If a solution y0 is known, set y = y0 + (1/u) to get a first order linear equation in u and x.

9. Bernoulli equation y′ + p(x)y = q(x)yn.
If n = 0, use Case 1. If n = 1, use Case 2. If n = 2, consider Case 8. If n 6= 0, 1, set u = y1−n to get a
first order equation in u and x.

12



Linear equations of nth order with constant coefficients

A linear equation of the nth degree with constant coefficients has the form

cny
(n) + cn−1y

(n−1) + · · ·+ c2y
′′ + c1y

′ + c0y = q(x)

where the ci are constants and y is an unknown function of x. The general solution of such an equation is
the sum of two parts:

the complementary function (general solution of the homogeneous equation formed by taking q(x) = 0);
a particular integral (any solution of the given equation).
The complementary function is the sum of terms of the form

(ar−1x
r−1 + ar−2x

r−2 + · · ·+ a2t
2 + a1t+ a0)eλx

where λ is a root of multiplicity r of the auxiliary polynomial

cnt
n + cn−1t

n−1 + · · ·+ c2t
2 + c1t+ c0

and ai are arbitrary constants.
A particular integral can be found when q(x) can be written as the sum of terms of the type h(x)eρx

where h(x) is a polynomial and ρ is complex. This includes the cases q(x) = h(x)eαx sinβx and q(x) =
h(x)eαx cosβx, with α and β real. When the ci and the coefficients of h(x) are real, solve with q(x) =
h(x)e(α+iβ)x and take the real or imaginary parts, respectively, of the solution obtained.

Operational calculus: Let Du = u′. The left side of the equation can be written p(D)y = q(x) where
p(t) = cnt

n + · · ·+ c1t+ c0. For any polynomial p(t), we have the operational rules

p(D)erx = p(r)erx and p(D)(uerx) = erxp(D + r)u .

The following examples illustrate how a particular integral can be obtained without having to deal with
special cases or undetermined coefficients:
(i) y′′ + 2y′ + 2y = 2e−x sinx .

The solution of this equation is the imaginary part of the solution of the following equation

(D2 + 2D + 2)y = 2e(−1+i)x .

We try for a particular integral of the form y = ue(−1+i)x, where the exponent agrees with the exponent
on the right side of the equation. Then, factoring the polynomial in D and substituting for y, we obtain:

(D + 1− i)(D + 1 + i)(ue(−1+i)x) = 2e(−1+i)x .

Bringing the exponent through and cancelling it, we get

D(D + 2i)u = (D + 2i)Du = 2 (∗)

Differentiate:
(D + 2i)D2u = 0 (∗∗) .

Any u for which (*) and (**) hold will yields a particular integral. Choose u such that u′′ = 0. Then
(**) holds. To satisfy (*), we need 2iDu = 2 or Du = −i. Hence take u(x) = −ix. A particular integral
of the complex equation is −ix exp((−1 + i)x), and a particular integral of the original equation is

Im (−ixe(−1+i)x) = −xe−x cosx .

(ii) y′′ − 4y′ + 4y = 8x2e2x sin 2x
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A particular integral of this equation is the imaginary part of the particular integral of the equation

(D − 2)2y = 8x2e(2+2i)x.

Let y = ue(2+2i)x. Then, bring the exponential through the operator as before and cancelling, we get

(D + 2i)2u = (D2 + 4iD − 4)u = 8x2 (1)

(D2 + 4iD − 4)Du = 16x (2)

(D2 + 4iD − 4)D2u = 16 (3)

(D2 + 4iD − 4)D3u = 0 (4) .

LetD3u = 0 to satisfy (4). Then (3) requires−4D2u = 16 orD2u = −4. Now, (2) requires−16i−4Du =
16x or Du = −16x− 16i. Finally, to make (1) hold, we need u = −2x2 − 4ix+ 3. The solution to (ii)
is thus

y = Im(−2x2 − 4ix+ 3)e(2+2i)x .

Putnam questions

1997-B-2. Let f be a twice differentiable real-valued function satisfying

f(x) + f ′′(x) = −xg(x)f ′(x) ,

where g(x) ≥ 0 for all real x. Prove that |f(x)| is bounded.

