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Problems

675. ABC is a triangle with circumcentre O such that ∠A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine ∠A.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .

678. For a, b, c > 0, prove that
1

a(b + 1)
+

1
b(c + 1)

+
1

c(a + 1)
≥ 3

1 + abc
.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

681. Let a and b , the latter nonzero, be vectors in R3. Determine the value of λ for which the vector
equation

a− (x× b) = λb
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is solvable, and then solve it.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

Solutions.

661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|∠PAB − ∠PAC| ≥ |∠PBC − ∠PCB| .

Solution. The result is clear if P is on the bisector of the angle at A, since both sides of the inequality
are 0.

Wolog, let P be closer to AB than AC, and let Q be the image of P under reflection in the bisector of
the angle A. Then

∠PAQ = ∠PAC − ∠QAC = ∠PAC − ∠PAB

and
∠PCQ = ∠QCB − ∠PCB = ∠PBC − ∠PCB .

Thus, it is required to show that ∠PAQ ≥ ∠PCQ.

Produce PQ to meet AB in R and AC in S. Consider the reflection R with axis RS. The circumcircle
C of ∆ARS is carried to a circle C′ with chord RS. Since ∠RCS < 60◦ = ∠RAS and the angle subtended
at the major arc of C′ by RS is 60◦, the point C must lie outside of C′. The circumcircle D of ∆APQ is
carried by R to a circle D′ with chord PQ. Since D is contained in C, D′ must be contained in C′, so C
must lie outside of D′. Hence ∠PCQ must be less than the angle subtended at the major arc of D′ by PQ,
and this angle is equal to ∠PAQ. The result follows.

662. Let n be a positive integer and x > 0. Prove that

(1 + x)n+1 ≥ (n + 1)n+1

nn
x .

Solution 1. By the Arithmetic-Geometric Means Inequality, we have that

1 + x

n + 1
=

n(1/n) + x

n + 1
≥

[(
1
n

)n

x

] 1
n+1

so that
(1 + x)n+1

(n + 1)n+1
≥ x

nn

and the result follows.

Solution 2. (by calculus) Let

f(x) = nn(1 + x)n+1 − (n + 1)n+1x for x > 0 .
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Then
f ′(x) = (n + 1)[nn(1 + x)n − (n + 1)n] = (n + 1)nn[(1 + x)n − (1 +

1
n

)n]

so that f ′(x) < 0 for 0 < x < 1/n and f ′(x) > 0 for 1/n < x. Thus f(x) attains its minimum value 0 when
x = 1/n and so f(x) ≥ 0 when x > 0. The result follows.

Solution 3. (by calculus) Let g(x) = (1+x)n+1x−1. Then g′(x) = (1+x)nx−2[nx− 1], so that g(x) < 0
for 0 < x < 1/n and g′(x) > 0 for x > 1/n. Therefore g(x) assumes its minimum value of (n + 1)n+1n−n

when x = 1/n, and the result follows.

Solution 4. [G. Ghosn] We make the substituion t = (nx)1/(n+1) ⇔ x = tn+1/n. Then it is required to
prove that

1 +
tn+1

n
≥ (n + 1)t

n
.

Observe that

tn+1 − (n + 1)t− n = t(tn − 1)− n(t− 1) = (t− 1)(tn + tn−1 + · · ·+ t− n)

= (t− 1)[(tn − 1) + (tn−1 − 1) + · · ·+ (t− 1)]

= (t− 1)2[tn−1 + 2tn−2 + · · ·+ (n− 1)] ≥ 0 ,

for t > 0. The desired result follows.

