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640. Suppose that n ≥ 2 and that, for 1 ≤ i ≤ n, we have that xi ≥ −2 and all the xi are nonzero with the
same sign. Prove that

(1 + x1)(1 + x2) · · · (1 + xn) > 1 + x1 + x2 + · · ·+ xn ,

641. Observe that x2 +5x+6 = (x+2)(x+3) while x2 +5x− 6 = (x+6)(x− 1). Determine infinitely many
coprime pairs (m,n) of positive integers for which both x2 + mx + n and x2 + mx− n can be factored
as a product of linear polynomials with integer coefficients.

642. In a convex polyhedron, each vertex is the endpoint of exactly three edges and each face is a concyclic
polygon. Prove that the polyhedron can be inscribed in a sphere.

643. Let n2 distinct integers be arranged in an n×n square array (n ≥ 2). Show that it is possible to select n
numbers, one from each row and column, such that if the number selected from any row is greater than
another number in this row, then this latter number is less than the number selected from its column.

644. Given a point P , a line L and a circle C, construct with straightedge and compasses an equilateral
triangle PQR with one vertex at P , another vertex Q on L and the third vertex R on C.

645. Let n ≥ 3 be a positive integer. Are there n positive integers a1, a2, · · · , an not all the same such that
for each i with 3 ≤ i ≤ n we have

ai + Si = (ai, Si) + [ai, Si] .

where Si = a1 + a2 + · · ·+ ai, and where (·, ·) and [·, ·] represent the greatest common divisor and least
common multiple respectively?

646. Let ABC be a triangle with incentre I. Let AI meet BC at L, and let X be the contact point of the
incircle with the line BC. If D is the reflection of L in X on line BC , we construct B′ and C ′ as
the reflections of D with respect to the lines BI and CI, respectively. Show that the quadrailateral
BCC ′B′ is cyclic.
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Solutions

626. Let ABC be an isosceles triangle with AB = AC, and suppose that D is a point on the side BC with
BC > BD > DC. Let BE and CF be diameters of the respective circumcircles of triangles ABD and
ADC, and let P be the foot of the altitude from A to BC. Prove that PD : AP = EF : BC.

Solution 1. Since angles BDE and CDF are both right, E and F both lie on the perpendicular to BC
through D. Since ABDE and ADCF are concyclic,

∠AEF = ∠ABD = ∠ABC = ∠ACB = ∠ACD = ∠AFD = ∠AFE .

Therefore triangles AEF and ABC are similar. Thus AEF is isosceles and its altitude through A is
perpendicular to DEF and parallel to BC, so that it is equal to PD. Therefore, from the similarity,
PD : AP = EF : BC, as desired.

Solution 2. Since the chord AD subtends the same angle (∠ABC = ∠ACB) in circles ABD and ACD,
these circles must have equal diameters. The rotation with centre A that takes B to C takes the circle ABD
to a circle with chord AC of equal diameter. The angle subtended at D by AB on the circumcircle of ABD
is the supplement of the angle subtended at D by AC on the circumcircle of ACD. Therefore, this image
circle must be the circle ACD. Therefore the diameter BE is carried to the diameter CF , and E is carried
to F . Hence AE = AF and ∠BAC = ∠EAF . Thus, triangles ABC and AEF are similar.

Now consider the composite of a rotation about A through a right angle followed by a dilatation of
factor |AE|/|AB|. This transformation take B to E and C to F , and therefore the altitude AP to the
altitude AM of triangle AEF which is therefore parallel to BC. Since D lies on the circumcircle of ABD
with diameter BE, ∠BDE = 90◦. Similarly, ∠CDF = 90◦. Hence AMDP is a rectangle and AM = PD.
The result follows from the similarity of triangles ABC and AEF .

627. Let
f(x, y, z) = 2x2 + 2y2 − 2z2 +

7
xy

+
1
z

.

There are three pairwise distinct numbers a, b, c for which

f(a, b, c) = f(b, c, a) = f(c, a, b) .