1995-A-5. Let x1, x2, · · · , xn be differentiable (real-valued) functions of a single variable t which satisfy

dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn

· · ·
dxn

dt
= an1x1 + an2x2 + · · ·+ annxn

for some constants aij ≥ 0. Suppose that for all i, xi(t) → 0 as t → ∞. Are the functions x1, x2, · · · , xn

necessarily linearly dependent?

1989-B-3. Let f be a function on [0,∞), differentiable and satisfying

f ′(x) = −3f(x) + 6f(2x)

for x > 0. Assume that |f(x)| ≤ e−
√

x for x ≥ 0 (so that f(x) tends rapidly to 0 as x increases). For n a
nonnegative integer, define

µn =
∫ ∞

0

xnf(x)dx

(sometimes called the nth moment of f).

a. Express µn in terms of µ0.

b. Prove that the sequence {µn
3n

n! } always converges, and that this limit is 0 only if µ0 = 0.

1988-A-2. A not uncommon calculus mistake is to believe that the product rule for derivatives says
that (fg)′ = f ′g′. If f(x) = ex2

, determine, with proof, whether there exists an open interval (a, b) and a
nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).
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GEOMETRY

Putnam problems

1998-A-1. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so
that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

1998-A-2. Let s be any arc of the unit circle lying entirely in the first quadrant. Let A be the area
of the region lying below s and above the x−axis and B be the area of the region lying to the right of the
y−axis and to the left of s. Prove that A+B depends only on the arc length, and not on the position of s.

1998-A-5. Let F be a finite collection of open discs in R2 whose union contains a set E ⊆ R2. Show
that there is a pairwise disjoint subcollection D1, D2, · · · , Dn in F such that

n⋃
j=1

3Dj ⊇ E .

Here, if D is the disc of radius r and center P , then 3D is the disc of radius 3r and center P .

1998-A-6. Let A,B,C denote distinct points with integer points with integer coordinates in R2. Prove
that if

(|AB|+ |BC|)2 < 8 · [ABC] + 1 ,

then A,B,C are three vertices of a square. Here [XY ] is the length of segment XY and [ABC] is the area
of triangle ABC.

1998-B-2. Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a triangle with
one vertex at (a, b), one on the x−axis, and one on the line y = x. You may assume that a triangle of
minimum perimeter exists.

1998-B-3. Let H be the unit hemisphere {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}, C the unit circle
{(x, y, 0) : x2 +y2 = 1}, and P a regular pentagon inscribed in C. Determine the surface area of that portion
of H lying over the planar region inside P , and write your answer in the form A sinα+B cosβ, where A,B, α
and β are real numbers.

1997-A-1. A rectangle, HOMF , has sides HO = 11 and OM = 5. A triangle ABC has H as the
intersection of the altitudes, O the center of the circumscribed circle, M the midpoint of BC, and F the
foot of the altitude from A. What is the length of BC?

1997-B-6. The dissection of the 3− 4− 5 triangle shown below has diameter 5/2.
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Find the least diameter of a dissection of this triangle into four parts. (The diameter of a dissection is the
least upper bound of the distances between [airs of points belonging to the same part.)

1996-A-1. Find the least number A such that for any two squares of combined area 1, a rectangle of
area A exists such that the two squares can be packed into that rectangle (without the interiors of the squares
overlapping). You may assume that the sides of the squares will be parallel to the sides of the rectangles.

1996-A-2. Let C1 and C2 be circles whose centers are 10 units apart and whose radii are 1 and 3.
Find, with proof, the locus of all points M for which there exist points x on C1 and Y on C2 such that M
is the midpoint of the lines segment XY .

1996-B-6. Let (a1, b1), (a2, b2), · · · , (an, bn) be the vertices of a convex polygon which contains the
origin in its interior. Prove that there exist positive real numbers x and y such that

(a1, b1)xa1yb1 + (a2, b2)xa2yb2 + · · ·+ (an, bn)xanybn = (0, 0) .

1995-B-2. An ellipse, whose semi-axes have lengths a and b, rolls without slipping on the curve
y = c sin(x/a). How are a, b, c related, given that the ellipse completes one revolution when it traverses one
period of the curve?