Solution 5. Let u = nx− 1 so that x = (1 + u)/n. Then

(1 + x)n+1 − (n + 1)n+1

nn
x = (1 +

1
n

+
u

n
)n+1 − (1 +

1
n

)n+1(1 + u)

= (1 +
1
n

)n+1 + (n + 1)(1 +
1
n

)n u

n
+

(
n + 1

2

)
(1 +

1
n

)n−1(
u

n
)2

+
(

n + 1
3

)
(1 +

1
n

)n−2(
u

n
)3 + · · · − (1 +

1
n

)n+1(1 + u)

=
(

n + 1
2

)
(1 +

1
n

)n−1(
u

n
)2 +

(
n + 1

3

)
(1 +

1
n

)n−2(
u

n
)3 + · · · .

This is clearly nonnegative when u ≥ 0. Suppose that −1 < u < 0. For 1 ≤ k ≤ n/2, we have that(
n + 1
2k

)
(1 +

1
n

)n−2k+1(
u

n
)2k +

(
n + 1
2k + 1

)
(1 +

1
n

)n−2k(
u

n
)2k+1

=
(n + 1)!(1 + 1/n)n−2k

(2k + 1)!(n + 1− 2k)!

(
u

n

)2k

[(2k + 1)(1 +
1
n

) + (n + 1− 2k)(
u

n
)] .

This will be nonnegative if and only if the quantity in square brackets is nonnegative. Since u > −1, this
quantity exceeds

(2k + 1)(1 +
1
n

)− (n + 1− 2k)(
1
n

) =
(

n + 1
n

)
(2k + 1− 1)− 2k

n
= 2k > 0 .

Thus, each consecutive pair of terms in the sequence(
n + 1

2

)
(1 +

1
n

)n−1(
u

n
)2 +

(
n + 1

3

)
(1 +

1
n

)n−2(
u

n
)3 + · · ·

has a positive sum and so the desired result follows.

3



663. Find all functions f : R −→ R such that

x2y2(f(x + y)− f(x)− f(y)) = 3(x + y)f(x)f(y)

for all real numbers x and y.

Solution. An obvious solution if f(x) ≡ 0. We consider other possibilities.

Setting y = 0 yields that 0 = 3xf(x)f(0) for all x. Setting y = −x yields that x4[f(0)−f(x)−f(−x)] = 0,
so that f(0) = f(x) + f(−x) for all nonzero x. Suppose, if possible, that f(0) 6= 0. Then, if x 6= 0, we
must have that f(x) = 0, so that f(0) = f(x) + f(−x) = 0, a contradiction. Therefore, f(0) = 0 and so
f(x) = −f(−x) for all real x.

Setting y = x yields that

f(2x) =
6
x3

f(x)2 + 2f(x)

for all nonzero x, while the sum x = 2x + (−x) leads to

4x4[2f(x)− f(2x)] = 3xf(2x)f(−x) = −3xf(2x)f(x) .

Therefore

4x3

[
6
x3

f(x)2
]

= 3
[

6
x3

f(x)2 + 2f(x)
]
f(x)

so that
8x3f(x)2 = 6f(x)3 + 2x3f(x)2

or
f(x)3 = x3f(x)2 .

Therefore, for each real x, either f(x) = 0 or f(x) = x3.

Suppose that f(z) = 0 for some real z; note that y 6= 0. Select x so that f(x) 6= 0 and let y = z − x.
Then, since x2y2[−f(x)− f(y)] = 3zf(x)f(y), f(y) 6= 0. Thus f(x) = x3, f(y) = y3 so that

−x2y2(x3 + y3) = 3(x + y)x3y3 .

This simplifies to
0 = x2y2(x + y)(x2 + 2xy + y2) = x2y2(x + y)3

with the result that z = x + y = 0. Therefore f(x) = x3 for all real x (including 0).

Comment. J. Seaton deserves credit for the argument that, if f(x) = 0 for all nonzero x, then f(0) = 0
as well.

664. The real numbers x, y, and z satisfy the system of equations

x2 − x = yz + 1;

y2 − y = xz + 1;

z2 − z = xy + 1.

Find all solutions (x, y, z) of the system and determine all possible values of xy + yz + zx + x + y + z
where (x, y, z) is a solution of the system.