Determine f(a, b, c). Determine three such numbers a, b, c.

Solution. Suppose that a, b, c are pairwise distinct and f(a, b, c) = f(b, c, a) = f(c, a, b). Then

2a2 + 2b2 − 2c2 +
7
ab

+
1
c

= 2b2 + 2c2 − 2a2 +
7
bc

+
1
a

so that

4(a2 − c2) =
(

1
a
− 1

c

)(
1− 7

b

)
=

1
abc

(c− a)(b− 7) .

Therefore 4abc(a + c) = 7 − b. Similarly, 4abc(b + a) = 7 − c. Subtracting these equations yields that
4abc(c− b) = c− b so that 4abc = 1. It follows that a + b + c = 7.

Therefore
f(a, b, c) = 2(a2 + b2)− 2c2 + 28c + 4ab

= 2(a + b)2 − 2c2 + 28c = 2(7− c)2 − 2c2 + 28c

= 98− 28c + 2c2 − 2c2 + 28c = 98 .

We can find such triples by picking any nonzero value of c and solving the quadratic equation t2 − (7−
c)t + (1/4c) = 0 for a and b. For example, taking c = 1 yields the triple

(a, b, c) =
(

6 +
√

35
2

,
6−

√
35

2
, 1

)
.
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628. Suppose that AP , BQ and CR are the altitudes of the acute triangle ABC, and that

9−→AP + 4−−→BQ + 7−→CR = −→
O .

Prove that one of the angles of triangle ABC is equal to 60◦.

Solution 1. [H. Spink] Since the sum of the three vectors 9−→AP , 4−−→BQ, 7−→CR is zero, there is a triangle
whose sides have lengths 9|AP |, 4|BQ|, 7|CR| and are parallel to the corresponding vectors.

Where H is the orthocentre, we have that

∠BHP = 90◦ − ∠QBC = ∠ACB

so that the angle between the vectors −→AP and −−→
BQ is equal to angle ACB. Similarly, the angle between

vectors −−→BQ and −→CR is equal to angle BAC. It follows that the triangle formed by the vectors is similar to
triangle ABC and

|AB| : 7|CR| = |BC| : 9|AP | = |CA| : 4|BQ| .

Since twice the area of the triangle ABC is equal to

|AB| × |CR| = |BC| × |AP | = |CA| × |BQ| ,

we have that (with conventional notation for side lengths)

c2

7
=

a2

9
=

b2

4

so that a : b : c = 3 : 2 :
√

7.

If one angle of the triangle is equal to 60◦ we would expect it to be neither the largest nor the smallest.
Accordingly, we compute the cosine of angle ACB, namely

a2 + b2 − c2

2ab
=

9 + 4− 7
2× 3× 2

=
6
12

=
1
2

.

Therefore ∠ACB = 60◦.

Solution 2. Let the angles of the triangle be α = ∠BAC, β = ∠CBA and γ = ∠ACB; let p, q, r be
the respective magnitudes of vectors −→AP , −−→BQ, −→CR. Taking the dot product of the vector equation with−−→
BC and noting that ∠QBC = 90 − γ and ∠BCR = 90 − β, we find that 4q sin γ = 7r sinβ. Similarly,
9p sin γ = 7r sinα and 9p sinβ = 4q sinα. Using the conventional notation for the sides of the triangle, we
have that

a : b : c = sinα : sinβ : sin γ = 9p : 4q : 7r .

However, we also have that twice the area of triangle ABC is equal to ap = bq = cr, so that a : b : c =
(1/p) : (1/q) : (1/r). Therefore 9p2 = 4q2 = 7r2 = k, for some constant k. Therefore

cos ∠ACB =
a2 + b2 − c2

2ab
=

81p2 + 16q2 − 49r2

72pq

=
9k + 4k − 7k

12k
=

1
2

,

from which it follows that ∠C = 60◦.