Other problems

1. A large sheet of paper is ruled by horizontal and vertical lines spaced a distance of 1 cm. A clear plastic
sheet is free to slide on top of it. Some ink has been spilled on the sheet, making one or more blots.
The total area of these blots is less than 1 sq. cm. Prove that the plastic sheet can be positioned so
that none of the intersections of the horizontal and vertical lines is covered by any of the blots.

2. A rectangular sheet of paper is laid upon a second rectangular sheet of identical size as indicated in the
diagram. Prove that the second sheet covers at least half the area of the first sheet.

3. Three plane mirrors that meet at a point are mutually perpendicular. A ray of light reflects off each
mirror exactly once in succession. Prove that the initial and final directions of the ray are parallel and
opposite.

4. Let ABCD be a square with E the midpoint of CD. The vertex B is folded up to E and the page is
flattened to produce a straight crease. If the fold along this crease also takes A to F , prove that EF
intersects AD in a point that trisects the side AD.

5. A closed curve is drawn in the plane which may intersect itself any finite number of times. The curve
passes through each point of self-intersection exactly twice. Suppose that the points of self-intersection
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are labelled A, B, C, · · ·. Beginning at any (nonintersection) point on the curve, trace along the curve
recording each intersection point in turn as you pass through it, until you return to the starting point.
Each intersection point will be recorded exactly twice. Prove that between the two occurrences of any
intersection point are evenly many points of intersection.

For the example below, starting at P and proceeding to the right, we encounter the points
ABCADFGEFGEDBC in order before returning to P .

6. Let A, B, C be three points in the plane, any pair of which are unit distance apart. For each point P ,
we can determine a triple of nonnegative real numbers (u, v, w), where u, v, w are the respective lengths
of PA, PB, PC. Of course, not every triple of nonnegative reals arise in this way, and when two of the
numbers are given, there are at most finitely many possibilities for the third. This suggests that there
must be a relationship among them.

(a) Find a polynomial equation that must be satisfied by u, v and w as described above.

(b) If we take fixed values of u and v and regard the equation in (a) as a polynomial in w, analyze the
character of its roots and relate this to the geometry of the situation.

7. A regular heptagon (polygon with seven equal sides and seven equal angles) has diagonals of two different
lengths. Let a be the length of a side, b be the length of a shorter diagonal and c be the length of a
longer diagonal of a regular heptagon (so that a < b < c). Prove that

a2

b2
+
b2

c2
+
c2

a2
= 6

and
b2

a2
+
c2

b2
+
a2

c2
= 5 .

GROUP THEORY AND AXIOMATICS

The following concepts should be reviewed: group, order of groups and elements, cyclic group, conjugate
elements, commute, homomorphism, isomorphism, subgroup, factor group, right and left cosets.

Lagrange’s Theorem: The order of a finite group is exactly divisible by the order of any subgroup and
by the order of any element of the group.

A group of prime order is necessarily commutative and has no proper subgroups.
A subset S of a group G is a set of generators for G iff every element of G can be written as a product

of elements in S and their inverses. A relation is an equation satisfied by one or more elements of the group.
Many Putnam problems are based on the possibility that some relations along with the axioms will imply
other relations.

Putnam problems

1997-A-4. Let G be a group with identity e and φ : G→ G a function such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)
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whenever g1g2g3 = e = h1h2h3. Prove that there exists an element a in G such that ψ(x) = aφ(x) is a
homomorphism (that is, ψ(xy) = ψ(x)ψ(y) for all x and y in G).

1996-A-4. Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that:

1. (a, b, c) ∈ S if and only if (b, c, a) ∈ S,

2. (a, b, c) ∈ S if and only if (c, b, a) 6∈ S,

3. (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.
Prove that there exists a one-to-one function g : A → R such that g(a) < g(b) < g(c) implies (a, b, c) ∈ S.
[Note: R is the set of real numbers.]

1989-B-2. Let S be a non-empty set with an associative operation that is left and right cancellative
(xy = xz implies y = z, and yx = zx implies y = z). Assume that for every a in S the set {an : n = 1, 2, 3, · · ·}
is finite. Must S be a group?