Solution. First we dispose of the situation that not all the variables takes distinct values. If x = y = z,
then the equations reduce to x = −1, so that (x, y, z) = (−1,−1,−1) is a solution and x+y+z+xy+yz+zx =
0.
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By subtracting equations in pairs, we find that

0 = (x− y)(x + y + z − 1) = (y − z)(x + y + z − 1) = (z − x)(x + y + z − 1) .

Suppose that x 6= y = z. Then we must have x + 2y = 1 and x2 − x = y2 + 1, so that 0 = 3y2 − 2y − 1 =
(3y + 1)(y − 1). This leads to the two soutions (x, y, z) = (−1, 1, 1), ( 5

3 ,− 1
3 ,− 1

3 ). Symmetric permutations
of these also are solutions and we find that x + y + z + xy + yz + zx = 0.

Henceforth, assume that the values of x, y, z are distinct. Any solution x, y, z of the system must satisfy
the cubic equation

t3 − t2 − t = xyz .

In particular, from the coefficients, we find that x+ y + z = 1 and xy + yz + zx = −1 whence xy + yz + zx+
x + y + z = 1.

Conversely, suppose that we take any real number w. Let x, y, z be the roots of the cubic equation

t3 − t2 − t = w .

Then xyz = w. If w = 0, then the cubic equation has the roots {0, 1
2 (1 +

√
5), 1

2 (1 −
√

5)} and it can be
checked that assigning these as the values of x, y and z any order will yields a solution to the given equation.
If w 6= 0, then plugging the roots into the equation and dividing by it will yield the given system.

All that remains is to discover which values of w will yield three real roots for the cubic. Let f(t) =
t3 − t2 − t. This function assumes a maximum value of 5/27 at t = −1/3 and a minimum value of −1 when
t = 1. Thus f(t) assumes each value in the closed interval [−1, 5/27] three times, counting multiplicity, and
each other real value exactly once.

Thus, the solutions of the system are the roots of the cubic equation t3 − t2 − t = w, where w is any
real number selected from the interval [−1, 5/27].

(Note, that the “extreme” solutions are (x, y, z) = (1, 1,−1), (−1/3,−1/3, 5/3). The only solution not
related to the cubic is (x, y, z) = (−1,−1,−1).)

Comment. G. Ajjanagadde, in the case of distinct values of x, y and z, obtained the equations x+y+z =
1 and xy + yz + zx = −1, whence, for given value of x, we get the system y + z = 1−x and yz = x2−x− 1,
so that y and z are solutions of the quadratic equation

t2 − (1− x)t + (x2 − x− 1) = 0 .

The discriminant of this quadratic is

(1− x)2 − 4(x2 − x− 1) = −3x2 + 2x + 5 = −(3x− 5)(x + 1) .

Thus, we will obtain real values of x, y, z if and only if x, y and z lies between −1 and 5/3 inclusive.

665. Let f(x) = x3 + ax2 + bx + b. Determine all integer pairs (a, b) for which f(x) is the product of three
linear factors with integer coefficients.

Solution. If b = 0, then the polynomial becomes x2(x + a), which satisfies the condition for all values of
a. This covers the situation for which x is a factor of the polynomial. Since the leading coefficient of f(x) is
1, the same must be true (up to sign) of its factors. Assume that f(x) = (x + u)(x + v)(x + w) for integers
u, v and w with uvw 6= 0. Since uvw = uv + vw + wu = b,

1
u

+
1
v

+
1
w

= 1 .

