
Meditations on the attainments of matriculating students

When university mathematicians are critical of the preparation of secondary students
for university work, their comments are often interpreted as meaning that there should be
more material in the syllabus. The issue is more subtle than this; I would like to report
on some recent experiences that highlight what many of us are looking for in our first year
students.

In December, 2006, I was at the University of Waterloo to join the marking team for
the Canadian Open Mathematics Challenge. Questions B2 and B3 were both on geometry.
I thought them excellent as they epitomized the sort of thing that every student gradu-
ating from Grade 12 mathematics should be capable of, if they are planning to use that
mathematics in advanced study. Unfortunately, most of them did not do a good job on
the questions, and many who did solve the problems were hardly fluent in managing even
the most straightforward computations. The two questions were as follows:

B2. The circle x2 + y2 = 25 intersects the x−axis at points A(−5, 0) and B(5, 0).
The line x = 11 intersects the x−axis at point C. Point P moves along the line x = 11
above the x−axis and AP intersects the circle at Q.

(a) Determine the coordinates of P when triangle AQB has maximum area. Justify

your answer.

(b) Determine the coordinates of P when Q is the midpoint of AP . Justify your

answer.

(c) Determine the coordinates of P when the area of triangle AQB is 1
4 of the area of

triangle APC. Justify your answer.

B3. (a) The trapezoid ABCD has parallel sides AB and DC of lengths 10 and 20,

respectively. Also, the length of AD is 6 and the length of BC is 8. Determine the area of

trapezoid ABCD.

(b) PQRS is a rectangle and T is the midpoint of RS. The inscribed circles of triangles

PTS and RTQ each have radius 3. The inscribed circle of triangle QPT has radius 4.

Determine the dimensions of rectangle PQRS.

Some of the solutions to problem B2 (a) exemplified the adage that a little knowledge
is a dangerous thing; the students saw the word “maximum” and looked for a derivative
to take. Once students recognized that the area is maximized with the vertical height, and
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that the line AP would pass through (0, 5), then it is simply a matter of identifying the
intersection of the lines y = x + 5 and x = 11. Part (b) is a matter of recognizing that the
abscissa of the midpoint of AP is 3; if they remember and can use the pythagorean triple
(3, 4, 5) to locate Q, then the answer is immediate. All that is needed is an internalization
of proportionality and similar figures. A couple of students observed that BQ was the
right bisector of AP , so that |BP | = |AB| = 10 and triangle BCP is a 6 − 8 − 10 right
triangle. Most of the successful solutions to (c) were painfully pedestrian. However, a
couple noticed that triangles AQB and ACP were similar with factor 1/2. This led quickly
to |AQ| = 1

2 |AC| = 8. Since |AB| = 10, we find that |BP | = 6 and |CP | = 2|BP | = 12.
There is no background here that cannot be reasonably expected on any secondary syllabus.
The issues are less content and more mathematical fluency and structural insight.

Question B3 is another question for which straightforward but tedious solutions exist,
but become easy with the right perspective. The best solution given for (a) arose out of
the realization that connecting A and B to the midpoint of CD partitioned the trapezoid
into three congruent 6 − 8 − 10 right triangles whose areas (by the base-height formula, if
you look at the triangles sideways) are each 24. The best solution given for (b) relied on
the insight that triangles TIU and V JP were similar with factor 3/4, where I and J are
the respective incentres of triangles PTS and PQT , ST is tangent to the smaller incircle
at U and PQ is tangent to the larger incircle at V . If we take |PV | = 4x, then |UT | = 3x,
whence 4x = 3 + 3x and x = 3. If |PS| = 3 + 3y, then an application of Pythagoras’
theorem on triangle PTS yields the equation (3x + 3y)2 = (3x + 3)2 + (3y + 3)2 which
reduces to xy = x + y + 1 or (x − 1)(y − 1) = 2.

Let us look more closely at the ingredients in the solution for (b). There are three
theoretical results needed. The first is to note that TP is a transveral of two parallels, so
that the alternate angles STP and TPV are equal. The second is that the tangent rays
from an external points to a circle are equal. The third is that the incentre of a triangle
lies on the bisector of any of its angles. The last two can be convincingly established by
appealing to the reflection of the configuration in the diameter of the circle passing through
the external point. However, we need the insight that two crucial triangles are similar.
Finally, for ease of dénouement, it helps to set the manipulations up in a way that delivers
the result efficiently. While it might be unreasonable to expect every student to produce
such a solution, exercises that they are regularly exposed to should be sufficiently rich that
each student can on occasion produce solutions that indicate the assimilation of important
mathematical values.
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Another question that was interesting is this regard was Problem B1 on the 2006
Putnam competition:

B1. Show that the curve x3 + 3xy + y3 = 1 contains only one set of three distinct

points A, B, and C, which are the vertices of an equilateral triangle, and find its area.