1978-A-4. A “bypass” operation on a set S is a mapping from S × S to S with the property

B(B(w, x), B(y, z)) = B(w, z)

for all w, x, y, z in S.

(a) Prove that B(a, b) = c implies B(c, c) = c when B is a bypass.

(b) Prove that B(a, b) = c implies B(a, x) = B(c, x) for all x in S when B is a bypass.

(c) Construct a table for a bypass operation B on a finite set S with the following three properties: (i)
B(x, x) = x for all x in S. (ii) There exists d and e in S with B(d, e) = d 6= e. (iii) There exists f and
g in S with B(f, g) 6= f .

1977-B-6. Let H be a subgroup with h elements in a group G.Suppose that G has an element a such
that, for all x in H, (xa)3 = 1, the identity. In G, let P be the subset of all products x1ax2a · · ·xna, with n
a positive integer and the xi in H.
(a) Show that P is a finite set.
(b) Show that, in fact, P has no more than 3h2 elements.

1976-B-2. Suppose that G is a group generated by elements A and B, that is, every element of G can
be written as a finite “word” An1Bn2An3 · · ·Bnk , where n1, n2, · · ·nk are any integers, and A0 = B0 = 1, as
usual. Also, suppose that

A4 = B7 = ABA−1B = 1 , A2 6= 1 , and B 6= 1 .

(a) How many elements of G are of the form C2 with C in G?
(b) Write each such square as a word in A and B.

1975-B-1. In the additive group of ordered pairs of integers (m,n) (with addition defined component-
wise), consider the subgroup H generated by the three elements

(3, 8) (4,−1) (5, 4) .

Then H has another set of generators of the form

(1, b) (0, a)

for some integers a, b with a > 0. Find a.
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1972-B-3. Let A and B be two elements in a group such that ABA = BA2B, A3 = 1 and B2n−1 = 1
for some positive integer n. Prove B = 1.

1969-B-2. Show that a finite group can not be the union of two of its proper subgroups. Does the
statement remain true if “two” is replaced by “three”?

1968-B-2. A is a subset of a finite group G, and A contains more than one half of the elements of G.
Prove that each element of G is the product of two elements of A.

Other problems

1. A set S is nonnegative real numbers is said to be closed under ± iff, for each x, y in S, either x+ y or
|x− y| belongs to S. For instance, if α > 0 and n is a positive integer, then the set

S(n, α) ≡ {0, α, 2α, · · · , nα}

has the property. Show that every finite set closed under ± is either {0}, is of the form S(n, α), or has
exactly four elements.

2. S is a set with a distinguished element u upon which an operation + is defined that, for all a, b, c ∈ S,
satisfies these axioms:

(a) a+ u = a;
(b) a+ a = u;
(c) (a+ c) + (b+ c) = a+ b.

Define a ∗ b = a+ (u+ b). Prove that, for all a, b, c ∈ S,

(a ∗ b) ∗ c = a ∗ (b ∗ c) .

3. Suppose that a and b are two elements of a group satisfying ba = ab2, b 6= 1 and a31 = 1. Determine
the order of b.

FIELDS

Putnam problems

1987-B-6. Let F be the field of p2 elements where p is an odd prime. Suppose S is a set of (p2 − 1)/2
distinct nonzero elements of F with the property that for each α 6= 0 in F , exactly one of α and −α is in S.
Let N be the number of elements in the intersection S ∩ {2α : α ∈ S}. Prove that N is even.

1979-B-3. Let F be a finite field having an odd number m of elements. Let p(x) be an irreducible
(i.e., nonfactorable) polynomial over F of the form

x2 + bx+ c b, c ∈ F .

For how many elements k in F is p(x) + k irreducible over F?

ALGEBRA

Putnam problems

1997-B-4. Let am,n denote the coefficient of xn in the expansion of (1 + x+ x2)m. Prove that for all
k ≥ 0,

0 ≤
b2k/3c∑

i=0

(−1)iak−i,i ≤ 1 >
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1995-B-4. Evaluate

8

√
2207− 1

2207− 1
2207−···

.

Express your answer in the form (a+ b
√
c)/d, where a, b, c, d are integers.