It is clearly not possible for all of u, v and w to be negative. Nor can it occur that two of them, say v and
w can be negative, for then the left side would be less than 1/u ≤ 1. Suppose that u and v are positive,
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while w is negative. One possibility is that u = 1 and v = −w in which case f(x) = (x + 1)(x2 − v2) =
x3 + x2 − v2x − v2. If neither u nor v is equal to 1, then 1/u + 1/v + 1/w < 1/u + 1/v ≤ 1, and this case
is not possible. Finally, suppose that u, v and w are all positive, with u ≤ v ≤ w. Then 1 ≤ 3/u, so that
u ≤ 3. A little trial and error leads to the possibilities (u, v, w) = (3, 3, 3), (2, 4, 4) and (2, 3, 6). Thus the
possibilities for (a, b) are (u, 0), (1,−v2), (9, 27), (10, 32) and (11, 36). Indeed, x3 +9x2 +27x+27 = (x+3)3,
x3 + 10x2 + 32x + 32 = (x + 2)(x + 4)2 and x3 + 11x2 + 36x + 36 = (x + 2)(x + 3)(x + 6).

666. Assume that a face S of a convex polyhedron P has a common edge with every other face of P. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.

Solution. Suppose that the face S has m vertices A1, A2, · · ·, Am listed in order, and that there are n
vertices of P not contained in S. We prove the result by induction on n. If n = 1, then every face abutting S
is a triangle. Let X be the vertex off S; then A1 · · ·AmXA1 is a polygonal path of the desired type. Suppose
that the result holds for any number of vertices m of S and for n vertices off S where 1 ≤ n ≤ k. Consider
the case n = k + 1.

Consider the graph G of all vertices of P and those edges of P not bounding S. Since there are no faces
bounded solely by these edges, the graph must be a tree (i.e., it contains no loops and there is a unique path
joining any pair of points). We show that there is at least one vertex X not in S for which every edge but
one must connect X to a vertex of S. Suppose otherwise. Then, let us start with such a vertex X and form
a sequence X1, X2, · · · of vertices not in S such that XiXi+1 are edges of P. Since the number of vertices
off S is finite, there must be i < j for which Xi = Xj so that XiXi+1 · · ·Xj−1Xj is a loop in G. But this
contradicts the fact that G is a tree.

Hence there is a vertex X with at most one adjacent edge not connecting it to S. If there were no such
edge, then X would be the only vertex not in S, contradicting k + 1 ≥ 2. Hence there is a vertex Y not in
S such that XY is an edge of P. We may assume that Y is further from the plane of S than S. (If not,
suppose that S is in the plane z = 0 and that P lies in the quadrant z > 0, y > 0 with Y further than X
from the plane y = 0. We can transform P by a mapping of the type (x, y, z) → (x, y, z + λy) for suitable
positive λ. This will not alter the configuration of vertices and edges.) Extend Y X to a point Z in the plane
of S. Let Q be the convex hull of (smallest closed convex set containing) Z and P. This will have a side
T containing S of the form A1A2 · · ·ArZAs · · ·Am where r < s. The triangles XZAr and XZAs will be
coplanar with faces of P, and the convex hull will have at most k vertices not on T . Every face of Q will
abut T . By the induction hypothesis, we can construct a polygon containing each vertex of Q. If an edge of
this polygon is Y Z and so includes X, and if one edge is say ZAr, then we can replace these two edges by
Y XAsAs−1 · · ·Ar+1Ar. If Y Z is not an edge of this polygon, but ArZ and ZAs are, then we can replace
these edges by ArXAr+1 · · ·As. In both cases, we obtain a polygon of the required type for P.

667. Let An be the set of mappings f : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n} such that, if f(k) = i for some i, then
f also assumes all the values 1, 2, · · · , i−1. Prove that the number of elements of An is

∑∞
k=0 kn2−(k+1).

Solution 1. Let u0 = 1 and, for n ≥ 1, let un be the number of elements in An. Let 1 ≤ r ≤ n. Consider
the set of mappings in An for which the value 1 is assumed exactly r times. Then 1 ≤ r ≤ n. Then each
such mapping takes a set of n − r points onto a set of the form {2, 3, · · · , s} where s − 1 ≤ n − r ≤ n − 1.
Hence, there are un−r such mappings. Since there are

(
n
r

)
possible sets on which a mapping may assume the

value 1 r times,

un =
n∑

r=1

(
n

r

)
un−r =

n−1∑
r=0

(
n

r

)
ur .