Of course, we will not know until November, 2007 how the candidates fared with
this question. However, while it was given to tertiary students, it is definitely not out of
line for secondary students to be asked to attempt it. The expression on the left side of
the equation should ring some bells, evoking the expansion of (x + y)3. At this point, a
rather sophisticated bit of algebraic insight comes in handy: if we make the restriction
that x + y = 1, we can put the factor (x + y) with 3xy to transform the equation into
the form (x + y)3 = 1. Thus, x + y = 1 is consistent with the equation, so that the line
is part of the locus of the equation. This also means that x + y − 1 should be a factor of
x3 + 3xy + y3 − 1. Indeed,

x3 + 3xy + y3 − 1 = (x + y − 1)(x2 + y2 − xy + x + y + 1) .

Setting the second factor equal to zero apparently gives the equation of a conic section,
which, because of the symmetry in x and y should have an axis along the line x = y. It is
quickly found that the points ( 1

2 , 1
2 ) and (−1,−1) lie on the locus. This suggest that the

expressions (x + 1) and (y + 1) and (x − y) might possibly bear on the second factor. In
fact,

2(x2 + y2 − xy + x + y + 1) = (x − y)2 + (x + 1)2 + (y + 1)2 .

The locus of the original equation is thus a straight line and a single point off the line, and
it is now straightforward to answer the question.

Is B1 an appropriate question for a test or entrance examination? No. But it, and a
diet of other questions of similar ilk, should certainly be given on homework assignments
and used in group work. Such exercises promote the powers of recognition, analysis and
exploitation of basic facts that constitute an indispensible part of student progress in even
the most mundane of university mathematics courses.

Another example is a problem that was brought to the COMC marking from one
of the teachers, who found it as a bonus question on a grade 11 test. She told me that
the students had not studied logarithms, so that the solution could only use the laws of
exponents. Given that 60a = 3 and 60b = 5, determine

12
1−a−b
2(1−b) .
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You might want to try it before proceeding. The solution does not appear to be obvious,
and it flummoxed me at first. However, a reasonably direct approach delivers the goods.
From the second condition, one finds that 5 = 12b/(1−b). Write the first equation as
22 · 5a · 12a = 12 so that 22 = 121−a · 5−a; substitute for 5 in terms of 12 and roll to a
successful conclusion. While one might wonder about this as a test question, even for a
bonus, it is a useful challenge to post on a bulletin board in the classroom. Its artificiality
should not detract from the challenge of finding the simple answer that the proposer had
in mind. Indeed, indeed, one might pause to pay homage to the creator of this question.

While it might be wished that this or that piece of mathematics were better known,
most thoughtful observors see the problem of student preparation more with the use that
students make of what is already on the curriculum and the analysis and connections that
they might or might not be able to make. None of the foregoing problems discussed above
involves material not already on nor easily incorporated into the existing syllabus. But
a student who approaches them with a cookbook of procedures and formulae is unable
to make much progress; some insight into the underlying structure along with a strategic
approach and knitting together of knowledge from different sources is needed.

My comments should be seen as supplementing rather than countering the recommen-
dations of Peter Taylor of Queen’s University. In his address at the recent CMS Toronto
meeting, where he received the Adrien Pouliot Award, he presented two nice examples of
the sort of classroom investigations he promotes. In the first instance, students had to
measure the fall in air pressure of an inflated tire after it had been suddenly punctured
and find a function that modelled it. In the second, students experimented to find the
relative frequency f(x) of success in throwing a beanbag into a box located a distance x

meters away, and then decide on the distance that would maximize a “reward function”
x2f(x).

The first of these leads students to an understanding of the situations the give rise to
exponential decay and how such situations can be described and anlyzed mathematically.
The second leads to an appreciation of the properties that a function f(x) can be expected
to have and how one balances a situation with contradictory aspects, here the interaction
of a function x2 that increases with x against one f(x) that decreases. Unlike the contest
problems, the intial focus is not on the mathematical description but on the intuitive grasp
of a situation which can then be mathematized appropriately.

All discussions of student preparation lead back to the characteristics of their teachers
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- how much mathematics they know, how they know it, the experiences they have as
practising mathematicians, their confidence is handling whatever students may bring to
an unprogrammed situation and their ability to interpret student responses and take up
advantages and disadvantages of different approaches to a situation.
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