1993-B-2. For nonnegative integers n and k, define Q(n, k) to be the coefficient of xk in the expansion
of (1 + x+ x2 + x3)n. Prove that

Q(n, k) =
n∑

j=0

(
n

j

)(
n

k − 2j

)
,

where
(
a
b

)
is the standard binomial coefficient. (Reminder: For integers a and b with a ≥ 0,

(
a
b

)
= a!

b!(a−b)!

for 0 ≤ b ≤ a and
(
a
b

)
= 0 otherwise.)

Other problems

1. Solve the equation √
x+ 5 = 5− x2 .

2. The numbers 1, 2, 3, · · · are placed in a triangular array and certain observations concerning row sums
are made as indicated below:

1
2 3

4 5 6
7 8 9 10

11 12 13 14 15
16 17 18 19 20 21

1 = (0 + 1)(02 + 12)

5 = 12 + 22

15 = (1 + 2)(12 + 22)

34 = 2× (12 + 42)

65 = (2 + 3)(22 + 32)

111 = 3× (12 + 62)

1 = 14 1 + 15 = 24 1 + 15 + 65 = 34

5 = 1 + 22 = 1(12 + 22)

5 + 34 = 3 + 62 = (1 + 2)(22 + 32)

5 + 34 + 111 = 6 + 122 = (1 + 2 + 3)(32 + 42)

Formulate and prove generalizations of these observations.

3. Let n be a positive integer and x a real number not equal to a positive integer. Prove that

n

x
+
n(n− 1)
x(x− 1)

+
n(n− 1)(n− 2)
x(x− 1)(x− 2)

+ · · ·+ n(n− 1)(n− 2) · · · · 1
x(x− 1)(x− 2) · · · (x− n+ 1)

=
n

x− n+ 1
.
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4. Determine a value of the parameter θ so that

f(x) ≡ cos2 x+ cos2(x+ θ)− cosx cos(x+ θ)

is a constant function of x.

MATRICES, DETERMINANTS AND LINEAR ALGEBRA

1996-B-4. For any square matrix A, we can define sinA by the usual power series

sinA =
∞∑

n=0

(−1)n

(2n+ 1)!
A2n+1 .

Prove or disprove: There exists a 2× 2 matrix A with real entries such that

sinA =
(

1 1996
0 1

)
.

1995-B-3. To each positive integer with n2 decimal digits we associate the determinant of the matrix
obtained by writing the digits in order across the rows. For example, for n = 2, to the integer 8617 we

associate det
(

8 6
1 7

)
= 50. Find as a function of n, the sum of all the determinants associated with

n2−digit integers. (Leading digits are assumed to be nonzero; for example, for n = 2, there are 9000
determinants.)

1994-A-4. Let A and B be 2× 2 matrices with integer entries such that A, A+ B, A+ 2B, A+ 3B,
and A + 4B are all invertible matrices whose inverses have integer entries. Show that A + 5B is invertible
and that its inverse has integer entries.

1994-B-4. For n ≥ 1, let dn be the greatest common divisor of the entries of An − I, where

A =
(

3 2
4 3

)
and I =

(
1 0
0 1

)
.

Show that limn→∞ dn = ∞.

1992-B-5. Let Dn denote the value of the (n− 1)× (n− 1) determinant

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
· · · · · · · ·
1 1 1 1 · · · n+ 1

Is the set
{Dn

n!
: n ≥ 2

bounded?

1992-B-6. Let M be a set of real n× n matrices such that
(i) I ∈ M , where I is the n× n identity matrix;
(ii) if A ∈ M and B ∈ M , then either AB ∈ M and −AB ∈ M , but not both;
(iii) if A ∈ M and B ∈ M , then either AB = BA or AB = −BA;
(iv) if A ∈ M and A 6= I, then there is at least one B ∈ M such that AB = −BA.
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Prove that M contains at most n2 matrices.

1991-A-2. Let A and B be different n × n matrices with real entries. If A3 = B3 and A2B = B2A,
can A2 +B2 be invertible?

1990-A-5. If A and B are square matrices of the same size such that ABAB = 0, does it follow that
BABA = 0?