Now u0 = 1 =
∑∞

k=0 1/2k+1. Assume, as an induction hypothesis, that ur =
∑∞

k=0 kr/2k+1 for 0 ≤ r ≤ n−1.
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Then

un =
n−1∑
r=0

(
n

r

)
ur =

n−1∑
r=0

(
n

r

) ∞∑
k=0

kr

2k+1

=
∞∑

k=0

1
2k+1

n−1∑
r=0

(
n

r

)
kr =

∞∑
k=0

1
2k+1

[(1 + k)n − kn]

=
∞∑

k=0

(1 + k)n

2k+1
−

∞∑
k=0

kn

2k+1
=

∞∑
k=1

kn

2k
−

∞∑
k=1

kn

2k+1

=
∞∑

k=1

kn

2k+1

and the result follows. (The interchange of the order of summation and rearrangement of terms in the infinite
sum can be justified by the absolute convergence of the series.)

Solution 2. For 1 ≤ i, let vi be the number of mappings of {1, 2, · · · , n} onto a set of exactly i elements.
Observe that vi = 0 when i ≥ n + 1. There are kn mappings of {1, 2, · · · , n} into {1, 2, · · · , k}, of which vk

belong to An. The other kn − vk mappings will leave out i numbers in the range for some 1 ≤ i ≤ k − 1,
and the i numbers not found can be selected in

(
k
i

)
ways. Thus

kn =
k∑

i=1

(
k

i

)
vi .

Hence
∞∑

k=0

kn

2k+1
=

∞∑
k=0

k∑
i=1

(
k
i

)
vi

2k+1
=

∞∑
k=0

n∑
i=1

(
k
i

)
vi

2k+1

=
n∑

i=1

( ∞∑
k=0

(
k
i

)
2k+1

)
vi =

n∑
i=1

( ∞∑
k=i

(
k
i

)
2k+1

)
vi .

We evaluate the inner sum. Fix the positive integer i. Suppose that we flip a fair coin an indefinite number
of times, and consider the event that the (i + 1)th head occurs on the (k + 1)th toss. Then the previous i
heads could have occurred in

(
k
i

)
posible positions, so that the probability of the event is

(
k
i

)
2−(k+1). Since

the (i + 1)th head must occur on some toss with probability 1,
∑∞

k=i

(
k
i

)
2−(k+1) = 1. Hence

∞∑
k=0

kn

2k+1
=

n∑
i=1

vi = #An .

Solution 3. [C. Deng] Let sn =
∑∞

k=0 kn2−(k+1); note that s0 = s1 = 1. Let w0 = 1 and wn = #An for
n ≥ 1, so that, in particular, w1 = 1.

For n ≥ 0,

sn+1 = 2sn+1 − sn+1 = 2
∞∑

k=0

kn+12−(k+1) −
∞∑

k=0

kn+12−(k+1)

=
∞∑

k=0

[(k + 1)n+1 − kn+1]2−(k+1)

=
∞∑

k=0

( n∑
i=0

(
n + 1

i

)
ki

)
2−(k+1)

=
n∑

i=0

( ∞∑
k=0

(
n + 1

i

)
ki2−(k+1)

)

=
n∑

i=0

(
n + 1

i

)
si .
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We now show that wn satisfies the same recursion. Suppose that g is an arbitrary element of An+1

and that its maximum appears n + 1 − i times, where 0 ≤ i ≤ n. Then there are
(
n+1

i

)
ways to choose

the i remaining slots to fill with numbers without leaving gaps in the range, and then we can fill in the
remaining n + 1 − i slots with one more than the largest number in the range of the i slots. Thus, we find
that wn+1 =

∑n
i=0

(
n+1

i

)
wi. The desired result now follows, since s0 = w0.
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