Solution 3. [C. Deng] Observe that

|BQ| = |BC| cos ∠QBC = |BC|∠ sinACB ,
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|CR| = |BC| cos ∠RCB = |BC| sin∠ABC .

Resolving in the direction of −−→BC, we find from the given equation that

4|BC| cos2 ∠QBC = 4|BQ| cos ∠QBC = 7|CR| cos ∠RCB = 7|BC| cos2 ∠RCB

=⇒ 4 sin2 ∠ACB = 7 sin2 ∠ABC .

By the Law of Sines, AC : AB = sin ∠ABC : sin ∠ACB = 2 :
√

7 . Similarly AC : BC = 2 : 3, so that
CA : AB : BC = 2 :

√
7 : 3. The cosine of angle ACB is equal to (4+9−7)/12 = 1/2, so that ∠ACB = 60◦.

629. (a) Let a > b > c > d > 0 and a + d = b + c. Show that ad < bc.

(b) Let a, b, p, q, r, s be positive integers for which

p

q
<

a

b
<

r

s

and qr − ps = 1. Prove that b ≥ q + s.

(a) Solution 1. Since c = a + d− b, we have that

bc− ad = b(a + d− b)− ad = (a− b)b− (a− b)d = (a− b)(b− d) > 0 .

Solution 2. Let a + d = b + c = u. Then

bc− ad = b(u− b)− (u− d)d = u(b− d)− (b2 − d2) = (b− d)(u− b− d) .

Now u = b + c > b + d, so that u− b− d > 0 as well as b− d > 0. Hence bc− ad > 0 as desired.

Solution 3. Let x = a− b > 0. Since a− b = c− d, we have that a = b + x and d = c− x. Hence

bc− ad = bc− (b + x)(c− x) = bx− cx + x2 = x2 + x(b− c) > 0 .

Solution 4. Since
√

a >
√

b >
√

c >
√

d,
√

a−
√

d >
√

b−
√

c. Squaring and using a + d = b + c yields
2
√

bc > 2
√

ad, whence the result.

(b) Solution. Since all variables represent integers,

aq − bp > 0, br − as > 0 =⇒ aq − bp ≥ 1, br − as ≥ 1 .

Therefore
b = b(qr − ps) = q(br − as) + s(aq − bp) ≥ q + s .

630. (a) Show that, if
cos α

cos β
+

sinα

sinβ
= −1 ,

then
cos3 β

cos α
+

sin3 β

sinα
= 1 .

(b) Give an example of numbers α and β that satisfy the condition in (a) and check that both equations
hold.

(a) Solution 1. Let

λ =
cos β

cos α
and µ =

sinβ

sinα
.
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Since λ−1 + µ−1 = −1, we have that λ + µ = −λµ. Now

1 = cos2 β + sin2 β = λ2 cos2 α + µ2 sin2 α = λ2 + (µ2 − λ2) sin2 α = λ2 − (µ− λ)λµ sin2 α .

Hence
cos3 β

cos α
+

sin3 β

sinα
= λ3 cos2 α + µ3 sin2 α

= λ(λ2 cos2 α + µ2 sin2 α) + (µ− λ)µ2 sin2 α

= λ + (µ− λ)µ2 sin2 α

=
1
λ

[λ2 + (λ2 − 1)µ]

=
1
λ

[λ2 + λ2µ + λ + λµ

= λ + λµ + 1 + µ = 1 .

Solution 2. [M. Boase]
cos α

cos β
+

sinα

sinβ
= −1 =⇒

sin(α + β) + sin β cos β = 0 . (∗)
Therefore

cos3 β

cos α
+

sin3 β

sinα
=

cos β(1− sin2 β)
cos α

+
sinβ(1− cos2 β)

sinα

=
cos β

cos α
+

sinβ

sinα
− sinβ cos β

(
sinβ

cos α
+

cos β

sinα

)
=

sin(α + β)
cos α sinα

− cos β sinβ(cos(α− β))
cos α sinα

=
−2 sinβ cos β + 2 sin(α + β) cos(α− β)

2 sinα cos α
using (∗)

=
−2 sinβ cos β + [sin 2α + sin 2β]

sin 2α
= 1

since 2 sinβ cos β = sin 2β.