1986-A-4. A transversal of an n × n matrix A consists of n entries of A, no two in the same row or
column. Let f(n) be the number of n× n matrices A satisfying the following two conditions:
(a) Each entry αi,j of A is in the set {−1, 0, 1}.
(b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matric A is

A =

−1 0 −1
0 1 0
0 1 0

 .

Determine with proof a formula for f(n) of the form

f(n) = a1b
n
1 + a2b

n
2 + a3b

n
3 + a4 .

where the ai’s and bi’s are rational numbers.

1986-B-6. Suppose that A,B,C,D are n×n matrices with entries in a field F , satisfying the conditions
that ABt and CDt are symmetric and ADt − BCt = I. Here I is the n × n identity matrix, M t is the
transpose of M . Prove that AtD − CtB = I.

1985-B-6. Let G be a finite set of real n × n matrices {Mi}, 1 ≤ i ≤ r, which form a group under
matrix multiplication. Suppose that

∑r
i=1 tr (Mi) = 0, where tr (A) denotes the trace of the matrix A.

Prove that
∑r

i=1Mi is the n× n zero matrix.

COMBINATORICS

Putnam problems

1997-A-2. Players 1, 2, 3, · · · , n are seated around a table and each has a single penny. Player 1 passes
a penny to Player 2, who then passes two pennies to Player 3. Player 3 then passes one penny to Player 4,
who then passes two players to Player 5, and so on, players alternately passing one penny or two to the next
player who still has some pennies. A player who runs out of pennies drops out of the game and leaves the
table. Find an infinite set of numbers n for which some player ends up with all n pennies.

1996-A-3. Suppose that each of twenty students has made a choice of anywhere from zero to six courses
from a total of six courses offered. Prove or disprove: There are five students and two courses such that all
five have chosen both courses or all five have chosen neither.

1996-B-1. Define a selfish set to be a set which has its own cardinality (number of elements) as an
element. Find, with a proof, the number of subsets of {1, 2, · · · , n} which are minimal selfish sets, that is,
selfish sets none of whose proper subsets if selfish.

1996-B-5. Given a finite string S of symbol X and O, we write ∆(S) for the number of X’s in S minus
the number of O’s. For example, ∆(XOOXOOX) = −1. We call a string S balanced if every substring
T of (consecutive symbols of) S has −2 ≤ ∆(T ) ≤ 2. Thus, XOOXOOX is not balanced, since it contains
the substring OOXOO. Find, with proof, the number of balanced strings of length n.

1995-A-4. Suppose we have a necklace of n beads. Each bead is labelled with an integer and the sum
of all these labels is n − 1. Prove that we can cut the necklace to form a string whose consecutive labels
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x1, x2, · · · , xn satisfy
k∑

i=1

xi ≤ k − 1 for k = 1, 2, · · · , n .

1995-B-1. For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements in the part
containing x. Prove that for any two partitions π and π′, there are two distinct numbers x and y in
{1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π′(x) = π′(y). [A partition of a set S is a collection of
disjoint subsets (parts) whose union is S.]

1995-B-5. A game starts with four heaps of beans, containing 3, 4, 5 and 6 beans. The two players
move alternately. A move consists of taking either

a. one bean from a heap, provided at least two beans are left behing in that heap, or

b. a complete heap of two or three beans.
The player who takes the last heap wins. To win the game, do you want to move first or second? Give

a winning strategy.

1994-A-3. Show that if the points of an isosceles right triangle of side length 1 are earch colored with
one of four colors, then there must be two points of the same color which are at least a distance 2 −

√
2

apart.

1994-A-6. Let f1, f2, · · ·, f10 be bijections of the set of integers such that for each integer n, there is
some composition f11 ◦ f12 ◦ · · · ◦ fim of these functions (allowing repetitions) which maps 0 to n. Consider
the set of 1024 functions

F = {fe1
1 ◦ fe2

2 ◦ · · · ◦ fe10
10 : ei = 0 or 1 for 1 ≤ i ≤ 10}

(f0
i is the identity function and f1

i = fi). Show that if A is any nonempty finite set of integers, then at most
512 of the functions in F map A to itself.