Solution 3. [A. Birka] Let cos α = x and cos β = y. Then

sinα

sinβ
= ±

√
1− x2

1− y2
.

Since
x

y
+ 1 = ∓

√
1− x2

1− y2
.

then
(x2 + 2xy + y2)(1− y2) = y2(1− x2) ,

whence
x2 + 2xy = 2xy3 + y4 .

Thus,
cos3 β

cos α
+

sin3 β

sinα
=

y3

x
± (1− y2)

√
1− y2

1− x2

=
y3

x
− (1− y2)y

x + y
=

y4 + 2xy3 − xy

x(x + y)

=
x2 + xy

x(x + y)
= 1 .
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Solution 4. [J. Chui] Note that the given equation implies that sin 2β = −2 sin(α + β) and that the
numerator of

cos α

cos β
+

sinα

sinβ
+

cos3 β

cos α
+

sin3 β

sinα

is one quarter of

4[cos2 α sinα sinβ + sin2 α cos α cos β + cos4 β sinα sinβ + sin4 β cos α cos β]

= 4[cos2 α sinα sinβ + sin2 α cos α cos β + (cos2 β − cos2 β sin2 β) sinα sinβ

+ (sin2 β − sin2 β cos2 β) cos α cos β]

= (4 cos2 α + 4 cos2 β − sin2 2β) sinα sinβ + (4 sin2 α + 4 sin2 β − sin2 2β) cos α cos β

= 2 sin 2α cos α sinβ + 2 sin 2β cos β sinα + 2 sin 2α sinα cos β + 2 sin 2β cos α sinβ

− sin2 2β(cos α cos β + sinα sinβ)

= 2(sin 2α + sin 2β) sin(α + β)− sin2 2β cos(α− β)
= 2 sin(α + β)[sin 2α + sin 2β − 2 sin(α + β) cos(α− β)] = 0 ,

since
sin 2α + sin 2β = sin(α + β + α− β) + sin(α + β − α− β) .

Solution 5. [A. Tang] From the given equation, we have that

sin(α + β) = − sinβ cos β ,

cos β

cos α
=

− sinβ

sinα + sinβ
,

and
sinβ

sinα
=

− cos β

cos α + cos β
.

Hence
cos3 β

cos α
+

sin3 β

sinα
= cos2 β

[
− sinβ

sinα + sinβ

]
+ sin2 β

[
− cos β

cos α + cos β

]
= − sinβ cos β[cos α cos β + sinα sinβ + 1]

4 sin 1
2 (α + β) cos 1

2 (α− β) cos 1
2 (α + β) cos 1

2 (α− β)

=
sin(α + β)[cos(α− β) + 1]

[2 sin 1
2 (α + β) cos 1

2 (α + β)][2 cos2 1
2 (α− β)]

= 1 .

Solution 6. [D. Arthur] The given equations yield 2 sin(α + β) = − sin 2β, cos α sinβ = − cos β(sinα +
sinβ) and sinα cos β = − sinβ(cos α + cos β). Hence

cos3 β

cos α
+

sin3 β

sinα
=

cos2 β(cos β sinα) + sin2 β(sinβ cos α)
cos α sinα

=
− cos2 β sinβ(cos α + cos β)− sin2 β cos β(sinα + sinβ)

cos α sinα

=
− cos β sinβ(cos α cos β + cos2 β + sinα sinβ + sin2 β)

cos α sinα

=
− sin 2β(1 + cos(α− β))

sin 2α

=
− sin 2β + 2 sin(α + β) cos(α− β)

sin 2α

=
− sin 2β + sin 2α + sin 2β

sin 2α
= 1 .
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Solution 7. [C. Deng] Let sinβ = x, cos β = y, and (sinα)/(sinβ) = c. Thus, (cos α)/(cos β) = −1− c.
We have that

x2 + y2 = 1

and
(cx)2 + (−1− c)y)2 = 1 .

Solving the system yields that

x2 =
c2 + 2c

1 + 2c
, y2 =

1− c2

1 + 2c
.

Therefore,
sin3 β

sinα
+

cos3 β

cos α
=

x2

c
+

y2

−1− c
=

c2 + 2c

c(2c + 1)
+

1− c2

(−c− 1)(2c + 1)

=
c + 2
2c + 1

+
c− 1
2c + 1

= 1 .

(b) Solution. The given equation is equivalent to 2 sin(α + β) + sin 2β = 0. Try β = −45◦ so that
sin(α− 45◦) = 1

2 . We take α = 75◦. Now

sin 75◦ = sin(45◦ + 30◦) =
1√
2

(√
3 + 1
2

)
and

cos 75◦ = cos(45◦ + 30◦) =
1√
2

(√
3− 1
2

)
.

It is straightforward to check that both equations hold.

631. The sequence of functions {Pn} satisfies the following relations:

P1(x) = x , P2(x) = x3 ,

Pn+1(x) =
P 3

n(x)− Pn−1(x)
1 + Pn(x)Pn−1(x)

, n = 1, 2, 3, · · · .

Prove that all functions Pn are polynomials.

Solution 1. Taking x = 1, 2, 3, · · · yields the respective sequences

{1, 1, 0,−1,−1, 0, · · ·} , {2, 8, 30, 112, 418, 1560, · · ·} , {3, 27, 240, 2133, · · ·} .

In each case, we find that
Pn+1(x) = x2Pn(x)− Pn−1(x) (1)

for n = 2, 3, · · ·. If we can establish (1) in general, it will follow that all the functions Pn are polynomials.

From the definition of Pn, we find that

Pn+1 + Pn−1 = Pn(P 2
n − Pn+1Pn−1) .

Therefore, it suffices to establish that P 2
n − Pn+1Pn−1 = x2 for each n. Now, for n ≥ 2,

[P 2
n+1 − Pn+2Pn]− [P 2

n − Pn+1Pn−1] = Pn+1(Pn+1 + Pn−1)− Pn(Pn+2 + Pn)

= Pn+1Pn(P 2
n − Pn+1Pn−1)− PnPn+1(P 2

n+1 − Pn+2Pn)

= −Pn+1Pn[(P 2
n+1 − Pn+2Pn)− (P 2

n − Pn+1Pn−1)] ,
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so that either Pn+1(x)Pn(x) + 1 ≡ 0 or P 2
n+1−Pn+2Pn = P 2

n −Pn+1Pn−1. The first identity is precluded by
the case x = 1, where it is false. Hence

P 2
n+1 − Pn+2Pn = P 2

n − Pn+1Pn−1

for n = 2, 3, · · ·. Since P 2
2 (x)− P3(x)P1(x) = x2, the result follows.

Solution 2. [By inspection, we make the conjecture that Pn(x) = x2Pn−1(x)−Pn−2. Rather than prove
this directly from the rather awkward condition on Pn, we go through the back door.] Define the sequence
{Qn} for n = 0, 1, 2, · · · by

Q0(x) = 0 , Q1(x) = x , Qn+1 = x2Qn(x)−Qn−1(x)

for n ≥ 1. It is clear that Qn(x) is a polynomial of degree 2n−1 for n = 1, 2, · · ·. We show that Pn(x) = Qn(x)
for each n.

Lemma: Q2
n(x)−Qn+1Qn−1 = x2 for n ≥ 1.