1993-A-3. Let Pn be the set of subsets of {1, 2, · · · , n}. Let c(n,m) be the number of functions
f : Pn → {1, 2, · · · .m} such that f(A ∩B) = min{f(A), f(B)}. Prove that

c(n,m) =
m∑

j=1

jn .

1992-B-1. Let S be a set of n distinct real numbers. Let AS be the set of numbers that occur as
averages of two distinct elements of S. For a given n ≥ 2, what is the smallest possible number of distinct
elements in AS?

Other problems

1. Let n and k be positive integers. Determine the number of ways of choosing k numbers from {1, 2, · · · , n}
so that no three consecutive numbers appear in any choice.

2. There are n safes and n keys. Each key opens exactly one safe and each safe is opened by exactly one
key. The keys are locked in the safes at random, with one key in each safe. k of the safes are broken
open and the keys inside retrieved. What is the probability that the remaining safes can be opened with
keys?
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3. A class with at least 35 students goes on a cruise. Seven small boats are hired, each capable of carrying
300 kilograms. The combined weight of the students is 1800 kilograms. It is determined that any group
of 35 students can fit into the boats without exceeding the individual capacity of any of them. Prove
that it is unnecessary to prevent any student from taking the cruise.

4. Each can of K9-Food costs 3 dollars and contains 10 units of protein and 10 units of carbohydrate. Each
can of Pooch-Mooch costs 5 dollars and has 10 units of protein, 20 units of carbohydrate and 5 units of
vitamins. Each puppy needs a daily feed with 45 units of protein, 60 units of carbohydrate and 5 units
of vitamins. How would you feed adequately 10 puppies for 10 days in the cheapest way?

5. A rectangle is partitioned into smaller rectangles (not necessarily congruent to one another) with sides
parallel to to those of the large rectangle. Each small rectangle has at least one side an integer number
of units long. Prove that the large rectangle does also.

6. During a long speech, each member of the audience fell asleep exactly twice. For any pair of auditors,
there was a moment when both of them were asleep. Prove that there must have been a moment during
the speech when at least a third of the audience were asleep.

7. A group of students with ages ranging from 17 to 23, inclusive, with at least one student of each age,
represents 11 universities. Prove that there are at least 5 students such that each has more members of
the group of the same age than members from the same university.

8. On a 2n× 2n chessboard, 3n squares are chosen at random. Prove that n rooks (castles) can be placed
on the board so that each chosen square is either occupied by a rook or under attack from at least one
rook. (Note that each rook can attack any square in the same row or column which is visible from the
rook.)

9. At a party, every two people greet each other in exactly one of four ways (nodding, shaking hands,
kissing, hugging). Candy kisses Randy, but not Sandy. For every three people, their three pairwise
greetings are either all the same or all different. What is the maximum number of people at the party?

PROBABILITY

1995-A-6. Suppose that each of n people writes down the numbers 1, 2, 3 in random order in one
column of a 3×n matrix, with all orders equally likely and with the orders for different columns independent
of each other. Let the row sums a, b, c of the resulting matrix be rearranged (if necessary) so that a ≤ b ≤ c.
Show that, for some n ≥ 1995, it is at least four times as likely that both b = a + 1 and c = a + 2 as that
a = b = c.

1993-B-2. Consider the following game played with a deck fof 2n cards numbered from 1 to 2n. The
deck is randomly shuffled and n cards are dealt to each of two players A and B. Beginning with A, the
players take turns discarding one of their remaining cards and announcing the number. The game ends as
soon as the sum of the numbers on the discarded cards is divisible by 2n + 1. The last person to discard
wins the game. If we assume optimal strategy by both A and B, what is the probability that A wins?

1993-B-3. Two real numbers x and y are chosen at random in the interval (0, 1) with respect to the
uniform distribution. What is the probability that the closest integer to x/y is even? Express the answer in
the form r + sπ, where r and s are rational numbers.

1992-A-6. Four points are chosen at random on the surface of a sphere. What is the probability that
the center of the sphere lies inside the tetrahedron whose vertices are at the four points? (It is understood
that each point is independently chosen relative to a uniform distribution on the sphere.)
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