Proof: This result holds for n = 1. Assume that it holds for n = k − 1 ≥ 1. Then

Q2
k(x)−Qk+1(x)Qk−1(x) = Q2

k(x)− (x2Qk(x)−Qk−1(x))Qk−1(x)

= Qk(x)(Qk(x)− x2Qk−1(x)) + Q2
k−1(x)

= −Qk(x)Qk−2(x) + Q2
k−1(x) = x2 . ♠

From the lemma, we find that

Qn+1(x) + Qn−1(x) + Qn+1(x)Qn(x)Qn−1(x)

= x2Qn(x) + Qn+1(x)Qn(x)Qn−1(x) = Qn(x)(x2 + Qn+1(x)Qn−1(x)) = Q3
n(x)

=⇒ Qn+1(x) =
Q3

n(x)−Qn−1(x)
1 + Qn(x)Qn−1(x)

(n = 1, 2, · · ·) .

We know that Q1(x) = P1(x) and Q2(x) = P2(x). Suppose that Qn(x) = Pn(x) for n = 1, 2, · · · , k. Then

Qk+1(x) =
Q3

k(x)−Qk−1(x)
1 + Qk(x)Qk−1(x)

=
P 3

k (x)− Pk−1(x)
1 + Pk(x)Pk−1(x)

= Pk+1(x)

from the definition of Pk+1. The result follows.

Comment: It can also be established that P 2
n+1 + P 2

n = (1 + PnPn+1)x2 for each n ≥ 0.

Solution 3. [I. Panayotov] First note that the sequence {Pn(x)} is defined for all values of x, i.e., the
denominator 1+Pn−1(x)Pn(x) never vanishes for n and x. Suppose otherwise, and let n be the least number
for which there exists u for which 1 + Pn−1(u)Pn(u) = 0. Then n ≥ 3 and

−1 = Pn−1(u)Pn(u) =
Pn−1(u)4 − Pn−1(u)Pn−2(u)

1 + Pn−1(u)Pn−2(u)

which implies that Pn−1(u)4 = −1, a contradiction.

We now prove by induction that Pn+1 = x2Pn−Pn−1. Suppose that Pk = x2Pk−1−Pk−2 for 3 ≤ k ≤ n,
so that in particular we know that Pk is a polynomial for 1 ≤ k ≤ n. Substituting for Pk yields

P 3
k−1(x) = Pk−1(x)[x2 + x2Pk−1(x)Pk−2(x)− P 2

k−2(x)]

for all x. If Pk−1(x) 6= 0, then

P 2
k−1(x) = x2 + x2Pk−1(x)Pk−2(x)− P 2

k−2(x) .

8



Both sides of this equation are polynomials and so continuous functions of x. Since the roots of Pk−1

constitute a finite discreet set, this equation holds when x is one of the roots as well. Now

Pn+1 =
P 3

n − Pn−1

1 + PnPn−1
=

Pn(x2Pn−1 − Pn−2)2 − Pn−1

1 + PnPn−1

=
Pn(x4P 2

n−1 − x2Pn−1Pn−2 + x2 − P 2
n−1)− Pn−1

1 + PnPn−1

=
Pn(x2PnPn−1 + x2 − P 2

n−1)− Pn−1

1 + PnPn−1
since x2Pn−1 − Pn−2 = Pn

=
(x2Pn − Pn−1)(1 + PnPn−1)

1 + PnPn−1
= x2Pn − Pn−1 .

The result follows.

632. Let a, b, c, x, y, z be positive real numbers for which a ≤ b ≤ c, x ≤ y ≤ z, a + b + c = x + y + z,
abc = xyz, and c ≤ z, Prove that a ≤ x.

Solution. Let

p(t) = (t− a)(t− b)(t− c) = t3 − (a + b + c)t2 + (ab + bc + ca)t− abc

and
q(t) = (t− x)(t− y)(t− z) = t3 − (x + y + z)t2 + (xy + yz + zx)t− xyz .

Then p(t)− q(t) = (ab + bc + ca− xy − yz − zx)t never changes sign for positive values of t. Since p(t) > 0
for t > c, we have that p(z)− q(z) = p(z) ≥ 0, so that p(t) ≥ q(t) for all t > 0.

Hence, for 0 < t < a, we have that q(t) ≤ p(t) < 0, from which it follows that q(t) has no root less than
a. Hence x ≥ a as desired.
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